Properties

Label 520.6.a.e.1.1
Level $520$
Weight $6$
Character 520.1
Self dual yes
Analytic conductor $83.400$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,6,Mod(1,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.3995863027\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 1392x^{6} - 960x^{5} + 541704x^{4} + 955392x^{3} - 49992640x^{2} - 201007872x + 5544720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-27.7866\) of defining polynomial
Character \(\chi\) \(=\) 520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-29.7866 q^{3} -25.0000 q^{5} +138.753 q^{7} +644.243 q^{9} -132.506 q^{11} +169.000 q^{13} +744.666 q^{15} +1951.61 q^{17} +1920.72 q^{19} -4133.00 q^{21} +1713.94 q^{23} +625.000 q^{25} -11951.7 q^{27} +1118.88 q^{29} -2283.69 q^{31} +3946.89 q^{33} -3468.83 q^{35} -3956.62 q^{37} -5033.94 q^{39} +7403.63 q^{41} -1767.31 q^{43} -16106.1 q^{45} -15917.2 q^{47} +2445.51 q^{49} -58131.7 q^{51} +1515.57 q^{53} +3312.64 q^{55} -57211.7 q^{57} -43798.7 q^{59} +19517.9 q^{61} +89390.9 q^{63} -4225.00 q^{65} -9820.52 q^{67} -51052.4 q^{69} +17669.6 q^{71} -23941.5 q^{73} -18616.6 q^{75} -18385.6 q^{77} +106118. q^{79} +199449. q^{81} +95434.8 q^{83} -48790.1 q^{85} -33327.7 q^{87} +108550. q^{89} +23449.3 q^{91} +68023.5 q^{93} -48017.9 q^{95} +74315.7 q^{97} -85365.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{3} - 200 q^{5} + 184 q^{7} + 872 q^{9} + 128 q^{11} + 1352 q^{13} + 400 q^{15} + 1656 q^{17} - 2112 q^{19} - 1352 q^{21} - 1144 q^{23} + 5000 q^{25} - 6112 q^{27} - 6672 q^{29} - 2984 q^{31}+ \cdots + 312944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −29.7866 −1.91081 −0.955406 0.295294i \(-0.904582\pi\)
−0.955406 + 0.295294i \(0.904582\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 138.753 1.07028 0.535141 0.844763i \(-0.320258\pi\)
0.535141 + 0.844763i \(0.320258\pi\)
\(8\) 0 0
\(9\) 644.243 2.65121
\(10\) 0 0
\(11\) −132.506 −0.330181 −0.165091 0.986278i \(-0.552792\pi\)
−0.165091 + 0.986278i \(0.552792\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 744.666 0.854541
\(16\) 0 0
\(17\) 1951.61 1.63783 0.818917 0.573912i \(-0.194575\pi\)
0.818917 + 0.573912i \(0.194575\pi\)
\(18\) 0 0
\(19\) 1920.72 1.22062 0.610308 0.792164i \(-0.291046\pi\)
0.610308 + 0.792164i \(0.291046\pi\)
\(20\) 0 0
\(21\) −4133.00 −2.04511
\(22\) 0 0
\(23\) 1713.94 0.675577 0.337789 0.941222i \(-0.390321\pi\)
0.337789 + 0.941222i \(0.390321\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −11951.7 −3.15514
\(28\) 0 0
\(29\) 1118.88 0.247053 0.123526 0.992341i \(-0.460580\pi\)
0.123526 + 0.992341i \(0.460580\pi\)
\(30\) 0 0
\(31\) −2283.69 −0.426809 −0.213404 0.976964i \(-0.568455\pi\)
−0.213404 + 0.976964i \(0.568455\pi\)
\(32\) 0 0
\(33\) 3946.89 0.630915
\(34\) 0 0
\(35\) −3468.83 −0.478645
\(36\) 0 0
\(37\) −3956.62 −0.475138 −0.237569 0.971371i \(-0.576351\pi\)
−0.237569 + 0.971371i \(0.576351\pi\)
\(38\) 0 0
\(39\) −5033.94 −0.529964
\(40\) 0 0
\(41\) 7403.63 0.687836 0.343918 0.939000i \(-0.388246\pi\)
0.343918 + 0.939000i \(0.388246\pi\)
\(42\) 0 0
\(43\) −1767.31 −0.145761 −0.0728807 0.997341i \(-0.523219\pi\)
−0.0728807 + 0.997341i \(0.523219\pi\)
\(44\) 0 0
\(45\) −16106.1 −1.18566
\(46\) 0 0
\(47\) −15917.2 −1.05105 −0.525523 0.850780i \(-0.676130\pi\)
−0.525523 + 0.850780i \(0.676130\pi\)
\(48\) 0 0
\(49\) 2445.51 0.145505
\(50\) 0 0
\(51\) −58131.7 −3.12959
\(52\) 0 0
\(53\) 1515.57 0.0741115 0.0370558 0.999313i \(-0.488202\pi\)
0.0370558 + 0.999313i \(0.488202\pi\)
\(54\) 0 0
\(55\) 3312.64 0.147662
\(56\) 0 0
\(57\) −57211.7 −2.33237
\(58\) 0 0
\(59\) −43798.7 −1.63807 −0.819033 0.573746i \(-0.805490\pi\)
−0.819033 + 0.573746i \(0.805490\pi\)
\(60\) 0 0
\(61\) 19517.9 0.671597 0.335799 0.941934i \(-0.390994\pi\)
0.335799 + 0.941934i \(0.390994\pi\)
\(62\) 0 0
\(63\) 89390.9 2.83754
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −9820.52 −0.267268 −0.133634 0.991031i \(-0.542665\pi\)
−0.133634 + 0.991031i \(0.542665\pi\)
\(68\) 0 0
\(69\) −51052.4 −1.29090
\(70\) 0 0
\(71\) 17669.6 0.415987 0.207994 0.978130i \(-0.433307\pi\)
0.207994 + 0.978130i \(0.433307\pi\)
\(72\) 0 0
\(73\) −23941.5 −0.525829 −0.262915 0.964819i \(-0.584684\pi\)
−0.262915 + 0.964819i \(0.584684\pi\)
\(74\) 0 0
\(75\) −18616.6 −0.382163
\(76\) 0 0
\(77\) −18385.6 −0.353387
\(78\) 0 0
\(79\) 106118. 1.91303 0.956517 0.291676i \(-0.0942129\pi\)
0.956517 + 0.291676i \(0.0942129\pi\)
\(80\) 0 0
\(81\) 199449. 3.37768
\(82\) 0 0
\(83\) 95434.8 1.52059 0.760294 0.649579i \(-0.225055\pi\)
0.760294 + 0.649579i \(0.225055\pi\)
\(84\) 0 0
\(85\) −48790.1 −0.732461
\(86\) 0 0
\(87\) −33327.7 −0.472072
\(88\) 0 0
\(89\) 108550. 1.45263 0.726315 0.687362i \(-0.241231\pi\)
0.726315 + 0.687362i \(0.241231\pi\)
\(90\) 0 0
\(91\) 23449.3 0.296843
\(92\) 0 0
\(93\) 68023.5 0.815552
\(94\) 0 0
\(95\) −48017.9 −0.545876
\(96\) 0 0
\(97\) 74315.7 0.801958 0.400979 0.916087i \(-0.368670\pi\)
0.400979 + 0.916087i \(0.368670\pi\)
\(98\) 0 0
\(99\) −85365.8 −0.875378
\(100\) 0 0
\(101\) 145059. 1.41495 0.707473 0.706740i \(-0.249835\pi\)
0.707473 + 0.706740i \(0.249835\pi\)
\(102\) 0 0
\(103\) −180232. −1.67394 −0.836968 0.547252i \(-0.815674\pi\)
−0.836968 + 0.547252i \(0.815674\pi\)
\(104\) 0 0
\(105\) 103325. 0.914601
\(106\) 0 0
\(107\) −98023.6 −0.827697 −0.413848 0.910346i \(-0.635816\pi\)
−0.413848 + 0.910346i \(0.635816\pi\)
\(108\) 0 0
\(109\) 83119.8 0.670098 0.335049 0.942201i \(-0.391247\pi\)
0.335049 + 0.942201i \(0.391247\pi\)
\(110\) 0 0
\(111\) 117854. 0.907900
\(112\) 0 0
\(113\) 121689. 0.896510 0.448255 0.893906i \(-0.352046\pi\)
0.448255 + 0.893906i \(0.352046\pi\)
\(114\) 0 0
\(115\) −42848.4 −0.302127
\(116\) 0 0
\(117\) 108877. 0.735312
\(118\) 0 0
\(119\) 270792. 1.75294
\(120\) 0 0
\(121\) −143493. −0.890980
\(122\) 0 0
\(123\) −220529. −1.31433
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −98878.5 −0.543992 −0.271996 0.962298i \(-0.587684\pi\)
−0.271996 + 0.962298i \(0.587684\pi\)
\(128\) 0 0
\(129\) 52642.3 0.278523
\(130\) 0 0
\(131\) −273826. −1.39411 −0.697053 0.717019i \(-0.745506\pi\)
−0.697053 + 0.717019i \(0.745506\pi\)
\(132\) 0 0
\(133\) 266506. 1.30641
\(134\) 0 0
\(135\) 298792. 1.41102
\(136\) 0 0
\(137\) −57626.1 −0.262312 −0.131156 0.991362i \(-0.541869\pi\)
−0.131156 + 0.991362i \(0.541869\pi\)
\(138\) 0 0
\(139\) 90435.9 0.397012 0.198506 0.980100i \(-0.436391\pi\)
0.198506 + 0.980100i \(0.436391\pi\)
\(140\) 0 0
\(141\) 474119. 2.00835
\(142\) 0 0
\(143\) −22393.4 −0.0915758
\(144\) 0 0
\(145\) −27972.1 −0.110485
\(146\) 0 0
\(147\) −72843.4 −0.278033
\(148\) 0 0
\(149\) 276038. 1.01860 0.509299 0.860590i \(-0.329905\pi\)
0.509299 + 0.860590i \(0.329905\pi\)
\(150\) 0 0
\(151\) 359786. 1.28411 0.642055 0.766659i \(-0.278082\pi\)
0.642055 + 0.766659i \(0.278082\pi\)
\(152\) 0 0
\(153\) 1.25731e6 4.34223
\(154\) 0 0
\(155\) 57092.3 0.190875
\(156\) 0 0
\(157\) −466305. −1.50981 −0.754903 0.655836i \(-0.772316\pi\)
−0.754903 + 0.655836i \(0.772316\pi\)
\(158\) 0 0
\(159\) −45143.7 −0.141613
\(160\) 0 0
\(161\) 237815. 0.723059
\(162\) 0 0
\(163\) −524255. −1.54552 −0.772758 0.634700i \(-0.781124\pi\)
−0.772758 + 0.634700i \(0.781124\pi\)
\(164\) 0 0
\(165\) −98672.3 −0.282154
\(166\) 0 0
\(167\) −39887.6 −0.110674 −0.0553372 0.998468i \(-0.517623\pi\)
−0.0553372 + 0.998468i \(0.517623\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 1.23741e6 3.23611
\(172\) 0 0
\(173\) 598657. 1.52077 0.760383 0.649474i \(-0.225011\pi\)
0.760383 + 0.649474i \(0.225011\pi\)
\(174\) 0 0
\(175\) 86720.9 0.214057
\(176\) 0 0
\(177\) 1.30462e6 3.13004
\(178\) 0 0
\(179\) −672025. −1.56766 −0.783832 0.620973i \(-0.786737\pi\)
−0.783832 + 0.620973i \(0.786737\pi\)
\(180\) 0 0
\(181\) 142064. 0.322319 0.161160 0.986928i \(-0.448477\pi\)
0.161160 + 0.986928i \(0.448477\pi\)
\(182\) 0 0
\(183\) −581373. −1.28330
\(184\) 0 0
\(185\) 98915.4 0.212488
\(186\) 0 0
\(187\) −258599. −0.540782
\(188\) 0 0
\(189\) −1.65833e6 −3.37690
\(190\) 0 0
\(191\) −93947.8 −0.186339 −0.0931694 0.995650i \(-0.529700\pi\)
−0.0931694 + 0.995650i \(0.529700\pi\)
\(192\) 0 0
\(193\) −29673.1 −0.0573416 −0.0286708 0.999589i \(-0.509127\pi\)
−0.0286708 + 0.999589i \(0.509127\pi\)
\(194\) 0 0
\(195\) 125848. 0.237007
\(196\) 0 0
\(197\) −462903. −0.849815 −0.424907 0.905237i \(-0.639693\pi\)
−0.424907 + 0.905237i \(0.639693\pi\)
\(198\) 0 0
\(199\) −807986. −1.44634 −0.723171 0.690669i \(-0.757316\pi\)
−0.723171 + 0.690669i \(0.757316\pi\)
\(200\) 0 0
\(201\) 292520. 0.510700
\(202\) 0 0
\(203\) 155249. 0.264416
\(204\) 0 0
\(205\) −185091. −0.307610
\(206\) 0 0
\(207\) 1.10419e6 1.79109
\(208\) 0 0
\(209\) −254506. −0.403025
\(210\) 0 0
\(211\) 466889. 0.721950 0.360975 0.932575i \(-0.382444\pi\)
0.360975 + 0.932575i \(0.382444\pi\)
\(212\) 0 0
\(213\) −526316. −0.794873
\(214\) 0 0
\(215\) 44182.8 0.0651865
\(216\) 0 0
\(217\) −316870. −0.456806
\(218\) 0 0
\(219\) 713137. 1.00476
\(220\) 0 0
\(221\) 329821. 0.454253
\(222\) 0 0
\(223\) 6930.21 0.00933220 0.00466610 0.999989i \(-0.498515\pi\)
0.00466610 + 0.999989i \(0.498515\pi\)
\(224\) 0 0
\(225\) 402652. 0.530241
\(226\) 0 0
\(227\) 673243. 0.867175 0.433588 0.901111i \(-0.357247\pi\)
0.433588 + 0.901111i \(0.357247\pi\)
\(228\) 0 0
\(229\) −753445. −0.949430 −0.474715 0.880140i \(-0.657449\pi\)
−0.474715 + 0.880140i \(0.657449\pi\)
\(230\) 0 0
\(231\) 547645. 0.675257
\(232\) 0 0
\(233\) 49965.8 0.0602953 0.0301476 0.999545i \(-0.490402\pi\)
0.0301476 + 0.999545i \(0.490402\pi\)
\(234\) 0 0
\(235\) 397929. 0.470042
\(236\) 0 0
\(237\) −3.16091e6 −3.65545
\(238\) 0 0
\(239\) 1.74531e6 1.97642 0.988209 0.153108i \(-0.0489283\pi\)
0.988209 + 0.153108i \(0.0489283\pi\)
\(240\) 0 0
\(241\) −601566. −0.667176 −0.333588 0.942719i \(-0.608259\pi\)
−0.333588 + 0.942719i \(0.608259\pi\)
\(242\) 0 0
\(243\) −3.03665e6 −3.29898
\(244\) 0 0
\(245\) −61137.6 −0.0650719
\(246\) 0 0
\(247\) 324601. 0.338538
\(248\) 0 0
\(249\) −2.84268e6 −2.90556
\(250\) 0 0
\(251\) 560000. 0.561052 0.280526 0.959846i \(-0.409491\pi\)
0.280526 + 0.959846i \(0.409491\pi\)
\(252\) 0 0
\(253\) −227106. −0.223063
\(254\) 0 0
\(255\) 1.45329e6 1.39960
\(256\) 0 0
\(257\) 1.70370e6 1.60902 0.804510 0.593940i \(-0.202428\pi\)
0.804510 + 0.593940i \(0.202428\pi\)
\(258\) 0 0
\(259\) −548994. −0.508532
\(260\) 0 0
\(261\) 720832. 0.654988
\(262\) 0 0
\(263\) −2.06742e6 −1.84306 −0.921529 0.388310i \(-0.873059\pi\)
−0.921529 + 0.388310i \(0.873059\pi\)
\(264\) 0 0
\(265\) −37889.2 −0.0331437
\(266\) 0 0
\(267\) −3.23334e6 −2.77570
\(268\) 0 0
\(269\) 1.59362e6 1.34278 0.671388 0.741106i \(-0.265698\pi\)
0.671388 + 0.741106i \(0.265698\pi\)
\(270\) 0 0
\(271\) 1.43967e6 1.19080 0.595402 0.803428i \(-0.296993\pi\)
0.595402 + 0.803428i \(0.296993\pi\)
\(272\) 0 0
\(273\) −698476. −0.567211
\(274\) 0 0
\(275\) −82816.0 −0.0660363
\(276\) 0 0
\(277\) 240544. 0.188363 0.0941815 0.995555i \(-0.469977\pi\)
0.0941815 + 0.995555i \(0.469977\pi\)
\(278\) 0 0
\(279\) −1.47125e6 −1.13156
\(280\) 0 0
\(281\) 1.66707e6 1.25947 0.629736 0.776809i \(-0.283163\pi\)
0.629736 + 0.776809i \(0.283163\pi\)
\(282\) 0 0
\(283\) 1.48417e6 1.10159 0.550793 0.834642i \(-0.314326\pi\)
0.550793 + 0.834642i \(0.314326\pi\)
\(284\) 0 0
\(285\) 1.43029e6 1.04307
\(286\) 0 0
\(287\) 1.02728e6 0.736179
\(288\) 0 0
\(289\) 2.38891e6 1.68250
\(290\) 0 0
\(291\) −2.21361e6 −1.53239
\(292\) 0 0
\(293\) 189974. 0.129278 0.0646390 0.997909i \(-0.479410\pi\)
0.0646390 + 0.997909i \(0.479410\pi\)
\(294\) 0 0
\(295\) 1.09497e6 0.732566
\(296\) 0 0
\(297\) 1.58366e6 1.04177
\(298\) 0 0
\(299\) 289655. 0.187371
\(300\) 0 0
\(301\) −245221. −0.156006
\(302\) 0 0
\(303\) −4.32081e6 −2.70370
\(304\) 0 0
\(305\) −487948. −0.300347
\(306\) 0 0
\(307\) 1.73353e6 1.04975 0.524873 0.851180i \(-0.324113\pi\)
0.524873 + 0.851180i \(0.324113\pi\)
\(308\) 0 0
\(309\) 5.36850e6 3.19858
\(310\) 0 0
\(311\) 538447. 0.315676 0.157838 0.987465i \(-0.449548\pi\)
0.157838 + 0.987465i \(0.449548\pi\)
\(312\) 0 0
\(313\) −2.18751e6 −1.26208 −0.631042 0.775748i \(-0.717373\pi\)
−0.631042 + 0.775748i \(0.717373\pi\)
\(314\) 0 0
\(315\) −2.23477e6 −1.26899
\(316\) 0 0
\(317\) −3.01629e6 −1.68587 −0.842936 0.538014i \(-0.819175\pi\)
−0.842936 + 0.538014i \(0.819175\pi\)
\(318\) 0 0
\(319\) −148258. −0.0815722
\(320\) 0 0
\(321\) 2.91979e6 1.58157
\(322\) 0 0
\(323\) 3.74848e6 1.99917
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) −2.47586e6 −1.28043
\(328\) 0 0
\(329\) −2.20856e6 −1.12492
\(330\) 0 0
\(331\) 1.62436e6 0.814913 0.407457 0.913225i \(-0.366416\pi\)
0.407457 + 0.913225i \(0.366416\pi\)
\(332\) 0 0
\(333\) −2.54902e6 −1.25969
\(334\) 0 0
\(335\) 245513. 0.119526
\(336\) 0 0
\(337\) −3.00154e6 −1.43969 −0.719846 0.694134i \(-0.755788\pi\)
−0.719846 + 0.694134i \(0.755788\pi\)
\(338\) 0 0
\(339\) −3.62470e6 −1.71306
\(340\) 0 0
\(341\) 302602. 0.140924
\(342\) 0 0
\(343\) −1.99271e6 −0.914551
\(344\) 0 0
\(345\) 1.27631e6 0.577309
\(346\) 0 0
\(347\) −458177. −0.204272 −0.102136 0.994770i \(-0.532568\pi\)
−0.102136 + 0.994770i \(0.532568\pi\)
\(348\) 0 0
\(349\) 1.17764e6 0.517548 0.258774 0.965938i \(-0.416682\pi\)
0.258774 + 0.965938i \(0.416682\pi\)
\(350\) 0 0
\(351\) −2.01983e6 −0.875079
\(352\) 0 0
\(353\) 3.59518e6 1.53562 0.767811 0.640677i \(-0.221346\pi\)
0.767811 + 0.640677i \(0.221346\pi\)
\(354\) 0 0
\(355\) −441739. −0.186035
\(356\) 0 0
\(357\) −8.06598e6 −3.34955
\(358\) 0 0
\(359\) −1.64641e6 −0.674219 −0.337110 0.941465i \(-0.609449\pi\)
−0.337110 + 0.941465i \(0.609449\pi\)
\(360\) 0 0
\(361\) 1.21305e6 0.489905
\(362\) 0 0
\(363\) 4.27418e6 1.70250
\(364\) 0 0
\(365\) 598538. 0.235158
\(366\) 0 0
\(367\) −1.12688e6 −0.436730 −0.218365 0.975867i \(-0.570072\pi\)
−0.218365 + 0.975867i \(0.570072\pi\)
\(368\) 0 0
\(369\) 4.76973e6 1.82359
\(370\) 0 0
\(371\) 210290. 0.0793203
\(372\) 0 0
\(373\) 3.41831e6 1.27215 0.636076 0.771626i \(-0.280556\pi\)
0.636076 + 0.771626i \(0.280556\pi\)
\(374\) 0 0
\(375\) 465416. 0.170908
\(376\) 0 0
\(377\) 189091. 0.0685201
\(378\) 0 0
\(379\) 505431. 0.180744 0.0903720 0.995908i \(-0.471194\pi\)
0.0903720 + 0.995908i \(0.471194\pi\)
\(380\) 0 0
\(381\) 2.94526e6 1.03947
\(382\) 0 0
\(383\) 5.36338e6 1.86828 0.934139 0.356908i \(-0.116169\pi\)
0.934139 + 0.356908i \(0.116169\pi\)
\(384\) 0 0
\(385\) 459640. 0.158040
\(386\) 0 0
\(387\) −1.13858e6 −0.386443
\(388\) 0 0
\(389\) −812527. −0.272248 −0.136124 0.990692i \(-0.543464\pi\)
−0.136124 + 0.990692i \(0.543464\pi\)
\(390\) 0 0
\(391\) 3.34493e6 1.10648
\(392\) 0 0
\(393\) 8.15634e6 2.66388
\(394\) 0 0
\(395\) −2.65296e6 −0.855535
\(396\) 0 0
\(397\) −2.00210e6 −0.637542 −0.318771 0.947832i \(-0.603270\pi\)
−0.318771 + 0.947832i \(0.603270\pi\)
\(398\) 0 0
\(399\) −7.93831e6 −2.49630
\(400\) 0 0
\(401\) −1.85573e6 −0.576307 −0.288153 0.957584i \(-0.593041\pi\)
−0.288153 + 0.957584i \(0.593041\pi\)
\(402\) 0 0
\(403\) −385944. −0.118375
\(404\) 0 0
\(405\) −4.98622e6 −1.51055
\(406\) 0 0
\(407\) 524274. 0.156882
\(408\) 0 0
\(409\) 4.58839e6 1.35629 0.678144 0.734929i \(-0.262785\pi\)
0.678144 + 0.734929i \(0.262785\pi\)
\(410\) 0 0
\(411\) 1.71649e6 0.501229
\(412\) 0 0
\(413\) −6.07722e6 −1.75319
\(414\) 0 0
\(415\) −2.38587e6 −0.680028
\(416\) 0 0
\(417\) −2.69378e6 −0.758616
\(418\) 0 0
\(419\) 6.66322e6 1.85417 0.927085 0.374852i \(-0.122307\pi\)
0.927085 + 0.374852i \(0.122307\pi\)
\(420\) 0 0
\(421\) 6.30703e6 1.73428 0.867141 0.498062i \(-0.165955\pi\)
0.867141 + 0.498062i \(0.165955\pi\)
\(422\) 0 0
\(423\) −1.02545e7 −2.78654
\(424\) 0 0
\(425\) 1.21975e6 0.327567
\(426\) 0 0
\(427\) 2.70818e6 0.718799
\(428\) 0 0
\(429\) 667025. 0.174984
\(430\) 0 0
\(431\) −1.42774e6 −0.370217 −0.185109 0.982718i \(-0.559264\pi\)
−0.185109 + 0.982718i \(0.559264\pi\)
\(432\) 0 0
\(433\) −2.98454e6 −0.764993 −0.382496 0.923957i \(-0.624936\pi\)
−0.382496 + 0.923957i \(0.624936\pi\)
\(434\) 0 0
\(435\) 833194. 0.211117
\(436\) 0 0
\(437\) 3.29199e6 0.824621
\(438\) 0 0
\(439\) −1.50983e6 −0.373910 −0.186955 0.982368i \(-0.559862\pi\)
−0.186955 + 0.982368i \(0.559862\pi\)
\(440\) 0 0
\(441\) 1.57550e6 0.385764
\(442\) 0 0
\(443\) −7.11802e6 −1.72326 −0.861629 0.507539i \(-0.830555\pi\)
−0.861629 + 0.507539i \(0.830555\pi\)
\(444\) 0 0
\(445\) −2.71375e6 −0.649636
\(446\) 0 0
\(447\) −8.22223e6 −1.94635
\(448\) 0 0
\(449\) 6.99203e6 1.63677 0.818384 0.574671i \(-0.194870\pi\)
0.818384 + 0.574671i \(0.194870\pi\)
\(450\) 0 0
\(451\) −981022. −0.227111
\(452\) 0 0
\(453\) −1.07168e7 −2.45369
\(454\) 0 0
\(455\) −586233. −0.132752
\(456\) 0 0
\(457\) −4.03690e6 −0.904185 −0.452092 0.891971i \(-0.649322\pi\)
−0.452092 + 0.891971i \(0.649322\pi\)
\(458\) 0 0
\(459\) −2.33249e7 −5.16760
\(460\) 0 0
\(461\) −7.20483e6 −1.57896 −0.789481 0.613775i \(-0.789650\pi\)
−0.789481 + 0.613775i \(0.789650\pi\)
\(462\) 0 0
\(463\) −4.43724e6 −0.961968 −0.480984 0.876729i \(-0.659721\pi\)
−0.480984 + 0.876729i \(0.659721\pi\)
\(464\) 0 0
\(465\) −1.70059e6 −0.364726
\(466\) 0 0
\(467\) 8.13996e6 1.72715 0.863575 0.504220i \(-0.168220\pi\)
0.863575 + 0.504220i \(0.168220\pi\)
\(468\) 0 0
\(469\) −1.36263e6 −0.286053
\(470\) 0 0
\(471\) 1.38897e7 2.88496
\(472\) 0 0
\(473\) 234179. 0.0481277
\(474\) 0 0
\(475\) 1.20045e6 0.244123
\(476\) 0 0
\(477\) 976394. 0.196485
\(478\) 0 0
\(479\) −7.40297e6 −1.47424 −0.737118 0.675764i \(-0.763814\pi\)
−0.737118 + 0.675764i \(0.763814\pi\)
\(480\) 0 0
\(481\) −668668. −0.131780
\(482\) 0 0
\(483\) −7.08369e6 −1.38163
\(484\) 0 0
\(485\) −1.85789e6 −0.358646
\(486\) 0 0
\(487\) 1.85372e6 0.354179 0.177089 0.984195i \(-0.443332\pi\)
0.177089 + 0.984195i \(0.443332\pi\)
\(488\) 0 0
\(489\) 1.56158e7 2.95319
\(490\) 0 0
\(491\) −4.16070e6 −0.778866 −0.389433 0.921055i \(-0.627329\pi\)
−0.389433 + 0.921055i \(0.627329\pi\)
\(492\) 0 0
\(493\) 2.18362e6 0.404631
\(494\) 0 0
\(495\) 2.13414e6 0.391481
\(496\) 0 0
\(497\) 2.45171e6 0.445224
\(498\) 0 0
\(499\) 832530. 0.149675 0.0748374 0.997196i \(-0.476156\pi\)
0.0748374 + 0.997196i \(0.476156\pi\)
\(500\) 0 0
\(501\) 1.18812e6 0.211478
\(502\) 0 0
\(503\) 1.03297e7 1.82040 0.910199 0.414172i \(-0.135929\pi\)
0.910199 + 0.414172i \(0.135929\pi\)
\(504\) 0 0
\(505\) −3.62647e6 −0.632783
\(506\) 0 0
\(507\) −850736. −0.146986
\(508\) 0 0
\(509\) −1.00971e7 −1.72743 −0.863716 0.503979i \(-0.831869\pi\)
−0.863716 + 0.503979i \(0.831869\pi\)
\(510\) 0 0
\(511\) −3.32197e6 −0.562786
\(512\) 0 0
\(513\) −2.29558e7 −3.85122
\(514\) 0 0
\(515\) 4.50580e6 0.748607
\(516\) 0 0
\(517\) 2.10911e6 0.347035
\(518\) 0 0
\(519\) −1.78320e7 −2.90590
\(520\) 0 0
\(521\) −6.85650e6 −1.10665 −0.553323 0.832967i \(-0.686640\pi\)
−0.553323 + 0.832967i \(0.686640\pi\)
\(522\) 0 0
\(523\) 5.96539e6 0.953641 0.476820 0.879001i \(-0.341789\pi\)
0.476820 + 0.879001i \(0.341789\pi\)
\(524\) 0 0
\(525\) −2.58312e6 −0.409022
\(526\) 0 0
\(527\) −4.45687e6 −0.699042
\(528\) 0 0
\(529\) −3.49877e6 −0.543595
\(530\) 0 0
\(531\) −2.82170e7 −4.34285
\(532\) 0 0
\(533\) 1.25121e6 0.190771
\(534\) 0 0
\(535\) 2.45059e6 0.370157
\(536\) 0 0
\(537\) 2.00174e7 2.99551
\(538\) 0 0
\(539\) −324043. −0.0480431
\(540\) 0 0
\(541\) 604353. 0.0887764 0.0443882 0.999014i \(-0.485866\pi\)
0.0443882 + 0.999014i \(0.485866\pi\)
\(542\) 0 0
\(543\) −4.23159e6 −0.615892
\(544\) 0 0
\(545\) −2.07800e6 −0.299677
\(546\) 0 0
\(547\) 1.09035e7 1.55810 0.779051 0.626960i \(-0.215701\pi\)
0.779051 + 0.626960i \(0.215701\pi\)
\(548\) 0 0
\(549\) 1.25743e7 1.78054
\(550\) 0 0
\(551\) 2.14906e6 0.301557
\(552\) 0 0
\(553\) 1.47243e7 2.04749
\(554\) 0 0
\(555\) −2.94636e6 −0.406025
\(556\) 0 0
\(557\) 5.46209e6 0.745969 0.372985 0.927838i \(-0.378334\pi\)
0.372985 + 0.927838i \(0.378334\pi\)
\(558\) 0 0
\(559\) −298676. −0.0404269
\(560\) 0 0
\(561\) 7.70278e6 1.03333
\(562\) 0 0
\(563\) 502323. 0.0667901 0.0333950 0.999442i \(-0.489368\pi\)
0.0333950 + 0.999442i \(0.489368\pi\)
\(564\) 0 0
\(565\) −3.04223e6 −0.400932
\(566\) 0 0
\(567\) 2.76742e7 3.61508
\(568\) 0 0
\(569\) 7.80010e6 1.01000 0.504998 0.863121i \(-0.331493\pi\)
0.504998 + 0.863121i \(0.331493\pi\)
\(570\) 0 0
\(571\) −4.37874e6 −0.562029 −0.281014 0.959704i \(-0.590671\pi\)
−0.281014 + 0.959704i \(0.590671\pi\)
\(572\) 0 0
\(573\) 2.79839e6 0.356058
\(574\) 0 0
\(575\) 1.07121e6 0.135115
\(576\) 0 0
\(577\) −7.24603e6 −0.906067 −0.453034 0.891493i \(-0.649658\pi\)
−0.453034 + 0.891493i \(0.649658\pi\)
\(578\) 0 0
\(579\) 883862. 0.109569
\(580\) 0 0
\(581\) 1.32419e7 1.62746
\(582\) 0 0
\(583\) −200821. −0.0244702
\(584\) 0 0
\(585\) −2.72193e6 −0.328842
\(586\) 0 0
\(587\) 4.36722e6 0.523131 0.261565 0.965186i \(-0.415761\pi\)
0.261565 + 0.965186i \(0.415761\pi\)
\(588\) 0 0
\(589\) −4.38633e6 −0.520970
\(590\) 0 0
\(591\) 1.37883e7 1.62384
\(592\) 0 0
\(593\) 4.11389e6 0.480414 0.240207 0.970722i \(-0.422785\pi\)
0.240207 + 0.970722i \(0.422785\pi\)
\(594\) 0 0
\(595\) −6.76980e6 −0.783941
\(596\) 0 0
\(597\) 2.40672e7 2.76369
\(598\) 0 0
\(599\) 1.32500e7 1.50886 0.754428 0.656382i \(-0.227914\pi\)
0.754428 + 0.656382i \(0.227914\pi\)
\(600\) 0 0
\(601\) 3.41114e6 0.385224 0.192612 0.981275i \(-0.438304\pi\)
0.192612 + 0.981275i \(0.438304\pi\)
\(602\) 0 0
\(603\) −6.32680e6 −0.708583
\(604\) 0 0
\(605\) 3.58733e6 0.398459
\(606\) 0 0
\(607\) 1.53270e7 1.68844 0.844222 0.535994i \(-0.180063\pi\)
0.844222 + 0.535994i \(0.180063\pi\)
\(608\) 0 0
\(609\) −4.62434e6 −0.505250
\(610\) 0 0
\(611\) −2.69000e6 −0.291507
\(612\) 0 0
\(613\) 248888. 0.0267518 0.0133759 0.999911i \(-0.495742\pi\)
0.0133759 + 0.999911i \(0.495742\pi\)
\(614\) 0 0
\(615\) 5.51323e6 0.587784
\(616\) 0 0
\(617\) −3.31170e6 −0.350218 −0.175109 0.984549i \(-0.556028\pi\)
−0.175109 + 0.984549i \(0.556028\pi\)
\(618\) 0 0
\(619\) 1.53763e7 1.61296 0.806482 0.591259i \(-0.201369\pi\)
0.806482 + 0.591259i \(0.201369\pi\)
\(620\) 0 0
\(621\) −2.04844e7 −2.13154
\(622\) 0 0
\(623\) 1.50617e7 1.55472
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 7.58087e6 0.770105
\(628\) 0 0
\(629\) −7.72175e6 −0.778197
\(630\) 0 0
\(631\) 4.70542e6 0.470462 0.235231 0.971939i \(-0.424415\pi\)
0.235231 + 0.971939i \(0.424415\pi\)
\(632\) 0 0
\(633\) −1.39070e7 −1.37951
\(634\) 0 0
\(635\) 2.47196e6 0.243281
\(636\) 0 0
\(637\) 413290. 0.0403559
\(638\) 0 0
\(639\) 1.13835e7 1.10287
\(640\) 0 0
\(641\) 8.41272e6 0.808708 0.404354 0.914603i \(-0.367496\pi\)
0.404354 + 0.914603i \(0.367496\pi\)
\(642\) 0 0
\(643\) −1.17891e7 −1.12448 −0.562241 0.826974i \(-0.690060\pi\)
−0.562241 + 0.826974i \(0.690060\pi\)
\(644\) 0 0
\(645\) −1.31606e6 −0.124559
\(646\) 0 0
\(647\) 3.30240e6 0.310148 0.155074 0.987903i \(-0.450438\pi\)
0.155074 + 0.987903i \(0.450438\pi\)
\(648\) 0 0
\(649\) 5.80358e6 0.540859
\(650\) 0 0
\(651\) 9.43849e6 0.872871
\(652\) 0 0
\(653\) 1.31169e7 1.20379 0.601893 0.798577i \(-0.294413\pi\)
0.601893 + 0.798577i \(0.294413\pi\)
\(654\) 0 0
\(655\) 6.84564e6 0.623464
\(656\) 0 0
\(657\) −1.54242e7 −1.39408
\(658\) 0 0
\(659\) 1.20047e7 1.07680 0.538402 0.842688i \(-0.319028\pi\)
0.538402 + 0.842688i \(0.319028\pi\)
\(660\) 0 0
\(661\) −1.44664e7 −1.28783 −0.643914 0.765098i \(-0.722690\pi\)
−0.643914 + 0.765098i \(0.722690\pi\)
\(662\) 0 0
\(663\) −9.82426e6 −0.867993
\(664\) 0 0
\(665\) −6.66265e6 −0.584242
\(666\) 0 0
\(667\) 1.91769e6 0.166903
\(668\) 0 0
\(669\) −206428. −0.0178321
\(670\) 0 0
\(671\) −2.58623e6 −0.221749
\(672\) 0 0
\(673\) 1.19827e7 1.01980 0.509902 0.860233i \(-0.329682\pi\)
0.509902 + 0.860233i \(0.329682\pi\)
\(674\) 0 0
\(675\) −7.46979e6 −0.631029
\(676\) 0 0
\(677\) −3.19621e6 −0.268018 −0.134009 0.990980i \(-0.542785\pi\)
−0.134009 + 0.990980i \(0.542785\pi\)
\(678\) 0 0
\(679\) 1.03116e7 0.858321
\(680\) 0 0
\(681\) −2.00536e7 −1.65701
\(682\) 0 0
\(683\) −2.39098e7 −1.96121 −0.980606 0.195991i \(-0.937208\pi\)
−0.980606 + 0.195991i \(0.937208\pi\)
\(684\) 0 0
\(685\) 1.44065e6 0.117309
\(686\) 0 0
\(687\) 2.24426e7 1.81418
\(688\) 0 0
\(689\) 256131. 0.0205548
\(690\) 0 0
\(691\) 5.92812e6 0.472304 0.236152 0.971716i \(-0.424114\pi\)
0.236152 + 0.971716i \(0.424114\pi\)
\(692\) 0 0
\(693\) −1.18448e7 −0.936902
\(694\) 0 0
\(695\) −2.26090e6 −0.177549
\(696\) 0 0
\(697\) 1.44490e7 1.12656
\(698\) 0 0
\(699\) −1.48831e6 −0.115213
\(700\) 0 0
\(701\) 7.00857e6 0.538684 0.269342 0.963045i \(-0.413194\pi\)
0.269342 + 0.963045i \(0.413194\pi\)
\(702\) 0 0
\(703\) −7.59954e6 −0.579961
\(704\) 0 0
\(705\) −1.18530e7 −0.898162
\(706\) 0 0
\(707\) 2.01274e7 1.51439
\(708\) 0 0
\(709\) −3.08805e6 −0.230712 −0.115356 0.993324i \(-0.536801\pi\)
−0.115356 + 0.993324i \(0.536801\pi\)
\(710\) 0 0
\(711\) 6.83660e7 5.07185
\(712\) 0 0
\(713\) −3.91410e6 −0.288342
\(714\) 0 0
\(715\) 559836. 0.0409539
\(716\) 0 0
\(717\) −5.19870e7 −3.77657
\(718\) 0 0
\(719\) 1.69455e7 1.22245 0.611227 0.791455i \(-0.290676\pi\)
0.611227 + 0.791455i \(0.290676\pi\)
\(720\) 0 0
\(721\) −2.50078e7 −1.79158
\(722\) 0 0
\(723\) 1.79186e7 1.27485
\(724\) 0 0
\(725\) 699302. 0.0494105
\(726\) 0 0
\(727\) −3.86513e6 −0.271224 −0.135612 0.990762i \(-0.543300\pi\)
−0.135612 + 0.990762i \(0.543300\pi\)
\(728\) 0 0
\(729\) 4.19855e7 2.92604
\(730\) 0 0
\(731\) −3.44910e6 −0.238733
\(732\) 0 0
\(733\) 495013. 0.0340296 0.0170148 0.999855i \(-0.494584\pi\)
0.0170148 + 0.999855i \(0.494584\pi\)
\(734\) 0 0
\(735\) 1.82108e6 0.124340
\(736\) 0 0
\(737\) 1.30127e6 0.0882470
\(738\) 0 0
\(739\) 2.25289e7 1.51750 0.758750 0.651382i \(-0.225810\pi\)
0.758750 + 0.651382i \(0.225810\pi\)
\(740\) 0 0
\(741\) −9.66877e6 −0.646883
\(742\) 0 0
\(743\) −1.12215e7 −0.745727 −0.372863 0.927886i \(-0.621624\pi\)
−0.372863 + 0.927886i \(0.621624\pi\)
\(744\) 0 0
\(745\) −6.90095e6 −0.455531
\(746\) 0 0
\(747\) 6.14832e7 4.03139
\(748\) 0 0
\(749\) −1.36011e7 −0.885870
\(750\) 0 0
\(751\) −1.00330e7 −0.649129 −0.324565 0.945863i \(-0.605218\pi\)
−0.324565 + 0.945863i \(0.605218\pi\)
\(752\) 0 0
\(753\) −1.66805e7 −1.07207
\(754\) 0 0
\(755\) −8.99466e6 −0.574272
\(756\) 0 0
\(757\) 2.55119e6 0.161809 0.0809046 0.996722i \(-0.474219\pi\)
0.0809046 + 0.996722i \(0.474219\pi\)
\(758\) 0 0
\(759\) 6.76472e6 0.426232
\(760\) 0 0
\(761\) 1.50208e7 0.940225 0.470112 0.882607i \(-0.344213\pi\)
0.470112 + 0.882607i \(0.344213\pi\)
\(762\) 0 0
\(763\) 1.15332e7 0.717194
\(764\) 0 0
\(765\) −3.14327e7 −1.94191
\(766\) 0 0
\(767\) −7.40199e6 −0.454318
\(768\) 0 0
\(769\) −2.02354e7 −1.23394 −0.616971 0.786986i \(-0.711641\pi\)
−0.616971 + 0.786986i \(0.711641\pi\)
\(770\) 0 0
\(771\) −5.07476e7 −3.07453
\(772\) 0 0
\(773\) −1.01400e7 −0.610366 −0.305183 0.952294i \(-0.598718\pi\)
−0.305183 + 0.952294i \(0.598718\pi\)
\(774\) 0 0
\(775\) −1.42731e6 −0.0853618
\(776\) 0 0
\(777\) 1.63527e7 0.971709
\(778\) 0 0
\(779\) 1.42203e7 0.839584
\(780\) 0 0
\(781\) −2.34132e6 −0.137351
\(782\) 0 0
\(783\) −1.33725e7 −0.779487
\(784\) 0 0
\(785\) 1.16576e7 0.675206
\(786\) 0 0
\(787\) 3.71438e6 0.213771 0.106886 0.994271i \(-0.465912\pi\)
0.106886 + 0.994271i \(0.465912\pi\)
\(788\) 0 0
\(789\) 6.15814e7 3.52174
\(790\) 0 0
\(791\) 1.68848e7 0.959519
\(792\) 0 0
\(793\) 3.29853e6 0.186268
\(794\) 0 0
\(795\) 1.12859e6 0.0633314
\(796\) 0 0
\(797\) −900746. −0.0502292 −0.0251146 0.999685i \(-0.507995\pi\)
−0.0251146 + 0.999685i \(0.507995\pi\)
\(798\) 0 0
\(799\) −3.10640e7 −1.72144
\(800\) 0 0
\(801\) 6.99326e7 3.85122
\(802\) 0 0
\(803\) 3.17239e6 0.173619
\(804\) 0 0
\(805\) −5.94536e6 −0.323362
\(806\) 0 0
\(807\) −4.74685e7 −2.56579
\(808\) 0 0
\(809\) −3.25046e7 −1.74612 −0.873060 0.487613i \(-0.837868\pi\)
−0.873060 + 0.487613i \(0.837868\pi\)
\(810\) 0 0
\(811\) 2.11218e7 1.12766 0.563831 0.825890i \(-0.309327\pi\)
0.563831 + 0.825890i \(0.309327\pi\)
\(812\) 0 0
\(813\) −4.28830e7 −2.27540
\(814\) 0 0
\(815\) 1.31064e7 0.691176
\(816\) 0 0
\(817\) −3.39451e6 −0.177919
\(818\) 0 0
\(819\) 1.51071e7 0.786992
\(820\) 0 0
\(821\) 1.96246e7 1.01611 0.508057 0.861324i \(-0.330364\pi\)
0.508057 + 0.861324i \(0.330364\pi\)
\(822\) 0 0
\(823\) 2.44244e6 0.125697 0.0628483 0.998023i \(-0.479982\pi\)
0.0628483 + 0.998023i \(0.479982\pi\)
\(824\) 0 0
\(825\) 2.46681e6 0.126183
\(826\) 0 0
\(827\) −2.31313e7 −1.17608 −0.588039 0.808833i \(-0.700100\pi\)
−0.588039 + 0.808833i \(0.700100\pi\)
\(828\) 0 0
\(829\) 1.29962e7 0.656797 0.328399 0.944539i \(-0.393491\pi\)
0.328399 + 0.944539i \(0.393491\pi\)
\(830\) 0 0
\(831\) −7.16500e6 −0.359926
\(832\) 0 0
\(833\) 4.77266e6 0.238313
\(834\) 0 0
\(835\) 997191. 0.0494951
\(836\) 0 0
\(837\) 2.72939e7 1.34664
\(838\) 0 0
\(839\) 4.93644e6 0.242108 0.121054 0.992646i \(-0.461373\pi\)
0.121054 + 0.992646i \(0.461373\pi\)
\(840\) 0 0
\(841\) −1.92592e7 −0.938965
\(842\) 0 0
\(843\) −4.96564e7 −2.40661
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) −1.99102e7 −0.953601
\(848\) 0 0
\(849\) −4.42085e7 −2.10492
\(850\) 0 0
\(851\) −6.78139e6 −0.320992
\(852\) 0 0
\(853\) 2.40642e7 1.13240 0.566199 0.824268i \(-0.308413\pi\)
0.566199 + 0.824268i \(0.308413\pi\)
\(854\) 0 0
\(855\) −3.09352e7 −1.44723
\(856\) 0 0
\(857\) 2.27231e7 1.05686 0.528428 0.848978i \(-0.322782\pi\)
0.528428 + 0.848978i \(0.322782\pi\)
\(858\) 0 0
\(859\) −3.16681e7 −1.46433 −0.732165 0.681127i \(-0.761490\pi\)
−0.732165 + 0.681127i \(0.761490\pi\)
\(860\) 0 0
\(861\) −3.05992e7 −1.40670
\(862\) 0 0
\(863\) 4.62656e6 0.211461 0.105731 0.994395i \(-0.466282\pi\)
0.105731 + 0.994395i \(0.466282\pi\)
\(864\) 0 0
\(865\) −1.49664e7 −0.680108
\(866\) 0 0
\(867\) −7.11575e7 −3.21494
\(868\) 0 0
\(869\) −1.40613e7 −0.631648
\(870\) 0 0
\(871\) −1.65967e6 −0.0741269
\(872\) 0 0
\(873\) 4.78774e7 2.12615
\(874\) 0 0
\(875\) −2.16802e6 −0.0957290
\(876\) 0 0
\(877\) 2.85149e7 1.25191 0.625954 0.779860i \(-0.284710\pi\)
0.625954 + 0.779860i \(0.284710\pi\)
\(878\) 0 0
\(879\) −5.65868e6 −0.247026
\(880\) 0 0
\(881\) −2.08083e7 −0.903225 −0.451612 0.892214i \(-0.649151\pi\)
−0.451612 + 0.892214i \(0.649151\pi\)
\(882\) 0 0
\(883\) −1.09855e7 −0.474155 −0.237077 0.971491i \(-0.576189\pi\)
−0.237077 + 0.971491i \(0.576189\pi\)
\(884\) 0 0
\(885\) −3.26154e7 −1.39980
\(886\) 0 0
\(887\) 4.22561e7 1.80335 0.901675 0.432415i \(-0.142338\pi\)
0.901675 + 0.432415i \(0.142338\pi\)
\(888\) 0 0
\(889\) −1.37197e7 −0.582225
\(890\) 0 0
\(891\) −2.64281e7 −1.11525
\(892\) 0 0
\(893\) −3.05724e7 −1.28292
\(894\) 0 0
\(895\) 1.68006e7 0.701080
\(896\) 0 0
\(897\) −8.62785e6 −0.358032
\(898\) 0 0
\(899\) −2.55518e6 −0.105444
\(900\) 0 0
\(901\) 2.95779e6 0.121382
\(902\) 0 0
\(903\) 7.30430e6 0.298098
\(904\) 0 0
\(905\) −3.55159e6 −0.144146
\(906\) 0 0
\(907\) 2.47455e7 0.998797 0.499399 0.866372i \(-0.333554\pi\)
0.499399 + 0.866372i \(0.333554\pi\)
\(908\) 0 0
\(909\) 9.34530e7 3.75131
\(910\) 0 0
\(911\) −564871. −0.0225504 −0.0112752 0.999936i \(-0.503589\pi\)
−0.0112752 + 0.999936i \(0.503589\pi\)
\(912\) 0 0
\(913\) −1.26456e7 −0.502070
\(914\) 0 0
\(915\) 1.45343e7 0.573908
\(916\) 0 0
\(917\) −3.79943e7 −1.49209
\(918\) 0 0
\(919\) −2.85775e7 −1.11618 −0.558092 0.829779i \(-0.688466\pi\)
−0.558092 + 0.829779i \(0.688466\pi\)
\(920\) 0 0
\(921\) −5.16359e7 −2.00587
\(922\) 0 0
\(923\) 2.98616e6 0.115374
\(924\) 0 0
\(925\) −2.47289e6 −0.0950276
\(926\) 0 0
\(927\) −1.16113e8 −4.43795
\(928\) 0 0
\(929\) 4.50673e6 0.171326 0.0856628 0.996324i \(-0.472699\pi\)
0.0856628 + 0.996324i \(0.472699\pi\)
\(930\) 0 0
\(931\) 4.69712e6 0.177606
\(932\) 0 0
\(933\) −1.60385e7 −0.603198
\(934\) 0 0
\(935\) 6.46497e6 0.241845
\(936\) 0 0
\(937\) −2.23744e7 −0.832534 −0.416267 0.909242i \(-0.636662\pi\)
−0.416267 + 0.909242i \(0.636662\pi\)
\(938\) 0 0
\(939\) 6.51584e7 2.41161
\(940\) 0 0
\(941\) 5.11297e7 1.88234 0.941172 0.337929i \(-0.109726\pi\)
0.941172 + 0.337929i \(0.109726\pi\)
\(942\) 0 0
\(943\) 1.26893e7 0.464686
\(944\) 0 0
\(945\) 4.14584e7 1.51019
\(946\) 0 0
\(947\) 1.66708e7 0.604062 0.302031 0.953298i \(-0.402335\pi\)
0.302031 + 0.953298i \(0.402335\pi\)
\(948\) 0 0
\(949\) −4.04612e6 −0.145839
\(950\) 0 0
\(951\) 8.98450e7 3.22139
\(952\) 0 0
\(953\) −3.05426e7 −1.08937 −0.544684 0.838642i \(-0.683350\pi\)
−0.544684 + 0.838642i \(0.683350\pi\)
\(954\) 0 0
\(955\) 2.34870e6 0.0833332
\(956\) 0 0
\(957\) 4.41611e6 0.155869
\(958\) 0 0
\(959\) −7.99582e6 −0.280748
\(960\) 0 0
\(961\) −2.34139e7 −0.817834
\(962\) 0 0
\(963\) −6.31510e7 −2.19439
\(964\) 0 0
\(965\) 741828. 0.0256439
\(966\) 0 0
\(967\) 1.03889e7 0.357274 0.178637 0.983915i \(-0.442831\pi\)
0.178637 + 0.983915i \(0.442831\pi\)
\(968\) 0 0
\(969\) −1.11655e8 −3.82003
\(970\) 0 0
\(971\) 4.18374e7 1.42402 0.712010 0.702169i \(-0.247785\pi\)
0.712010 + 0.702169i \(0.247785\pi\)
\(972\) 0 0
\(973\) 1.25483e7 0.424915
\(974\) 0 0
\(975\) −3.14621e6 −0.105993
\(976\) 0 0
\(977\) −1.44074e7 −0.482890 −0.241445 0.970414i \(-0.577621\pi\)
−0.241445 + 0.970414i \(0.577621\pi\)
\(978\) 0 0
\(979\) −1.43835e7 −0.479631
\(980\) 0 0
\(981\) 5.35493e7 1.77657
\(982\) 0 0
\(983\) 2.11505e7 0.698130 0.349065 0.937098i \(-0.386499\pi\)
0.349065 + 0.937098i \(0.386499\pi\)
\(984\) 0 0
\(985\) 1.15726e7 0.380049
\(986\) 0 0
\(987\) 6.57856e7 2.14950
\(988\) 0 0
\(989\) −3.02906e6 −0.0984731
\(990\) 0 0
\(991\) −5.90549e7 −1.91017 −0.955084 0.296335i \(-0.904236\pi\)
−0.955084 + 0.296335i \(0.904236\pi\)
\(992\) 0 0
\(993\) −4.83841e7 −1.55715
\(994\) 0 0
\(995\) 2.01997e7 0.646824
\(996\) 0 0
\(997\) −1.01289e7 −0.322718 −0.161359 0.986896i \(-0.551588\pi\)
−0.161359 + 0.986896i \(0.551588\pi\)
\(998\) 0 0
\(999\) 4.72882e7 1.49913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.6.a.e.1.1 8
4.3 odd 2 1040.6.a.z.1.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.6.a.e.1.1 8 1.1 even 1 trivial
1040.6.a.z.1.8 8 4.3 odd 2