Properties

Label 525.2.a.e.1.2
Level $525$
Weight $2$
Character 525.1
Self dual yes
Analytic conductor $4.192$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.19214610612\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.381966 q^{2} -1.00000 q^{3} -1.85410 q^{4} +0.381966 q^{6} +1.00000 q^{7} +1.47214 q^{8} +1.00000 q^{9} +3.47214 q^{11} +1.85410 q^{12} -5.23607 q^{13} -0.381966 q^{14} +3.14590 q^{16} -5.70820 q^{17} -0.381966 q^{18} +1.23607 q^{19} -1.00000 q^{21} -1.32624 q^{22} -5.00000 q^{23} -1.47214 q^{24} +2.00000 q^{26} -1.00000 q^{27} -1.85410 q^{28} -8.70820 q^{29} -4.47214 q^{31} -4.14590 q^{32} -3.47214 q^{33} +2.18034 q^{34} -1.85410 q^{36} +3.47214 q^{37} -0.472136 q^{38} +5.23607 q^{39} -8.00000 q^{41} +0.381966 q^{42} -3.76393 q^{43} -6.43769 q^{44} +1.90983 q^{46} -2.76393 q^{47} -3.14590 q^{48} +1.00000 q^{49} +5.70820 q^{51} +9.70820 q^{52} +8.47214 q^{53} +0.381966 q^{54} +1.47214 q^{56} -1.23607 q^{57} +3.32624 q^{58} -5.23607 q^{59} +11.4164 q^{61} +1.70820 q^{62} +1.00000 q^{63} -4.70820 q^{64} +1.32624 q^{66} -10.7082 q^{67} +10.5836 q^{68} +5.00000 q^{69} -9.47214 q^{71} +1.47214 q^{72} +3.23607 q^{73} -1.32624 q^{74} -2.29180 q^{76} +3.47214 q^{77} -2.00000 q^{78} +6.23607 q^{79} +1.00000 q^{81} +3.05573 q^{82} -3.52786 q^{83} +1.85410 q^{84} +1.43769 q^{86} +8.70820 q^{87} +5.11146 q^{88} +7.70820 q^{89} -5.23607 q^{91} +9.27051 q^{92} +4.47214 q^{93} +1.05573 q^{94} +4.14590 q^{96} -3.52786 q^{97} -0.381966 q^{98} +3.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 2 q^{3} + 3 q^{4} + 3 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9} - 2 q^{11} - 3 q^{12} - 6 q^{13} - 3 q^{14} + 13 q^{16} + 2 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{21} + 13 q^{22} - 10 q^{23} + 6 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381966 −0.270091 −0.135045 0.990839i \(-0.543118\pi\)
−0.135045 + 0.990839i \(0.543118\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.85410 −0.927051
\(5\) 0 0
\(6\) 0.381966 0.155937
\(7\) 1.00000 0.377964
\(8\) 1.47214 0.520479
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.47214 1.04689 0.523444 0.852060i \(-0.324647\pi\)
0.523444 + 0.852060i \(0.324647\pi\)
\(12\) 1.85410 0.535233
\(13\) −5.23607 −1.45222 −0.726112 0.687576i \(-0.758675\pi\)
−0.726112 + 0.687576i \(0.758675\pi\)
\(14\) −0.381966 −0.102085
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) −5.70820 −1.38444 −0.692221 0.721685i \(-0.743368\pi\)
−0.692221 + 0.721685i \(0.743368\pi\)
\(18\) −0.381966 −0.0900303
\(19\) 1.23607 0.283573 0.141787 0.989897i \(-0.454715\pi\)
0.141787 + 0.989897i \(0.454715\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −1.32624 −0.282755
\(23\) −5.00000 −1.04257 −0.521286 0.853382i \(-0.674548\pi\)
−0.521286 + 0.853382i \(0.674548\pi\)
\(24\) −1.47214 −0.300498
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) −1.85410 −0.350392
\(29\) −8.70820 −1.61707 −0.808536 0.588446i \(-0.799740\pi\)
−0.808536 + 0.588446i \(0.799740\pi\)
\(30\) 0 0
\(31\) −4.47214 −0.803219 −0.401610 0.915811i \(-0.631549\pi\)
−0.401610 + 0.915811i \(0.631549\pi\)
\(32\) −4.14590 −0.732898
\(33\) −3.47214 −0.604421
\(34\) 2.18034 0.373925
\(35\) 0 0
\(36\) −1.85410 −0.309017
\(37\) 3.47214 0.570816 0.285408 0.958406i \(-0.407871\pi\)
0.285408 + 0.958406i \(0.407871\pi\)
\(38\) −0.472136 −0.0765906
\(39\) 5.23607 0.838442
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0.381966 0.0589386
\(43\) −3.76393 −0.573994 −0.286997 0.957931i \(-0.592657\pi\)
−0.286997 + 0.957931i \(0.592657\pi\)
\(44\) −6.43769 −0.970519
\(45\) 0 0
\(46\) 1.90983 0.281589
\(47\) −2.76393 −0.403161 −0.201580 0.979472i \(-0.564608\pi\)
−0.201580 + 0.979472i \(0.564608\pi\)
\(48\) −3.14590 −0.454071
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.70820 0.799308
\(52\) 9.70820 1.34629
\(53\) 8.47214 1.16374 0.581869 0.813283i \(-0.302322\pi\)
0.581869 + 0.813283i \(0.302322\pi\)
\(54\) 0.381966 0.0519790
\(55\) 0 0
\(56\) 1.47214 0.196722
\(57\) −1.23607 −0.163721
\(58\) 3.32624 0.436756
\(59\) −5.23607 −0.681678 −0.340839 0.940122i \(-0.610711\pi\)
−0.340839 + 0.940122i \(0.610711\pi\)
\(60\) 0 0
\(61\) 11.4164 1.46172 0.730861 0.682527i \(-0.239119\pi\)
0.730861 + 0.682527i \(0.239119\pi\)
\(62\) 1.70820 0.216942
\(63\) 1.00000 0.125988
\(64\) −4.70820 −0.588525
\(65\) 0 0
\(66\) 1.32624 0.163249
\(67\) −10.7082 −1.30822 −0.654108 0.756401i \(-0.726956\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(68\) 10.5836 1.28345
\(69\) 5.00000 0.601929
\(70\) 0 0
\(71\) −9.47214 −1.12414 −0.562068 0.827091i \(-0.689994\pi\)
−0.562068 + 0.827091i \(0.689994\pi\)
\(72\) 1.47214 0.173493
\(73\) 3.23607 0.378753 0.189377 0.981905i \(-0.439353\pi\)
0.189377 + 0.981905i \(0.439353\pi\)
\(74\) −1.32624 −0.154172
\(75\) 0 0
\(76\) −2.29180 −0.262887
\(77\) 3.47214 0.395687
\(78\) −2.00000 −0.226455
\(79\) 6.23607 0.701612 0.350806 0.936448i \(-0.385908\pi\)
0.350806 + 0.936448i \(0.385908\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 3.05573 0.337449
\(83\) −3.52786 −0.387233 −0.193617 0.981077i \(-0.562022\pi\)
−0.193617 + 0.981077i \(0.562022\pi\)
\(84\) 1.85410 0.202299
\(85\) 0 0
\(86\) 1.43769 0.155031
\(87\) 8.70820 0.933617
\(88\) 5.11146 0.544883
\(89\) 7.70820 0.817068 0.408534 0.912743i \(-0.366040\pi\)
0.408534 + 0.912743i \(0.366040\pi\)
\(90\) 0 0
\(91\) −5.23607 −0.548889
\(92\) 9.27051 0.966517
\(93\) 4.47214 0.463739
\(94\) 1.05573 0.108890
\(95\) 0 0
\(96\) 4.14590 0.423139
\(97\) −3.52786 −0.358200 −0.179100 0.983831i \(-0.557319\pi\)
−0.179100 + 0.983831i \(0.557319\pi\)
\(98\) −0.381966 −0.0385844
\(99\) 3.47214 0.348963
\(100\) 0 0
\(101\) −17.7082 −1.76203 −0.881016 0.473086i \(-0.843140\pi\)
−0.881016 + 0.473086i \(0.843140\pi\)
\(102\) −2.18034 −0.215886
\(103\) 3.70820 0.365380 0.182690 0.983171i \(-0.441520\pi\)
0.182690 + 0.983171i \(0.441520\pi\)
\(104\) −7.70820 −0.755852
\(105\) 0 0
\(106\) −3.23607 −0.314315
\(107\) −12.9443 −1.25137 −0.625685 0.780076i \(-0.715180\pi\)
−0.625685 + 0.780076i \(0.715180\pi\)
\(108\) 1.85410 0.178411
\(109\) 20.4164 1.95554 0.977769 0.209687i \(-0.0672444\pi\)
0.977769 + 0.209687i \(0.0672444\pi\)
\(110\) 0 0
\(111\) −3.47214 −0.329561
\(112\) 3.14590 0.297259
\(113\) 11.7639 1.10666 0.553329 0.832963i \(-0.313357\pi\)
0.553329 + 0.832963i \(0.313357\pi\)
\(114\) 0.472136 0.0442196
\(115\) 0 0
\(116\) 16.1459 1.49911
\(117\) −5.23607 −0.484075
\(118\) 2.00000 0.184115
\(119\) −5.70820 −0.523270
\(120\) 0 0
\(121\) 1.05573 0.0959753
\(122\) −4.36068 −0.394797
\(123\) 8.00000 0.721336
\(124\) 8.29180 0.744625
\(125\) 0 0
\(126\) −0.381966 −0.0340282
\(127\) 7.76393 0.688938 0.344469 0.938798i \(-0.388059\pi\)
0.344469 + 0.938798i \(0.388059\pi\)
\(128\) 10.0902 0.891853
\(129\) 3.76393 0.331396
\(130\) 0 0
\(131\) −17.7082 −1.54717 −0.773586 0.633691i \(-0.781539\pi\)
−0.773586 + 0.633691i \(0.781539\pi\)
\(132\) 6.43769 0.560329
\(133\) 1.23607 0.107181
\(134\) 4.09017 0.353337
\(135\) 0 0
\(136\) −8.40325 −0.720573
\(137\) −8.47214 −0.723823 −0.361912 0.932212i \(-0.617876\pi\)
−0.361912 + 0.932212i \(0.617876\pi\)
\(138\) −1.90983 −0.162576
\(139\) −9.70820 −0.823439 −0.411720 0.911311i \(-0.635072\pi\)
−0.411720 + 0.911311i \(0.635072\pi\)
\(140\) 0 0
\(141\) 2.76393 0.232765
\(142\) 3.61803 0.303619
\(143\) −18.1803 −1.52032
\(144\) 3.14590 0.262158
\(145\) 0 0
\(146\) −1.23607 −0.102298
\(147\) −1.00000 −0.0824786
\(148\) −6.43769 −0.529175
\(149\) 3.76393 0.308353 0.154177 0.988043i \(-0.450728\pi\)
0.154177 + 0.988043i \(0.450728\pi\)
\(150\) 0 0
\(151\) 14.7082 1.19694 0.598468 0.801146i \(-0.295776\pi\)
0.598468 + 0.801146i \(0.295776\pi\)
\(152\) 1.81966 0.147594
\(153\) −5.70820 −0.461481
\(154\) −1.32624 −0.106871
\(155\) 0 0
\(156\) −9.70820 −0.777278
\(157\) 0.944272 0.0753611 0.0376806 0.999290i \(-0.488003\pi\)
0.0376806 + 0.999290i \(0.488003\pi\)
\(158\) −2.38197 −0.189499
\(159\) −8.47214 −0.671884
\(160\) 0 0
\(161\) −5.00000 −0.394055
\(162\) −0.381966 −0.0300101
\(163\) −9.52786 −0.746280 −0.373140 0.927775i \(-0.621719\pi\)
−0.373140 + 0.927775i \(0.621719\pi\)
\(164\) 14.8328 1.15825
\(165\) 0 0
\(166\) 1.34752 0.104588
\(167\) 19.7082 1.52507 0.762533 0.646949i \(-0.223955\pi\)
0.762533 + 0.646949i \(0.223955\pi\)
\(168\) −1.47214 −0.113578
\(169\) 14.4164 1.10895
\(170\) 0 0
\(171\) 1.23607 0.0945245
\(172\) 6.97871 0.532122
\(173\) 26.1803 1.99045 0.995227 0.0975850i \(-0.0311118\pi\)
0.995227 + 0.0975850i \(0.0311118\pi\)
\(174\) −3.32624 −0.252161
\(175\) 0 0
\(176\) 10.9230 0.823351
\(177\) 5.23607 0.393567
\(178\) −2.94427 −0.220683
\(179\) −12.9443 −0.967500 −0.483750 0.875206i \(-0.660726\pi\)
−0.483750 + 0.875206i \(0.660726\pi\)
\(180\) 0 0
\(181\) −26.6525 −1.98106 −0.990531 0.137286i \(-0.956162\pi\)
−0.990531 + 0.137286i \(0.956162\pi\)
\(182\) 2.00000 0.148250
\(183\) −11.4164 −0.843925
\(184\) −7.36068 −0.542637
\(185\) 0 0
\(186\) −1.70820 −0.125252
\(187\) −19.8197 −1.44936
\(188\) 5.12461 0.373751
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 15.4164 1.11549 0.557746 0.830012i \(-0.311666\pi\)
0.557746 + 0.830012i \(0.311666\pi\)
\(192\) 4.70820 0.339785
\(193\) 26.4164 1.90149 0.950747 0.309967i \(-0.100318\pi\)
0.950747 + 0.309967i \(0.100318\pi\)
\(194\) 1.34752 0.0967466
\(195\) 0 0
\(196\) −1.85410 −0.132436
\(197\) 10.2361 0.729290 0.364645 0.931147i \(-0.381190\pi\)
0.364645 + 0.931147i \(0.381190\pi\)
\(198\) −1.32624 −0.0942516
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 10.7082 0.755298
\(202\) 6.76393 0.475909
\(203\) −8.70820 −0.611196
\(204\) −10.5836 −0.741000
\(205\) 0 0
\(206\) −1.41641 −0.0986858
\(207\) −5.00000 −0.347524
\(208\) −16.4721 −1.14214
\(209\) 4.29180 0.296870
\(210\) 0 0
\(211\) −4.94427 −0.340378 −0.170189 0.985411i \(-0.554438\pi\)
−0.170189 + 0.985411i \(0.554438\pi\)
\(212\) −15.7082 −1.07884
\(213\) 9.47214 0.649020
\(214\) 4.94427 0.337983
\(215\) 0 0
\(216\) −1.47214 −0.100166
\(217\) −4.47214 −0.303588
\(218\) −7.79837 −0.528173
\(219\) −3.23607 −0.218673
\(220\) 0 0
\(221\) 29.8885 2.01052
\(222\) 1.32624 0.0890113
\(223\) −3.23607 −0.216703 −0.108352 0.994113i \(-0.534557\pi\)
−0.108352 + 0.994113i \(0.534557\pi\)
\(224\) −4.14590 −0.277009
\(225\) 0 0
\(226\) −4.49342 −0.298898
\(227\) 9.23607 0.613019 0.306510 0.951868i \(-0.400839\pi\)
0.306510 + 0.951868i \(0.400839\pi\)
\(228\) 2.29180 0.151778
\(229\) −22.3607 −1.47764 −0.738818 0.673905i \(-0.764616\pi\)
−0.738818 + 0.673905i \(0.764616\pi\)
\(230\) 0 0
\(231\) −3.47214 −0.228450
\(232\) −12.8197 −0.841652
\(233\) −20.7082 −1.35664 −0.678320 0.734767i \(-0.737292\pi\)
−0.678320 + 0.734767i \(0.737292\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 9.70820 0.631950
\(237\) −6.23607 −0.405076
\(238\) 2.18034 0.141330
\(239\) 16.3607 1.05828 0.529142 0.848533i \(-0.322514\pi\)
0.529142 + 0.848533i \(0.322514\pi\)
\(240\) 0 0
\(241\) 14.7639 0.951028 0.475514 0.879708i \(-0.342262\pi\)
0.475514 + 0.879708i \(0.342262\pi\)
\(242\) −0.403252 −0.0259220
\(243\) −1.00000 −0.0641500
\(244\) −21.1672 −1.35509
\(245\) 0 0
\(246\) −3.05573 −0.194826
\(247\) −6.47214 −0.411812
\(248\) −6.58359 −0.418059
\(249\) 3.52786 0.223569
\(250\) 0 0
\(251\) 7.23607 0.456737 0.228368 0.973575i \(-0.426661\pi\)
0.228368 + 0.973575i \(0.426661\pi\)
\(252\) −1.85410 −0.116797
\(253\) −17.3607 −1.09146
\(254\) −2.96556 −0.186076
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) −0.472136 −0.0294510 −0.0147255 0.999892i \(-0.504687\pi\)
−0.0147255 + 0.999892i \(0.504687\pi\)
\(258\) −1.43769 −0.0895069
\(259\) 3.47214 0.215748
\(260\) 0 0
\(261\) −8.70820 −0.539024
\(262\) 6.76393 0.417877
\(263\) −19.9443 −1.22982 −0.614908 0.788599i \(-0.710807\pi\)
−0.614908 + 0.788599i \(0.710807\pi\)
\(264\) −5.11146 −0.314588
\(265\) 0 0
\(266\) −0.472136 −0.0289485
\(267\) −7.70820 −0.471734
\(268\) 19.8541 1.21278
\(269\) −19.5279 −1.19063 −0.595317 0.803491i \(-0.702974\pi\)
−0.595317 + 0.803491i \(0.702974\pi\)
\(270\) 0 0
\(271\) 18.7639 1.13983 0.569914 0.821704i \(-0.306977\pi\)
0.569914 + 0.821704i \(0.306977\pi\)
\(272\) −17.9574 −1.08883
\(273\) 5.23607 0.316901
\(274\) 3.23607 0.195498
\(275\) 0 0
\(276\) −9.27051 −0.558019
\(277\) −19.8885 −1.19499 −0.597493 0.801874i \(-0.703837\pi\)
−0.597493 + 0.801874i \(0.703837\pi\)
\(278\) 3.70820 0.222403
\(279\) −4.47214 −0.267740
\(280\) 0 0
\(281\) −17.6525 −1.05306 −0.526529 0.850157i \(-0.676507\pi\)
−0.526529 + 0.850157i \(0.676507\pi\)
\(282\) −1.05573 −0.0628677
\(283\) −13.4164 −0.797523 −0.398761 0.917055i \(-0.630560\pi\)
−0.398761 + 0.917055i \(0.630560\pi\)
\(284\) 17.5623 1.04213
\(285\) 0 0
\(286\) 6.94427 0.410623
\(287\) −8.00000 −0.472225
\(288\) −4.14590 −0.244299
\(289\) 15.5836 0.916682
\(290\) 0 0
\(291\) 3.52786 0.206807
\(292\) −6.00000 −0.351123
\(293\) −4.65248 −0.271801 −0.135900 0.990723i \(-0.543393\pi\)
−0.135900 + 0.990723i \(0.543393\pi\)
\(294\) 0.381966 0.0222767
\(295\) 0 0
\(296\) 5.11146 0.297097
\(297\) −3.47214 −0.201474
\(298\) −1.43769 −0.0832834
\(299\) 26.1803 1.51405
\(300\) 0 0
\(301\) −3.76393 −0.216949
\(302\) −5.61803 −0.323282
\(303\) 17.7082 1.01731
\(304\) 3.88854 0.223023
\(305\) 0 0
\(306\) 2.18034 0.124642
\(307\) 6.65248 0.379677 0.189838 0.981815i \(-0.439204\pi\)
0.189838 + 0.981815i \(0.439204\pi\)
\(308\) −6.43769 −0.366822
\(309\) −3.70820 −0.210952
\(310\) 0 0
\(311\) 8.76393 0.496957 0.248478 0.968637i \(-0.420069\pi\)
0.248478 + 0.968637i \(0.420069\pi\)
\(312\) 7.70820 0.436391
\(313\) −7.70820 −0.435693 −0.217847 0.975983i \(-0.569903\pi\)
−0.217847 + 0.975983i \(0.569903\pi\)
\(314\) −0.360680 −0.0203543
\(315\) 0 0
\(316\) −11.5623 −0.650431
\(317\) 13.6525 0.766799 0.383400 0.923583i \(-0.374753\pi\)
0.383400 + 0.923583i \(0.374753\pi\)
\(318\) 3.23607 0.181470
\(319\) −30.2361 −1.69289
\(320\) 0 0
\(321\) 12.9443 0.722479
\(322\) 1.90983 0.106431
\(323\) −7.05573 −0.392591
\(324\) −1.85410 −0.103006
\(325\) 0 0
\(326\) 3.63932 0.201563
\(327\) −20.4164 −1.12903
\(328\) −11.7771 −0.650281
\(329\) −2.76393 −0.152381
\(330\) 0 0
\(331\) 18.2361 1.00234 0.501172 0.865347i \(-0.332902\pi\)
0.501172 + 0.865347i \(0.332902\pi\)
\(332\) 6.54102 0.358985
\(333\) 3.47214 0.190272
\(334\) −7.52786 −0.411906
\(335\) 0 0
\(336\) −3.14590 −0.171623
\(337\) 19.5279 1.06375 0.531875 0.846823i \(-0.321488\pi\)
0.531875 + 0.846823i \(0.321488\pi\)
\(338\) −5.50658 −0.299518
\(339\) −11.7639 −0.638929
\(340\) 0 0
\(341\) −15.5279 −0.840881
\(342\) −0.472136 −0.0255302
\(343\) 1.00000 0.0539949
\(344\) −5.54102 −0.298752
\(345\) 0 0
\(346\) −10.0000 −0.537603
\(347\) 13.0000 0.697877 0.348938 0.937146i \(-0.386542\pi\)
0.348938 + 0.937146i \(0.386542\pi\)
\(348\) −16.1459 −0.865511
\(349\) 5.23607 0.280280 0.140140 0.990132i \(-0.455245\pi\)
0.140140 + 0.990132i \(0.455245\pi\)
\(350\) 0 0
\(351\) 5.23607 0.279481
\(352\) −14.3951 −0.767263
\(353\) −18.9443 −1.00830 −0.504151 0.863616i \(-0.668194\pi\)
−0.504151 + 0.863616i \(0.668194\pi\)
\(354\) −2.00000 −0.106299
\(355\) 0 0
\(356\) −14.2918 −0.757464
\(357\) 5.70820 0.302110
\(358\) 4.94427 0.261313
\(359\) 8.05573 0.425165 0.212583 0.977143i \(-0.431813\pi\)
0.212583 + 0.977143i \(0.431813\pi\)
\(360\) 0 0
\(361\) −17.4721 −0.919586
\(362\) 10.1803 0.535067
\(363\) −1.05573 −0.0554114
\(364\) 9.70820 0.508848
\(365\) 0 0
\(366\) 4.36068 0.227936
\(367\) −8.94427 −0.466887 −0.233444 0.972370i \(-0.574999\pi\)
−0.233444 + 0.972370i \(0.574999\pi\)
\(368\) −15.7295 −0.819956
\(369\) −8.00000 −0.416463
\(370\) 0 0
\(371\) 8.47214 0.439851
\(372\) −8.29180 −0.429910
\(373\) 15.0000 0.776671 0.388335 0.921518i \(-0.373050\pi\)
0.388335 + 0.921518i \(0.373050\pi\)
\(374\) 7.57044 0.391458
\(375\) 0 0
\(376\) −4.06888 −0.209837
\(377\) 45.5967 2.34835
\(378\) 0.381966 0.0196462
\(379\) −32.5967 −1.67438 −0.837191 0.546910i \(-0.815804\pi\)
−0.837191 + 0.546910i \(0.815804\pi\)
\(380\) 0 0
\(381\) −7.76393 −0.397758
\(382\) −5.88854 −0.301284
\(383\) 15.1246 0.772832 0.386416 0.922325i \(-0.373713\pi\)
0.386416 + 0.922325i \(0.373713\pi\)
\(384\) −10.0902 −0.514912
\(385\) 0 0
\(386\) −10.0902 −0.513576
\(387\) −3.76393 −0.191331
\(388\) 6.54102 0.332070
\(389\) −6.23607 −0.316181 −0.158091 0.987425i \(-0.550534\pi\)
−0.158091 + 0.987425i \(0.550534\pi\)
\(390\) 0 0
\(391\) 28.5410 1.44338
\(392\) 1.47214 0.0743541
\(393\) 17.7082 0.893261
\(394\) −3.90983 −0.196974
\(395\) 0 0
\(396\) −6.43769 −0.323506
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 6.11146 0.306340
\(399\) −1.23607 −0.0618808
\(400\) 0 0
\(401\) −13.2918 −0.663761 −0.331880 0.943322i \(-0.607683\pi\)
−0.331880 + 0.943322i \(0.607683\pi\)
\(402\) −4.09017 −0.203999
\(403\) 23.4164 1.16645
\(404\) 32.8328 1.63349
\(405\) 0 0
\(406\) 3.32624 0.165078
\(407\) 12.0557 0.597580
\(408\) 8.40325 0.416023
\(409\) 14.1803 0.701173 0.350586 0.936530i \(-0.385982\pi\)
0.350586 + 0.936530i \(0.385982\pi\)
\(410\) 0 0
\(411\) 8.47214 0.417900
\(412\) −6.87539 −0.338726
\(413\) −5.23607 −0.257650
\(414\) 1.90983 0.0938630
\(415\) 0 0
\(416\) 21.7082 1.06433
\(417\) 9.70820 0.475413
\(418\) −1.63932 −0.0801818
\(419\) 26.9443 1.31631 0.658157 0.752881i \(-0.271336\pi\)
0.658157 + 0.752881i \(0.271336\pi\)
\(420\) 0 0
\(421\) 26.4164 1.28746 0.643728 0.765254i \(-0.277387\pi\)
0.643728 + 0.765254i \(0.277387\pi\)
\(422\) 1.88854 0.0919329
\(423\) −2.76393 −0.134387
\(424\) 12.4721 0.605700
\(425\) 0 0
\(426\) −3.61803 −0.175294
\(427\) 11.4164 0.552479
\(428\) 24.0000 1.16008
\(429\) 18.1803 0.877755
\(430\) 0 0
\(431\) −1.88854 −0.0909680 −0.0454840 0.998965i \(-0.514483\pi\)
−0.0454840 + 0.998965i \(0.514483\pi\)
\(432\) −3.14590 −0.151357
\(433\) 25.3050 1.21608 0.608039 0.793907i \(-0.291956\pi\)
0.608039 + 0.793907i \(0.291956\pi\)
\(434\) 1.70820 0.0819964
\(435\) 0 0
\(436\) −37.8541 −1.81288
\(437\) −6.18034 −0.295646
\(438\) 1.23607 0.0590616
\(439\) −6.76393 −0.322825 −0.161412 0.986887i \(-0.551605\pi\)
−0.161412 + 0.986887i \(0.551605\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −11.4164 −0.543023
\(443\) −39.4164 −1.87273 −0.936365 0.351028i \(-0.885832\pi\)
−0.936365 + 0.351028i \(0.885832\pi\)
\(444\) 6.43769 0.305519
\(445\) 0 0
\(446\) 1.23607 0.0585295
\(447\) −3.76393 −0.178028
\(448\) −4.70820 −0.222442
\(449\) 16.7082 0.788509 0.394254 0.919001i \(-0.371003\pi\)
0.394254 + 0.919001i \(0.371003\pi\)
\(450\) 0 0
\(451\) −27.7771 −1.30797
\(452\) −21.8115 −1.02593
\(453\) −14.7082 −0.691052
\(454\) −3.52786 −0.165571
\(455\) 0 0
\(456\) −1.81966 −0.0852134
\(457\) 20.5279 0.960253 0.480126 0.877199i \(-0.340591\pi\)
0.480126 + 0.877199i \(0.340591\pi\)
\(458\) 8.54102 0.399096
\(459\) 5.70820 0.266436
\(460\) 0 0
\(461\) −20.6525 −0.961882 −0.480941 0.876753i \(-0.659705\pi\)
−0.480941 + 0.876753i \(0.659705\pi\)
\(462\) 1.32624 0.0617022
\(463\) 16.3607 0.760345 0.380173 0.924916i \(-0.375865\pi\)
0.380173 + 0.924916i \(0.375865\pi\)
\(464\) −27.3951 −1.27179
\(465\) 0 0
\(466\) 7.90983 0.366416
\(467\) 11.8885 0.550136 0.275068 0.961425i \(-0.411300\pi\)
0.275068 + 0.961425i \(0.411300\pi\)
\(468\) 9.70820 0.448762
\(469\) −10.7082 −0.494459
\(470\) 0 0
\(471\) −0.944272 −0.0435098
\(472\) −7.70820 −0.354799
\(473\) −13.0689 −0.600908
\(474\) 2.38197 0.109407
\(475\) 0 0
\(476\) 10.5836 0.485098
\(477\) 8.47214 0.387912
\(478\) −6.24922 −0.285833
\(479\) −18.7639 −0.857346 −0.428673 0.903460i \(-0.641019\pi\)
−0.428673 + 0.903460i \(0.641019\pi\)
\(480\) 0 0
\(481\) −18.1803 −0.828952
\(482\) −5.63932 −0.256864
\(483\) 5.00000 0.227508
\(484\) −1.95743 −0.0889740
\(485\) 0 0
\(486\) 0.381966 0.0173263
\(487\) 29.1803 1.32229 0.661144 0.750259i \(-0.270071\pi\)
0.661144 + 0.750259i \(0.270071\pi\)
\(488\) 16.8065 0.760795
\(489\) 9.52786 0.430865
\(490\) 0 0
\(491\) −9.47214 −0.427472 −0.213736 0.976892i \(-0.568563\pi\)
−0.213736 + 0.976892i \(0.568563\pi\)
\(492\) −14.8328 −0.668715
\(493\) 49.7082 2.23874
\(494\) 2.47214 0.111227
\(495\) 0 0
\(496\) −14.0689 −0.631712
\(497\) −9.47214 −0.424883
\(498\) −1.34752 −0.0603840
\(499\) 39.7771 1.78067 0.890333 0.455309i \(-0.150471\pi\)
0.890333 + 0.455309i \(0.150471\pi\)
\(500\) 0 0
\(501\) −19.7082 −0.880498
\(502\) −2.76393 −0.123360
\(503\) 9.41641 0.419857 0.209928 0.977717i \(-0.432677\pi\)
0.209928 + 0.977717i \(0.432677\pi\)
\(504\) 1.47214 0.0655741
\(505\) 0 0
\(506\) 6.63119 0.294792
\(507\) −14.4164 −0.640255
\(508\) −14.3951 −0.638680
\(509\) 0.652476 0.0289205 0.0144602 0.999895i \(-0.495397\pi\)
0.0144602 + 0.999895i \(0.495397\pi\)
\(510\) 0 0
\(511\) 3.23607 0.143155
\(512\) −22.3050 −0.985749
\(513\) −1.23607 −0.0545737
\(514\) 0.180340 0.00795445
\(515\) 0 0
\(516\) −6.97871 −0.307221
\(517\) −9.59675 −0.422064
\(518\) −1.32624 −0.0582715
\(519\) −26.1803 −1.14919
\(520\) 0 0
\(521\) 33.7771 1.47980 0.739901 0.672716i \(-0.234873\pi\)
0.739901 + 0.672716i \(0.234873\pi\)
\(522\) 3.32624 0.145585
\(523\) −35.7771 −1.56442 −0.782211 0.623013i \(-0.785908\pi\)
−0.782211 + 0.623013i \(0.785908\pi\)
\(524\) 32.8328 1.43431
\(525\) 0 0
\(526\) 7.61803 0.332162
\(527\) 25.5279 1.11201
\(528\) −10.9230 −0.475362
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) −5.23607 −0.227226
\(532\) −2.29180 −0.0993620
\(533\) 41.8885 1.81439
\(534\) 2.94427 0.127411
\(535\) 0 0
\(536\) −15.7639 −0.680898
\(537\) 12.9443 0.558587
\(538\) 7.45898 0.321579
\(539\) 3.47214 0.149555
\(540\) 0 0
\(541\) −0.0557281 −0.00239594 −0.00119797 0.999999i \(-0.500381\pi\)
−0.00119797 + 0.999999i \(0.500381\pi\)
\(542\) −7.16718 −0.307857
\(543\) 26.6525 1.14377
\(544\) 23.6656 1.01466
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) −23.0689 −0.986354 −0.493177 0.869929i \(-0.664165\pi\)
−0.493177 + 0.869929i \(0.664165\pi\)
\(548\) 15.7082 0.671021
\(549\) 11.4164 0.487240
\(550\) 0 0
\(551\) −10.7639 −0.458559
\(552\) 7.36068 0.313291
\(553\) 6.23607 0.265185
\(554\) 7.59675 0.322755
\(555\) 0 0
\(556\) 18.0000 0.763370
\(557\) −23.6525 −1.00219 −0.501094 0.865393i \(-0.667069\pi\)
−0.501094 + 0.865393i \(0.667069\pi\)
\(558\) 1.70820 0.0723140
\(559\) 19.7082 0.833568
\(560\) 0 0
\(561\) 19.8197 0.836787
\(562\) 6.74265 0.284421
\(563\) 27.3050 1.15077 0.575383 0.817884i \(-0.304853\pi\)
0.575383 + 0.817884i \(0.304853\pi\)
\(564\) −5.12461 −0.215785
\(565\) 0 0
\(566\) 5.12461 0.215404
\(567\) 1.00000 0.0419961
\(568\) −13.9443 −0.585089
\(569\) −7.76393 −0.325481 −0.162740 0.986669i \(-0.552033\pi\)
−0.162740 + 0.986669i \(0.552033\pi\)
\(570\) 0 0
\(571\) −27.2918 −1.14213 −0.571063 0.820906i \(-0.693469\pi\)
−0.571063 + 0.820906i \(0.693469\pi\)
\(572\) 33.7082 1.40941
\(573\) −15.4164 −0.644030
\(574\) 3.05573 0.127544
\(575\) 0 0
\(576\) −4.70820 −0.196175
\(577\) −6.76393 −0.281586 −0.140793 0.990039i \(-0.544965\pi\)
−0.140793 + 0.990039i \(0.544965\pi\)
\(578\) −5.95240 −0.247587
\(579\) −26.4164 −1.09783
\(580\) 0 0
\(581\) −3.52786 −0.146360
\(582\) −1.34752 −0.0558567
\(583\) 29.4164 1.21830
\(584\) 4.76393 0.197133
\(585\) 0 0
\(586\) 1.77709 0.0734108
\(587\) −33.1246 −1.36720 −0.683600 0.729857i \(-0.739586\pi\)
−0.683600 + 0.729857i \(0.739586\pi\)
\(588\) 1.85410 0.0764619
\(589\) −5.52786 −0.227772
\(590\) 0 0
\(591\) −10.2361 −0.421056
\(592\) 10.9230 0.448932
\(593\) 37.3050 1.53193 0.765965 0.642882i \(-0.222261\pi\)
0.765965 + 0.642882i \(0.222261\pi\)
\(594\) 1.32624 0.0544162
\(595\) 0 0
\(596\) −6.97871 −0.285859
\(597\) 16.0000 0.654836
\(598\) −10.0000 −0.408930
\(599\) −28.0557 −1.14633 −0.573163 0.819441i \(-0.694284\pi\)
−0.573163 + 0.819441i \(0.694284\pi\)
\(600\) 0 0
\(601\) 16.3607 0.667366 0.333683 0.942685i \(-0.391708\pi\)
0.333683 + 0.942685i \(0.391708\pi\)
\(602\) 1.43769 0.0585960
\(603\) −10.7082 −0.436072
\(604\) −27.2705 −1.10962
\(605\) 0 0
\(606\) −6.76393 −0.274766
\(607\) −15.7082 −0.637576 −0.318788 0.947826i \(-0.603276\pi\)
−0.318788 + 0.947826i \(0.603276\pi\)
\(608\) −5.12461 −0.207830
\(609\) 8.70820 0.352874
\(610\) 0 0
\(611\) 14.4721 0.585480
\(612\) 10.5836 0.427816
\(613\) −27.9443 −1.12866 −0.564329 0.825550i \(-0.690865\pi\)
−0.564329 + 0.825550i \(0.690865\pi\)
\(614\) −2.54102 −0.102547
\(615\) 0 0
\(616\) 5.11146 0.205946
\(617\) −9.65248 −0.388594 −0.194297 0.980943i \(-0.562243\pi\)
−0.194297 + 0.980943i \(0.562243\pi\)
\(618\) 1.41641 0.0569763
\(619\) −15.1246 −0.607909 −0.303955 0.952686i \(-0.598307\pi\)
−0.303955 + 0.952686i \(0.598307\pi\)
\(620\) 0 0
\(621\) 5.00000 0.200643
\(622\) −3.34752 −0.134223
\(623\) 7.70820 0.308823
\(624\) 16.4721 0.659413
\(625\) 0 0
\(626\) 2.94427 0.117677
\(627\) −4.29180 −0.171398
\(628\) −1.75078 −0.0698636
\(629\) −19.8197 −0.790262
\(630\) 0 0
\(631\) 0.124612 0.00496072 0.00248036 0.999997i \(-0.499210\pi\)
0.00248036 + 0.999997i \(0.499210\pi\)
\(632\) 9.18034 0.365174
\(633\) 4.94427 0.196517
\(634\) −5.21478 −0.207105
\(635\) 0 0
\(636\) 15.7082 0.622871
\(637\) −5.23607 −0.207461
\(638\) 11.5492 0.457235
\(639\) −9.47214 −0.374712
\(640\) 0 0
\(641\) −28.7082 −1.13391 −0.566953 0.823750i \(-0.691878\pi\)
−0.566953 + 0.823750i \(0.691878\pi\)
\(642\) −4.94427 −0.195135
\(643\) −44.7214 −1.76364 −0.881819 0.471588i \(-0.843681\pi\)
−0.881819 + 0.471588i \(0.843681\pi\)
\(644\) 9.27051 0.365309
\(645\) 0 0
\(646\) 2.69505 0.106035
\(647\) 18.9443 0.744776 0.372388 0.928077i \(-0.378539\pi\)
0.372388 + 0.928077i \(0.378539\pi\)
\(648\) 1.47214 0.0578310
\(649\) −18.1803 −0.713641
\(650\) 0 0
\(651\) 4.47214 0.175277
\(652\) 17.6656 0.691840
\(653\) 1.41641 0.0554283 0.0277142 0.999616i \(-0.491177\pi\)
0.0277142 + 0.999616i \(0.491177\pi\)
\(654\) 7.79837 0.304941
\(655\) 0 0
\(656\) −25.1672 −0.982613
\(657\) 3.23607 0.126251
\(658\) 1.05573 0.0411566
\(659\) 23.0557 0.898124 0.449062 0.893501i \(-0.351758\pi\)
0.449062 + 0.893501i \(0.351758\pi\)
\(660\) 0 0
\(661\) −14.1803 −0.551551 −0.275776 0.961222i \(-0.588935\pi\)
−0.275776 + 0.961222i \(0.588935\pi\)
\(662\) −6.96556 −0.270724
\(663\) −29.8885 −1.16077
\(664\) −5.19350 −0.201547
\(665\) 0 0
\(666\) −1.32624 −0.0513907
\(667\) 43.5410 1.68592
\(668\) −36.5410 −1.41381
\(669\) 3.23607 0.125114
\(670\) 0 0
\(671\) 39.6393 1.53026
\(672\) 4.14590 0.159931
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) −7.45898 −0.287309
\(675\) 0 0
\(676\) −26.7295 −1.02806
\(677\) 19.3050 0.741950 0.370975 0.928643i \(-0.379024\pi\)
0.370975 + 0.928643i \(0.379024\pi\)
\(678\) 4.49342 0.172569
\(679\) −3.52786 −0.135387
\(680\) 0 0
\(681\) −9.23607 −0.353927
\(682\) 5.93112 0.227114
\(683\) −40.8885 −1.56456 −0.782278 0.622929i \(-0.785943\pi\)
−0.782278 + 0.622929i \(0.785943\pi\)
\(684\) −2.29180 −0.0876290
\(685\) 0 0
\(686\) −0.381966 −0.0145835
\(687\) 22.3607 0.853113
\(688\) −11.8409 −0.451432
\(689\) −44.3607 −1.69001
\(690\) 0 0
\(691\) 32.3607 1.23106 0.615529 0.788114i \(-0.288942\pi\)
0.615529 + 0.788114i \(0.288942\pi\)
\(692\) −48.5410 −1.84525
\(693\) 3.47214 0.131896
\(694\) −4.96556 −0.188490
\(695\) 0 0
\(696\) 12.8197 0.485928
\(697\) 45.6656 1.72971
\(698\) −2.00000 −0.0757011
\(699\) 20.7082 0.783256
\(700\) 0 0
\(701\) 6.58359 0.248659 0.124329 0.992241i \(-0.460322\pi\)
0.124329 + 0.992241i \(0.460322\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 4.29180 0.161868
\(704\) −16.3475 −0.616120
\(705\) 0 0
\(706\) 7.23607 0.272333
\(707\) −17.7082 −0.665986
\(708\) −9.70820 −0.364857
\(709\) 8.11146 0.304632 0.152316 0.988332i \(-0.451327\pi\)
0.152316 + 0.988332i \(0.451327\pi\)
\(710\) 0 0
\(711\) 6.23607 0.233871
\(712\) 11.3475 0.425266
\(713\) 22.3607 0.837414
\(714\) −2.18034 −0.0815972
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) −16.3607 −0.611001
\(718\) −3.07701 −0.114833
\(719\) −38.2492 −1.42646 −0.713228 0.700932i \(-0.752767\pi\)
−0.713228 + 0.700932i \(0.752767\pi\)
\(720\) 0 0
\(721\) 3.70820 0.138101
\(722\) 6.67376 0.248372
\(723\) −14.7639 −0.549077
\(724\) 49.4164 1.83655
\(725\) 0 0
\(726\) 0.403252 0.0149661
\(727\) −48.5410 −1.80029 −0.900143 0.435594i \(-0.856538\pi\)
−0.900143 + 0.435594i \(0.856538\pi\)
\(728\) −7.70820 −0.285685
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 21.4853 0.794662
\(732\) 21.1672 0.782362
\(733\) −12.0000 −0.443230 −0.221615 0.975134i \(-0.571133\pi\)
−0.221615 + 0.975134i \(0.571133\pi\)
\(734\) 3.41641 0.126102
\(735\) 0 0
\(736\) 20.7295 0.764099
\(737\) −37.1803 −1.36956
\(738\) 3.05573 0.112483
\(739\) 8.23607 0.302969 0.151484 0.988460i \(-0.451595\pi\)
0.151484 + 0.988460i \(0.451595\pi\)
\(740\) 0 0
\(741\) 6.47214 0.237760
\(742\) −3.23607 −0.118800
\(743\) −50.2492 −1.84347 −0.921733 0.387826i \(-0.873226\pi\)
−0.921733 + 0.387826i \(0.873226\pi\)
\(744\) 6.58359 0.241366
\(745\) 0 0
\(746\) −5.72949 −0.209772
\(747\) −3.52786 −0.129078
\(748\) 36.7477 1.34363
\(749\) −12.9443 −0.472973
\(750\) 0 0
\(751\) −4.36068 −0.159123 −0.0795617 0.996830i \(-0.525352\pi\)
−0.0795617 + 0.996830i \(0.525352\pi\)
\(752\) −8.69505 −0.317076
\(753\) −7.23607 −0.263697
\(754\) −17.4164 −0.634268
\(755\) 0 0
\(756\) 1.85410 0.0674330
\(757\) −3.94427 −0.143357 −0.0716785 0.997428i \(-0.522836\pi\)
−0.0716785 + 0.997428i \(0.522836\pi\)
\(758\) 12.4508 0.452235
\(759\) 17.3607 0.630153
\(760\) 0 0
\(761\) −53.3050 −1.93230 −0.966151 0.257975i \(-0.916945\pi\)
−0.966151 + 0.257975i \(0.916945\pi\)
\(762\) 2.96556 0.107431
\(763\) 20.4164 0.739124
\(764\) −28.5836 −1.03412
\(765\) 0 0
\(766\) −5.77709 −0.208735
\(767\) 27.4164 0.989949
\(768\) −5.56231 −0.200712
\(769\) 8.58359 0.309532 0.154766 0.987951i \(-0.450538\pi\)
0.154766 + 0.987951i \(0.450538\pi\)
\(770\) 0 0
\(771\) 0.472136 0.0170036
\(772\) −48.9787 −1.76278
\(773\) 17.0557 0.613452 0.306726 0.951798i \(-0.400766\pi\)
0.306726 + 0.951798i \(0.400766\pi\)
\(774\) 1.43769 0.0516768
\(775\) 0 0
\(776\) −5.19350 −0.186436
\(777\) −3.47214 −0.124562
\(778\) 2.38197 0.0853976
\(779\) −9.88854 −0.354294
\(780\) 0 0
\(781\) −32.8885 −1.17684
\(782\) −10.9017 −0.389844
\(783\) 8.70820 0.311206
\(784\) 3.14590 0.112354
\(785\) 0 0
\(786\) −6.76393 −0.241261
\(787\) −43.2361 −1.54120 −0.770600 0.637319i \(-0.780043\pi\)
−0.770600 + 0.637319i \(0.780043\pi\)
\(788\) −18.9787 −0.676089
\(789\) 19.9443 0.710035
\(790\) 0 0
\(791\) 11.7639 0.418277
\(792\) 5.11146 0.181628
\(793\) −59.7771 −2.12275
\(794\) −6.87539 −0.243998
\(795\) 0 0
\(796\) 29.6656 1.05147
\(797\) −18.0689 −0.640033 −0.320016 0.947412i \(-0.603688\pi\)
−0.320016 + 0.947412i \(0.603688\pi\)
\(798\) 0.472136 0.0167134
\(799\) 15.7771 0.558153
\(800\) 0 0
\(801\) 7.70820 0.272356
\(802\) 5.07701 0.179276
\(803\) 11.2361 0.396512
\(804\) −19.8541 −0.700200
\(805\) 0 0
\(806\) −8.94427 −0.315049
\(807\) 19.5279 0.687413
\(808\) −26.0689 −0.917100
\(809\) −29.1803 −1.02593 −0.512963 0.858411i \(-0.671452\pi\)
−0.512963 + 0.858411i \(0.671452\pi\)
\(810\) 0 0
\(811\) −6.00000 −0.210688 −0.105344 0.994436i \(-0.533594\pi\)
−0.105344 + 0.994436i \(0.533594\pi\)
\(812\) 16.1459 0.566610
\(813\) −18.7639 −0.658080
\(814\) −4.60488 −0.161401
\(815\) 0 0
\(816\) 17.9574 0.628636
\(817\) −4.65248 −0.162770
\(818\) −5.41641 −0.189380
\(819\) −5.23607 −0.182963
\(820\) 0 0
\(821\) 6.94427 0.242357 0.121178 0.992631i \(-0.461333\pi\)
0.121178 + 0.992631i \(0.461333\pi\)
\(822\) −3.23607 −0.112871
\(823\) −32.0132 −1.11591 −0.557954 0.829872i \(-0.688414\pi\)
−0.557954 + 0.829872i \(0.688414\pi\)
\(824\) 5.45898 0.190173
\(825\) 0 0
\(826\) 2.00000 0.0695889
\(827\) −14.0557 −0.488766 −0.244383 0.969679i \(-0.578585\pi\)
−0.244383 + 0.969679i \(0.578585\pi\)
\(828\) 9.27051 0.322172
\(829\) 31.2361 1.08487 0.542437 0.840097i \(-0.317502\pi\)
0.542437 + 0.840097i \(0.317502\pi\)
\(830\) 0 0
\(831\) 19.8885 0.689926
\(832\) 24.6525 0.854671
\(833\) −5.70820 −0.197778
\(834\) −3.70820 −0.128405
\(835\) 0 0
\(836\) −7.95743 −0.275213
\(837\) 4.47214 0.154580
\(838\) −10.2918 −0.355524
\(839\) −13.1246 −0.453112 −0.226556 0.973998i \(-0.572747\pi\)
−0.226556 + 0.973998i \(0.572747\pi\)
\(840\) 0 0
\(841\) 46.8328 1.61492
\(842\) −10.0902 −0.347730
\(843\) 17.6525 0.607984
\(844\) 9.16718 0.315547
\(845\) 0 0
\(846\) 1.05573 0.0362967
\(847\) 1.05573 0.0362752
\(848\) 26.6525 0.915250
\(849\) 13.4164 0.460450
\(850\) 0 0
\(851\) −17.3607 −0.595116
\(852\) −17.5623 −0.601675
\(853\) −7.63932 −0.261565 −0.130783 0.991411i \(-0.541749\pi\)
−0.130783 + 0.991411i \(0.541749\pi\)
\(854\) −4.36068 −0.149219
\(855\) 0 0
\(856\) −19.0557 −0.651311
\(857\) −12.5836 −0.429847 −0.214924 0.976631i \(-0.568950\pi\)
−0.214924 + 0.976631i \(0.568950\pi\)
\(858\) −6.94427 −0.237074
\(859\) 8.47214 0.289066 0.144533 0.989500i \(-0.453832\pi\)
0.144533 + 0.989500i \(0.453832\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) 0.721360 0.0245696
\(863\) −19.9443 −0.678911 −0.339455 0.940622i \(-0.610243\pi\)
−0.339455 + 0.940622i \(0.610243\pi\)
\(864\) 4.14590 0.141046
\(865\) 0 0
\(866\) −9.66563 −0.328452
\(867\) −15.5836 −0.529247
\(868\) 8.29180 0.281442
\(869\) 21.6525 0.734510
\(870\) 0 0
\(871\) 56.0689 1.89982
\(872\) 30.0557 1.01782
\(873\) −3.52786 −0.119400
\(874\) 2.36068 0.0798512
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) −6.00000 −0.202606 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(878\) 2.58359 0.0871920
\(879\) 4.65248 0.156924
\(880\) 0 0
\(881\) 6.36068 0.214297 0.107148 0.994243i \(-0.465828\pi\)
0.107148 + 0.994243i \(0.465828\pi\)
\(882\) −0.381966 −0.0128615
\(883\) −29.7639 −1.00164 −0.500818 0.865553i \(-0.666967\pi\)
−0.500818 + 0.865553i \(0.666967\pi\)
\(884\) −55.4164 −1.86386
\(885\) 0 0
\(886\) 15.0557 0.505807
\(887\) −11.4164 −0.383325 −0.191663 0.981461i \(-0.561388\pi\)
−0.191663 + 0.981461i \(0.561388\pi\)
\(888\) −5.11146 −0.171529
\(889\) 7.76393 0.260394
\(890\) 0 0
\(891\) 3.47214 0.116321
\(892\) 6.00000 0.200895
\(893\) −3.41641 −0.114326
\(894\) 1.43769 0.0480837
\(895\) 0 0
\(896\) 10.0902 0.337089
\(897\) −26.1803 −0.874136
\(898\) −6.38197 −0.212969
\(899\) 38.9443 1.29886
\(900\) 0 0
\(901\) −48.3607 −1.61113
\(902\) 10.6099 0.353271
\(903\) 3.76393 0.125256
\(904\) 17.3181 0.575992
\(905\) 0 0
\(906\) 5.61803 0.186647
\(907\) −28.3607 −0.941701 −0.470850 0.882213i \(-0.656053\pi\)
−0.470850 + 0.882213i \(0.656053\pi\)
\(908\) −17.1246 −0.568300
\(909\) −17.7082 −0.587344
\(910\) 0 0
\(911\) 34.4164 1.14027 0.570133 0.821552i \(-0.306892\pi\)
0.570133 + 0.821552i \(0.306892\pi\)
\(912\) −3.88854 −0.128763
\(913\) −12.2492 −0.405390
\(914\) −7.84095 −0.259355
\(915\) 0 0
\(916\) 41.4590 1.36984
\(917\) −17.7082 −0.584776
\(918\) −2.18034 −0.0719619
\(919\) −40.0132 −1.31991 −0.659956 0.751304i \(-0.729425\pi\)
−0.659956 + 0.751304i \(0.729425\pi\)
\(920\) 0 0
\(921\) −6.65248 −0.219207
\(922\) 7.88854 0.259795
\(923\) 49.5967 1.63250
\(924\) 6.43769 0.211785
\(925\) 0 0
\(926\) −6.24922 −0.205362
\(927\) 3.70820 0.121793
\(928\) 36.1033 1.18515
\(929\) −7.81966 −0.256555 −0.128277 0.991738i \(-0.540945\pi\)
−0.128277 + 0.991738i \(0.540945\pi\)
\(930\) 0 0
\(931\) 1.23607 0.0405105
\(932\) 38.3951 1.25767
\(933\) −8.76393 −0.286918
\(934\) −4.54102 −0.148587
\(935\) 0 0
\(936\) −7.70820 −0.251951
\(937\) 40.3607 1.31853 0.659263 0.751912i \(-0.270868\pi\)
0.659263 + 0.751912i \(0.270868\pi\)
\(938\) 4.09017 0.133549
\(939\) 7.70820 0.251548
\(940\) 0 0
\(941\) −8.83282 −0.287942 −0.143971 0.989582i \(-0.545987\pi\)
−0.143971 + 0.989582i \(0.545987\pi\)
\(942\) 0.360680 0.0117516
\(943\) 40.0000 1.30258
\(944\) −16.4721 −0.536122
\(945\) 0 0
\(946\) 4.99187 0.162300
\(947\) −15.0557 −0.489245 −0.244623 0.969618i \(-0.578664\pi\)
−0.244623 + 0.969618i \(0.578664\pi\)
\(948\) 11.5623 0.375526
\(949\) −16.9443 −0.550034
\(950\) 0 0
\(951\) −13.6525 −0.442712
\(952\) −8.40325 −0.272351
\(953\) 24.1246 0.781473 0.390736 0.920503i \(-0.372220\pi\)
0.390736 + 0.920503i \(0.372220\pi\)
\(954\) −3.23607 −0.104772
\(955\) 0 0
\(956\) −30.3344 −0.981084
\(957\) 30.2361 0.977393
\(958\) 7.16718 0.231561
\(959\) −8.47214 −0.273580
\(960\) 0 0
\(961\) −11.0000 −0.354839
\(962\) 6.94427 0.223892
\(963\) −12.9443 −0.417123
\(964\) −27.3738 −0.881652
\(965\) 0 0
\(966\) −1.90983 −0.0614478
\(967\) 37.8885 1.21841 0.609207 0.793011i \(-0.291488\pi\)
0.609207 + 0.793011i \(0.291488\pi\)
\(968\) 1.55418 0.0499531
\(969\) 7.05573 0.226663
\(970\) 0 0
\(971\) −37.5967 −1.20654 −0.603269 0.797538i \(-0.706135\pi\)
−0.603269 + 0.797538i \(0.706135\pi\)
\(972\) 1.85410 0.0594703
\(973\) −9.70820 −0.311231
\(974\) −11.1459 −0.357138
\(975\) 0 0
\(976\) 35.9149 1.14961
\(977\) −16.7082 −0.534543 −0.267271 0.963621i \(-0.586122\pi\)
−0.267271 + 0.963621i \(0.586122\pi\)
\(978\) −3.63932 −0.116373
\(979\) 26.7639 0.855379
\(980\) 0 0
\(981\) 20.4164 0.651846
\(982\) 3.61803 0.115456
\(983\) 29.4164 0.938238 0.469119 0.883135i \(-0.344572\pi\)
0.469119 + 0.883135i \(0.344572\pi\)
\(984\) 11.7771 0.375440
\(985\) 0 0
\(986\) −18.9868 −0.604664
\(987\) 2.76393 0.0879769
\(988\) 12.0000 0.381771
\(989\) 18.8197 0.598430
\(990\) 0 0
\(991\) −40.5967 −1.28960 −0.644799 0.764352i \(-0.723059\pi\)
−0.644799 + 0.764352i \(0.723059\pi\)
\(992\) 18.5410 0.588678
\(993\) −18.2361 −0.578704
\(994\) 3.61803 0.114757
\(995\) 0 0
\(996\) −6.54102 −0.207260
\(997\) 14.5410 0.460519 0.230259 0.973129i \(-0.426043\pi\)
0.230259 + 0.973129i \(0.426043\pi\)
\(998\) −15.1935 −0.480942
\(999\) −3.47214 −0.109854
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.a.e.1.2 2
3.2 odd 2 1575.2.a.v.1.1 2
4.3 odd 2 8400.2.a.da.1.1 2
5.2 odd 4 525.2.d.e.274.2 4
5.3 odd 4 525.2.d.e.274.3 4
5.4 even 2 525.2.a.i.1.1 yes 2
7.6 odd 2 3675.2.a.r.1.2 2
15.2 even 4 1575.2.d.f.1324.3 4
15.8 even 4 1575.2.d.f.1324.2 4
15.14 odd 2 1575.2.a.l.1.2 2
20.19 odd 2 8400.2.a.cy.1.1 2
35.34 odd 2 3675.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.2.a.e.1.2 2 1.1 even 1 trivial
525.2.a.i.1.1 yes 2 5.4 even 2
525.2.d.e.274.2 4 5.2 odd 4
525.2.d.e.274.3 4 5.3 odd 4
1575.2.a.l.1.2 2 15.14 odd 2
1575.2.a.v.1.1 2 3.2 odd 2
1575.2.d.f.1324.2 4 15.8 even 4
1575.2.d.f.1324.3 4 15.2 even 4
3675.2.a.r.1.2 2 7.6 odd 2
3675.2.a.bh.1.1 2 35.34 odd 2
8400.2.a.cy.1.1 2 20.19 odd 2
8400.2.a.da.1.1 2 4.3 odd 2