Properties

Label 525.2.d.e.274.3
Level $525$
Weight $2$
Character 525.274
Analytic conductor $4.192$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.3
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 525.274
Dual form 525.2.d.e.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966i q^{2} -1.00000i q^{3} +1.85410 q^{4} +0.381966 q^{6} -1.00000i q^{7} +1.47214i q^{8} -1.00000 q^{9} +3.47214 q^{11} -1.85410i q^{12} -5.23607i q^{13} +0.381966 q^{14} +3.14590 q^{16} +5.70820i q^{17} -0.381966i q^{18} -1.23607 q^{19} -1.00000 q^{21} +1.32624i q^{22} -5.00000i q^{23} +1.47214 q^{24} +2.00000 q^{26} +1.00000i q^{27} -1.85410i q^{28} +8.70820 q^{29} -4.47214 q^{31} +4.14590i q^{32} -3.47214i q^{33} -2.18034 q^{34} -1.85410 q^{36} -3.47214i q^{37} -0.472136i q^{38} -5.23607 q^{39} -8.00000 q^{41} -0.381966i q^{42} -3.76393i q^{43} +6.43769 q^{44} +1.90983 q^{46} +2.76393i q^{47} -3.14590i q^{48} -1.00000 q^{49} +5.70820 q^{51} -9.70820i q^{52} +8.47214i q^{53} -0.381966 q^{54} +1.47214 q^{56} +1.23607i q^{57} +3.32624i q^{58} +5.23607 q^{59} +11.4164 q^{61} -1.70820i q^{62} +1.00000i q^{63} +4.70820 q^{64} +1.32624 q^{66} +10.7082i q^{67} +10.5836i q^{68} -5.00000 q^{69} -9.47214 q^{71} -1.47214i q^{72} +3.23607i q^{73} +1.32624 q^{74} -2.29180 q^{76} -3.47214i q^{77} -2.00000i q^{78} -6.23607 q^{79} +1.00000 q^{81} -3.05573i q^{82} -3.52786i q^{83} -1.85410 q^{84} +1.43769 q^{86} -8.70820i q^{87} +5.11146i q^{88} -7.70820 q^{89} -5.23607 q^{91} -9.27051i q^{92} +4.47214i q^{93} -1.05573 q^{94} +4.14590 q^{96} +3.52786i q^{97} -0.381966i q^{98} -3.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{11} + 6 q^{14} + 26 q^{16} + 4 q^{19} - 4 q^{21} - 12 q^{24} + 8 q^{26} + 8 q^{29} + 36 q^{34} + 6 q^{36} - 12 q^{39} - 32 q^{41} + 66 q^{44} + 30 q^{46} - 4 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966i 0.270091i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) 1.85410 0.927051
\(5\) 0 0
\(6\) 0.381966 0.155937
\(7\) − 1.00000i − 0.377964i
\(8\) 1.47214i 0.520479i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.47214 1.04689 0.523444 0.852060i \(-0.324647\pi\)
0.523444 + 0.852060i \(0.324647\pi\)
\(12\) − 1.85410i − 0.535233i
\(13\) − 5.23607i − 1.45222i −0.687576 0.726112i \(-0.741325\pi\)
0.687576 0.726112i \(-0.258675\pi\)
\(14\) 0.381966 0.102085
\(15\) 0 0
\(16\) 3.14590 0.786475
\(17\) 5.70820i 1.38444i 0.721685 + 0.692221i \(0.243368\pi\)
−0.721685 + 0.692221i \(0.756632\pi\)
\(18\) − 0.381966i − 0.0900303i
\(19\) −1.23607 −0.283573 −0.141787 0.989897i \(-0.545285\pi\)
−0.141787 + 0.989897i \(0.545285\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 1.32624i 0.282755i
\(23\) − 5.00000i − 1.04257i −0.853382 0.521286i \(-0.825452\pi\)
0.853382 0.521286i \(-0.174548\pi\)
\(24\) 1.47214 0.300498
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 1.00000i 0.192450i
\(28\) − 1.85410i − 0.350392i
\(29\) 8.70820 1.61707 0.808536 0.588446i \(-0.200260\pi\)
0.808536 + 0.588446i \(0.200260\pi\)
\(30\) 0 0
\(31\) −4.47214 −0.803219 −0.401610 0.915811i \(-0.631549\pi\)
−0.401610 + 0.915811i \(0.631549\pi\)
\(32\) 4.14590i 0.732898i
\(33\) − 3.47214i − 0.604421i
\(34\) −2.18034 −0.373925
\(35\) 0 0
\(36\) −1.85410 −0.309017
\(37\) − 3.47214i − 0.570816i −0.958406 0.285408i \(-0.907871\pi\)
0.958406 0.285408i \(-0.0921290\pi\)
\(38\) − 0.472136i − 0.0765906i
\(39\) −5.23607 −0.838442
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) − 0.381966i − 0.0589386i
\(43\) − 3.76393i − 0.573994i −0.957931 0.286997i \(-0.907343\pi\)
0.957931 0.286997i \(-0.0926570\pi\)
\(44\) 6.43769 0.970519
\(45\) 0 0
\(46\) 1.90983 0.281589
\(47\) 2.76393i 0.403161i 0.979472 + 0.201580i \(0.0646078\pi\)
−0.979472 + 0.201580i \(0.935392\pi\)
\(48\) − 3.14590i − 0.454071i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 5.70820 0.799308
\(52\) − 9.70820i − 1.34629i
\(53\) 8.47214i 1.16374i 0.813283 + 0.581869i \(0.197678\pi\)
−0.813283 + 0.581869i \(0.802322\pi\)
\(54\) −0.381966 −0.0519790
\(55\) 0 0
\(56\) 1.47214 0.196722
\(57\) 1.23607i 0.163721i
\(58\) 3.32624i 0.436756i
\(59\) 5.23607 0.681678 0.340839 0.940122i \(-0.389289\pi\)
0.340839 + 0.940122i \(0.389289\pi\)
\(60\) 0 0
\(61\) 11.4164 1.46172 0.730861 0.682527i \(-0.239119\pi\)
0.730861 + 0.682527i \(0.239119\pi\)
\(62\) − 1.70820i − 0.216942i
\(63\) 1.00000i 0.125988i
\(64\) 4.70820 0.588525
\(65\) 0 0
\(66\) 1.32624 0.163249
\(67\) 10.7082i 1.30822i 0.756401 + 0.654108i \(0.226956\pi\)
−0.756401 + 0.654108i \(0.773044\pi\)
\(68\) 10.5836i 1.28345i
\(69\) −5.00000 −0.601929
\(70\) 0 0
\(71\) −9.47214 −1.12414 −0.562068 0.827091i \(-0.689994\pi\)
−0.562068 + 0.827091i \(0.689994\pi\)
\(72\) − 1.47214i − 0.173493i
\(73\) 3.23607i 0.378753i 0.981905 + 0.189377i \(0.0606467\pi\)
−0.981905 + 0.189377i \(0.939353\pi\)
\(74\) 1.32624 0.154172
\(75\) 0 0
\(76\) −2.29180 −0.262887
\(77\) − 3.47214i − 0.395687i
\(78\) − 2.00000i − 0.226455i
\(79\) −6.23607 −0.701612 −0.350806 0.936448i \(-0.614092\pi\)
−0.350806 + 0.936448i \(0.614092\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 3.05573i − 0.337449i
\(83\) − 3.52786i − 0.387233i −0.981077 0.193617i \(-0.937978\pi\)
0.981077 0.193617i \(-0.0620218\pi\)
\(84\) −1.85410 −0.202299
\(85\) 0 0
\(86\) 1.43769 0.155031
\(87\) − 8.70820i − 0.933617i
\(88\) 5.11146i 0.544883i
\(89\) −7.70820 −0.817068 −0.408534 0.912743i \(-0.633960\pi\)
−0.408534 + 0.912743i \(0.633960\pi\)
\(90\) 0 0
\(91\) −5.23607 −0.548889
\(92\) − 9.27051i − 0.966517i
\(93\) 4.47214i 0.463739i
\(94\) −1.05573 −0.108890
\(95\) 0 0
\(96\) 4.14590 0.423139
\(97\) 3.52786i 0.358200i 0.983831 + 0.179100i \(0.0573186\pi\)
−0.983831 + 0.179100i \(0.942681\pi\)
\(98\) − 0.381966i − 0.0385844i
\(99\) −3.47214 −0.348963
\(100\) 0 0
\(101\) −17.7082 −1.76203 −0.881016 0.473086i \(-0.843140\pi\)
−0.881016 + 0.473086i \(0.843140\pi\)
\(102\) 2.18034i 0.215886i
\(103\) 3.70820i 0.365380i 0.983171 + 0.182690i \(0.0584805\pi\)
−0.983171 + 0.182690i \(0.941520\pi\)
\(104\) 7.70820 0.755852
\(105\) 0 0
\(106\) −3.23607 −0.314315
\(107\) 12.9443i 1.25137i 0.780076 + 0.625685i \(0.215180\pi\)
−0.780076 + 0.625685i \(0.784820\pi\)
\(108\) 1.85410i 0.178411i
\(109\) −20.4164 −1.95554 −0.977769 0.209687i \(-0.932756\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) 0 0
\(111\) −3.47214 −0.329561
\(112\) − 3.14590i − 0.297259i
\(113\) 11.7639i 1.10666i 0.832963 + 0.553329i \(0.186643\pi\)
−0.832963 + 0.553329i \(0.813357\pi\)
\(114\) −0.472136 −0.0442196
\(115\) 0 0
\(116\) 16.1459 1.49911
\(117\) 5.23607i 0.484075i
\(118\) 2.00000i 0.184115i
\(119\) 5.70820 0.523270
\(120\) 0 0
\(121\) 1.05573 0.0959753
\(122\) 4.36068i 0.394797i
\(123\) 8.00000i 0.721336i
\(124\) −8.29180 −0.744625
\(125\) 0 0
\(126\) −0.381966 −0.0340282
\(127\) − 7.76393i − 0.688938i −0.938798 0.344469i \(-0.888059\pi\)
0.938798 0.344469i \(-0.111941\pi\)
\(128\) 10.0902i 0.891853i
\(129\) −3.76393 −0.331396
\(130\) 0 0
\(131\) −17.7082 −1.54717 −0.773586 0.633691i \(-0.781539\pi\)
−0.773586 + 0.633691i \(0.781539\pi\)
\(132\) − 6.43769i − 0.560329i
\(133\) 1.23607i 0.107181i
\(134\) −4.09017 −0.353337
\(135\) 0 0
\(136\) −8.40325 −0.720573
\(137\) 8.47214i 0.723823i 0.932212 + 0.361912i \(0.117876\pi\)
−0.932212 + 0.361912i \(0.882124\pi\)
\(138\) − 1.90983i − 0.162576i
\(139\) 9.70820 0.823439 0.411720 0.911311i \(-0.364928\pi\)
0.411720 + 0.911311i \(0.364928\pi\)
\(140\) 0 0
\(141\) 2.76393 0.232765
\(142\) − 3.61803i − 0.303619i
\(143\) − 18.1803i − 1.52032i
\(144\) −3.14590 −0.262158
\(145\) 0 0
\(146\) −1.23607 −0.102298
\(147\) 1.00000i 0.0824786i
\(148\) − 6.43769i − 0.529175i
\(149\) −3.76393 −0.308353 −0.154177 0.988043i \(-0.549272\pi\)
−0.154177 + 0.988043i \(0.549272\pi\)
\(150\) 0 0
\(151\) 14.7082 1.19694 0.598468 0.801146i \(-0.295776\pi\)
0.598468 + 0.801146i \(0.295776\pi\)
\(152\) − 1.81966i − 0.147594i
\(153\) − 5.70820i − 0.461481i
\(154\) 1.32624 0.106871
\(155\) 0 0
\(156\) −9.70820 −0.777278
\(157\) − 0.944272i − 0.0753611i −0.999290 0.0376806i \(-0.988003\pi\)
0.999290 0.0376806i \(-0.0119969\pi\)
\(158\) − 2.38197i − 0.189499i
\(159\) 8.47214 0.671884
\(160\) 0 0
\(161\) −5.00000 −0.394055
\(162\) 0.381966i 0.0300101i
\(163\) − 9.52786i − 0.746280i −0.927775 0.373140i \(-0.878281\pi\)
0.927775 0.373140i \(-0.121719\pi\)
\(164\) −14.8328 −1.15825
\(165\) 0 0
\(166\) 1.34752 0.104588
\(167\) − 19.7082i − 1.52507i −0.646949 0.762533i \(-0.723955\pi\)
0.646949 0.762533i \(-0.276045\pi\)
\(168\) − 1.47214i − 0.113578i
\(169\) −14.4164 −1.10895
\(170\) 0 0
\(171\) 1.23607 0.0945245
\(172\) − 6.97871i − 0.532122i
\(173\) 26.1803i 1.99045i 0.0975850 + 0.995227i \(0.468888\pi\)
−0.0975850 + 0.995227i \(0.531112\pi\)
\(174\) 3.32624 0.252161
\(175\) 0 0
\(176\) 10.9230 0.823351
\(177\) − 5.23607i − 0.393567i
\(178\) − 2.94427i − 0.220683i
\(179\) 12.9443 0.967500 0.483750 0.875206i \(-0.339274\pi\)
0.483750 + 0.875206i \(0.339274\pi\)
\(180\) 0 0
\(181\) −26.6525 −1.98106 −0.990531 0.137286i \(-0.956162\pi\)
−0.990531 + 0.137286i \(0.956162\pi\)
\(182\) − 2.00000i − 0.148250i
\(183\) − 11.4164i − 0.843925i
\(184\) 7.36068 0.542637
\(185\) 0 0
\(186\) −1.70820 −0.125252
\(187\) 19.8197i 1.44936i
\(188\) 5.12461i 0.373751i
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 15.4164 1.11549 0.557746 0.830012i \(-0.311666\pi\)
0.557746 + 0.830012i \(0.311666\pi\)
\(192\) − 4.70820i − 0.339785i
\(193\) 26.4164i 1.90149i 0.309967 + 0.950747i \(0.399682\pi\)
−0.309967 + 0.950747i \(0.600318\pi\)
\(194\) −1.34752 −0.0967466
\(195\) 0 0
\(196\) −1.85410 −0.132436
\(197\) − 10.2361i − 0.729290i −0.931147 0.364645i \(-0.881190\pi\)
0.931147 0.364645i \(-0.118810\pi\)
\(198\) − 1.32624i − 0.0942516i
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 10.7082 0.755298
\(202\) − 6.76393i − 0.475909i
\(203\) − 8.70820i − 0.611196i
\(204\) 10.5836 0.741000
\(205\) 0 0
\(206\) −1.41641 −0.0986858
\(207\) 5.00000i 0.347524i
\(208\) − 16.4721i − 1.14214i
\(209\) −4.29180 −0.296870
\(210\) 0 0
\(211\) −4.94427 −0.340378 −0.170189 0.985411i \(-0.554438\pi\)
−0.170189 + 0.985411i \(0.554438\pi\)
\(212\) 15.7082i 1.07884i
\(213\) 9.47214i 0.649020i
\(214\) −4.94427 −0.337983
\(215\) 0 0
\(216\) −1.47214 −0.100166
\(217\) 4.47214i 0.303588i
\(218\) − 7.79837i − 0.528173i
\(219\) 3.23607 0.218673
\(220\) 0 0
\(221\) 29.8885 2.01052
\(222\) − 1.32624i − 0.0890113i
\(223\) − 3.23607i − 0.216703i −0.994113 0.108352i \(-0.965443\pi\)
0.994113 0.108352i \(-0.0345572\pi\)
\(224\) 4.14590 0.277009
\(225\) 0 0
\(226\) −4.49342 −0.298898
\(227\) − 9.23607i − 0.613019i −0.951868 0.306510i \(-0.900839\pi\)
0.951868 0.306510i \(-0.0991612\pi\)
\(228\) 2.29180i 0.151778i
\(229\) 22.3607 1.47764 0.738818 0.673905i \(-0.235384\pi\)
0.738818 + 0.673905i \(0.235384\pi\)
\(230\) 0 0
\(231\) −3.47214 −0.228450
\(232\) 12.8197i 0.841652i
\(233\) − 20.7082i − 1.35664i −0.734767 0.678320i \(-0.762708\pi\)
0.734767 0.678320i \(-0.237292\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 9.70820 0.631950
\(237\) 6.23607i 0.405076i
\(238\) 2.18034i 0.141330i
\(239\) −16.3607 −1.05828 −0.529142 0.848533i \(-0.677486\pi\)
−0.529142 + 0.848533i \(0.677486\pi\)
\(240\) 0 0
\(241\) 14.7639 0.951028 0.475514 0.879708i \(-0.342262\pi\)
0.475514 + 0.879708i \(0.342262\pi\)
\(242\) 0.403252i 0.0259220i
\(243\) − 1.00000i − 0.0641500i
\(244\) 21.1672 1.35509
\(245\) 0 0
\(246\) −3.05573 −0.194826
\(247\) 6.47214i 0.411812i
\(248\) − 6.58359i − 0.418059i
\(249\) −3.52786 −0.223569
\(250\) 0 0
\(251\) 7.23607 0.456737 0.228368 0.973575i \(-0.426661\pi\)
0.228368 + 0.973575i \(0.426661\pi\)
\(252\) 1.85410i 0.116797i
\(253\) − 17.3607i − 1.09146i
\(254\) 2.96556 0.186076
\(255\) 0 0
\(256\) 5.56231 0.347644
\(257\) 0.472136i 0.0294510i 0.999892 + 0.0147255i \(0.00468745\pi\)
−0.999892 + 0.0147255i \(0.995313\pi\)
\(258\) − 1.43769i − 0.0895069i
\(259\) −3.47214 −0.215748
\(260\) 0 0
\(261\) −8.70820 −0.539024
\(262\) − 6.76393i − 0.417877i
\(263\) − 19.9443i − 1.22982i −0.788599 0.614908i \(-0.789193\pi\)
0.788599 0.614908i \(-0.210807\pi\)
\(264\) 5.11146 0.314588
\(265\) 0 0
\(266\) −0.472136 −0.0289485
\(267\) 7.70820i 0.471734i
\(268\) 19.8541i 1.21278i
\(269\) 19.5279 1.19063 0.595317 0.803491i \(-0.297026\pi\)
0.595317 + 0.803491i \(0.297026\pi\)
\(270\) 0 0
\(271\) 18.7639 1.13983 0.569914 0.821704i \(-0.306977\pi\)
0.569914 + 0.821704i \(0.306977\pi\)
\(272\) 17.9574i 1.08883i
\(273\) 5.23607i 0.316901i
\(274\) −3.23607 −0.195498
\(275\) 0 0
\(276\) −9.27051 −0.558019
\(277\) 19.8885i 1.19499i 0.801874 + 0.597493i \(0.203837\pi\)
−0.801874 + 0.597493i \(0.796163\pi\)
\(278\) 3.70820i 0.222403i
\(279\) 4.47214 0.267740
\(280\) 0 0
\(281\) −17.6525 −1.05306 −0.526529 0.850157i \(-0.676507\pi\)
−0.526529 + 0.850157i \(0.676507\pi\)
\(282\) 1.05573i 0.0628677i
\(283\) − 13.4164i − 0.797523i −0.917055 0.398761i \(-0.869440\pi\)
0.917055 0.398761i \(-0.130560\pi\)
\(284\) −17.5623 −1.04213
\(285\) 0 0
\(286\) 6.94427 0.410623
\(287\) 8.00000i 0.472225i
\(288\) − 4.14590i − 0.244299i
\(289\) −15.5836 −0.916682
\(290\) 0 0
\(291\) 3.52786 0.206807
\(292\) 6.00000i 0.351123i
\(293\) − 4.65248i − 0.271801i −0.990723 0.135900i \(-0.956607\pi\)
0.990723 0.135900i \(-0.0433927\pi\)
\(294\) −0.381966 −0.0222767
\(295\) 0 0
\(296\) 5.11146 0.297097
\(297\) 3.47214i 0.201474i
\(298\) − 1.43769i − 0.0832834i
\(299\) −26.1803 −1.51405
\(300\) 0 0
\(301\) −3.76393 −0.216949
\(302\) 5.61803i 0.323282i
\(303\) 17.7082i 1.01731i
\(304\) −3.88854 −0.223023
\(305\) 0 0
\(306\) 2.18034 0.124642
\(307\) − 6.65248i − 0.379677i −0.981815 0.189838i \(-0.939204\pi\)
0.981815 0.189838i \(-0.0607964\pi\)
\(308\) − 6.43769i − 0.366822i
\(309\) 3.70820 0.210952
\(310\) 0 0
\(311\) 8.76393 0.496957 0.248478 0.968637i \(-0.420069\pi\)
0.248478 + 0.968637i \(0.420069\pi\)
\(312\) − 7.70820i − 0.436391i
\(313\) − 7.70820i − 0.435693i −0.975983 0.217847i \(-0.930097\pi\)
0.975983 0.217847i \(-0.0699033\pi\)
\(314\) 0.360680 0.0203543
\(315\) 0 0
\(316\) −11.5623 −0.650431
\(317\) − 13.6525i − 0.766799i −0.923583 0.383400i \(-0.874753\pi\)
0.923583 0.383400i \(-0.125247\pi\)
\(318\) 3.23607i 0.181470i
\(319\) 30.2361 1.69289
\(320\) 0 0
\(321\) 12.9443 0.722479
\(322\) − 1.90983i − 0.106431i
\(323\) − 7.05573i − 0.392591i
\(324\) 1.85410 0.103006
\(325\) 0 0
\(326\) 3.63932 0.201563
\(327\) 20.4164i 1.12903i
\(328\) − 11.7771i − 0.650281i
\(329\) 2.76393 0.152381
\(330\) 0 0
\(331\) 18.2361 1.00234 0.501172 0.865347i \(-0.332902\pi\)
0.501172 + 0.865347i \(0.332902\pi\)
\(332\) − 6.54102i − 0.358985i
\(333\) 3.47214i 0.190272i
\(334\) 7.52786 0.411906
\(335\) 0 0
\(336\) −3.14590 −0.171623
\(337\) − 19.5279i − 1.06375i −0.846823 0.531875i \(-0.821488\pi\)
0.846823 0.531875i \(-0.178512\pi\)
\(338\) − 5.50658i − 0.299518i
\(339\) 11.7639 0.638929
\(340\) 0 0
\(341\) −15.5279 −0.840881
\(342\) 0.472136i 0.0255302i
\(343\) 1.00000i 0.0539949i
\(344\) 5.54102 0.298752
\(345\) 0 0
\(346\) −10.0000 −0.537603
\(347\) − 13.0000i − 0.697877i −0.937146 0.348938i \(-0.886542\pi\)
0.937146 0.348938i \(-0.113458\pi\)
\(348\) − 16.1459i − 0.865511i
\(349\) −5.23607 −0.280280 −0.140140 0.990132i \(-0.544755\pi\)
−0.140140 + 0.990132i \(0.544755\pi\)
\(350\) 0 0
\(351\) 5.23607 0.279481
\(352\) 14.3951i 0.767263i
\(353\) − 18.9443i − 1.00830i −0.863616 0.504151i \(-0.831806\pi\)
0.863616 0.504151i \(-0.168194\pi\)
\(354\) 2.00000 0.106299
\(355\) 0 0
\(356\) −14.2918 −0.757464
\(357\) − 5.70820i − 0.302110i
\(358\) 4.94427i 0.261313i
\(359\) −8.05573 −0.425165 −0.212583 0.977143i \(-0.568187\pi\)
−0.212583 + 0.977143i \(0.568187\pi\)
\(360\) 0 0
\(361\) −17.4721 −0.919586
\(362\) − 10.1803i − 0.535067i
\(363\) − 1.05573i − 0.0554114i
\(364\) −9.70820 −0.508848
\(365\) 0 0
\(366\) 4.36068 0.227936
\(367\) 8.94427i 0.466887i 0.972370 + 0.233444i \(0.0749994\pi\)
−0.972370 + 0.233444i \(0.925001\pi\)
\(368\) − 15.7295i − 0.819956i
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) 8.47214 0.439851
\(372\) 8.29180i 0.429910i
\(373\) 15.0000i 0.776671i 0.921518 + 0.388335i \(0.126950\pi\)
−0.921518 + 0.388335i \(0.873050\pi\)
\(374\) −7.57044 −0.391458
\(375\) 0 0
\(376\) −4.06888 −0.209837
\(377\) − 45.5967i − 2.34835i
\(378\) 0.381966i 0.0196462i
\(379\) 32.5967 1.67438 0.837191 0.546910i \(-0.184196\pi\)
0.837191 + 0.546910i \(0.184196\pi\)
\(380\) 0 0
\(381\) −7.76393 −0.397758
\(382\) 5.88854i 0.301284i
\(383\) 15.1246i 0.772832i 0.922325 + 0.386416i \(0.126287\pi\)
−0.922325 + 0.386416i \(0.873713\pi\)
\(384\) 10.0902 0.514912
\(385\) 0 0
\(386\) −10.0902 −0.513576
\(387\) 3.76393i 0.191331i
\(388\) 6.54102i 0.332070i
\(389\) 6.23607 0.316181 0.158091 0.987425i \(-0.449466\pi\)
0.158091 + 0.987425i \(0.449466\pi\)
\(390\) 0 0
\(391\) 28.5410 1.44338
\(392\) − 1.47214i − 0.0743541i
\(393\) 17.7082i 0.893261i
\(394\) 3.90983 0.196974
\(395\) 0 0
\(396\) −6.43769 −0.323506
\(397\) − 18.0000i − 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 6.11146i 0.306340i
\(399\) 1.23607 0.0618808
\(400\) 0 0
\(401\) −13.2918 −0.663761 −0.331880 0.943322i \(-0.607683\pi\)
−0.331880 + 0.943322i \(0.607683\pi\)
\(402\) 4.09017i 0.203999i
\(403\) 23.4164i 1.16645i
\(404\) −32.8328 −1.63349
\(405\) 0 0
\(406\) 3.32624 0.165078
\(407\) − 12.0557i − 0.597580i
\(408\) 8.40325i 0.416023i
\(409\) −14.1803 −0.701173 −0.350586 0.936530i \(-0.614018\pi\)
−0.350586 + 0.936530i \(0.614018\pi\)
\(410\) 0 0
\(411\) 8.47214 0.417900
\(412\) 6.87539i 0.338726i
\(413\) − 5.23607i − 0.257650i
\(414\) −1.90983 −0.0938630
\(415\) 0 0
\(416\) 21.7082 1.06433
\(417\) − 9.70820i − 0.475413i
\(418\) − 1.63932i − 0.0801818i
\(419\) −26.9443 −1.31631 −0.658157 0.752881i \(-0.728664\pi\)
−0.658157 + 0.752881i \(0.728664\pi\)
\(420\) 0 0
\(421\) 26.4164 1.28746 0.643728 0.765254i \(-0.277387\pi\)
0.643728 + 0.765254i \(0.277387\pi\)
\(422\) − 1.88854i − 0.0919329i
\(423\) − 2.76393i − 0.134387i
\(424\) −12.4721 −0.605700
\(425\) 0 0
\(426\) −3.61803 −0.175294
\(427\) − 11.4164i − 0.552479i
\(428\) 24.0000i 1.16008i
\(429\) −18.1803 −0.877755
\(430\) 0 0
\(431\) −1.88854 −0.0909680 −0.0454840 0.998965i \(-0.514483\pi\)
−0.0454840 + 0.998965i \(0.514483\pi\)
\(432\) 3.14590i 0.151357i
\(433\) 25.3050i 1.21608i 0.793907 + 0.608039i \(0.208044\pi\)
−0.793907 + 0.608039i \(0.791956\pi\)
\(434\) −1.70820 −0.0819964
\(435\) 0 0
\(436\) −37.8541 −1.81288
\(437\) 6.18034i 0.295646i
\(438\) 1.23607i 0.0590616i
\(439\) 6.76393 0.322825 0.161412 0.986887i \(-0.448395\pi\)
0.161412 + 0.986887i \(0.448395\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 11.4164i 0.543023i
\(443\) − 39.4164i − 1.87273i −0.351028 0.936365i \(-0.614168\pi\)
0.351028 0.936365i \(-0.385832\pi\)
\(444\) −6.43769 −0.305519
\(445\) 0 0
\(446\) 1.23607 0.0585295
\(447\) 3.76393i 0.178028i
\(448\) − 4.70820i − 0.222442i
\(449\) −16.7082 −0.788509 −0.394254 0.919001i \(-0.628997\pi\)
−0.394254 + 0.919001i \(0.628997\pi\)
\(450\) 0 0
\(451\) −27.7771 −1.30797
\(452\) 21.8115i 1.02593i
\(453\) − 14.7082i − 0.691052i
\(454\) 3.52786 0.165571
\(455\) 0 0
\(456\) −1.81966 −0.0852134
\(457\) − 20.5279i − 0.960253i −0.877199 0.480126i \(-0.840591\pi\)
0.877199 0.480126i \(-0.159409\pi\)
\(458\) 8.54102i 0.399096i
\(459\) −5.70820 −0.266436
\(460\) 0 0
\(461\) −20.6525 −0.961882 −0.480941 0.876753i \(-0.659705\pi\)
−0.480941 + 0.876753i \(0.659705\pi\)
\(462\) − 1.32624i − 0.0617022i
\(463\) 16.3607i 0.760345i 0.924916 + 0.380173i \(0.124135\pi\)
−0.924916 + 0.380173i \(0.875865\pi\)
\(464\) 27.3951 1.27179
\(465\) 0 0
\(466\) 7.90983 0.366416
\(467\) − 11.8885i − 0.550136i −0.961425 0.275068i \(-0.911300\pi\)
0.961425 0.275068i \(-0.0887004\pi\)
\(468\) 9.70820i 0.448762i
\(469\) 10.7082 0.494459
\(470\) 0 0
\(471\) −0.944272 −0.0435098
\(472\) 7.70820i 0.354799i
\(473\) − 13.0689i − 0.600908i
\(474\) −2.38197 −0.109407
\(475\) 0 0
\(476\) 10.5836 0.485098
\(477\) − 8.47214i − 0.387912i
\(478\) − 6.24922i − 0.285833i
\(479\) 18.7639 0.857346 0.428673 0.903460i \(-0.358981\pi\)
0.428673 + 0.903460i \(0.358981\pi\)
\(480\) 0 0
\(481\) −18.1803 −0.828952
\(482\) 5.63932i 0.256864i
\(483\) 5.00000i 0.227508i
\(484\) 1.95743 0.0889740
\(485\) 0 0
\(486\) 0.381966 0.0173263
\(487\) − 29.1803i − 1.32229i −0.750259 0.661144i \(-0.770071\pi\)
0.750259 0.661144i \(-0.229929\pi\)
\(488\) 16.8065i 0.760795i
\(489\) −9.52786 −0.430865
\(490\) 0 0
\(491\) −9.47214 −0.427472 −0.213736 0.976892i \(-0.568563\pi\)
−0.213736 + 0.976892i \(0.568563\pi\)
\(492\) 14.8328i 0.668715i
\(493\) 49.7082i 2.23874i
\(494\) −2.47214 −0.111227
\(495\) 0 0
\(496\) −14.0689 −0.631712
\(497\) 9.47214i 0.424883i
\(498\) − 1.34752i − 0.0603840i
\(499\) −39.7771 −1.78067 −0.890333 0.455309i \(-0.849529\pi\)
−0.890333 + 0.455309i \(0.849529\pi\)
\(500\) 0 0
\(501\) −19.7082 −0.880498
\(502\) 2.76393i 0.123360i
\(503\) 9.41641i 0.419857i 0.977717 + 0.209928i \(0.0673231\pi\)
−0.977717 + 0.209928i \(0.932677\pi\)
\(504\) −1.47214 −0.0655741
\(505\) 0 0
\(506\) 6.63119 0.294792
\(507\) 14.4164i 0.640255i
\(508\) − 14.3951i − 0.638680i
\(509\) −0.652476 −0.0289205 −0.0144602 0.999895i \(-0.504603\pi\)
−0.0144602 + 0.999895i \(0.504603\pi\)
\(510\) 0 0
\(511\) 3.23607 0.143155
\(512\) 22.3050i 0.985749i
\(513\) − 1.23607i − 0.0545737i
\(514\) −0.180340 −0.00795445
\(515\) 0 0
\(516\) −6.97871 −0.307221
\(517\) 9.59675i 0.422064i
\(518\) − 1.32624i − 0.0582715i
\(519\) 26.1803 1.14919
\(520\) 0 0
\(521\) 33.7771 1.47980 0.739901 0.672716i \(-0.234873\pi\)
0.739901 + 0.672716i \(0.234873\pi\)
\(522\) − 3.32624i − 0.145585i
\(523\) − 35.7771i − 1.56442i −0.623013 0.782211i \(-0.714092\pi\)
0.623013 0.782211i \(-0.285908\pi\)
\(524\) −32.8328 −1.43431
\(525\) 0 0
\(526\) 7.61803 0.332162
\(527\) − 25.5279i − 1.11201i
\(528\) − 10.9230i − 0.475362i
\(529\) −2.00000 −0.0869565
\(530\) 0 0
\(531\) −5.23607 −0.227226
\(532\) 2.29180i 0.0993620i
\(533\) 41.8885i 1.81439i
\(534\) −2.94427 −0.127411
\(535\) 0 0
\(536\) −15.7639 −0.680898
\(537\) − 12.9443i − 0.558587i
\(538\) 7.45898i 0.321579i
\(539\) −3.47214 −0.149555
\(540\) 0 0
\(541\) −0.0557281 −0.00239594 −0.00119797 0.999999i \(-0.500381\pi\)
−0.00119797 + 0.999999i \(0.500381\pi\)
\(542\) 7.16718i 0.307857i
\(543\) 26.6525i 1.14377i
\(544\) −23.6656 −1.01466
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) 23.0689i 0.986354i 0.869929 + 0.493177i \(0.164165\pi\)
−0.869929 + 0.493177i \(0.835835\pi\)
\(548\) 15.7082i 0.671021i
\(549\) −11.4164 −0.487240
\(550\) 0 0
\(551\) −10.7639 −0.458559
\(552\) − 7.36068i − 0.313291i
\(553\) 6.23607i 0.265185i
\(554\) −7.59675 −0.322755
\(555\) 0 0
\(556\) 18.0000 0.763370
\(557\) 23.6525i 1.00219i 0.865393 + 0.501094i \(0.167069\pi\)
−0.865393 + 0.501094i \(0.832931\pi\)
\(558\) 1.70820i 0.0723140i
\(559\) −19.7082 −0.833568
\(560\) 0 0
\(561\) 19.8197 0.836787
\(562\) − 6.74265i − 0.284421i
\(563\) 27.3050i 1.15077i 0.817884 + 0.575383i \(0.195147\pi\)
−0.817884 + 0.575383i \(0.804853\pi\)
\(564\) 5.12461 0.215785
\(565\) 0 0
\(566\) 5.12461 0.215404
\(567\) − 1.00000i − 0.0419961i
\(568\) − 13.9443i − 0.585089i
\(569\) 7.76393 0.325481 0.162740 0.986669i \(-0.447967\pi\)
0.162740 + 0.986669i \(0.447967\pi\)
\(570\) 0 0
\(571\) −27.2918 −1.14213 −0.571063 0.820906i \(-0.693469\pi\)
−0.571063 + 0.820906i \(0.693469\pi\)
\(572\) − 33.7082i − 1.40941i
\(573\) − 15.4164i − 0.644030i
\(574\) −3.05573 −0.127544
\(575\) 0 0
\(576\) −4.70820 −0.196175
\(577\) 6.76393i 0.281586i 0.990039 + 0.140793i \(0.0449652\pi\)
−0.990039 + 0.140793i \(0.955035\pi\)
\(578\) − 5.95240i − 0.247587i
\(579\) 26.4164 1.09783
\(580\) 0 0
\(581\) −3.52786 −0.146360
\(582\) 1.34752i 0.0558567i
\(583\) 29.4164i 1.21830i
\(584\) −4.76393 −0.197133
\(585\) 0 0
\(586\) 1.77709 0.0734108
\(587\) 33.1246i 1.36720i 0.729857 + 0.683600i \(0.239586\pi\)
−0.729857 + 0.683600i \(0.760414\pi\)
\(588\) 1.85410i 0.0764619i
\(589\) 5.52786 0.227772
\(590\) 0 0
\(591\) −10.2361 −0.421056
\(592\) − 10.9230i − 0.448932i
\(593\) 37.3050i 1.53193i 0.642882 + 0.765965i \(0.277739\pi\)
−0.642882 + 0.765965i \(0.722261\pi\)
\(594\) −1.32624 −0.0544162
\(595\) 0 0
\(596\) −6.97871 −0.285859
\(597\) − 16.0000i − 0.654836i
\(598\) − 10.0000i − 0.408930i
\(599\) 28.0557 1.14633 0.573163 0.819441i \(-0.305716\pi\)
0.573163 + 0.819441i \(0.305716\pi\)
\(600\) 0 0
\(601\) 16.3607 0.667366 0.333683 0.942685i \(-0.391708\pi\)
0.333683 + 0.942685i \(0.391708\pi\)
\(602\) − 1.43769i − 0.0585960i
\(603\) − 10.7082i − 0.436072i
\(604\) 27.2705 1.10962
\(605\) 0 0
\(606\) −6.76393 −0.274766
\(607\) 15.7082i 0.637576i 0.947826 + 0.318788i \(0.103276\pi\)
−0.947826 + 0.318788i \(0.896724\pi\)
\(608\) − 5.12461i − 0.207830i
\(609\) −8.70820 −0.352874
\(610\) 0 0
\(611\) 14.4721 0.585480
\(612\) − 10.5836i − 0.427816i
\(613\) − 27.9443i − 1.12866i −0.825550 0.564329i \(-0.809135\pi\)
0.825550 0.564329i \(-0.190865\pi\)
\(614\) 2.54102 0.102547
\(615\) 0 0
\(616\) 5.11146 0.205946
\(617\) 9.65248i 0.388594i 0.980943 + 0.194297i \(0.0622426\pi\)
−0.980943 + 0.194297i \(0.937757\pi\)
\(618\) 1.41641i 0.0569763i
\(619\) 15.1246 0.607909 0.303955 0.952686i \(-0.401693\pi\)
0.303955 + 0.952686i \(0.401693\pi\)
\(620\) 0 0
\(621\) 5.00000 0.200643
\(622\) 3.34752i 0.134223i
\(623\) 7.70820i 0.308823i
\(624\) −16.4721 −0.659413
\(625\) 0 0
\(626\) 2.94427 0.117677
\(627\) 4.29180i 0.171398i
\(628\) − 1.75078i − 0.0698636i
\(629\) 19.8197 0.790262
\(630\) 0 0
\(631\) 0.124612 0.00496072 0.00248036 0.999997i \(-0.499210\pi\)
0.00248036 + 0.999997i \(0.499210\pi\)
\(632\) − 9.18034i − 0.365174i
\(633\) 4.94427i 0.196517i
\(634\) 5.21478 0.207105
\(635\) 0 0
\(636\) 15.7082 0.622871
\(637\) 5.23607i 0.207461i
\(638\) 11.5492i 0.457235i
\(639\) 9.47214 0.374712
\(640\) 0 0
\(641\) −28.7082 −1.13391 −0.566953 0.823750i \(-0.691878\pi\)
−0.566953 + 0.823750i \(0.691878\pi\)
\(642\) 4.94427i 0.195135i
\(643\) − 44.7214i − 1.76364i −0.471588 0.881819i \(-0.656319\pi\)
0.471588 0.881819i \(-0.343681\pi\)
\(644\) −9.27051 −0.365309
\(645\) 0 0
\(646\) 2.69505 0.106035
\(647\) − 18.9443i − 0.744776i −0.928077 0.372388i \(-0.878539\pi\)
0.928077 0.372388i \(-0.121461\pi\)
\(648\) 1.47214i 0.0578310i
\(649\) 18.1803 0.713641
\(650\) 0 0
\(651\) 4.47214 0.175277
\(652\) − 17.6656i − 0.691840i
\(653\) 1.41641i 0.0554283i 0.999616 + 0.0277142i \(0.00882282\pi\)
−0.999616 + 0.0277142i \(0.991177\pi\)
\(654\) −7.79837 −0.304941
\(655\) 0 0
\(656\) −25.1672 −0.982613
\(657\) − 3.23607i − 0.126251i
\(658\) 1.05573i 0.0411566i
\(659\) −23.0557 −0.898124 −0.449062 0.893501i \(-0.648242\pi\)
−0.449062 + 0.893501i \(0.648242\pi\)
\(660\) 0 0
\(661\) −14.1803 −0.551551 −0.275776 0.961222i \(-0.588935\pi\)
−0.275776 + 0.961222i \(0.588935\pi\)
\(662\) 6.96556i 0.270724i
\(663\) − 29.8885i − 1.16077i
\(664\) 5.19350 0.201547
\(665\) 0 0
\(666\) −1.32624 −0.0513907
\(667\) − 43.5410i − 1.68592i
\(668\) − 36.5410i − 1.41381i
\(669\) −3.23607 −0.125114
\(670\) 0 0
\(671\) 39.6393 1.53026
\(672\) − 4.14590i − 0.159931i
\(673\) 6.00000i 0.231283i 0.993291 + 0.115642i \(0.0368924\pi\)
−0.993291 + 0.115642i \(0.963108\pi\)
\(674\) 7.45898 0.287309
\(675\) 0 0
\(676\) −26.7295 −1.02806
\(677\) − 19.3050i − 0.741950i −0.928643 0.370975i \(-0.879024\pi\)
0.928643 0.370975i \(-0.120976\pi\)
\(678\) 4.49342i 0.172569i
\(679\) 3.52786 0.135387
\(680\) 0 0
\(681\) −9.23607 −0.353927
\(682\) − 5.93112i − 0.227114i
\(683\) − 40.8885i − 1.56456i −0.622929 0.782278i \(-0.714057\pi\)
0.622929 0.782278i \(-0.285943\pi\)
\(684\) 2.29180 0.0876290
\(685\) 0 0
\(686\) −0.381966 −0.0145835
\(687\) − 22.3607i − 0.853113i
\(688\) − 11.8409i − 0.451432i
\(689\) 44.3607 1.69001
\(690\) 0 0
\(691\) 32.3607 1.23106 0.615529 0.788114i \(-0.288942\pi\)
0.615529 + 0.788114i \(0.288942\pi\)
\(692\) 48.5410i 1.84525i
\(693\) 3.47214i 0.131896i
\(694\) 4.96556 0.188490
\(695\) 0 0
\(696\) 12.8197 0.485928
\(697\) − 45.6656i − 1.72971i
\(698\) − 2.00000i − 0.0757011i
\(699\) −20.7082 −0.783256
\(700\) 0 0
\(701\) 6.58359 0.248659 0.124329 0.992241i \(-0.460322\pi\)
0.124329 + 0.992241i \(0.460322\pi\)
\(702\) 2.00000i 0.0754851i
\(703\) 4.29180i 0.161868i
\(704\) 16.3475 0.616120
\(705\) 0 0
\(706\) 7.23607 0.272333
\(707\) 17.7082i 0.665986i
\(708\) − 9.70820i − 0.364857i
\(709\) −8.11146 −0.304632 −0.152316 0.988332i \(-0.548673\pi\)
−0.152316 + 0.988332i \(0.548673\pi\)
\(710\) 0 0
\(711\) 6.23607 0.233871
\(712\) − 11.3475i − 0.425266i
\(713\) 22.3607i 0.837414i
\(714\) 2.18034 0.0815972
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 16.3607i 0.611001i
\(718\) − 3.07701i − 0.114833i
\(719\) 38.2492 1.42646 0.713228 0.700932i \(-0.247233\pi\)
0.713228 + 0.700932i \(0.247233\pi\)
\(720\) 0 0
\(721\) 3.70820 0.138101
\(722\) − 6.67376i − 0.248372i
\(723\) − 14.7639i − 0.549077i
\(724\) −49.4164 −1.83655
\(725\) 0 0
\(726\) 0.403252 0.0149661
\(727\) 48.5410i 1.80029i 0.435594 + 0.900143i \(0.356538\pi\)
−0.435594 + 0.900143i \(0.643462\pi\)
\(728\) − 7.70820i − 0.285685i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 21.4853 0.794662
\(732\) − 21.1672i − 0.782362i
\(733\) − 12.0000i − 0.443230i −0.975134 0.221615i \(-0.928867\pi\)
0.975134 0.221615i \(-0.0711328\pi\)
\(734\) −3.41641 −0.126102
\(735\) 0 0
\(736\) 20.7295 0.764099
\(737\) 37.1803i 1.36956i
\(738\) 3.05573i 0.112483i
\(739\) −8.23607 −0.302969 −0.151484 0.988460i \(-0.548405\pi\)
−0.151484 + 0.988460i \(0.548405\pi\)
\(740\) 0 0
\(741\) 6.47214 0.237760
\(742\) 3.23607i 0.118800i
\(743\) − 50.2492i − 1.84347i −0.387826 0.921733i \(-0.626774\pi\)
0.387826 0.921733i \(-0.373226\pi\)
\(744\) −6.58359 −0.241366
\(745\) 0 0
\(746\) −5.72949 −0.209772
\(747\) 3.52786i 0.129078i
\(748\) 36.7477i 1.34363i
\(749\) 12.9443 0.472973
\(750\) 0 0
\(751\) −4.36068 −0.159123 −0.0795617 0.996830i \(-0.525352\pi\)
−0.0795617 + 0.996830i \(0.525352\pi\)
\(752\) 8.69505i 0.317076i
\(753\) − 7.23607i − 0.263697i
\(754\) 17.4164 0.634268
\(755\) 0 0
\(756\) 1.85410 0.0674330
\(757\) 3.94427i 0.143357i 0.997428 + 0.0716785i \(0.0228356\pi\)
−0.997428 + 0.0716785i \(0.977164\pi\)
\(758\) 12.4508i 0.452235i
\(759\) −17.3607 −0.630153
\(760\) 0 0
\(761\) −53.3050 −1.93230 −0.966151 0.257975i \(-0.916945\pi\)
−0.966151 + 0.257975i \(0.916945\pi\)
\(762\) − 2.96556i − 0.107431i
\(763\) 20.4164i 0.739124i
\(764\) 28.5836 1.03412
\(765\) 0 0
\(766\) −5.77709 −0.208735
\(767\) − 27.4164i − 0.989949i
\(768\) − 5.56231i − 0.200712i
\(769\) −8.58359 −0.309532 −0.154766 0.987951i \(-0.549462\pi\)
−0.154766 + 0.987951i \(0.549462\pi\)
\(770\) 0 0
\(771\) 0.472136 0.0170036
\(772\) 48.9787i 1.76278i
\(773\) 17.0557i 0.613452i 0.951798 + 0.306726i \(0.0992335\pi\)
−0.951798 + 0.306726i \(0.900766\pi\)
\(774\) −1.43769 −0.0516768
\(775\) 0 0
\(776\) −5.19350 −0.186436
\(777\) 3.47214i 0.124562i
\(778\) 2.38197i 0.0853976i
\(779\) 9.88854 0.354294
\(780\) 0 0
\(781\) −32.8885 −1.17684
\(782\) 10.9017i 0.389844i
\(783\) 8.70820i 0.311206i
\(784\) −3.14590 −0.112354
\(785\) 0 0
\(786\) −6.76393 −0.241261
\(787\) 43.2361i 1.54120i 0.637319 + 0.770600i \(0.280043\pi\)
−0.637319 + 0.770600i \(0.719957\pi\)
\(788\) − 18.9787i − 0.676089i
\(789\) −19.9443 −0.710035
\(790\) 0 0
\(791\) 11.7639 0.418277
\(792\) − 5.11146i − 0.181628i
\(793\) − 59.7771i − 2.12275i
\(794\) 6.87539 0.243998
\(795\) 0 0
\(796\) 29.6656 1.05147
\(797\) 18.0689i 0.640033i 0.947412 + 0.320016i \(0.103688\pi\)
−0.947412 + 0.320016i \(0.896312\pi\)
\(798\) 0.472136i 0.0167134i
\(799\) −15.7771 −0.558153
\(800\) 0 0
\(801\) 7.70820 0.272356
\(802\) − 5.07701i − 0.179276i
\(803\) 11.2361i 0.396512i
\(804\) 19.8541 0.700200
\(805\) 0 0
\(806\) −8.94427 −0.315049
\(807\) − 19.5279i − 0.687413i
\(808\) − 26.0689i − 0.917100i
\(809\) 29.1803 1.02593 0.512963 0.858411i \(-0.328548\pi\)
0.512963 + 0.858411i \(0.328548\pi\)
\(810\) 0 0
\(811\) −6.00000 −0.210688 −0.105344 0.994436i \(-0.533594\pi\)
−0.105344 + 0.994436i \(0.533594\pi\)
\(812\) − 16.1459i − 0.566610i
\(813\) − 18.7639i − 0.658080i
\(814\) 4.60488 0.161401
\(815\) 0 0
\(816\) 17.9574 0.628636
\(817\) 4.65248i 0.162770i
\(818\) − 5.41641i − 0.189380i
\(819\) 5.23607 0.182963
\(820\) 0 0
\(821\) 6.94427 0.242357 0.121178 0.992631i \(-0.461333\pi\)
0.121178 + 0.992631i \(0.461333\pi\)
\(822\) 3.23607i 0.112871i
\(823\) − 32.0132i − 1.11591i −0.829872 0.557954i \(-0.811586\pi\)
0.829872 0.557954i \(-0.188414\pi\)
\(824\) −5.45898 −0.190173
\(825\) 0 0
\(826\) 2.00000 0.0695889
\(827\) 14.0557i 0.488766i 0.969679 + 0.244383i \(0.0785853\pi\)
−0.969679 + 0.244383i \(0.921415\pi\)
\(828\) 9.27051i 0.322172i
\(829\) −31.2361 −1.08487 −0.542437 0.840097i \(-0.682498\pi\)
−0.542437 + 0.840097i \(0.682498\pi\)
\(830\) 0 0
\(831\) 19.8885 0.689926
\(832\) − 24.6525i − 0.854671i
\(833\) − 5.70820i − 0.197778i
\(834\) 3.70820 0.128405
\(835\) 0 0
\(836\) −7.95743 −0.275213
\(837\) − 4.47214i − 0.154580i
\(838\) − 10.2918i − 0.355524i
\(839\) 13.1246 0.453112 0.226556 0.973998i \(-0.427253\pi\)
0.226556 + 0.973998i \(0.427253\pi\)
\(840\) 0 0
\(841\) 46.8328 1.61492
\(842\) 10.0902i 0.347730i
\(843\) 17.6525i 0.607984i
\(844\) −9.16718 −0.315547
\(845\) 0 0
\(846\) 1.05573 0.0362967
\(847\) − 1.05573i − 0.0362752i
\(848\) 26.6525i 0.915250i
\(849\) −13.4164 −0.460450
\(850\) 0 0
\(851\) −17.3607 −0.595116
\(852\) 17.5623i 0.601675i
\(853\) − 7.63932i − 0.261565i −0.991411 0.130783i \(-0.958251\pi\)
0.991411 0.130783i \(-0.0417490\pi\)
\(854\) 4.36068 0.149219
\(855\) 0 0
\(856\) −19.0557 −0.651311
\(857\) 12.5836i 0.429847i 0.976631 + 0.214924i \(0.0689503\pi\)
−0.976631 + 0.214924i \(0.931050\pi\)
\(858\) − 6.94427i − 0.237074i
\(859\) −8.47214 −0.289066 −0.144533 0.989500i \(-0.546168\pi\)
−0.144533 + 0.989500i \(0.546168\pi\)
\(860\) 0 0
\(861\) 8.00000 0.272639
\(862\) − 0.721360i − 0.0245696i
\(863\) − 19.9443i − 0.678911i −0.940622 0.339455i \(-0.889757\pi\)
0.940622 0.339455i \(-0.110243\pi\)
\(864\) −4.14590 −0.141046
\(865\) 0 0
\(866\) −9.66563 −0.328452
\(867\) 15.5836i 0.529247i
\(868\) 8.29180i 0.281442i
\(869\) −21.6525 −0.734510
\(870\) 0 0
\(871\) 56.0689 1.89982
\(872\) − 30.0557i − 1.01782i
\(873\) − 3.52786i − 0.119400i
\(874\) −2.36068 −0.0798512
\(875\) 0 0
\(876\) 6.00000 0.202721
\(877\) 6.00000i 0.202606i 0.994856 + 0.101303i \(0.0323011\pi\)
−0.994856 + 0.101303i \(0.967699\pi\)
\(878\) 2.58359i 0.0871920i
\(879\) −4.65248 −0.156924
\(880\) 0 0
\(881\) 6.36068 0.214297 0.107148 0.994243i \(-0.465828\pi\)
0.107148 + 0.994243i \(0.465828\pi\)
\(882\) 0.381966i 0.0128615i
\(883\) − 29.7639i − 1.00164i −0.865553 0.500818i \(-0.833033\pi\)
0.865553 0.500818i \(-0.166967\pi\)
\(884\) 55.4164 1.86386
\(885\) 0 0
\(886\) 15.0557 0.505807
\(887\) 11.4164i 0.383325i 0.981461 + 0.191663i \(0.0613880\pi\)
−0.981461 + 0.191663i \(0.938612\pi\)
\(888\) − 5.11146i − 0.171529i
\(889\) −7.76393 −0.260394
\(890\) 0 0
\(891\) 3.47214 0.116321
\(892\) − 6.00000i − 0.200895i
\(893\) − 3.41641i − 0.114326i
\(894\) −1.43769 −0.0480837
\(895\) 0 0
\(896\) 10.0902 0.337089
\(897\) 26.1803i 0.874136i
\(898\) − 6.38197i − 0.212969i
\(899\) −38.9443 −1.29886
\(900\) 0 0
\(901\) −48.3607 −1.61113
\(902\) − 10.6099i − 0.353271i
\(903\) 3.76393i 0.125256i
\(904\) −17.3181 −0.575992
\(905\) 0 0
\(906\) 5.61803 0.186647
\(907\) 28.3607i 0.941701i 0.882213 + 0.470850i \(0.156053\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(908\) − 17.1246i − 0.568300i
\(909\) 17.7082 0.587344
\(910\) 0 0
\(911\) 34.4164 1.14027 0.570133 0.821552i \(-0.306892\pi\)
0.570133 + 0.821552i \(0.306892\pi\)
\(912\) 3.88854i 0.128763i
\(913\) − 12.2492i − 0.405390i
\(914\) 7.84095 0.259355
\(915\) 0 0
\(916\) 41.4590 1.36984
\(917\) 17.7082i 0.584776i
\(918\) − 2.18034i − 0.0719619i
\(919\) 40.0132 1.31991 0.659956 0.751304i \(-0.270575\pi\)
0.659956 + 0.751304i \(0.270575\pi\)
\(920\) 0 0
\(921\) −6.65248 −0.219207
\(922\) − 7.88854i − 0.259795i
\(923\) 49.5967i 1.63250i
\(924\) −6.43769 −0.211785
\(925\) 0 0
\(926\) −6.24922 −0.205362
\(927\) − 3.70820i − 0.121793i
\(928\) 36.1033i 1.18515i
\(929\) 7.81966 0.256555 0.128277 0.991738i \(-0.459055\pi\)
0.128277 + 0.991738i \(0.459055\pi\)
\(930\) 0 0
\(931\) 1.23607 0.0405105
\(932\) − 38.3951i − 1.25767i
\(933\) − 8.76393i − 0.286918i
\(934\) 4.54102 0.148587
\(935\) 0 0
\(936\) −7.70820 −0.251951
\(937\) − 40.3607i − 1.31853i −0.751912 0.659263i \(-0.770868\pi\)
0.751912 0.659263i \(-0.229132\pi\)
\(938\) 4.09017i 0.133549i
\(939\) −7.70820 −0.251548
\(940\) 0 0
\(941\) −8.83282 −0.287942 −0.143971 0.989582i \(-0.545987\pi\)
−0.143971 + 0.989582i \(0.545987\pi\)
\(942\) − 0.360680i − 0.0117516i
\(943\) 40.0000i 1.30258i
\(944\) 16.4721 0.536122
\(945\) 0 0
\(946\) 4.99187 0.162300
\(947\) 15.0557i 0.489245i 0.969618 + 0.244623i \(0.0786641\pi\)
−0.969618 + 0.244623i \(0.921336\pi\)
\(948\) 11.5623i 0.375526i
\(949\) 16.9443 0.550034
\(950\) 0 0
\(951\) −13.6525 −0.442712
\(952\) 8.40325i 0.272351i
\(953\) 24.1246i 0.781473i 0.920503 + 0.390736i \(0.127780\pi\)
−0.920503 + 0.390736i \(0.872220\pi\)
\(954\) 3.23607 0.104772
\(955\) 0 0
\(956\) −30.3344 −0.981084
\(957\) − 30.2361i − 0.977393i
\(958\) 7.16718i 0.231561i
\(959\) 8.47214 0.273580
\(960\) 0 0
\(961\) −11.0000 −0.354839
\(962\) − 6.94427i − 0.223892i
\(963\) − 12.9443i − 0.417123i
\(964\) 27.3738 0.881652
\(965\) 0 0
\(966\) −1.90983 −0.0614478
\(967\) − 37.8885i − 1.21841i −0.793011 0.609207i \(-0.791488\pi\)
0.793011 0.609207i \(-0.208512\pi\)
\(968\) 1.55418i 0.0499531i
\(969\) −7.05573 −0.226663
\(970\) 0 0
\(971\) −37.5967 −1.20654 −0.603269 0.797538i \(-0.706135\pi\)
−0.603269 + 0.797538i \(0.706135\pi\)
\(972\) − 1.85410i − 0.0594703i
\(973\) − 9.70820i − 0.311231i
\(974\) 11.1459 0.357138
\(975\) 0 0
\(976\) 35.9149 1.14961
\(977\) 16.7082i 0.534543i 0.963621 + 0.267271i \(0.0861220\pi\)
−0.963621 + 0.267271i \(0.913878\pi\)
\(978\) − 3.63932i − 0.116373i
\(979\) −26.7639 −0.855379
\(980\) 0 0
\(981\) 20.4164 0.651846
\(982\) − 3.61803i − 0.115456i
\(983\) 29.4164i 0.938238i 0.883135 + 0.469119i \(0.155428\pi\)
−0.883135 + 0.469119i \(0.844572\pi\)
\(984\) −11.7771 −0.375440
\(985\) 0 0
\(986\) −18.9868 −0.604664
\(987\) − 2.76393i − 0.0879769i
\(988\) 12.0000i 0.381771i
\(989\) −18.8197 −0.598430
\(990\) 0 0
\(991\) −40.5967 −1.28960 −0.644799 0.764352i \(-0.723059\pi\)
−0.644799 + 0.764352i \(0.723059\pi\)
\(992\) − 18.5410i − 0.588678i
\(993\) − 18.2361i − 0.578704i
\(994\) −3.61803 −0.114757
\(995\) 0 0
\(996\) −6.54102 −0.207260
\(997\) − 14.5410i − 0.460519i −0.973129 0.230259i \(-0.926043\pi\)
0.973129 0.230259i \(-0.0739575\pi\)
\(998\) − 15.1935i − 0.480942i
\(999\) 3.47214 0.109854
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.d.e.274.3 4
3.2 odd 2 1575.2.d.f.1324.2 4
5.2 odd 4 525.2.a.e.1.2 2
5.3 odd 4 525.2.a.i.1.1 yes 2
5.4 even 2 inner 525.2.d.e.274.2 4
15.2 even 4 1575.2.a.v.1.1 2
15.8 even 4 1575.2.a.l.1.2 2
15.14 odd 2 1575.2.d.f.1324.3 4
20.3 even 4 8400.2.a.cy.1.1 2
20.7 even 4 8400.2.a.da.1.1 2
35.13 even 4 3675.2.a.bh.1.1 2
35.27 even 4 3675.2.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.2.a.e.1.2 2 5.2 odd 4
525.2.a.i.1.1 yes 2 5.3 odd 4
525.2.d.e.274.2 4 5.4 even 2 inner
525.2.d.e.274.3 4 1.1 even 1 trivial
1575.2.a.l.1.2 2 15.8 even 4
1575.2.a.v.1.1 2 15.2 even 4
1575.2.d.f.1324.2 4 3.2 odd 2
1575.2.d.f.1324.3 4 15.14 odd 2
3675.2.a.r.1.2 2 35.27 even 4
3675.2.a.bh.1.1 2 35.13 even 4
8400.2.a.cy.1.1 2 20.3 even 4
8400.2.a.da.1.1 2 20.7 even 4