Properties

Label 525.2.d.e.274.3
Level 525525
Weight 22
Character 525.274
Analytic conductor 4.1924.192
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(274,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.274");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 525.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.192146106124.19214610612
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 274.3
Root 0.618034i-0.618034i of defining polynomial
Character χ\chi == 525.274
Dual form 525.2.d.e.274.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.381966iq21.00000iq3+1.85410q4+0.381966q61.00000iq7+1.47214iq81.00000q9+3.47214q111.85410iq125.23607iq13+0.381966q14+3.14590q16+5.70820iq170.381966iq181.23607q191.00000q21+1.32624iq225.00000iq23+1.47214q24+2.00000q26+1.00000iq271.85410iq28+8.70820q294.47214q31+4.14590iq323.47214iq332.18034q341.85410q363.47214iq370.472136iq385.23607q398.00000q410.381966iq423.76393iq43+6.43769q44+1.90983q46+2.76393iq473.14590iq481.00000q49+5.70820q519.70820iq52+8.47214iq530.381966q54+1.47214q56+1.23607iq57+3.32624iq58+5.23607q59+11.4164q611.70820iq62+1.00000iq63+4.70820q64+1.32624q66+10.7082iq67+10.5836iq685.00000q699.47214q711.47214iq72+3.23607iq73+1.32624q742.29180q763.47214iq772.00000iq786.23607q79+1.00000q813.05573iq823.52786iq831.85410q84+1.43769q868.70820iq87+5.11146iq887.70820q895.23607q919.27051iq92+4.47214iq931.05573q94+4.14590q96+3.52786iq970.381966iq983.47214q99+O(q100)q+0.381966i q^{2} -1.00000i q^{3} +1.85410 q^{4} +0.381966 q^{6} -1.00000i q^{7} +1.47214i q^{8} -1.00000 q^{9} +3.47214 q^{11} -1.85410i q^{12} -5.23607i q^{13} +0.381966 q^{14} +3.14590 q^{16} +5.70820i q^{17} -0.381966i q^{18} -1.23607 q^{19} -1.00000 q^{21} +1.32624i q^{22} -5.00000i q^{23} +1.47214 q^{24} +2.00000 q^{26} +1.00000i q^{27} -1.85410i q^{28} +8.70820 q^{29} -4.47214 q^{31} +4.14590i q^{32} -3.47214i q^{33} -2.18034 q^{34} -1.85410 q^{36} -3.47214i q^{37} -0.472136i q^{38} -5.23607 q^{39} -8.00000 q^{41} -0.381966i q^{42} -3.76393i q^{43} +6.43769 q^{44} +1.90983 q^{46} +2.76393i q^{47} -3.14590i q^{48} -1.00000 q^{49} +5.70820 q^{51} -9.70820i q^{52} +8.47214i q^{53} -0.381966 q^{54} +1.47214 q^{56} +1.23607i q^{57} +3.32624i q^{58} +5.23607 q^{59} +11.4164 q^{61} -1.70820i q^{62} +1.00000i q^{63} +4.70820 q^{64} +1.32624 q^{66} +10.7082i q^{67} +10.5836i q^{68} -5.00000 q^{69} -9.47214 q^{71} -1.47214i q^{72} +3.23607i q^{73} +1.32624 q^{74} -2.29180 q^{76} -3.47214i q^{77} -2.00000i q^{78} -6.23607 q^{79} +1.00000 q^{81} -3.05573i q^{82} -3.52786i q^{83} -1.85410 q^{84} +1.43769 q^{86} -8.70820i q^{87} +5.11146i q^{88} -7.70820 q^{89} -5.23607 q^{91} -9.27051i q^{92} +4.47214i q^{93} -1.05573 q^{94} +4.14590 q^{96} +3.52786i q^{97} -0.381966i q^{98} -3.47214 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q6q4+6q64q94q11+6q14+26q16+4q194q2112q24+8q26+8q29+36q34+6q3612q3932q41+66q44+30q464q49++4q99+O(q100) 4 q - 6 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{11} + 6 q^{14} + 26 q^{16} + 4 q^{19} - 4 q^{21} - 12 q^{24} + 8 q^{26} + 8 q^{29} + 36 q^{34} + 6 q^{36} - 12 q^{39} - 32 q^{41} + 66 q^{44} + 30 q^{46} - 4 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/525Z)×\left(\mathbb{Z}/525\mathbb{Z}\right)^\times.

nn 127127 176176 451451
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.381966i 0.270091i 0.990839 + 0.135045i 0.0431180π0.0431180\pi
−0.990839 + 0.135045i 0.956882π0.956882\pi
33 − 1.00000i − 0.577350i
44 1.85410 0.927051
55 0 0
66 0.381966 0.155937
77 − 1.00000i − 0.377964i
88 1.47214i 0.520479i
99 −1.00000 −0.333333
1010 0 0
1111 3.47214 1.04689 0.523444 0.852060i 0.324647π-0.324647\pi
0.523444 + 0.852060i 0.324647π0.324647\pi
1212 − 1.85410i − 0.535233i
1313 − 5.23607i − 1.45222i −0.687576 0.726112i 0.741325π-0.741325\pi
0.687576 0.726112i 0.258675π-0.258675\pi
1414 0.381966 0.102085
1515 0 0
1616 3.14590 0.786475
1717 5.70820i 1.38444i 0.721685 + 0.692221i 0.243368π0.243368\pi
−0.721685 + 0.692221i 0.756632π0.756632\pi
1818 − 0.381966i − 0.0900303i
1919 −1.23607 −0.283573 −0.141787 0.989897i 0.545285π-0.545285\pi
−0.141787 + 0.989897i 0.545285π0.545285\pi
2020 0 0
2121 −1.00000 −0.218218
2222 1.32624i 0.282755i
2323 − 5.00000i − 1.04257i −0.853382 0.521286i 0.825452π-0.825452\pi
0.853382 0.521286i 0.174548π-0.174548\pi
2424 1.47214 0.300498
2525 0 0
2626 2.00000 0.392232
2727 1.00000i 0.192450i
2828 − 1.85410i − 0.350392i
2929 8.70820 1.61707 0.808536 0.588446i 0.200260π-0.200260\pi
0.808536 + 0.588446i 0.200260π0.200260\pi
3030 0 0
3131 −4.47214 −0.803219 −0.401610 0.915811i 0.631549π-0.631549\pi
−0.401610 + 0.915811i 0.631549π0.631549\pi
3232 4.14590i 0.732898i
3333 − 3.47214i − 0.604421i
3434 −2.18034 −0.373925
3535 0 0
3636 −1.85410 −0.309017
3737 − 3.47214i − 0.570816i −0.958406 0.285408i 0.907871π-0.907871\pi
0.958406 0.285408i 0.0921290π-0.0921290\pi
3838 − 0.472136i − 0.0765906i
3939 −5.23607 −0.838442
4040 0 0
4141 −8.00000 −1.24939 −0.624695 0.780869i 0.714777π-0.714777\pi
−0.624695 + 0.780869i 0.714777π0.714777\pi
4242 − 0.381966i − 0.0589386i
4343 − 3.76393i − 0.573994i −0.957931 0.286997i 0.907343π-0.907343\pi
0.957931 0.286997i 0.0926570π-0.0926570\pi
4444 6.43769 0.970519
4545 0 0
4646 1.90983 0.281589
4747 2.76393i 0.403161i 0.979472 + 0.201580i 0.0646078π0.0646078\pi
−0.979472 + 0.201580i 0.935392π0.935392\pi
4848 − 3.14590i − 0.454071i
4949 −1.00000 −0.142857
5050 0 0
5151 5.70820 0.799308
5252 − 9.70820i − 1.34629i
5353 8.47214i 1.16374i 0.813283 + 0.581869i 0.197678π0.197678\pi
−0.813283 + 0.581869i 0.802322π0.802322\pi
5454 −0.381966 −0.0519790
5555 0 0
5656 1.47214 0.196722
5757 1.23607i 0.163721i
5858 3.32624i 0.436756i
5959 5.23607 0.681678 0.340839 0.940122i 0.389289π-0.389289\pi
0.340839 + 0.940122i 0.389289π0.389289\pi
6060 0 0
6161 11.4164 1.46172 0.730861 0.682527i 0.239119π-0.239119\pi
0.730861 + 0.682527i 0.239119π0.239119\pi
6262 − 1.70820i − 0.216942i
6363 1.00000i 0.125988i
6464 4.70820 0.588525
6565 0 0
6666 1.32624 0.163249
6767 10.7082i 1.30822i 0.756401 + 0.654108i 0.226956π0.226956\pi
−0.756401 + 0.654108i 0.773044π0.773044\pi
6868 10.5836i 1.28345i
6969 −5.00000 −0.601929
7070 0 0
7171 −9.47214 −1.12414 −0.562068 0.827091i 0.689994π-0.689994\pi
−0.562068 + 0.827091i 0.689994π0.689994\pi
7272 − 1.47214i − 0.173493i
7373 3.23607i 0.378753i 0.981905 + 0.189377i 0.0606467π0.0606467\pi
−0.981905 + 0.189377i 0.939353π0.939353\pi
7474 1.32624 0.154172
7575 0 0
7676 −2.29180 −0.262887
7777 − 3.47214i − 0.395687i
7878 − 2.00000i − 0.226455i
7979 −6.23607 −0.701612 −0.350806 0.936448i 0.614092π-0.614092\pi
−0.350806 + 0.936448i 0.614092π0.614092\pi
8080 0 0
8181 1.00000 0.111111
8282 − 3.05573i − 0.337449i
8383 − 3.52786i − 0.387233i −0.981077 0.193617i 0.937978π-0.937978\pi
0.981077 0.193617i 0.0620218π-0.0620218\pi
8484 −1.85410 −0.202299
8585 0 0
8686 1.43769 0.155031
8787 − 8.70820i − 0.933617i
8888 5.11146i 0.544883i
8989 −7.70820 −0.817068 −0.408534 0.912743i 0.633960π-0.633960\pi
−0.408534 + 0.912743i 0.633960π0.633960\pi
9090 0 0
9191 −5.23607 −0.548889
9292 − 9.27051i − 0.966517i
9393 4.47214i 0.463739i
9494 −1.05573 −0.108890
9595 0 0
9696 4.14590 0.423139
9797 3.52786i 0.358200i 0.983831 + 0.179100i 0.0573186π0.0573186\pi
−0.983831 + 0.179100i 0.942681π0.942681\pi
9898 − 0.381966i − 0.0385844i
9999 −3.47214 −0.348963
100100 0 0
101101 −17.7082 −1.76203 −0.881016 0.473086i 0.843140π-0.843140\pi
−0.881016 + 0.473086i 0.843140π0.843140\pi
102102 2.18034i 0.215886i
103103 3.70820i 0.365380i 0.983171 + 0.182690i 0.0584805π0.0584805\pi
−0.983171 + 0.182690i 0.941520π0.941520\pi
104104 7.70820 0.755852
105105 0 0
106106 −3.23607 −0.314315
107107 12.9443i 1.25137i 0.780076 + 0.625685i 0.215180π0.215180\pi
−0.780076 + 0.625685i 0.784820π0.784820\pi
108108 1.85410i 0.178411i
109109 −20.4164 −1.95554 −0.977769 0.209687i 0.932756π-0.932756\pi
−0.977769 + 0.209687i 0.932756π0.932756\pi
110110 0 0
111111 −3.47214 −0.329561
112112 − 3.14590i − 0.297259i
113113 11.7639i 1.10666i 0.832963 + 0.553329i 0.186643π0.186643\pi
−0.832963 + 0.553329i 0.813357π0.813357\pi
114114 −0.472136 −0.0442196
115115 0 0
116116 16.1459 1.49911
117117 5.23607i 0.484075i
118118 2.00000i 0.184115i
119119 5.70820 0.523270
120120 0 0
121121 1.05573 0.0959753
122122 4.36068i 0.394797i
123123 8.00000i 0.721336i
124124 −8.29180 −0.744625
125125 0 0
126126 −0.381966 −0.0340282
127127 − 7.76393i − 0.688938i −0.938798 0.344469i 0.888059π-0.888059\pi
0.938798 0.344469i 0.111941π-0.111941\pi
128128 10.0902i 0.891853i
129129 −3.76393 −0.331396
130130 0 0
131131 −17.7082 −1.54717 −0.773586 0.633691i 0.781539π-0.781539\pi
−0.773586 + 0.633691i 0.781539π0.781539\pi
132132 − 6.43769i − 0.560329i
133133 1.23607i 0.107181i
134134 −4.09017 −0.353337
135135 0 0
136136 −8.40325 −0.720573
137137 8.47214i 0.723823i 0.932212 + 0.361912i 0.117876π0.117876\pi
−0.932212 + 0.361912i 0.882124π0.882124\pi
138138 − 1.90983i − 0.162576i
139139 9.70820 0.823439 0.411720 0.911311i 0.364928π-0.364928\pi
0.411720 + 0.911311i 0.364928π0.364928\pi
140140 0 0
141141 2.76393 0.232765
142142 − 3.61803i − 0.303619i
143143 − 18.1803i − 1.52032i
144144 −3.14590 −0.262158
145145 0 0
146146 −1.23607 −0.102298
147147 1.00000i 0.0824786i
148148 − 6.43769i − 0.529175i
149149 −3.76393 −0.308353 −0.154177 0.988043i 0.549272π-0.549272\pi
−0.154177 + 0.988043i 0.549272π0.549272\pi
150150 0 0
151151 14.7082 1.19694 0.598468 0.801146i 0.295776π-0.295776\pi
0.598468 + 0.801146i 0.295776π0.295776\pi
152152 − 1.81966i − 0.147594i
153153 − 5.70820i − 0.461481i
154154 1.32624 0.106871
155155 0 0
156156 −9.70820 −0.777278
157157 − 0.944272i − 0.0753611i −0.999290 0.0376806i 0.988003π-0.988003\pi
0.999290 0.0376806i 0.0119969π-0.0119969\pi
158158 − 2.38197i − 0.189499i
159159 8.47214 0.671884
160160 0 0
161161 −5.00000 −0.394055
162162 0.381966i 0.0300101i
163163 − 9.52786i − 0.746280i −0.927775 0.373140i 0.878281π-0.878281\pi
0.927775 0.373140i 0.121719π-0.121719\pi
164164 −14.8328 −1.15825
165165 0 0
166166 1.34752 0.104588
167167 − 19.7082i − 1.52507i −0.646949 0.762533i 0.723955π-0.723955\pi
0.646949 0.762533i 0.276045π-0.276045\pi
168168 − 1.47214i − 0.113578i
169169 −14.4164 −1.10895
170170 0 0
171171 1.23607 0.0945245
172172 − 6.97871i − 0.532122i
173173 26.1803i 1.99045i 0.0975850 + 0.995227i 0.468888π0.468888\pi
−0.0975850 + 0.995227i 0.531112π0.531112\pi
174174 3.32624 0.252161
175175 0 0
176176 10.9230 0.823351
177177 − 5.23607i − 0.393567i
178178 − 2.94427i − 0.220683i
179179 12.9443 0.967500 0.483750 0.875206i 0.339274π-0.339274\pi
0.483750 + 0.875206i 0.339274π0.339274\pi
180180 0 0
181181 −26.6525 −1.98106 −0.990531 0.137286i 0.956162π-0.956162\pi
−0.990531 + 0.137286i 0.956162π0.956162\pi
182182 − 2.00000i − 0.148250i
183183 − 11.4164i − 0.843925i
184184 7.36068 0.542637
185185 0 0
186186 −1.70820 −0.125252
187187 19.8197i 1.44936i
188188 5.12461i 0.373751i
189189 1.00000 0.0727393
190190 0 0
191191 15.4164 1.11549 0.557746 0.830012i 0.311666π-0.311666\pi
0.557746 + 0.830012i 0.311666π0.311666\pi
192192 − 4.70820i − 0.339785i
193193 26.4164i 1.90149i 0.309967 + 0.950747i 0.399682π0.399682\pi
−0.309967 + 0.950747i 0.600318π0.600318\pi
194194 −1.34752 −0.0967466
195195 0 0
196196 −1.85410 −0.132436
197197 − 10.2361i − 0.729290i −0.931147 0.364645i 0.881190π-0.881190\pi
0.931147 0.364645i 0.118810π-0.118810\pi
198198 − 1.32624i − 0.0942516i
199199 16.0000 1.13421 0.567105 0.823646i 0.308063π-0.308063\pi
0.567105 + 0.823646i 0.308063π0.308063\pi
200200 0 0
201201 10.7082 0.755298
202202 − 6.76393i − 0.475909i
203203 − 8.70820i − 0.611196i
204204 10.5836 0.741000
205205 0 0
206206 −1.41641 −0.0986858
207207 5.00000i 0.347524i
208208 − 16.4721i − 1.14214i
209209 −4.29180 −0.296870
210210 0 0
211211 −4.94427 −0.340378 −0.170189 0.985411i 0.554438π-0.554438\pi
−0.170189 + 0.985411i 0.554438π0.554438\pi
212212 15.7082i 1.07884i
213213 9.47214i 0.649020i
214214 −4.94427 −0.337983
215215 0 0
216216 −1.47214 −0.100166
217217 4.47214i 0.303588i
218218 − 7.79837i − 0.528173i
219219 3.23607 0.218673
220220 0 0
221221 29.8885 2.01052
222222 − 1.32624i − 0.0890113i
223223 − 3.23607i − 0.216703i −0.994113 0.108352i 0.965443π-0.965443\pi
0.994113 0.108352i 0.0345572π-0.0345572\pi
224224 4.14590 0.277009
225225 0 0
226226 −4.49342 −0.298898
227227 − 9.23607i − 0.613019i −0.951868 0.306510i 0.900839π-0.900839\pi
0.951868 0.306510i 0.0991612π-0.0991612\pi
228228 2.29180i 0.151778i
229229 22.3607 1.47764 0.738818 0.673905i 0.235384π-0.235384\pi
0.738818 + 0.673905i 0.235384π0.235384\pi
230230 0 0
231231 −3.47214 −0.228450
232232 12.8197i 0.841652i
233233 − 20.7082i − 1.35664i −0.734767 0.678320i 0.762708π-0.762708\pi
0.734767 0.678320i 0.237292π-0.237292\pi
234234 −2.00000 −0.130744
235235 0 0
236236 9.70820 0.631950
237237 6.23607i 0.405076i
238238 2.18034i 0.141330i
239239 −16.3607 −1.05828 −0.529142 0.848533i 0.677486π-0.677486\pi
−0.529142 + 0.848533i 0.677486π0.677486\pi
240240 0 0
241241 14.7639 0.951028 0.475514 0.879708i 0.342262π-0.342262\pi
0.475514 + 0.879708i 0.342262π0.342262\pi
242242 0.403252i 0.0259220i
243243 − 1.00000i − 0.0641500i
244244 21.1672 1.35509
245245 0 0
246246 −3.05573 −0.194826
247247 6.47214i 0.411812i
248248 − 6.58359i − 0.418059i
249249 −3.52786 −0.223569
250250 0 0
251251 7.23607 0.456737 0.228368 0.973575i 0.426661π-0.426661\pi
0.228368 + 0.973575i 0.426661π0.426661\pi
252252 1.85410i 0.116797i
253253 − 17.3607i − 1.09146i
254254 2.96556 0.186076
255255 0 0
256256 5.56231 0.347644
257257 0.472136i 0.0294510i 0.999892 + 0.0147255i 0.00468745π0.00468745\pi
−0.999892 + 0.0147255i 0.995313π0.995313\pi
258258 − 1.43769i − 0.0895069i
259259 −3.47214 −0.215748
260260 0 0
261261 −8.70820 −0.539024
262262 − 6.76393i − 0.417877i
263263 − 19.9443i − 1.22982i −0.788599 0.614908i 0.789193π-0.789193\pi
0.788599 0.614908i 0.210807π-0.210807\pi
264264 5.11146 0.314588
265265 0 0
266266 −0.472136 −0.0289485
267267 7.70820i 0.471734i
268268 19.8541i 1.21278i
269269 19.5279 1.19063 0.595317 0.803491i 0.297026π-0.297026\pi
0.595317 + 0.803491i 0.297026π0.297026\pi
270270 0 0
271271 18.7639 1.13983 0.569914 0.821704i 0.306977π-0.306977\pi
0.569914 + 0.821704i 0.306977π0.306977\pi
272272 17.9574i 1.08883i
273273 5.23607i 0.316901i
274274 −3.23607 −0.195498
275275 0 0
276276 −9.27051 −0.558019
277277 19.8885i 1.19499i 0.801874 + 0.597493i 0.203837π0.203837\pi
−0.801874 + 0.597493i 0.796163π0.796163\pi
278278 3.70820i 0.222403i
279279 4.47214 0.267740
280280 0 0
281281 −17.6525 −1.05306 −0.526529 0.850157i 0.676507π-0.676507\pi
−0.526529 + 0.850157i 0.676507π0.676507\pi
282282 1.05573i 0.0628677i
283283 − 13.4164i − 0.797523i −0.917055 0.398761i 0.869440π-0.869440\pi
0.917055 0.398761i 0.130560π-0.130560\pi
284284 −17.5623 −1.04213
285285 0 0
286286 6.94427 0.410623
287287 8.00000i 0.472225i
288288 − 4.14590i − 0.244299i
289289 −15.5836 −0.916682
290290 0 0
291291 3.52786 0.206807
292292 6.00000i 0.351123i
293293 − 4.65248i − 0.271801i −0.990723 0.135900i 0.956607π-0.956607\pi
0.990723 0.135900i 0.0433927π-0.0433927\pi
294294 −0.381966 −0.0222767
295295 0 0
296296 5.11146 0.297097
297297 3.47214i 0.201474i
298298 − 1.43769i − 0.0832834i
299299 −26.1803 −1.51405
300300 0 0
301301 −3.76393 −0.216949
302302 5.61803i 0.323282i
303303 17.7082i 1.01731i
304304 −3.88854 −0.223023
305305 0 0
306306 2.18034 0.124642
307307 − 6.65248i − 0.379677i −0.981815 0.189838i 0.939204π-0.939204\pi
0.981815 0.189838i 0.0607964π-0.0607964\pi
308308 − 6.43769i − 0.366822i
309309 3.70820 0.210952
310310 0 0
311311 8.76393 0.496957 0.248478 0.968637i 0.420069π-0.420069\pi
0.248478 + 0.968637i 0.420069π0.420069\pi
312312 − 7.70820i − 0.436391i
313313 − 7.70820i − 0.435693i −0.975983 0.217847i 0.930097π-0.930097\pi
0.975983 0.217847i 0.0699033π-0.0699033\pi
314314 0.360680 0.0203543
315315 0 0
316316 −11.5623 −0.650431
317317 − 13.6525i − 0.766799i −0.923583 0.383400i 0.874753π-0.874753\pi
0.923583 0.383400i 0.125247π-0.125247\pi
318318 3.23607i 0.181470i
319319 30.2361 1.69289
320320 0 0
321321 12.9443 0.722479
322322 − 1.90983i − 0.106431i
323323 − 7.05573i − 0.392591i
324324 1.85410 0.103006
325325 0 0
326326 3.63932 0.201563
327327 20.4164i 1.12903i
328328 − 11.7771i − 0.650281i
329329 2.76393 0.152381
330330 0 0
331331 18.2361 1.00234 0.501172 0.865347i 0.332902π-0.332902\pi
0.501172 + 0.865347i 0.332902π0.332902\pi
332332 − 6.54102i − 0.358985i
333333 3.47214i 0.190272i
334334 7.52786 0.411906
335335 0 0
336336 −3.14590 −0.171623
337337 − 19.5279i − 1.06375i −0.846823 0.531875i 0.821488π-0.821488\pi
0.846823 0.531875i 0.178512π-0.178512\pi
338338 − 5.50658i − 0.299518i
339339 11.7639 0.638929
340340 0 0
341341 −15.5279 −0.840881
342342 0.472136i 0.0255302i
343343 1.00000i 0.0539949i
344344 5.54102 0.298752
345345 0 0
346346 −10.0000 −0.537603
347347 − 13.0000i − 0.697877i −0.937146 0.348938i 0.886542π-0.886542\pi
0.937146 0.348938i 0.113458π-0.113458\pi
348348 − 16.1459i − 0.865511i
349349 −5.23607 −0.280280 −0.140140 0.990132i 0.544755π-0.544755\pi
−0.140140 + 0.990132i 0.544755π0.544755\pi
350350 0 0
351351 5.23607 0.279481
352352 14.3951i 0.767263i
353353 − 18.9443i − 1.00830i −0.863616 0.504151i 0.831806π-0.831806\pi
0.863616 0.504151i 0.168194π-0.168194\pi
354354 2.00000 0.106299
355355 0 0
356356 −14.2918 −0.757464
357357 − 5.70820i − 0.302110i
358358 4.94427i 0.261313i
359359 −8.05573 −0.425165 −0.212583 0.977143i 0.568187π-0.568187\pi
−0.212583 + 0.977143i 0.568187π0.568187\pi
360360 0 0
361361 −17.4721 −0.919586
362362 − 10.1803i − 0.535067i
363363 − 1.05573i − 0.0554114i
364364 −9.70820 −0.508848
365365 0 0
366366 4.36068 0.227936
367367 8.94427i 0.466887i 0.972370 + 0.233444i 0.0749994π0.0749994\pi
−0.972370 + 0.233444i 0.925001π0.925001\pi
368368 − 15.7295i − 0.819956i
369369 8.00000 0.416463
370370 0 0
371371 8.47214 0.439851
372372 8.29180i 0.429910i
373373 15.0000i 0.776671i 0.921518 + 0.388335i 0.126950π0.126950\pi
−0.921518 + 0.388335i 0.873050π0.873050\pi
374374 −7.57044 −0.391458
375375 0 0
376376 −4.06888 −0.209837
377377 − 45.5967i − 2.34835i
378378 0.381966i 0.0196462i
379379 32.5967 1.67438 0.837191 0.546910i 0.184196π-0.184196\pi
0.837191 + 0.546910i 0.184196π0.184196\pi
380380 0 0
381381 −7.76393 −0.397758
382382 5.88854i 0.301284i
383383 15.1246i 0.772832i 0.922325 + 0.386416i 0.126287π0.126287\pi
−0.922325 + 0.386416i 0.873713π0.873713\pi
384384 10.0902 0.514912
385385 0 0
386386 −10.0902 −0.513576
387387 3.76393i 0.191331i
388388 6.54102i 0.332070i
389389 6.23607 0.316181 0.158091 0.987425i 0.449466π-0.449466\pi
0.158091 + 0.987425i 0.449466π0.449466\pi
390390 0 0
391391 28.5410 1.44338
392392 − 1.47214i − 0.0743541i
393393 17.7082i 0.893261i
394394 3.90983 0.196974
395395 0 0
396396 −6.43769 −0.323506
397397 − 18.0000i − 0.903394i −0.892171 0.451697i 0.850819π-0.850819\pi
0.892171 0.451697i 0.149181π-0.149181\pi
398398 6.11146i 0.306340i
399399 1.23607 0.0618808
400400 0 0
401401 −13.2918 −0.663761 −0.331880 0.943322i 0.607683π-0.607683\pi
−0.331880 + 0.943322i 0.607683π0.607683\pi
402402 4.09017i 0.203999i
403403 23.4164i 1.16645i
404404 −32.8328 −1.63349
405405 0 0
406406 3.32624 0.165078
407407 − 12.0557i − 0.597580i
408408 8.40325i 0.416023i
409409 −14.1803 −0.701173 −0.350586 0.936530i 0.614018π-0.614018\pi
−0.350586 + 0.936530i 0.614018π0.614018\pi
410410 0 0
411411 8.47214 0.417900
412412 6.87539i 0.338726i
413413 − 5.23607i − 0.257650i
414414 −1.90983 −0.0938630
415415 0 0
416416 21.7082 1.06433
417417 − 9.70820i − 0.475413i
418418 − 1.63932i − 0.0801818i
419419 −26.9443 −1.31631 −0.658157 0.752881i 0.728664π-0.728664\pi
−0.658157 + 0.752881i 0.728664π0.728664\pi
420420 0 0
421421 26.4164 1.28746 0.643728 0.765254i 0.277387π-0.277387\pi
0.643728 + 0.765254i 0.277387π0.277387\pi
422422 − 1.88854i − 0.0919329i
423423 − 2.76393i − 0.134387i
424424 −12.4721 −0.605700
425425 0 0
426426 −3.61803 −0.175294
427427 − 11.4164i − 0.552479i
428428 24.0000i 1.16008i
429429 −18.1803 −0.877755
430430 0 0
431431 −1.88854 −0.0909680 −0.0454840 0.998965i 0.514483π-0.514483\pi
−0.0454840 + 0.998965i 0.514483π0.514483\pi
432432 3.14590i 0.151357i
433433 25.3050i 1.21608i 0.793907 + 0.608039i 0.208044π0.208044\pi
−0.793907 + 0.608039i 0.791956π0.791956\pi
434434 −1.70820 −0.0819964
435435 0 0
436436 −37.8541 −1.81288
437437 6.18034i 0.295646i
438438 1.23607i 0.0590616i
439439 6.76393 0.322825 0.161412 0.986887i 0.448395π-0.448395\pi
0.161412 + 0.986887i 0.448395π0.448395\pi
440440 0 0
441441 1.00000 0.0476190
442442 11.4164i 0.543023i
443443 − 39.4164i − 1.87273i −0.351028 0.936365i 0.614168π-0.614168\pi
0.351028 0.936365i 0.385832π-0.385832\pi
444444 −6.43769 −0.305519
445445 0 0
446446 1.23607 0.0585295
447447 3.76393i 0.178028i
448448 − 4.70820i − 0.222442i
449449 −16.7082 −0.788509 −0.394254 0.919001i 0.628997π-0.628997\pi
−0.394254 + 0.919001i 0.628997π0.628997\pi
450450 0 0
451451 −27.7771 −1.30797
452452 21.8115i 1.02593i
453453 − 14.7082i − 0.691052i
454454 3.52786 0.165571
455455 0 0
456456 −1.81966 −0.0852134
457457 − 20.5279i − 0.960253i −0.877199 0.480126i 0.840591π-0.840591\pi
0.877199 0.480126i 0.159409π-0.159409\pi
458458 8.54102i 0.399096i
459459 −5.70820 −0.266436
460460 0 0
461461 −20.6525 −0.961882 −0.480941 0.876753i 0.659705π-0.659705\pi
−0.480941 + 0.876753i 0.659705π0.659705\pi
462462 − 1.32624i − 0.0617022i
463463 16.3607i 0.760345i 0.924916 + 0.380173i 0.124135π0.124135\pi
−0.924916 + 0.380173i 0.875865π0.875865\pi
464464 27.3951 1.27179
465465 0 0
466466 7.90983 0.366416
467467 − 11.8885i − 0.550136i −0.961425 0.275068i 0.911300π-0.911300\pi
0.961425 0.275068i 0.0887004π-0.0887004\pi
468468 9.70820i 0.448762i
469469 10.7082 0.494459
470470 0 0
471471 −0.944272 −0.0435098
472472 7.70820i 0.354799i
473473 − 13.0689i − 0.600908i
474474 −2.38197 −0.109407
475475 0 0
476476 10.5836 0.485098
477477 − 8.47214i − 0.387912i
478478 − 6.24922i − 0.285833i
479479 18.7639 0.857346 0.428673 0.903460i 0.358981π-0.358981\pi
0.428673 + 0.903460i 0.358981π0.358981\pi
480480 0 0
481481 −18.1803 −0.828952
482482 5.63932i 0.256864i
483483 5.00000i 0.227508i
484484 1.95743 0.0889740
485485 0 0
486486 0.381966 0.0173263
487487 − 29.1803i − 1.32229i −0.750259 0.661144i 0.770071π-0.770071\pi
0.750259 0.661144i 0.229929π-0.229929\pi
488488 16.8065i 0.760795i
489489 −9.52786 −0.430865
490490 0 0
491491 −9.47214 −0.427472 −0.213736 0.976892i 0.568563π-0.568563\pi
−0.213736 + 0.976892i 0.568563π0.568563\pi
492492 14.8328i 0.668715i
493493 49.7082i 2.23874i
494494 −2.47214 −0.111227
495495 0 0
496496 −14.0689 −0.631712
497497 9.47214i 0.424883i
498498 − 1.34752i − 0.0603840i
499499 −39.7771 −1.78067 −0.890333 0.455309i 0.849529π-0.849529\pi
−0.890333 + 0.455309i 0.849529π0.849529\pi
500500 0 0
501501 −19.7082 −0.880498
502502 2.76393i 0.123360i
503503 9.41641i 0.419857i 0.977717 + 0.209928i 0.0673231π0.0673231\pi
−0.977717 + 0.209928i 0.932677π0.932677\pi
504504 −1.47214 −0.0655741
505505 0 0
506506 6.63119 0.294792
507507 14.4164i 0.640255i
508508 − 14.3951i − 0.638680i
509509 −0.652476 −0.0289205 −0.0144602 0.999895i 0.504603π-0.504603\pi
−0.0144602 + 0.999895i 0.504603π0.504603\pi
510510 0 0
511511 3.23607 0.143155
512512 22.3050i 0.985749i
513513 − 1.23607i − 0.0545737i
514514 −0.180340 −0.00795445
515515 0 0
516516 −6.97871 −0.307221
517517 9.59675i 0.422064i
518518 − 1.32624i − 0.0582715i
519519 26.1803 1.14919
520520 0 0
521521 33.7771 1.47980 0.739901 0.672716i 0.234873π-0.234873\pi
0.739901 + 0.672716i 0.234873π0.234873\pi
522522 − 3.32624i − 0.145585i
523523 − 35.7771i − 1.56442i −0.623013 0.782211i 0.714092π-0.714092\pi
0.623013 0.782211i 0.285908π-0.285908\pi
524524 −32.8328 −1.43431
525525 0 0
526526 7.61803 0.332162
527527 − 25.5279i − 1.11201i
528528 − 10.9230i − 0.475362i
529529 −2.00000 −0.0869565
530530 0 0
531531 −5.23607 −0.227226
532532 2.29180i 0.0993620i
533533 41.8885i 1.81439i
534534 −2.94427 −0.127411
535535 0 0
536536 −15.7639 −0.680898
537537 − 12.9443i − 0.558587i
538538 7.45898i 0.321579i
539539 −3.47214 −0.149555
540540 0 0
541541 −0.0557281 −0.00239594 −0.00119797 0.999999i 0.500381π-0.500381\pi
−0.00119797 + 0.999999i 0.500381π0.500381\pi
542542 7.16718i 0.307857i
543543 26.6525i 1.14377i
544544 −23.6656 −1.01466
545545 0 0
546546 −2.00000 −0.0855921
547547 23.0689i 0.986354i 0.869929 + 0.493177i 0.164165π0.164165\pi
−0.869929 + 0.493177i 0.835835π0.835835\pi
548548 15.7082i 0.671021i
549549 −11.4164 −0.487240
550550 0 0
551551 −10.7639 −0.458559
552552 − 7.36068i − 0.313291i
553553 6.23607i 0.265185i
554554 −7.59675 −0.322755
555555 0 0
556556 18.0000 0.763370
557557 23.6525i 1.00219i 0.865393 + 0.501094i 0.167069π0.167069\pi
−0.865393 + 0.501094i 0.832931π0.832931\pi
558558 1.70820i 0.0723140i
559559 −19.7082 −0.833568
560560 0 0
561561 19.8197 0.836787
562562 − 6.74265i − 0.284421i
563563 27.3050i 1.15077i 0.817884 + 0.575383i 0.195147π0.195147\pi
−0.817884 + 0.575383i 0.804853π0.804853\pi
564564 5.12461 0.215785
565565 0 0
566566 5.12461 0.215404
567567 − 1.00000i − 0.0419961i
568568 − 13.9443i − 0.585089i
569569 7.76393 0.325481 0.162740 0.986669i 0.447967π-0.447967\pi
0.162740 + 0.986669i 0.447967π0.447967\pi
570570 0 0
571571 −27.2918 −1.14213 −0.571063 0.820906i 0.693469π-0.693469\pi
−0.571063 + 0.820906i 0.693469π0.693469\pi
572572 − 33.7082i − 1.40941i
573573 − 15.4164i − 0.644030i
574574 −3.05573 −0.127544
575575 0 0
576576 −4.70820 −0.196175
577577 6.76393i 0.281586i 0.990039 + 0.140793i 0.0449652π0.0449652\pi
−0.990039 + 0.140793i 0.955035π0.955035\pi
578578 − 5.95240i − 0.247587i
579579 26.4164 1.09783
580580 0 0
581581 −3.52786 −0.146360
582582 1.34752i 0.0558567i
583583 29.4164i 1.21830i
584584 −4.76393 −0.197133
585585 0 0
586586 1.77709 0.0734108
587587 33.1246i 1.36720i 0.729857 + 0.683600i 0.239586π0.239586\pi
−0.729857 + 0.683600i 0.760414π0.760414\pi
588588 1.85410i 0.0764619i
589589 5.52786 0.227772
590590 0 0
591591 −10.2361 −0.421056
592592 − 10.9230i − 0.448932i
593593 37.3050i 1.53193i 0.642882 + 0.765965i 0.277739π0.277739\pi
−0.642882 + 0.765965i 0.722261π0.722261\pi
594594 −1.32624 −0.0544162
595595 0 0
596596 −6.97871 −0.285859
597597 − 16.0000i − 0.654836i
598598 − 10.0000i − 0.408930i
599599 28.0557 1.14633 0.573163 0.819441i 0.305716π-0.305716\pi
0.573163 + 0.819441i 0.305716π0.305716\pi
600600 0 0
601601 16.3607 0.667366 0.333683 0.942685i 0.391708π-0.391708\pi
0.333683 + 0.942685i 0.391708π0.391708\pi
602602 − 1.43769i − 0.0585960i
603603 − 10.7082i − 0.436072i
604604 27.2705 1.10962
605605 0 0
606606 −6.76393 −0.274766
607607 15.7082i 0.637576i 0.947826 + 0.318788i 0.103276π0.103276\pi
−0.947826 + 0.318788i 0.896724π0.896724\pi
608608 − 5.12461i − 0.207830i
609609 −8.70820 −0.352874
610610 0 0
611611 14.4721 0.585480
612612 − 10.5836i − 0.427816i
613613 − 27.9443i − 1.12866i −0.825550 0.564329i 0.809135π-0.809135\pi
0.825550 0.564329i 0.190865π-0.190865\pi
614614 2.54102 0.102547
615615 0 0
616616 5.11146 0.205946
617617 9.65248i 0.388594i 0.980943 + 0.194297i 0.0622426π0.0622426\pi
−0.980943 + 0.194297i 0.937757π0.937757\pi
618618 1.41641i 0.0569763i
619619 15.1246 0.607909 0.303955 0.952686i 0.401693π-0.401693\pi
0.303955 + 0.952686i 0.401693π0.401693\pi
620620 0 0
621621 5.00000 0.200643
622622 3.34752i 0.134223i
623623 7.70820i 0.308823i
624624 −16.4721 −0.659413
625625 0 0
626626 2.94427 0.117677
627627 4.29180i 0.171398i
628628 − 1.75078i − 0.0698636i
629629 19.8197 0.790262
630630 0 0
631631 0.124612 0.00496072 0.00248036 0.999997i 0.499210π-0.499210\pi
0.00248036 + 0.999997i 0.499210π0.499210\pi
632632 − 9.18034i − 0.365174i
633633 4.94427i 0.196517i
634634 5.21478 0.207105
635635 0 0
636636 15.7082 0.622871
637637 5.23607i 0.207461i
638638 11.5492i 0.457235i
639639 9.47214 0.374712
640640 0 0
641641 −28.7082 −1.13391 −0.566953 0.823750i 0.691878π-0.691878\pi
−0.566953 + 0.823750i 0.691878π0.691878\pi
642642 4.94427i 0.195135i
643643 − 44.7214i − 1.76364i −0.471588 0.881819i 0.656319π-0.656319\pi
0.471588 0.881819i 0.343681π-0.343681\pi
644644 −9.27051 −0.365309
645645 0 0
646646 2.69505 0.106035
647647 − 18.9443i − 0.744776i −0.928077 0.372388i 0.878539π-0.878539\pi
0.928077 0.372388i 0.121461π-0.121461\pi
648648 1.47214i 0.0578310i
649649 18.1803 0.713641
650650 0 0
651651 4.47214 0.175277
652652 − 17.6656i − 0.691840i
653653 1.41641i 0.0554283i 0.999616 + 0.0277142i 0.00882282π0.00882282\pi
−0.999616 + 0.0277142i 0.991177π0.991177\pi
654654 −7.79837 −0.304941
655655 0 0
656656 −25.1672 −0.982613
657657 − 3.23607i − 0.126251i
658658 1.05573i 0.0411566i
659659 −23.0557 −0.898124 −0.449062 0.893501i 0.648242π-0.648242\pi
−0.449062 + 0.893501i 0.648242π0.648242\pi
660660 0 0
661661 −14.1803 −0.551551 −0.275776 0.961222i 0.588935π-0.588935\pi
−0.275776 + 0.961222i 0.588935π0.588935\pi
662662 6.96556i 0.270724i
663663 − 29.8885i − 1.16077i
664664 5.19350 0.201547
665665 0 0
666666 −1.32624 −0.0513907
667667 − 43.5410i − 1.68592i
668668 − 36.5410i − 1.41381i
669669 −3.23607 −0.125114
670670 0 0
671671 39.6393 1.53026
672672 − 4.14590i − 0.159931i
673673 6.00000i 0.231283i 0.993291 + 0.115642i 0.0368924π0.0368924\pi
−0.993291 + 0.115642i 0.963108π0.963108\pi
674674 7.45898 0.287309
675675 0 0
676676 −26.7295 −1.02806
677677 − 19.3050i − 0.741950i −0.928643 0.370975i 0.879024π-0.879024\pi
0.928643 0.370975i 0.120976π-0.120976\pi
678678 4.49342i 0.172569i
679679 3.52786 0.135387
680680 0 0
681681 −9.23607 −0.353927
682682 − 5.93112i − 0.227114i
683683 − 40.8885i − 1.56456i −0.622929 0.782278i 0.714057π-0.714057\pi
0.622929 0.782278i 0.285943π-0.285943\pi
684684 2.29180 0.0876290
685685 0 0
686686 −0.381966 −0.0145835
687687 − 22.3607i − 0.853113i
688688 − 11.8409i − 0.451432i
689689 44.3607 1.69001
690690 0 0
691691 32.3607 1.23106 0.615529 0.788114i 0.288942π-0.288942\pi
0.615529 + 0.788114i 0.288942π0.288942\pi
692692 48.5410i 1.84525i
693693 3.47214i 0.131896i
694694 4.96556 0.188490
695695 0 0
696696 12.8197 0.485928
697697 − 45.6656i − 1.72971i
698698 − 2.00000i − 0.0757011i
699699 −20.7082 −0.783256
700700 0 0
701701 6.58359 0.248659 0.124329 0.992241i 0.460322π-0.460322\pi
0.124329 + 0.992241i 0.460322π0.460322\pi
702702 2.00000i 0.0754851i
703703 4.29180i 0.161868i
704704 16.3475 0.616120
705705 0 0
706706 7.23607 0.272333
707707 17.7082i 0.665986i
708708 − 9.70820i − 0.364857i
709709 −8.11146 −0.304632 −0.152316 0.988332i 0.548673π-0.548673\pi
−0.152316 + 0.988332i 0.548673π0.548673\pi
710710 0 0
711711 6.23607 0.233871
712712 − 11.3475i − 0.425266i
713713 22.3607i 0.837414i
714714 2.18034 0.0815972
715715 0 0
716716 24.0000 0.896922
717717 16.3607i 0.611001i
718718 − 3.07701i − 0.114833i
719719 38.2492 1.42646 0.713228 0.700932i 0.247233π-0.247233\pi
0.713228 + 0.700932i 0.247233π0.247233\pi
720720 0 0
721721 3.70820 0.138101
722722 − 6.67376i − 0.248372i
723723 − 14.7639i − 0.549077i
724724 −49.4164 −1.83655
725725 0 0
726726 0.403252 0.0149661
727727 48.5410i 1.80029i 0.435594 + 0.900143i 0.356538π0.356538\pi
−0.435594 + 0.900143i 0.643462π0.643462\pi
728728 − 7.70820i − 0.285685i
729729 −1.00000 −0.0370370
730730 0 0
731731 21.4853 0.794662
732732 − 21.1672i − 0.782362i
733733 − 12.0000i − 0.443230i −0.975134 0.221615i 0.928867π-0.928867\pi
0.975134 0.221615i 0.0711328π-0.0711328\pi
734734 −3.41641 −0.126102
735735 0 0
736736 20.7295 0.764099
737737 37.1803i 1.36956i
738738 3.05573i 0.112483i
739739 −8.23607 −0.302969 −0.151484 0.988460i 0.548405π-0.548405\pi
−0.151484 + 0.988460i 0.548405π0.548405\pi
740740 0 0
741741 6.47214 0.237760
742742 3.23607i 0.118800i
743743 − 50.2492i − 1.84347i −0.387826 0.921733i 0.626774π-0.626774\pi
0.387826 0.921733i 0.373226π-0.373226\pi
744744 −6.58359 −0.241366
745745 0 0
746746 −5.72949 −0.209772
747747 3.52786i 0.129078i
748748 36.7477i 1.34363i
749749 12.9443 0.472973
750750 0 0
751751 −4.36068 −0.159123 −0.0795617 0.996830i 0.525352π-0.525352\pi
−0.0795617 + 0.996830i 0.525352π0.525352\pi
752752 8.69505i 0.317076i
753753 − 7.23607i − 0.263697i
754754 17.4164 0.634268
755755 0 0
756756 1.85410 0.0674330
757757 3.94427i 0.143357i 0.997428 + 0.0716785i 0.0228356π0.0228356\pi
−0.997428 + 0.0716785i 0.977164π0.977164\pi
758758 12.4508i 0.452235i
759759 −17.3607 −0.630153
760760 0 0
761761 −53.3050 −1.93230 −0.966151 0.257975i 0.916945π-0.916945\pi
−0.966151 + 0.257975i 0.916945π0.916945\pi
762762 − 2.96556i − 0.107431i
763763 20.4164i 0.739124i
764764 28.5836 1.03412
765765 0 0
766766 −5.77709 −0.208735
767767 − 27.4164i − 0.989949i
768768 − 5.56231i − 0.200712i
769769 −8.58359 −0.309532 −0.154766 0.987951i 0.549462π-0.549462\pi
−0.154766 + 0.987951i 0.549462π0.549462\pi
770770 0 0
771771 0.472136 0.0170036
772772 48.9787i 1.76278i
773773 17.0557i 0.613452i 0.951798 + 0.306726i 0.0992335π0.0992335\pi
−0.951798 + 0.306726i 0.900766π0.900766\pi
774774 −1.43769 −0.0516768
775775 0 0
776776 −5.19350 −0.186436
777777 3.47214i 0.124562i
778778 2.38197i 0.0853976i
779779 9.88854 0.354294
780780 0 0
781781 −32.8885 −1.17684
782782 10.9017i 0.389844i
783783 8.70820i 0.311206i
784784 −3.14590 −0.112354
785785 0 0
786786 −6.76393 −0.241261
787787 43.2361i 1.54120i 0.637319 + 0.770600i 0.280043π0.280043\pi
−0.637319 + 0.770600i 0.719957π0.719957\pi
788788 − 18.9787i − 0.676089i
789789 −19.9443 −0.710035
790790 0 0
791791 11.7639 0.418277
792792 − 5.11146i − 0.181628i
793793 − 59.7771i − 2.12275i
794794 6.87539 0.243998
795795 0 0
796796 29.6656 1.05147
797797 18.0689i 0.640033i 0.947412 + 0.320016i 0.103688π0.103688\pi
−0.947412 + 0.320016i 0.896312π0.896312\pi
798798 0.472136i 0.0167134i
799799 −15.7771 −0.558153
800800 0 0
801801 7.70820 0.272356
802802 − 5.07701i − 0.179276i
803803 11.2361i 0.396512i
804804 19.8541 0.700200
805805 0 0
806806 −8.94427 −0.315049
807807 − 19.5279i − 0.687413i
808808 − 26.0689i − 0.917100i
809809 29.1803 1.02593 0.512963 0.858411i 0.328548π-0.328548\pi
0.512963 + 0.858411i 0.328548π0.328548\pi
810810 0 0
811811 −6.00000 −0.210688 −0.105344 0.994436i 0.533594π-0.533594\pi
−0.105344 + 0.994436i 0.533594π0.533594\pi
812812 − 16.1459i − 0.566610i
813813 − 18.7639i − 0.658080i
814814 4.60488 0.161401
815815 0 0
816816 17.9574 0.628636
817817 4.65248i 0.162770i
818818 − 5.41641i − 0.189380i
819819 5.23607 0.182963
820820 0 0
821821 6.94427 0.242357 0.121178 0.992631i 0.461333π-0.461333\pi
0.121178 + 0.992631i 0.461333π0.461333\pi
822822 3.23607i 0.112871i
823823 − 32.0132i − 1.11591i −0.829872 0.557954i 0.811586π-0.811586\pi
0.829872 0.557954i 0.188414π-0.188414\pi
824824 −5.45898 −0.190173
825825 0 0
826826 2.00000 0.0695889
827827 14.0557i 0.488766i 0.969679 + 0.244383i 0.0785853π0.0785853\pi
−0.969679 + 0.244383i 0.921415π0.921415\pi
828828 9.27051i 0.322172i
829829 −31.2361 −1.08487 −0.542437 0.840097i 0.682498π-0.682498\pi
−0.542437 + 0.840097i 0.682498π0.682498\pi
830830 0 0
831831 19.8885 0.689926
832832 − 24.6525i − 0.854671i
833833 − 5.70820i − 0.197778i
834834 3.70820 0.128405
835835 0 0
836836 −7.95743 −0.275213
837837 − 4.47214i − 0.154580i
838838 − 10.2918i − 0.355524i
839839 13.1246 0.453112 0.226556 0.973998i 0.427253π-0.427253\pi
0.226556 + 0.973998i 0.427253π0.427253\pi
840840 0 0
841841 46.8328 1.61492
842842 10.0902i 0.347730i
843843 17.6525i 0.607984i
844844 −9.16718 −0.315547
845845 0 0
846846 1.05573 0.0362967
847847 − 1.05573i − 0.0362752i
848848 26.6525i 0.915250i
849849 −13.4164 −0.460450
850850 0 0
851851 −17.3607 −0.595116
852852 17.5623i 0.601675i
853853 − 7.63932i − 0.261565i −0.991411 0.130783i 0.958251π-0.958251\pi
0.991411 0.130783i 0.0417490π-0.0417490\pi
854854 4.36068 0.149219
855855 0 0
856856 −19.0557 −0.651311
857857 12.5836i 0.429847i 0.976631 + 0.214924i 0.0689503π0.0689503\pi
−0.976631 + 0.214924i 0.931050π0.931050\pi
858858 − 6.94427i − 0.237074i
859859 −8.47214 −0.289066 −0.144533 0.989500i 0.546168π-0.546168\pi
−0.144533 + 0.989500i 0.546168π0.546168\pi
860860 0 0
861861 8.00000 0.272639
862862 − 0.721360i − 0.0245696i
863863 − 19.9443i − 0.678911i −0.940622 0.339455i 0.889757π-0.889757\pi
0.940622 0.339455i 0.110243π-0.110243\pi
864864 −4.14590 −0.141046
865865 0 0
866866 −9.66563 −0.328452
867867 15.5836i 0.529247i
868868 8.29180i 0.281442i
869869 −21.6525 −0.734510
870870 0 0
871871 56.0689 1.89982
872872 − 30.0557i − 1.01782i
873873 − 3.52786i − 0.119400i
874874 −2.36068 −0.0798512
875875 0 0
876876 6.00000 0.202721
877877 6.00000i 0.202606i 0.994856 + 0.101303i 0.0323011π0.0323011\pi
−0.994856 + 0.101303i 0.967699π0.967699\pi
878878 2.58359i 0.0871920i
879879 −4.65248 −0.156924
880880 0 0
881881 6.36068 0.214297 0.107148 0.994243i 0.465828π-0.465828\pi
0.107148 + 0.994243i 0.465828π0.465828\pi
882882 0.381966i 0.0128615i
883883 − 29.7639i − 1.00164i −0.865553 0.500818i 0.833033π-0.833033\pi
0.865553 0.500818i 0.166967π-0.166967\pi
884884 55.4164 1.86386
885885 0 0
886886 15.0557 0.505807
887887 11.4164i 0.383325i 0.981461 + 0.191663i 0.0613880π0.0613880\pi
−0.981461 + 0.191663i 0.938612π0.938612\pi
888888 − 5.11146i − 0.171529i
889889 −7.76393 −0.260394
890890 0 0
891891 3.47214 0.116321
892892 − 6.00000i − 0.200895i
893893 − 3.41641i − 0.114326i
894894 −1.43769 −0.0480837
895895 0 0
896896 10.0902 0.337089
897897 26.1803i 0.874136i
898898 − 6.38197i − 0.212969i
899899 −38.9443 −1.29886
900900 0 0
901901 −48.3607 −1.61113
902902 − 10.6099i − 0.353271i
903903 3.76393i 0.125256i
904904 −17.3181 −0.575992
905905 0 0
906906 5.61803 0.186647
907907 28.3607i 0.941701i 0.882213 + 0.470850i 0.156053π0.156053\pi
−0.882213 + 0.470850i 0.843947π0.843947\pi
908908 − 17.1246i − 0.568300i
909909 17.7082 0.587344
910910 0 0
911911 34.4164 1.14027 0.570133 0.821552i 0.306892π-0.306892\pi
0.570133 + 0.821552i 0.306892π0.306892\pi
912912 3.88854i 0.128763i
913913 − 12.2492i − 0.405390i
914914 7.84095 0.259355
915915 0 0
916916 41.4590 1.36984
917917 17.7082i 0.584776i
918918 − 2.18034i − 0.0719619i
919919 40.0132 1.31991 0.659956 0.751304i 0.270575π-0.270575\pi
0.659956 + 0.751304i 0.270575π0.270575\pi
920920 0 0
921921 −6.65248 −0.219207
922922 − 7.88854i − 0.259795i
923923 49.5967i 1.63250i
924924 −6.43769 −0.211785
925925 0 0
926926 −6.24922 −0.205362
927927 − 3.70820i − 0.121793i
928928 36.1033i 1.18515i
929929 7.81966 0.256555 0.128277 0.991738i 0.459055π-0.459055\pi
0.128277 + 0.991738i 0.459055π0.459055\pi
930930 0 0
931931 1.23607 0.0405105
932932 − 38.3951i − 1.25767i
933933 − 8.76393i − 0.286918i
934934 4.54102 0.148587
935935 0 0
936936 −7.70820 −0.251951
937937 − 40.3607i − 1.31853i −0.751912 0.659263i 0.770868π-0.770868\pi
0.751912 0.659263i 0.229132π-0.229132\pi
938938 4.09017i 0.133549i
939939 −7.70820 −0.251548
940940 0 0
941941 −8.83282 −0.287942 −0.143971 0.989582i 0.545987π-0.545987\pi
−0.143971 + 0.989582i 0.545987π0.545987\pi
942942 − 0.360680i − 0.0117516i
943943 40.0000i 1.30258i
944944 16.4721 0.536122
945945 0 0
946946 4.99187 0.162300
947947 15.0557i 0.489245i 0.969618 + 0.244623i 0.0786641π0.0786641\pi
−0.969618 + 0.244623i 0.921336π0.921336\pi
948948 11.5623i 0.375526i
949949 16.9443 0.550034
950950 0 0
951951 −13.6525 −0.442712
952952 8.40325i 0.272351i
953953 24.1246i 0.781473i 0.920503 + 0.390736i 0.127780π0.127780\pi
−0.920503 + 0.390736i 0.872220π0.872220\pi
954954 3.23607 0.104772
955955 0 0
956956 −30.3344 −0.981084
957957 − 30.2361i − 0.977393i
958958 7.16718i 0.231561i
959959 8.47214 0.273580
960960 0 0
961961 −11.0000 −0.354839
962962 − 6.94427i − 0.223892i
963963 − 12.9443i − 0.417123i
964964 27.3738 0.881652
965965 0 0
966966 −1.90983 −0.0614478
967967 − 37.8885i − 1.21841i −0.793011 0.609207i 0.791488π-0.791488\pi
0.793011 0.609207i 0.208512π-0.208512\pi
968968 1.55418i 0.0499531i
969969 −7.05573 −0.226663
970970 0 0
971971 −37.5967 −1.20654 −0.603269 0.797538i 0.706135π-0.706135\pi
−0.603269 + 0.797538i 0.706135π0.706135\pi
972972 − 1.85410i − 0.0594703i
973973 − 9.70820i − 0.311231i
974974 11.1459 0.357138
975975 0 0
976976 35.9149 1.14961
977977 16.7082i 0.534543i 0.963621 + 0.267271i 0.0861220π0.0861220\pi
−0.963621 + 0.267271i 0.913878π0.913878\pi
978978 − 3.63932i − 0.116373i
979979 −26.7639 −0.855379
980980 0 0
981981 20.4164 0.651846
982982 − 3.61803i − 0.115456i
983983 29.4164i 0.938238i 0.883135 + 0.469119i 0.155428π0.155428\pi
−0.883135 + 0.469119i 0.844572π0.844572\pi
984984 −11.7771 −0.375440
985985 0 0
986986 −18.9868 −0.604664
987987 − 2.76393i − 0.0879769i
988988 12.0000i 0.381771i
989989 −18.8197 −0.598430
990990 0 0
991991 −40.5967 −1.28960 −0.644799 0.764352i 0.723059π-0.723059\pi
−0.644799 + 0.764352i 0.723059π0.723059\pi
992992 − 18.5410i − 0.588678i
993993 − 18.2361i − 0.578704i
994994 −3.61803 −0.114757
995995 0 0
996996 −6.54102 −0.207260
997997 − 14.5410i − 0.460519i −0.973129 0.230259i 0.926043π-0.926043\pi
0.973129 0.230259i 0.0739575π-0.0739575\pi
998998 − 15.1935i − 0.480942i
999999 3.47214 0.109854
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.d.e.274.3 4
3.2 odd 2 1575.2.d.f.1324.2 4
5.2 odd 4 525.2.a.e.1.2 2
5.3 odd 4 525.2.a.i.1.1 yes 2
5.4 even 2 inner 525.2.d.e.274.2 4
15.2 even 4 1575.2.a.v.1.1 2
15.8 even 4 1575.2.a.l.1.2 2
15.14 odd 2 1575.2.d.f.1324.3 4
20.3 even 4 8400.2.a.cy.1.1 2
20.7 even 4 8400.2.a.da.1.1 2
35.13 even 4 3675.2.a.bh.1.1 2
35.27 even 4 3675.2.a.r.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.2.a.e.1.2 2 5.2 odd 4
525.2.a.i.1.1 yes 2 5.3 odd 4
525.2.d.e.274.2 4 5.4 even 2 inner
525.2.d.e.274.3 4 1.1 even 1 trivial
1575.2.a.l.1.2 2 15.8 even 4
1575.2.a.v.1.1 2 15.2 even 4
1575.2.d.f.1324.2 4 3.2 odd 2
1575.2.d.f.1324.3 4 15.14 odd 2
3675.2.a.r.1.2 2 35.27 even 4
3675.2.a.bh.1.1 2 35.13 even 4
8400.2.a.cy.1.1 2 20.3 even 4
8400.2.a.da.1.1 2 20.7 even 4