Properties

Label 5200.2.a.cf.1.2
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5200,2,Mod(1,5200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.602705\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.602705 q^{3} -3.63675 q^{7} -2.63675 q^{9} -2.00000 q^{11} +1.00000 q^{13} -6.67079 q^{17} -8.06808 q^{19} +2.19189 q^{21} -0.794590 q^{23} +3.39730 q^{27} -8.06808 q^{29} -5.20541 q^{31} +1.20541 q^{33} +0.431337 q^{37} -0.602705 q^{39} +6.86267 q^{41} +5.80811 q^{43} +7.63675 q^{47} +6.22593 q^{49} +4.02052 q^{51} +0.794590 q^{53} +4.86267 q^{57} -8.06808 q^{59} -2.86267 q^{61} +9.58918 q^{63} +5.20541 q^{67} +0.478903 q^{69} +9.46538 q^{71} -6.00000 q^{73} +7.27349 q^{77} -1.93192 q^{79} +5.86267 q^{81} -2.06808 q^{83} +4.86267 q^{87} -8.06808 q^{89} -3.63675 q^{91} +3.13733 q^{93} -13.6573 q^{97} +5.27349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{7} + 5 q^{9} - 6 q^{11} + 3 q^{13} + 4 q^{17} - 2 q^{19} + 12 q^{21} - 6 q^{23} + 12 q^{27} - 2 q^{29} - 12 q^{31} - 8 q^{37} + 2 q^{41} + 12 q^{43} + 10 q^{47} + 13 q^{49} + 10 q^{51} + 6 q^{53}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.602705 −0.347972 −0.173986 0.984748i \(-0.555665\pi\)
−0.173986 + 0.984748i \(0.555665\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.63675 −1.37456 −0.687281 0.726392i \(-0.741196\pi\)
−0.687281 + 0.726392i \(0.741196\pi\)
\(8\) 0 0
\(9\) −2.63675 −0.878916
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.67079 −1.61790 −0.808952 0.587875i \(-0.799965\pi\)
−0.808952 + 0.587875i \(0.799965\pi\)
\(18\) 0 0
\(19\) −8.06808 −1.85095 −0.925473 0.378814i \(-0.876332\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(20\) 0 0
\(21\) 2.19189 0.478309
\(22\) 0 0
\(23\) −0.794590 −0.165683 −0.0828417 0.996563i \(-0.526400\pi\)
−0.0828417 + 0.996563i \(0.526400\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.39730 0.653810
\(28\) 0 0
\(29\) −8.06808 −1.49821 −0.749103 0.662454i \(-0.769515\pi\)
−0.749103 + 0.662454i \(0.769515\pi\)
\(30\) 0 0
\(31\) −5.20541 −0.934919 −0.467460 0.884014i \(-0.654831\pi\)
−0.467460 + 0.884014i \(0.654831\pi\)
\(32\) 0 0
\(33\) 1.20541 0.209835
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.431337 0.0709114 0.0354557 0.999371i \(-0.488712\pi\)
0.0354557 + 0.999371i \(0.488712\pi\)
\(38\) 0 0
\(39\) −0.602705 −0.0965100
\(40\) 0 0
\(41\) 6.86267 1.07177 0.535885 0.844291i \(-0.319978\pi\)
0.535885 + 0.844291i \(0.319978\pi\)
\(42\) 0 0
\(43\) 5.80811 0.885729 0.442865 0.896589i \(-0.353962\pi\)
0.442865 + 0.896589i \(0.353962\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.63675 1.11393 0.556967 0.830535i \(-0.311965\pi\)
0.556967 + 0.830535i \(0.311965\pi\)
\(48\) 0 0
\(49\) 6.22593 0.889418
\(50\) 0 0
\(51\) 4.02052 0.562985
\(52\) 0 0
\(53\) 0.794590 0.109145 0.0545727 0.998510i \(-0.482620\pi\)
0.0545727 + 0.998510i \(0.482620\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.86267 0.644077
\(58\) 0 0
\(59\) −8.06808 −1.05038 −0.525188 0.850987i \(-0.676005\pi\)
−0.525188 + 0.850987i \(0.676005\pi\)
\(60\) 0 0
\(61\) −2.86267 −0.366528 −0.183264 0.983064i \(-0.558666\pi\)
−0.183264 + 0.983064i \(0.558666\pi\)
\(62\) 0 0
\(63\) 9.58918 1.20812
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.20541 0.635942 0.317971 0.948100i \(-0.396999\pi\)
0.317971 + 0.948100i \(0.396999\pi\)
\(68\) 0 0
\(69\) 0.478903 0.0576532
\(70\) 0 0
\(71\) 9.46538 1.12333 0.561667 0.827363i \(-0.310160\pi\)
0.561667 + 0.827363i \(0.310160\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.27349 0.828892
\(78\) 0 0
\(79\) −1.93192 −0.217358 −0.108679 0.994077i \(-0.534662\pi\)
−0.108679 + 0.994077i \(0.534662\pi\)
\(80\) 0 0
\(81\) 5.86267 0.651408
\(82\) 0 0
\(83\) −2.06808 −0.227002 −0.113501 0.993538i \(-0.536206\pi\)
−0.113501 + 0.993538i \(0.536206\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.86267 0.521333
\(88\) 0 0
\(89\) −8.06808 −0.855215 −0.427608 0.903964i \(-0.640643\pi\)
−0.427608 + 0.903964i \(0.640643\pi\)
\(90\) 0 0
\(91\) −3.63675 −0.381235
\(92\) 0 0
\(93\) 3.13733 0.325326
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.6573 −1.38669 −0.693343 0.720608i \(-0.743863\pi\)
−0.693343 + 0.720608i \(0.743863\pi\)
\(98\) 0 0
\(99\) 5.27349 0.530006
\(100\) 0 0
\(101\) −15.6843 −1.56065 −0.780324 0.625376i \(-0.784946\pi\)
−0.780324 + 0.625376i \(0.784946\pi\)
\(102\) 0 0
\(103\) 15.3416 1.51165 0.755825 0.654773i \(-0.227236\pi\)
0.755825 + 0.654773i \(0.227236\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.20541 −0.116531 −0.0582657 0.998301i \(-0.518557\pi\)
−0.0582657 + 0.998301i \(0.518557\pi\)
\(108\) 0 0
\(109\) 9.80811 0.939447 0.469724 0.882814i \(-0.344354\pi\)
0.469724 + 0.882814i \(0.344354\pi\)
\(110\) 0 0
\(111\) −0.259969 −0.0246752
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.63675 −0.243767
\(118\) 0 0
\(119\) 24.2600 2.22391
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −4.13617 −0.372946
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.79459 −0.425451 −0.212726 0.977112i \(-0.568234\pi\)
−0.212726 + 0.977112i \(0.568234\pi\)
\(128\) 0 0
\(129\) −3.50058 −0.308209
\(130\) 0 0
\(131\) 4.02052 0.351274 0.175637 0.984455i \(-0.443801\pi\)
0.175637 + 0.984455i \(0.443801\pi\)
\(132\) 0 0
\(133\) 29.3416 2.54424
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.2054 0.957343 0.478671 0.877994i \(-0.341119\pi\)
0.478671 + 0.877994i \(0.341119\pi\)
\(138\) 0 0
\(139\) −8.84216 −0.749982 −0.374991 0.927028i \(-0.622354\pi\)
−0.374991 + 0.927028i \(0.622354\pi\)
\(140\) 0 0
\(141\) −4.60270 −0.387618
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.75240 −0.309492
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −7.05456 −0.574092 −0.287046 0.957917i \(-0.592673\pi\)
−0.287046 + 0.957917i \(0.592673\pi\)
\(152\) 0 0
\(153\) 17.5892 1.42200
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.0680837 −0.00543367 −0.00271683 0.999996i \(-0.500865\pi\)
−0.00271683 + 0.999996i \(0.500865\pi\)
\(158\) 0 0
\(159\) −0.478903 −0.0379795
\(160\) 0 0
\(161\) 2.88972 0.227742
\(162\) 0 0
\(163\) 7.65726 0.599763 0.299882 0.953976i \(-0.403053\pi\)
0.299882 + 0.953976i \(0.403053\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.82164 0.373110 0.186555 0.982445i \(-0.440268\pi\)
0.186555 + 0.982445i \(0.440268\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 21.2735 1.62682
\(172\) 0 0
\(173\) −12.7946 −0.972755 −0.486377 0.873749i \(-0.661682\pi\)
−0.486377 + 0.873749i \(0.661682\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.86267 0.365501
\(178\) 0 0
\(179\) 8.84216 0.660894 0.330447 0.943825i \(-0.392801\pi\)
0.330447 + 0.943825i \(0.392801\pi\)
\(180\) 0 0
\(181\) 1.61623 0.120133 0.0600667 0.998194i \(-0.480869\pi\)
0.0600667 + 0.998194i \(0.480869\pi\)
\(182\) 0 0
\(183\) 1.72535 0.127541
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 13.3416 0.975633
\(188\) 0 0
\(189\) −12.3551 −0.898701
\(190\) 0 0
\(191\) −21.3416 −1.54422 −0.772111 0.635487i \(-0.780799\pi\)
−0.772111 + 0.635487i \(0.780799\pi\)
\(192\) 0 0
\(193\) −5.61623 −0.404265 −0.202133 0.979358i \(-0.564787\pi\)
−0.202133 + 0.979358i \(0.564787\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.0205 0.998920 0.499460 0.866337i \(-0.333532\pi\)
0.499460 + 0.866337i \(0.333532\pi\)
\(198\) 0 0
\(199\) 15.7524 1.11666 0.558329 0.829620i \(-0.311443\pi\)
0.558329 + 0.829620i \(0.311443\pi\)
\(200\) 0 0
\(201\) −3.13733 −0.221290
\(202\) 0 0
\(203\) 29.3416 2.05937
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.09513 0.145622
\(208\) 0 0
\(209\) 16.1362 1.11616
\(210\) 0 0
\(211\) 1.70483 0.117365 0.0586827 0.998277i \(-0.481310\pi\)
0.0586827 + 0.998277i \(0.481310\pi\)
\(212\) 0 0
\(213\) −5.70483 −0.390889
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 18.9308 1.28510
\(218\) 0 0
\(219\) 3.61623 0.244362
\(220\) 0 0
\(221\) −6.67079 −0.448726
\(222\) 0 0
\(223\) −22.9513 −1.53693 −0.768466 0.639891i \(-0.778979\pi\)
−0.768466 + 0.639891i \(0.778979\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.5470 −0.700028 −0.350014 0.936744i \(-0.613823\pi\)
−0.350014 + 0.936744i \(0.613823\pi\)
\(228\) 0 0
\(229\) 25.9443 1.71445 0.857223 0.514945i \(-0.172188\pi\)
0.857223 + 0.514945i \(0.172188\pi\)
\(230\) 0 0
\(231\) −4.38377 −0.288431
\(232\) 0 0
\(233\) 11.4924 0.752894 0.376447 0.926438i \(-0.377146\pi\)
0.376447 + 0.926438i \(0.377146\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.16438 0.0756343
\(238\) 0 0
\(239\) −14.6708 −0.948974 −0.474487 0.880262i \(-0.657366\pi\)
−0.474487 + 0.880262i \(0.657366\pi\)
\(240\) 0 0
\(241\) −18.6151 −1.19910 −0.599551 0.800337i \(-0.704654\pi\)
−0.599551 + 0.800337i \(0.704654\pi\)
\(242\) 0 0
\(243\) −13.7253 −0.880481
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.06808 −0.513360
\(248\) 0 0
\(249\) 1.24644 0.0789902
\(250\) 0 0
\(251\) 14.4108 0.909603 0.454801 0.890593i \(-0.349710\pi\)
0.454801 + 0.890593i \(0.349710\pi\)
\(252\) 0 0
\(253\) 1.58918 0.0999109
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.123802 0.00772253 0.00386126 0.999993i \(-0.498771\pi\)
0.00386126 + 0.999993i \(0.498771\pi\)
\(258\) 0 0
\(259\) −1.56866 −0.0974720
\(260\) 0 0
\(261\) 21.2735 1.31680
\(262\) 0 0
\(263\) −5.27349 −0.325178 −0.162589 0.986694i \(-0.551984\pi\)
−0.162589 + 0.986694i \(0.551984\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.86267 0.297591
\(268\) 0 0
\(269\) 1.27349 0.0776463 0.0388231 0.999246i \(-0.487639\pi\)
0.0388231 + 0.999246i \(0.487639\pi\)
\(270\) 0 0
\(271\) −6.28702 −0.381909 −0.190955 0.981599i \(-0.561158\pi\)
−0.190955 + 0.981599i \(0.561158\pi\)
\(272\) 0 0
\(273\) 2.19189 0.132659
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −22.9988 −1.38187 −0.690933 0.722919i \(-0.742800\pi\)
−0.690933 + 0.722919i \(0.742800\pi\)
\(278\) 0 0
\(279\) 13.7253 0.821715
\(280\) 0 0
\(281\) 10.3427 0.616996 0.308498 0.951225i \(-0.400174\pi\)
0.308498 + 0.951225i \(0.400174\pi\)
\(282\) 0 0
\(283\) −10.0270 −0.596046 −0.298023 0.954559i \(-0.596327\pi\)
−0.298023 + 0.954559i \(0.596327\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.9578 −1.47321
\(288\) 0 0
\(289\) 27.4994 1.61761
\(290\) 0 0
\(291\) 8.23130 0.482527
\(292\) 0 0
\(293\) −6.11565 −0.357280 −0.178640 0.983914i \(-0.557170\pi\)
−0.178640 + 0.983914i \(0.557170\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6.79459 −0.394262
\(298\) 0 0
\(299\) −0.794590 −0.0459523
\(300\) 0 0
\(301\) −21.1226 −1.21749
\(302\) 0 0
\(303\) 9.45301 0.543061
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.8627 0.962404 0.481202 0.876610i \(-0.340200\pi\)
0.481202 + 0.876610i \(0.340200\pi\)
\(308\) 0 0
\(309\) −9.24644 −0.526012
\(310\) 0 0
\(311\) −32.9988 −1.87119 −0.935596 0.353072i \(-0.885137\pi\)
−0.935596 + 0.353072i \(0.885137\pi\)
\(312\) 0 0
\(313\) 25.4654 1.43939 0.719694 0.694291i \(-0.244282\pi\)
0.719694 + 0.694291i \(0.244282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.1362 0.793966 0.396983 0.917826i \(-0.370057\pi\)
0.396983 + 0.917826i \(0.370057\pi\)
\(318\) 0 0
\(319\) 16.1362 0.903452
\(320\) 0 0
\(321\) 0.726506 0.0405496
\(322\) 0 0
\(323\) 53.8205 2.99465
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −5.91140 −0.326901
\(328\) 0 0
\(329\) −27.7729 −1.53117
\(330\) 0 0
\(331\) −18.5199 −1.01795 −0.508974 0.860782i \(-0.669975\pi\)
−0.508974 + 0.860782i \(0.669975\pi\)
\(332\) 0 0
\(333\) −1.13733 −0.0623251
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.2870 1.21405 0.607026 0.794682i \(-0.292363\pi\)
0.607026 + 0.794682i \(0.292363\pi\)
\(338\) 0 0
\(339\) −2.41082 −0.130938
\(340\) 0 0
\(341\) 10.4108 0.563777
\(342\) 0 0
\(343\) 2.81511 0.152002
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.5335 1.69280 0.846402 0.532544i \(-0.178764\pi\)
0.846402 + 0.532544i \(0.178764\pi\)
\(348\) 0 0
\(349\) 32.3551 1.73193 0.865964 0.500106i \(-0.166705\pi\)
0.865964 + 0.500106i \(0.166705\pi\)
\(350\) 0 0
\(351\) 3.39730 0.181334
\(352\) 0 0
\(353\) 20.0270 1.06593 0.532966 0.846137i \(-0.321077\pi\)
0.532966 + 0.846137i \(0.321077\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −14.6216 −0.773857
\(358\) 0 0
\(359\) −22.9308 −1.21024 −0.605120 0.796135i \(-0.706875\pi\)
−0.605120 + 0.796135i \(0.706875\pi\)
\(360\) 0 0
\(361\) 46.0940 2.42600
\(362\) 0 0
\(363\) 4.21893 0.221437
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −34.1362 −1.78189 −0.890947 0.454108i \(-0.849958\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(368\) 0 0
\(369\) −18.0951 −0.941995
\(370\) 0 0
\(371\) −2.88972 −0.150027
\(372\) 0 0
\(373\) −26.9988 −1.39795 −0.698974 0.715148i \(-0.746359\pi\)
−0.698974 + 0.715148i \(0.746359\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.06808 −0.415527
\(378\) 0 0
\(379\) −12.9308 −0.664208 −0.332104 0.943243i \(-0.607759\pi\)
−0.332104 + 0.943243i \(0.607759\pi\)
\(380\) 0 0
\(381\) 2.88972 0.148045
\(382\) 0 0
\(383\) 21.3621 1.09155 0.545776 0.837931i \(-0.316235\pi\)
0.545776 + 0.837931i \(0.316235\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −15.3145 −0.778481
\(388\) 0 0
\(389\) −29.4507 −1.49321 −0.746605 0.665268i \(-0.768317\pi\)
−0.746605 + 0.665268i \(0.768317\pi\)
\(390\) 0 0
\(391\) 5.30054 0.268060
\(392\) 0 0
\(393\) −2.42319 −0.122234
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.6832 0.837304 0.418652 0.908147i \(-0.362503\pi\)
0.418652 + 0.908147i \(0.362503\pi\)
\(398\) 0 0
\(399\) −17.6843 −0.885323
\(400\) 0 0
\(401\) −7.34158 −0.366621 −0.183310 0.983055i \(-0.558681\pi\)
−0.183310 + 0.983055i \(0.558681\pi\)
\(402\) 0 0
\(403\) −5.20541 −0.259300
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.862674 −0.0427612
\(408\) 0 0
\(409\) −35.4777 −1.75426 −0.877131 0.480252i \(-0.840545\pi\)
−0.877131 + 0.480252i \(0.840545\pi\)
\(410\) 0 0
\(411\) −6.75356 −0.333128
\(412\) 0 0
\(413\) 29.3416 1.44380
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.32921 0.260973
\(418\) 0 0
\(419\) −0.883191 −0.0431467 −0.0215734 0.999767i \(-0.506868\pi\)
−0.0215734 + 0.999767i \(0.506868\pi\)
\(420\) 0 0
\(421\) 27.2859 1.32983 0.664916 0.746918i \(-0.268467\pi\)
0.664916 + 0.746918i \(0.268467\pi\)
\(422\) 0 0
\(423\) −20.1362 −0.979054
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.4108 0.503815
\(428\) 0 0
\(429\) 1.20541 0.0581977
\(430\) 0 0
\(431\) −0.259969 −0.0125223 −0.00626113 0.999980i \(-0.501993\pi\)
−0.00626113 + 0.999980i \(0.501993\pi\)
\(432\) 0 0
\(433\) −17.4654 −0.839333 −0.419666 0.907678i \(-0.637853\pi\)
−0.419666 + 0.907678i \(0.637853\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.41082 0.306671
\(438\) 0 0
\(439\) −17.6843 −0.844026 −0.422013 0.906590i \(-0.638676\pi\)
−0.422013 + 0.906590i \(0.638676\pi\)
\(440\) 0 0
\(441\) −16.4162 −0.781723
\(442\) 0 0
\(443\) −32.4913 −1.54371 −0.771853 0.635801i \(-0.780670\pi\)
−0.771853 + 0.635801i \(0.780670\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 35.0940 1.65619 0.828094 0.560590i \(-0.189426\pi\)
0.828094 + 0.560590i \(0.189426\pi\)
\(450\) 0 0
\(451\) −13.7253 −0.646301
\(452\) 0 0
\(453\) 4.25182 0.199768
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.5470 0.961148 0.480574 0.876954i \(-0.340428\pi\)
0.480574 + 0.876954i \(0.340428\pi\)
\(458\) 0 0
\(459\) −22.6626 −1.05780
\(460\) 0 0
\(461\) −7.14969 −0.332994 −0.166497 0.986042i \(-0.553246\pi\)
−0.166497 + 0.986042i \(0.553246\pi\)
\(462\) 0 0
\(463\) −22.6832 −1.05418 −0.527088 0.849811i \(-0.676716\pi\)
−0.527088 + 0.849811i \(0.676716\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.2054 1.16637 0.583184 0.812340i \(-0.301807\pi\)
0.583184 + 0.812340i \(0.301807\pi\)
\(468\) 0 0
\(469\) −18.9308 −0.874141
\(470\) 0 0
\(471\) 0.0410344 0.00189076
\(472\) 0 0
\(473\) −11.6162 −0.534115
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.09513 −0.0959295
\(478\) 0 0
\(479\) −4.01237 −0.183330 −0.0916648 0.995790i \(-0.529219\pi\)
−0.0916648 + 0.995790i \(0.529219\pi\)
\(480\) 0 0
\(481\) 0.431337 0.0196673
\(482\) 0 0
\(483\) −1.74165 −0.0792478
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −4.61507 −0.208701
\(490\) 0 0
\(491\) 8.88319 0.400893 0.200446 0.979705i \(-0.435761\pi\)
0.200446 + 0.979705i \(0.435761\pi\)
\(492\) 0 0
\(493\) 53.8205 2.42395
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −34.4232 −1.54409
\(498\) 0 0
\(499\) 10.9988 0.492376 0.246188 0.969222i \(-0.420822\pi\)
0.246188 + 0.969222i \(0.420822\pi\)
\(500\) 0 0
\(501\) −2.90603 −0.129832
\(502\) 0 0
\(503\) −5.65726 −0.252245 −0.126122 0.992015i \(-0.540253\pi\)
−0.126122 + 0.992015i \(0.540253\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.602705 −0.0267671
\(508\) 0 0
\(509\) −9.72535 −0.431068 −0.215534 0.976496i \(-0.569149\pi\)
−0.215534 + 0.976496i \(0.569149\pi\)
\(510\) 0 0
\(511\) 21.8205 0.965281
\(512\) 0 0
\(513\) −27.4097 −1.21017
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15.2735 −0.671727
\(518\) 0 0
\(519\) 7.71136 0.338491
\(520\) 0 0
\(521\) −28.7741 −1.26062 −0.630308 0.776346i \(-0.717071\pi\)
−0.630308 + 0.776346i \(0.717071\pi\)
\(522\) 0 0
\(523\) 37.6139 1.64474 0.822371 0.568952i \(-0.192651\pi\)
0.822371 + 0.568952i \(0.192651\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.7242 1.51261
\(528\) 0 0
\(529\) −22.3686 −0.972549
\(530\) 0 0
\(531\) 21.2735 0.923191
\(532\) 0 0
\(533\) 6.86267 0.297255
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.32921 −0.229972
\(538\) 0 0
\(539\) −12.4519 −0.536339
\(540\) 0 0
\(541\) 21.8081 0.937604 0.468802 0.883303i \(-0.344686\pi\)
0.468802 + 0.883303i \(0.344686\pi\)
\(542\) 0 0
\(543\) −0.974110 −0.0418030
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.73887 0.202620 0.101310 0.994855i \(-0.467697\pi\)
0.101310 + 0.994855i \(0.467697\pi\)
\(548\) 0 0
\(549\) 7.54815 0.322147
\(550\) 0 0
\(551\) 65.0940 2.77310
\(552\) 0 0
\(553\) 7.02589 0.298771
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.74702 −0.285881 −0.142940 0.989731i \(-0.545656\pi\)
−0.142940 + 0.989731i \(0.545656\pi\)
\(558\) 0 0
\(559\) 5.80811 0.245657
\(560\) 0 0
\(561\) −8.04103 −0.339493
\(562\) 0 0
\(563\) 41.9443 1.76774 0.883870 0.467732i \(-0.154929\pi\)
0.883870 + 0.467732i \(0.154929\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −21.3211 −0.895400
\(568\) 0 0
\(569\) −7.95243 −0.333383 −0.166692 0.986009i \(-0.553308\pi\)
−0.166692 + 0.986009i \(0.553308\pi\)
\(570\) 0 0
\(571\) 14.5265 0.607914 0.303957 0.952686i \(-0.401692\pi\)
0.303957 + 0.952686i \(0.401692\pi\)
\(572\) 0 0
\(573\) 12.8627 0.537346
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5.17836 0.215578 0.107789 0.994174i \(-0.465623\pi\)
0.107789 + 0.994174i \(0.465623\pi\)
\(578\) 0 0
\(579\) 3.38493 0.140673
\(580\) 0 0
\(581\) 7.52110 0.312028
\(582\) 0 0
\(583\) −1.58918 −0.0658171
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.8897 0.944760 0.472380 0.881395i \(-0.343395\pi\)
0.472380 + 0.881395i \(0.343395\pi\)
\(588\) 0 0
\(589\) 41.9977 1.73048
\(590\) 0 0
\(591\) −8.45023 −0.347596
\(592\) 0 0
\(593\) −14.3427 −0.588986 −0.294493 0.955654i \(-0.595151\pi\)
−0.294493 + 0.955654i \(0.595151\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.49405 −0.388565
\(598\) 0 0
\(599\) −5.63021 −0.230044 −0.115022 0.993363i \(-0.536694\pi\)
−0.115022 + 0.993363i \(0.536694\pi\)
\(600\) 0 0
\(601\) −11.3211 −0.461796 −0.230898 0.972978i \(-0.574166\pi\)
−0.230898 + 0.972978i \(0.574166\pi\)
\(602\) 0 0
\(603\) −13.7253 −0.558939
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −25.0259 −1.01577 −0.507885 0.861425i \(-0.669572\pi\)
−0.507885 + 0.861425i \(0.669572\pi\)
\(608\) 0 0
\(609\) −17.6843 −0.716605
\(610\) 0 0
\(611\) 7.63675 0.308950
\(612\) 0 0
\(613\) −25.4507 −1.02794 −0.513972 0.857807i \(-0.671826\pi\)
−0.513972 + 0.857807i \(0.671826\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.6843 0.631427 0.315713 0.948855i \(-0.397756\pi\)
0.315713 + 0.948855i \(0.397756\pi\)
\(618\) 0 0
\(619\) 44.5880 1.79214 0.896072 0.443909i \(-0.146409\pi\)
0.896072 + 0.443909i \(0.146409\pi\)
\(620\) 0 0
\(621\) −2.69946 −0.108325
\(622\) 0 0
\(623\) 29.3416 1.17555
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −9.72535 −0.388393
\(628\) 0 0
\(629\) −2.87736 −0.114728
\(630\) 0 0
\(631\) 38.8070 1.54488 0.772440 0.635087i \(-0.219036\pi\)
0.772440 + 0.635087i \(0.219036\pi\)
\(632\) 0 0
\(633\) −1.02751 −0.0408398
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.22593 0.246680
\(638\) 0 0
\(639\) −24.9578 −0.987316
\(640\) 0 0
\(641\) −8.27465 −0.326829 −0.163415 0.986557i \(-0.552251\pi\)
−0.163415 + 0.986557i \(0.552251\pi\)
\(642\) 0 0
\(643\) −6.16322 −0.243054 −0.121527 0.992588i \(-0.538779\pi\)
−0.121527 + 0.992588i \(0.538779\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.24644 0.284887 0.142444 0.989803i \(-0.454504\pi\)
0.142444 + 0.989803i \(0.454504\pi\)
\(648\) 0 0
\(649\) 16.1362 0.633400
\(650\) 0 0
\(651\) −11.4097 −0.447180
\(652\) 0 0
\(653\) 5.27349 0.206368 0.103184 0.994662i \(-0.467097\pi\)
0.103184 + 0.994662i \(0.467097\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 15.8205 0.617216
\(658\) 0 0
\(659\) 18.6832 0.727792 0.363896 0.931440i \(-0.381446\pi\)
0.363896 + 0.931440i \(0.381446\pi\)
\(660\) 0 0
\(661\) 15.3145 0.595666 0.297833 0.954618i \(-0.403736\pi\)
0.297833 + 0.954618i \(0.403736\pi\)
\(662\) 0 0
\(663\) 4.02052 0.156144
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.41082 0.248228
\(668\) 0 0
\(669\) 13.8328 0.534809
\(670\) 0 0
\(671\) 5.72535 0.221025
\(672\) 0 0
\(673\) −10.2870 −0.396535 −0.198268 0.980148i \(-0.563532\pi\)
−0.198268 + 0.980148i \(0.563532\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.88856 0.380048 0.190024 0.981779i \(-0.439143\pi\)
0.190024 + 0.981779i \(0.439143\pi\)
\(678\) 0 0
\(679\) 49.6680 1.90608
\(680\) 0 0
\(681\) 6.35672 0.243590
\(682\) 0 0
\(683\) −2.06808 −0.0791330 −0.0395665 0.999217i \(-0.512598\pi\)
−0.0395665 + 0.999217i \(0.512598\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.6367 −0.596579
\(688\) 0 0
\(689\) 0.794590 0.0302715
\(690\) 0 0
\(691\) −15.8205 −0.601839 −0.300920 0.953649i \(-0.597294\pi\)
−0.300920 + 0.953649i \(0.597294\pi\)
\(692\) 0 0
\(693\) −19.1784 −0.728526
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −45.7794 −1.73402
\(698\) 0 0
\(699\) −6.92654 −0.261986
\(700\) 0 0
\(701\) 14.6561 0.553553 0.276777 0.960934i \(-0.410734\pi\)
0.276777 + 0.960934i \(0.410734\pi\)
\(702\) 0 0
\(703\) −3.48006 −0.131253
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 57.0399 2.14521
\(708\) 0 0
\(709\) −23.3145 −0.875595 −0.437798 0.899073i \(-0.644241\pi\)
−0.437798 + 0.899073i \(0.644241\pi\)
\(710\) 0 0
\(711\) 5.09397 0.191039
\(712\) 0 0
\(713\) 4.13617 0.154901
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.84216 0.330216
\(718\) 0 0
\(719\) 29.3416 1.09426 0.547128 0.837049i \(-0.315721\pi\)
0.547128 + 0.837049i \(0.315721\pi\)
\(720\) 0 0
\(721\) −55.7934 −2.07786
\(722\) 0 0
\(723\) 11.2194 0.417254
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −15.4530 −0.573121 −0.286560 0.958062i \(-0.592512\pi\)
−0.286560 + 0.958062i \(0.592512\pi\)
\(728\) 0 0
\(729\) −9.31569 −0.345025
\(730\) 0 0
\(731\) −38.7447 −1.43302
\(732\) 0 0
\(733\) −30.2108 −1.11586 −0.557930 0.829888i \(-0.688404\pi\)
−0.557930 + 0.829888i \(0.688404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.4108 −0.383487
\(738\) 0 0
\(739\) 24.5880 0.904485 0.452242 0.891895i \(-0.350624\pi\)
0.452242 + 0.891895i \(0.350624\pi\)
\(740\) 0 0
\(741\) 4.86267 0.178635
\(742\) 0 0
\(743\) −48.0452 −1.76261 −0.881305 0.472549i \(-0.843334\pi\)
−0.881305 + 0.472549i \(0.843334\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5.45301 0.199515
\(748\) 0 0
\(749\) 4.38377 0.160179
\(750\) 0 0
\(751\) 4.90371 0.178939 0.0894694 0.995990i \(-0.471483\pi\)
0.0894694 + 0.995990i \(0.471483\pi\)
\(752\) 0 0
\(753\) −8.68547 −0.316516
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −11.3416 −0.412217 −0.206108 0.978529i \(-0.566080\pi\)
−0.206108 + 0.978529i \(0.566080\pi\)
\(758\) 0 0
\(759\) −0.957807 −0.0347662
\(760\) 0 0
\(761\) 10.3427 0.374924 0.187462 0.982272i \(-0.439974\pi\)
0.187462 + 0.982272i \(0.439974\pi\)
\(762\) 0 0
\(763\) −35.6696 −1.29133
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.06808 −0.291322
\(768\) 0 0
\(769\) 27.6843 0.998322 0.499161 0.866509i \(-0.333642\pi\)
0.499161 + 0.866509i \(0.333642\pi\)
\(770\) 0 0
\(771\) −0.0746158 −0.00268722
\(772\) 0 0
\(773\) −12.2952 −0.442227 −0.221113 0.975248i \(-0.570969\pi\)
−0.221113 + 0.975248i \(0.570969\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.945441 0.0339175
\(778\) 0 0
\(779\) −55.3686 −1.98379
\(780\) 0 0
\(781\) −18.9308 −0.677396
\(782\) 0 0
\(783\) −27.4097 −0.979541
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 43.5048 1.55078 0.775389 0.631484i \(-0.217554\pi\)
0.775389 + 0.631484i \(0.217554\pi\)
\(788\) 0 0
\(789\) 3.17836 0.113153
\(790\) 0 0
\(791\) −14.5470 −0.517231
\(792\) 0 0
\(793\) −2.86267 −0.101657
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.9718 0.459484 0.229742 0.973252i \(-0.426212\pi\)
0.229742 + 0.973252i \(0.426212\pi\)
\(798\) 0 0
\(799\) −50.9431 −1.80224
\(800\) 0 0
\(801\) 21.2735 0.751662
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.767541 −0.0270187
\(808\) 0 0
\(809\) 8.73304 0.307037 0.153519 0.988146i \(-0.450939\pi\)
0.153519 + 0.988146i \(0.450939\pi\)
\(810\) 0 0
\(811\) −46.3134 −1.62628 −0.813141 0.582067i \(-0.802244\pi\)
−0.813141 + 0.582067i \(0.802244\pi\)
\(812\) 0 0
\(813\) 3.78922 0.132894
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −46.8604 −1.63944
\(818\) 0 0
\(819\) 9.58918 0.335073
\(820\) 0 0
\(821\) 31.9172 1.11392 0.556960 0.830540i \(-0.311968\pi\)
0.556960 + 0.830540i \(0.311968\pi\)
\(822\) 0 0
\(823\) −6.42480 −0.223955 −0.111977 0.993711i \(-0.535718\pi\)
−0.111977 + 0.993711i \(0.535718\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −38.7242 −1.34657 −0.673286 0.739382i \(-0.735118\pi\)
−0.673286 + 0.739382i \(0.735118\pi\)
\(828\) 0 0
\(829\) −18.3427 −0.637070 −0.318535 0.947911i \(-0.603191\pi\)
−0.318535 + 0.947911i \(0.603191\pi\)
\(830\) 0 0
\(831\) 13.8615 0.480851
\(832\) 0 0
\(833\) −41.5318 −1.43899
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −17.6843 −0.611259
\(838\) 0 0
\(839\) 12.6561 0.436937 0.218469 0.975844i \(-0.429894\pi\)
0.218469 + 0.975844i \(0.429894\pi\)
\(840\) 0 0
\(841\) 36.0940 1.24462
\(842\) 0 0
\(843\) −6.23362 −0.214697
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 25.4572 0.874721
\(848\) 0 0
\(849\) 6.04335 0.207407
\(850\) 0 0
\(851\) −0.342736 −0.0117488
\(852\) 0 0
\(853\) −44.7988 −1.53388 −0.766941 0.641718i \(-0.778222\pi\)
−0.766941 + 0.641718i \(0.778222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −46.8193 −1.59932 −0.799659 0.600455i \(-0.794986\pi\)
−0.799659 + 0.600455i \(0.794986\pi\)
\(858\) 0 0
\(859\) 23.8638 0.814223 0.407112 0.913378i \(-0.366536\pi\)
0.407112 + 0.913378i \(0.366536\pi\)
\(860\) 0 0
\(861\) 15.0422 0.512637
\(862\) 0 0
\(863\) −12.2271 −0.416215 −0.208107 0.978106i \(-0.566730\pi\)
−0.208107 + 0.978106i \(0.566730\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −16.5740 −0.562884
\(868\) 0 0
\(869\) 3.86383 0.131072
\(870\) 0 0
\(871\) 5.20541 0.176379
\(872\) 0 0
\(873\) 36.0107 1.21878
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.336204 −0.0113528 −0.00567640 0.999984i \(-0.501807\pi\)
−0.00567640 + 0.999984i \(0.501807\pi\)
\(878\) 0 0
\(879\) 3.68593 0.124323
\(880\) 0 0
\(881\) −41.0464 −1.38289 −0.691444 0.722430i \(-0.743025\pi\)
−0.691444 + 0.722430i \(0.743025\pi\)
\(882\) 0 0
\(883\) −40.0534 −1.34790 −0.673952 0.738775i \(-0.735405\pi\)
−0.673952 + 0.738775i \(0.735405\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −28.7242 −0.964464 −0.482232 0.876044i \(-0.660174\pi\)
−0.482232 + 0.876044i \(0.660174\pi\)
\(888\) 0 0
\(889\) 17.4367 0.584808
\(890\) 0 0
\(891\) −11.7253 −0.392814
\(892\) 0 0
\(893\) −61.6139 −2.06183
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.478903 0.0159901
\(898\) 0 0
\(899\) 41.9977 1.40070
\(900\) 0 0
\(901\) −5.30054 −0.176587
\(902\) 0 0
\(903\) 12.7307 0.423652
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −48.7636 −1.61917 −0.809584 0.587003i \(-0.800308\pi\)
−0.809584 + 0.587003i \(0.800308\pi\)
\(908\) 0 0
\(909\) 41.3556 1.37168
\(910\) 0 0
\(911\) −15.4801 −0.512877 −0.256439 0.966561i \(-0.582549\pi\)
−0.256439 + 0.966561i \(0.582549\pi\)
\(912\) 0 0
\(913\) 4.13617 0.136887
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.6216 −0.482848
\(918\) 0 0
\(919\) −45.8615 −1.51283 −0.756416 0.654091i \(-0.773051\pi\)
−0.756416 + 0.654091i \(0.773051\pi\)
\(920\) 0 0
\(921\) −10.1632 −0.334889
\(922\) 0 0
\(923\) 9.46538 0.311557
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −40.4519 −1.32861
\(928\) 0 0
\(929\) −26.9168 −0.883111 −0.441555 0.897234i \(-0.645573\pi\)
−0.441555 + 0.897234i \(0.645573\pi\)
\(930\) 0 0
\(931\) −50.2313 −1.64626
\(932\) 0 0
\(933\) 19.8886 0.651122
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.90371 0.160197 0.0800986 0.996787i \(-0.474476\pi\)
0.0800986 + 0.996787i \(0.474476\pi\)
\(938\) 0 0
\(939\) −15.3481 −0.500867
\(940\) 0 0
\(941\) −46.6004 −1.51913 −0.759565 0.650432i \(-0.774588\pi\)
−0.759565 + 0.650432i \(0.774588\pi\)
\(942\) 0 0
\(943\) −5.45301 −0.177575
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.7524 0.901832 0.450916 0.892566i \(-0.351097\pi\)
0.450916 + 0.892566i \(0.351097\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) −8.51994 −0.276278
\(952\) 0 0
\(953\) 14.9725 0.485007 0.242503 0.970151i \(-0.422031\pi\)
0.242503 + 0.970151i \(0.422031\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −9.72535 −0.314376
\(958\) 0 0
\(959\) −40.7512 −1.31593
\(960\) 0 0
\(961\) −3.90371 −0.125926
\(962\) 0 0
\(963\) 3.17836 0.102421
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −52.5946 −1.69133 −0.845663 0.533717i \(-0.820795\pi\)
−0.845663 + 0.533717i \(0.820795\pi\)
\(968\) 0 0
\(969\) −32.4379 −1.04205
\(970\) 0 0
\(971\) 15.5253 0.498231 0.249115 0.968474i \(-0.419860\pi\)
0.249115 + 0.968474i \(0.419860\pi\)
\(972\) 0 0
\(973\) 32.1567 1.03090
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.5729 1.52199 0.760996 0.648757i \(-0.224711\pi\)
0.760996 + 0.648757i \(0.224711\pi\)
\(978\) 0 0
\(979\) 16.1362 0.515714
\(980\) 0 0
\(981\) −25.8615 −0.825695
\(982\) 0 0
\(983\) −37.3211 −1.19036 −0.595178 0.803594i \(-0.702919\pi\)
−0.595178 + 0.803594i \(0.702919\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16.7389 0.532804
\(988\) 0 0
\(989\) −4.61507 −0.146751
\(990\) 0 0
\(991\) −22.5060 −0.714925 −0.357463 0.933927i \(-0.616358\pi\)
−0.357463 + 0.933927i \(0.616358\pi\)
\(992\) 0 0
\(993\) 11.1621 0.354217
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 24.4108 0.773098 0.386549 0.922269i \(-0.373667\pi\)
0.386549 + 0.922269i \(0.373667\pi\)
\(998\) 0 0
\(999\) 1.46538 0.0463625
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.cf.1.2 3
4.3 odd 2 650.2.a.o.1.2 3
5.2 odd 4 1040.2.d.b.209.4 6
5.3 odd 4 1040.2.d.b.209.3 6
5.4 even 2 5200.2.a.ce.1.2 3
12.11 even 2 5850.2.a.cp.1.3 3
20.3 even 4 130.2.b.a.79.2 6
20.7 even 4 130.2.b.a.79.5 yes 6
20.19 odd 2 650.2.a.n.1.2 3
52.51 odd 2 8450.2.a.bs.1.2 3
60.23 odd 4 1170.2.e.f.469.5 6
60.47 odd 4 1170.2.e.f.469.2 6
60.59 even 2 5850.2.a.cs.1.1 3
260.47 odd 4 1690.2.c.a.1689.3 6
260.83 odd 4 1690.2.c.a.1689.4 6
260.103 even 4 1690.2.b.a.339.5 6
260.187 odd 4 1690.2.c.d.1689.3 6
260.203 odd 4 1690.2.c.d.1689.4 6
260.207 even 4 1690.2.b.a.339.2 6
260.259 odd 2 8450.2.a.cc.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.2 6 20.3 even 4
130.2.b.a.79.5 yes 6 20.7 even 4
650.2.a.n.1.2 3 20.19 odd 2
650.2.a.o.1.2 3 4.3 odd 2
1040.2.d.b.209.3 6 5.3 odd 4
1040.2.d.b.209.4 6 5.2 odd 4
1170.2.e.f.469.2 6 60.47 odd 4
1170.2.e.f.469.5 6 60.23 odd 4
1690.2.b.a.339.2 6 260.207 even 4
1690.2.b.a.339.5 6 260.103 even 4
1690.2.c.a.1689.3 6 260.47 odd 4
1690.2.c.a.1689.4 6 260.83 odd 4
1690.2.c.d.1689.3 6 260.187 odd 4
1690.2.c.d.1689.4 6 260.203 odd 4
5200.2.a.ce.1.2 3 5.4 even 2
5200.2.a.cf.1.2 3 1.1 even 1 trivial
5850.2.a.cp.1.3 3 12.11 even 2
5850.2.a.cs.1.1 3 60.59 even 2
8450.2.a.bs.1.2 3 52.51 odd 2
8450.2.a.cc.1.2 3 260.259 odd 2