Properties

Label 525.3.s.c.199.2
Level $525$
Weight $3$
Character 525.199
Analytic conductor $14.305$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,3,Mod(124,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.124");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 525.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3052138789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 525.199
Dual form 525.3.s.c.124.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 - 1.50000i) q^{3} +(-1.50000 + 2.59808i) q^{4} -1.73205i q^{6} +(-6.06218 - 3.50000i) q^{7} +7.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 - 1.50000i) q^{3} +(-1.50000 + 2.59808i) q^{4} -1.73205i q^{6} +(-6.06218 - 3.50000i) q^{7} +7.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +(5.50000 - 9.52628i) q^{11} +(2.59808 + 4.50000i) q^{12} -6.92820 q^{13} -7.00000 q^{14} +(-2.50000 - 4.33013i) q^{16} +(-12.1244 + 21.0000i) q^{17} +(-2.59808 - 1.50000i) q^{18} +(3.00000 - 1.73205i) q^{19} +(-10.5000 + 6.06218i) q^{21} -11.0000i q^{22} +(-24.2487 + 14.0000i) q^{23} +(10.5000 + 6.06218i) q^{24} +(-6.00000 + 3.46410i) q^{26} -5.19615 q^{27} +(18.1865 - 10.5000i) q^{28} -25.0000 q^{29} +(-28.5000 - 16.4545i) q^{31} +(-28.5788 - 16.5000i) q^{32} +(-9.52628 - 16.5000i) q^{33} +24.2487i q^{34} +9.00000 q^{36} +(-50.2295 + 29.0000i) q^{37} +(1.73205 - 3.00000i) q^{38} +(-6.00000 + 10.3923i) q^{39} -3.46410i q^{41} +(-6.06218 + 10.5000i) q^{42} -26.0000i q^{43} +(16.5000 + 28.5788i) q^{44} +(-14.0000 + 24.2487i) q^{46} +(-38.1051 - 66.0000i) q^{47} -8.66025 q^{48} +(24.5000 + 42.4352i) q^{49} +(21.0000 + 36.3731i) q^{51} +(10.3923 - 18.0000i) q^{52} +(26.8468 + 15.5000i) q^{53} +(-4.50000 + 2.59808i) q^{54} +(24.5000 - 42.4352i) q^{56} -6.00000i q^{57} +(-21.6506 + 12.5000i) q^{58} +(7.50000 + 4.33013i) q^{59} +(12.0000 - 6.92820i) q^{61} -32.9090 q^{62} +21.0000i q^{63} -13.0000 q^{64} +(-16.5000 - 9.52628i) q^{66} +(45.0333 + 26.0000i) q^{67} +(-36.3731 - 63.0000i) q^{68} +48.4974i q^{69} +64.0000 q^{71} +(18.1865 - 10.5000i) q^{72} +(3.46410 - 6.00000i) q^{73} +(-29.0000 + 50.2295i) q^{74} +10.3923i q^{76} +(-66.6840 + 38.5000i) q^{77} +12.0000i q^{78} +(8.50000 + 14.7224i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-1.73205 - 3.00000i) q^{82} -53.6936 q^{83} -36.3731i q^{84} +(-13.0000 - 22.5167i) q^{86} +(-21.6506 + 37.5000i) q^{87} +(66.6840 + 38.5000i) q^{88} +(69.0000 - 39.8372i) q^{89} +(42.0000 + 24.2487i) q^{91} -84.0000i q^{92} +(-49.3634 + 28.5000i) q^{93} +(-66.0000 - 38.1051i) q^{94} +(-49.5000 + 28.5788i) q^{96} +91.7987 q^{97} +(42.4352 + 24.5000i) q^{98} -33.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{4} - 6 q^{9} + 22 q^{11} - 28 q^{14} - 10 q^{16} + 12 q^{19} - 42 q^{21} + 42 q^{24} - 24 q^{26} - 100 q^{29} - 114 q^{31} + 36 q^{36} - 24 q^{39} + 66 q^{44} - 56 q^{46} + 98 q^{49} + 84 q^{51} - 18 q^{54} + 98 q^{56} + 30 q^{59} + 48 q^{61} - 52 q^{64} - 66 q^{66} + 256 q^{71} - 116 q^{74} + 34 q^{79} - 18 q^{81} - 52 q^{86} + 276 q^{89} + 168 q^{91} - 264 q^{94} - 198 q^{96} - 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.433013 0.250000i −0.267617 0.963525i \(-0.586236\pi\)
0.700629 + 0.713525i \(0.252903\pi\)
\(3\) 0.866025 1.50000i 0.288675 0.500000i
\(4\) −1.50000 + 2.59808i −0.375000 + 0.649519i
\(5\) 0 0
\(6\) 1.73205i 0.288675i
\(7\) −6.06218 3.50000i −0.866025 0.500000i
\(8\) 7.00000i 0.875000i
\(9\) −1.50000 2.59808i −0.166667 0.288675i
\(10\) 0 0
\(11\) 5.50000 9.52628i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(12\) 2.59808 + 4.50000i 0.216506 + 0.375000i
\(13\) −6.92820 −0.532939 −0.266469 0.963843i \(-0.585857\pi\)
−0.266469 + 0.963843i \(0.585857\pi\)
\(14\) −7.00000 −0.500000
\(15\) 0 0
\(16\) −2.50000 4.33013i −0.156250 0.270633i
\(17\) −12.1244 + 21.0000i −0.713197 + 1.23529i 0.250453 + 0.968129i \(0.419420\pi\)
−0.963651 + 0.267165i \(0.913913\pi\)
\(18\) −2.59808 1.50000i −0.144338 0.0833333i
\(19\) 3.00000 1.73205i 0.157895 0.0911606i −0.418971 0.908000i \(-0.637609\pi\)
0.576865 + 0.816839i \(0.304276\pi\)
\(20\) 0 0
\(21\) −10.5000 + 6.06218i −0.500000 + 0.288675i
\(22\) 11.0000i 0.500000i
\(23\) −24.2487 + 14.0000i −1.05429 + 0.608696i −0.923848 0.382760i \(-0.874974\pi\)
−0.130444 + 0.991456i \(0.541640\pi\)
\(24\) 10.5000 + 6.06218i 0.437500 + 0.252591i
\(25\) 0 0
\(26\) −6.00000 + 3.46410i −0.230769 + 0.133235i
\(27\) −5.19615 −0.192450
\(28\) 18.1865 10.5000i 0.649519 0.375000i
\(29\) −25.0000 −0.862069 −0.431034 0.902335i \(-0.641851\pi\)
−0.431034 + 0.902335i \(0.641851\pi\)
\(30\) 0 0
\(31\) −28.5000 16.4545i −0.919355 0.530790i −0.0359257 0.999354i \(-0.511438\pi\)
−0.883429 + 0.468565i \(0.844771\pi\)
\(32\) −28.5788 16.5000i −0.893089 0.515625i
\(33\) −9.52628 16.5000i −0.288675 0.500000i
\(34\) 24.2487i 0.713197i
\(35\) 0 0
\(36\) 9.00000 0.250000
\(37\) −50.2295 + 29.0000i −1.35755 + 0.783784i −0.989294 0.145939i \(-0.953380\pi\)
−0.368260 + 0.929723i \(0.620046\pi\)
\(38\) 1.73205 3.00000i 0.0455803 0.0789474i
\(39\) −6.00000 + 10.3923i −0.153846 + 0.266469i
\(40\) 0 0
\(41\) 3.46410i 0.0844903i −0.999107 0.0422451i \(-0.986549\pi\)
0.999107 0.0422451i \(-0.0134510\pi\)
\(42\) −6.06218 + 10.5000i −0.144338 + 0.250000i
\(43\) 26.0000i 0.604651i −0.953205 0.302326i \(-0.902237\pi\)
0.953205 0.302326i \(-0.0977630\pi\)
\(44\) 16.5000 + 28.5788i 0.375000 + 0.649519i
\(45\) 0 0
\(46\) −14.0000 + 24.2487i −0.304348 + 0.527146i
\(47\) −38.1051 66.0000i −0.810747 1.40426i −0.912342 0.409429i \(-0.865728\pi\)
0.101595 0.994826i \(-0.467606\pi\)
\(48\) −8.66025 −0.180422
\(49\) 24.5000 + 42.4352i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 21.0000 + 36.3731i 0.411765 + 0.713197i
\(52\) 10.3923 18.0000i 0.199852 0.346154i
\(53\) 26.8468 + 15.5000i 0.506543 + 0.292453i 0.731412 0.681936i \(-0.238862\pi\)
−0.224868 + 0.974389i \(0.572195\pi\)
\(54\) −4.50000 + 2.59808i −0.0833333 + 0.0481125i
\(55\) 0 0
\(56\) 24.5000 42.4352i 0.437500 0.757772i
\(57\) 6.00000i 0.105263i
\(58\) −21.6506 + 12.5000i −0.373287 + 0.215517i
\(59\) 7.50000 + 4.33013i 0.127119 + 0.0733920i 0.562211 0.826994i \(-0.309951\pi\)
−0.435092 + 0.900386i \(0.643284\pi\)
\(60\) 0 0
\(61\) 12.0000 6.92820i 0.196721 0.113577i −0.398404 0.917210i \(-0.630436\pi\)
0.595125 + 0.803633i \(0.297102\pi\)
\(62\) −32.9090 −0.530790
\(63\) 21.0000i 0.333333i
\(64\) −13.0000 −0.203125
\(65\) 0 0
\(66\) −16.5000 9.52628i −0.250000 0.144338i
\(67\) 45.0333 + 26.0000i 0.672139 + 0.388060i 0.796887 0.604129i \(-0.206479\pi\)
−0.124748 + 0.992189i \(0.539812\pi\)
\(68\) −36.3731 63.0000i −0.534898 0.926471i
\(69\) 48.4974i 0.702861i
\(70\) 0 0
\(71\) 64.0000 0.901408 0.450704 0.892673i \(-0.351173\pi\)
0.450704 + 0.892673i \(0.351173\pi\)
\(72\) 18.1865 10.5000i 0.252591 0.145833i
\(73\) 3.46410 6.00000i 0.0474534 0.0821918i −0.841323 0.540533i \(-0.818223\pi\)
0.888777 + 0.458341i \(0.151556\pi\)
\(74\) −29.0000 + 50.2295i −0.391892 + 0.678777i
\(75\) 0 0
\(76\) 10.3923i 0.136741i
\(77\) −66.6840 + 38.5000i −0.866025 + 0.500000i
\(78\) 12.0000i 0.153846i
\(79\) 8.50000 + 14.7224i 0.107595 + 0.186360i 0.914795 0.403917i \(-0.132352\pi\)
−0.807200 + 0.590277i \(0.799018\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) −1.73205 3.00000i −0.0211226 0.0365854i
\(83\) −53.6936 −0.646911 −0.323455 0.946243i \(-0.604845\pi\)
−0.323455 + 0.946243i \(0.604845\pi\)
\(84\) 36.3731i 0.433013i
\(85\) 0 0
\(86\) −13.0000 22.5167i −0.151163 0.261822i
\(87\) −21.6506 + 37.5000i −0.248858 + 0.431034i
\(88\) 66.6840 + 38.5000i 0.757772 + 0.437500i
\(89\) 69.0000 39.8372i 0.775281 0.447609i −0.0594743 0.998230i \(-0.518942\pi\)
0.834755 + 0.550621i \(0.185609\pi\)
\(90\) 0 0
\(91\) 42.0000 + 24.2487i 0.461538 + 0.266469i
\(92\) 84.0000i 0.913043i
\(93\) −49.3634 + 28.5000i −0.530790 + 0.306452i
\(94\) −66.0000 38.1051i −0.702128 0.405374i
\(95\) 0 0
\(96\) −49.5000 + 28.5788i −0.515625 + 0.297696i
\(97\) 91.7987 0.946378 0.473189 0.880961i \(-0.343103\pi\)
0.473189 + 0.880961i \(0.343103\pi\)
\(98\) 42.4352 + 24.5000i 0.433013 + 0.250000i
\(99\) −33.0000 −0.333333
\(100\) 0 0
\(101\) −18.0000 10.3923i −0.178218 0.102894i 0.408237 0.912876i \(-0.366144\pi\)
−0.586455 + 0.809982i \(0.699477\pi\)
\(102\) 36.3731 + 21.0000i 0.356599 + 0.205882i
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 48.4974i 0.466321i
\(105\) 0 0
\(106\) 31.0000 0.292453
\(107\) 26.8468 15.5000i 0.250905 0.144860i −0.369274 0.929321i \(-0.620394\pi\)
0.620178 + 0.784461i \(0.287060\pi\)
\(108\) 7.79423 13.5000i 0.0721688 0.125000i
\(109\) −68.0000 + 117.779i −0.623853 + 1.08055i 0.364908 + 0.931043i \(0.381100\pi\)
−0.988761 + 0.149502i \(0.952233\pi\)
\(110\) 0 0
\(111\) 100.459i 0.905036i
\(112\) 35.0000i 0.312500i
\(113\) 74.0000i 0.654867i 0.944874 + 0.327434i \(0.106184\pi\)
−0.944874 + 0.327434i \(0.893816\pi\)
\(114\) −3.00000 5.19615i −0.0263158 0.0455803i
\(115\) 0 0
\(116\) 37.5000 64.9519i 0.323276 0.559930i
\(117\) 10.3923 + 18.0000i 0.0888231 + 0.153846i
\(118\) 8.66025 0.0733920
\(119\) 147.000 84.8705i 1.23529 0.713197i
\(120\) 0 0
\(121\) 0 0
\(122\) 6.92820 12.0000i 0.0567886 0.0983607i
\(123\) −5.19615 3.00000i −0.0422451 0.0243902i
\(124\) 85.5000 49.3634i 0.689516 0.398092i
\(125\) 0 0
\(126\) 10.5000 + 18.1865i 0.0833333 + 0.144338i
\(127\) 1.00000i 0.00787402i −0.999992 0.00393701i \(-0.998747\pi\)
0.999992 0.00393701i \(-0.00125319\pi\)
\(128\) 103.057 59.5000i 0.805133 0.464844i
\(129\) −39.0000 22.5167i −0.302326 0.174548i
\(130\) 0 0
\(131\) 157.500 90.9327i 1.20229 0.694142i 0.241226 0.970469i \(-0.422450\pi\)
0.961064 + 0.276326i \(0.0891171\pi\)
\(132\) 57.1577 0.433013
\(133\) −24.2487 −0.182321
\(134\) 52.0000 0.388060
\(135\) 0 0
\(136\) −147.000 84.8705i −1.08088 0.624048i
\(137\) −76.2102 44.0000i −0.556279 0.321168i 0.195372 0.980729i \(-0.437409\pi\)
−0.751651 + 0.659561i \(0.770742\pi\)
\(138\) 24.2487 + 42.0000i 0.175715 + 0.304348i
\(139\) 190.526i 1.37069i −0.728220 0.685344i \(-0.759652\pi\)
0.728220 0.685344i \(-0.240348\pi\)
\(140\) 0 0
\(141\) −132.000 −0.936170
\(142\) 55.4256 32.0000i 0.390321 0.225352i
\(143\) −38.1051 + 66.0000i −0.266469 + 0.461538i
\(144\) −7.50000 + 12.9904i −0.0520833 + 0.0902110i
\(145\) 0 0
\(146\) 6.92820i 0.0474534i
\(147\) 84.8705 0.577350
\(148\) 174.000i 1.17568i
\(149\) −115.000 199.186i −0.771812 1.33682i −0.936569 0.350484i \(-0.886017\pi\)
0.164757 0.986334i \(-0.447316\pi\)
\(150\) 0 0
\(151\) −113.500 + 196.588i −0.751656 + 1.30191i 0.195364 + 0.980731i \(0.437411\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) 12.1244 + 21.0000i 0.0797655 + 0.138158i
\(153\) 72.7461 0.475465
\(154\) −38.5000 + 66.6840i −0.250000 + 0.433013i
\(155\) 0 0
\(156\) −18.0000 31.1769i −0.115385 0.199852i
\(157\) 24.2487 42.0000i 0.154450 0.267516i −0.778408 0.627758i \(-0.783973\pi\)
0.932859 + 0.360242i \(0.117306\pi\)
\(158\) 14.7224 + 8.50000i 0.0931799 + 0.0537975i
\(159\) 46.5000 26.8468i 0.292453 0.168848i
\(160\) 0 0
\(161\) 196.000 1.21739
\(162\) 9.00000i 0.0555556i
\(163\) −183.597 + 106.000i −1.12636 + 0.650307i −0.943018 0.332742i \(-0.892026\pi\)
−0.183346 + 0.983048i \(0.558693\pi\)
\(164\) 9.00000 + 5.19615i 0.0548780 + 0.0316839i
\(165\) 0 0
\(166\) −46.5000 + 26.8468i −0.280120 + 0.161728i
\(167\) 96.9948 0.580807 0.290404 0.956904i \(-0.406210\pi\)
0.290404 + 0.956904i \(0.406210\pi\)
\(168\) −42.4352 73.5000i −0.252591 0.437500i
\(169\) −121.000 −0.715976
\(170\) 0 0
\(171\) −9.00000 5.19615i −0.0526316 0.0303869i
\(172\) 67.5500 + 39.0000i 0.392732 + 0.226744i
\(173\) −107.387 186.000i −0.620735 1.07514i −0.989349 0.145562i \(-0.953501\pi\)
0.368614 0.929582i \(-0.379832\pi\)
\(174\) 43.3013i 0.248858i
\(175\) 0 0
\(176\) −55.0000 −0.312500
\(177\) 12.9904 7.50000i 0.0733920 0.0423729i
\(178\) 39.8372 69.0000i 0.223804 0.387640i
\(179\) 23.0000 39.8372i 0.128492 0.222554i −0.794601 0.607132i \(-0.792320\pi\)
0.923092 + 0.384578i \(0.125653\pi\)
\(180\) 0 0
\(181\) 31.1769i 0.172248i 0.996284 + 0.0861241i \(0.0274481\pi\)
−0.996284 + 0.0861241i \(0.972552\pi\)
\(182\) 48.4974 0.266469
\(183\) 24.0000i 0.131148i
\(184\) −98.0000 169.741i −0.532609 0.922505i
\(185\) 0 0
\(186\) −28.5000 + 49.3634i −0.153226 + 0.265395i
\(187\) 133.368 + 231.000i 0.713197 + 1.23529i
\(188\) 228.631 1.21612
\(189\) 31.5000 + 18.1865i 0.166667 + 0.0962250i
\(190\) 0 0
\(191\) −104.000 180.133i −0.544503 0.943106i −0.998638 0.0521735i \(-0.983385\pi\)
0.454135 0.890933i \(-0.349948\pi\)
\(192\) −11.2583 + 19.5000i −0.0586371 + 0.101562i
\(193\) 206.980 + 119.500i 1.07244 + 0.619171i 0.928846 0.370466i \(-0.120802\pi\)
0.143590 + 0.989637i \(0.454135\pi\)
\(194\) 79.5000 45.8993i 0.409794 0.236595i
\(195\) 0 0
\(196\) −147.000 −0.750000
\(197\) 26.0000i 0.131980i −0.997820 0.0659898i \(-0.978980\pi\)
0.997820 0.0659898i \(-0.0210205\pi\)
\(198\) −28.5788 + 16.5000i −0.144338 + 0.0833333i
\(199\) 210.000 + 121.244i 1.05528 + 0.609264i 0.924122 0.382098i \(-0.124798\pi\)
0.131155 + 0.991362i \(0.458132\pi\)
\(200\) 0 0
\(201\) 78.0000 45.0333i 0.388060 0.224046i
\(202\) −20.7846 −0.102894
\(203\) 151.554 + 87.5000i 0.746574 + 0.431034i
\(204\) −126.000 −0.617647
\(205\) 0 0
\(206\) 0 0
\(207\) 72.7461 + 42.0000i 0.351431 + 0.202899i
\(208\) 17.3205 + 30.0000i 0.0832717 + 0.144231i
\(209\) 38.1051i 0.182321i
\(210\) 0 0
\(211\) −52.0000 −0.246445 −0.123223 0.992379i \(-0.539323\pi\)
−0.123223 + 0.992379i \(0.539323\pi\)
\(212\) −80.5404 + 46.5000i −0.379907 + 0.219340i
\(213\) 55.4256 96.0000i 0.260214 0.450704i
\(214\) 15.5000 26.8468i 0.0724299 0.125452i
\(215\) 0 0
\(216\) 36.3731i 0.168394i
\(217\) 115.181 + 199.500i 0.530790 + 0.919355i
\(218\) 136.000i 0.623853i
\(219\) −6.00000 10.3923i −0.0273973 0.0474534i
\(220\) 0 0
\(221\) 84.0000 145.492i 0.380090 0.658336i
\(222\) 50.2295 + 87.0000i 0.226259 + 0.391892i
\(223\) 22.5167 0.100972 0.0504858 0.998725i \(-0.483923\pi\)
0.0504858 + 0.998725i \(0.483923\pi\)
\(224\) 115.500 + 200.052i 0.515625 + 0.893089i
\(225\) 0 0
\(226\) 37.0000 + 64.0859i 0.163717 + 0.283566i
\(227\) −33.7750 + 58.5000i −0.148789 + 0.257709i −0.930780 0.365580i \(-0.880871\pi\)
0.781991 + 0.623289i \(0.214204\pi\)
\(228\) 15.5885 + 9.00000i 0.0683704 + 0.0394737i
\(229\) 27.0000 15.5885i 0.117904 0.0680719i −0.439888 0.898053i \(-0.644982\pi\)
0.557792 + 0.829981i \(0.311649\pi\)
\(230\) 0 0
\(231\) 133.368i 0.577350i
\(232\) 175.000i 0.754310i
\(233\) −226.899 + 131.000i −0.973814 + 0.562232i −0.900397 0.435070i \(-0.856724\pi\)
−0.0734171 + 0.997301i \(0.523390\pi\)
\(234\) 18.0000 + 10.3923i 0.0769231 + 0.0444116i
\(235\) 0 0
\(236\) −22.5000 + 12.9904i −0.0953390 + 0.0550440i
\(237\) 29.4449 0.124240
\(238\) 84.8705 147.000i 0.356599 0.617647i
\(239\) −160.000 −0.669456 −0.334728 0.942315i \(-0.608644\pi\)
−0.334728 + 0.942315i \(0.608644\pi\)
\(240\) 0 0
\(241\) 409.500 + 236.425i 1.69917 + 0.981016i 0.946548 + 0.322564i \(0.104545\pi\)
0.752622 + 0.658452i \(0.228789\pi\)
\(242\) 0 0
\(243\) 7.79423 + 13.5000i 0.0320750 + 0.0555556i
\(244\) 41.5692i 0.170366i
\(245\) 0 0
\(246\) −6.00000 −0.0243902
\(247\) −20.7846 + 12.0000i −0.0841482 + 0.0485830i
\(248\) 115.181 199.500i 0.464441 0.804435i
\(249\) −46.5000 + 80.5404i −0.186747 + 0.323455i
\(250\) 0 0
\(251\) 67.5500i 0.269123i 0.990905 + 0.134562i \(0.0429626\pi\)
−0.990905 + 0.134562i \(0.957037\pi\)
\(252\) −54.5596 31.5000i −0.216506 0.125000i
\(253\) 308.000i 1.21739i
\(254\) −0.500000 0.866025i −0.00196850 0.00340955i
\(255\) 0 0
\(256\) 85.5000 148.090i 0.333984 0.578478i
\(257\) −202.650 351.000i −0.788521 1.36576i −0.926873 0.375376i \(-0.877514\pi\)
0.138352 0.990383i \(-0.455820\pi\)
\(258\) −45.0333 −0.174548
\(259\) 406.000 1.56757
\(260\) 0 0
\(261\) 37.5000 + 64.9519i 0.143678 + 0.248858i
\(262\) 90.9327 157.500i 0.347071 0.601145i
\(263\) 91.7987 + 53.0000i 0.349044 + 0.201521i 0.664264 0.747498i \(-0.268745\pi\)
−0.315220 + 0.949019i \(0.602078\pi\)
\(264\) 115.500 66.6840i 0.437500 0.252591i
\(265\) 0 0
\(266\) −21.0000 + 12.1244i −0.0789474 + 0.0455803i
\(267\) 138.000i 0.516854i
\(268\) −135.100 + 78.0000i −0.504104 + 0.291045i
\(269\) −376.500 217.372i −1.39963 0.808076i −0.405275 0.914195i \(-0.632824\pi\)
−0.994353 + 0.106119i \(0.966158\pi\)
\(270\) 0 0
\(271\) 109.500 63.2199i 0.404059 0.233284i −0.284175 0.958772i \(-0.591720\pi\)
0.688234 + 0.725489i \(0.258386\pi\)
\(272\) 121.244 0.445748
\(273\) 72.7461 42.0000i 0.266469 0.153846i
\(274\) −88.0000 −0.321168
\(275\) 0 0
\(276\) −126.000 72.7461i −0.456522 0.263573i
\(277\) −204.382 118.000i −0.737841 0.425993i 0.0834427 0.996513i \(-0.473408\pi\)
−0.821284 + 0.570520i \(0.806742\pi\)
\(278\) −95.2628 165.000i −0.342672 0.593525i
\(279\) 98.7269i 0.353860i
\(280\) 0 0
\(281\) −116.000 −0.412811 −0.206406 0.978466i \(-0.566177\pi\)
−0.206406 + 0.978466i \(0.566177\pi\)
\(282\) −114.315 + 66.0000i −0.405374 + 0.234043i
\(283\) −185.329 + 321.000i −0.654874 + 1.13428i 0.327051 + 0.945007i \(0.393945\pi\)
−0.981925 + 0.189269i \(0.939388\pi\)
\(284\) −96.0000 + 166.277i −0.338028 + 0.585482i
\(285\) 0 0
\(286\) 76.2102i 0.266469i
\(287\) −12.1244 + 21.0000i −0.0422451 + 0.0731707i
\(288\) 99.0000i 0.343750i
\(289\) −149.500 258.942i −0.517301 0.895992i
\(290\) 0 0
\(291\) 79.5000 137.698i 0.273196 0.473189i
\(292\) 10.3923 + 18.0000i 0.0355901 + 0.0616438i
\(293\) −19.0526 −0.0650258 −0.0325129 0.999471i \(-0.510351\pi\)
−0.0325129 + 0.999471i \(0.510351\pi\)
\(294\) 73.5000 42.4352i 0.250000 0.144338i
\(295\) 0 0
\(296\) −203.000 351.606i −0.685811 1.18786i
\(297\) −28.5788 + 49.5000i −0.0962250 + 0.166667i
\(298\) −199.186 115.000i −0.668409 0.385906i
\(299\) 168.000 96.9948i 0.561873 0.324397i
\(300\) 0 0
\(301\) −91.0000 + 157.617i −0.302326 + 0.523643i
\(302\) 227.000i 0.751656i
\(303\) −31.1769 + 18.0000i −0.102894 + 0.0594059i
\(304\) −15.0000 8.66025i −0.0493421 0.0284877i
\(305\) 0 0
\(306\) 63.0000 36.3731i 0.205882 0.118866i
\(307\) −457.261 −1.48945 −0.744725 0.667371i \(-0.767420\pi\)
−0.744725 + 0.667371i \(0.767420\pi\)
\(308\) 231.000i 0.750000i
\(309\) 0 0
\(310\) 0 0
\(311\) 285.000 + 164.545i 0.916399 + 0.529083i 0.882484 0.470342i \(-0.155869\pi\)
0.0339143 + 0.999425i \(0.489203\pi\)
\(312\) −72.7461 42.0000i −0.233161 0.134615i
\(313\) −274.530 475.500i −0.877093 1.51917i −0.854517 0.519424i \(-0.826146\pi\)
−0.0225763 0.999745i \(-0.507187\pi\)
\(314\) 48.4974i 0.154450i
\(315\) 0 0
\(316\) −51.0000 −0.161392
\(317\) 161.947 93.5000i 0.510873 0.294953i −0.222319 0.974974i \(-0.571363\pi\)
0.733192 + 0.680021i \(0.238029\pi\)
\(318\) 26.8468 46.5000i 0.0844239 0.146226i
\(319\) −137.500 + 238.157i −0.431034 + 0.746574i
\(320\) 0 0
\(321\) 53.6936i 0.167270i
\(322\) 169.741 98.0000i 0.527146 0.304348i
\(323\) 84.0000i 0.260062i
\(324\) −13.5000 23.3827i −0.0416667 0.0721688i
\(325\) 0 0
\(326\) −106.000 + 183.597i −0.325153 + 0.563182i
\(327\) 117.779 + 204.000i 0.360182 + 0.623853i
\(328\) 24.2487 0.0739290
\(329\) 533.472i 1.62149i
\(330\) 0 0
\(331\) 8.00000 + 13.8564i 0.0241692 + 0.0418623i 0.877857 0.478923i \(-0.158973\pi\)
−0.853688 + 0.520785i \(0.825639\pi\)
\(332\) 80.5404 139.500i 0.242591 0.420181i
\(333\) 150.688 + 87.0000i 0.452518 + 0.261261i
\(334\) 84.0000 48.4974i 0.251497 0.145202i
\(335\) 0 0
\(336\) 52.5000 + 30.3109i 0.156250 + 0.0902110i
\(337\) 83.0000i 0.246291i 0.992389 + 0.123145i \(0.0392982\pi\)
−0.992389 + 0.123145i \(0.960702\pi\)
\(338\) −104.789 + 60.5000i −0.310027 + 0.178994i
\(339\) 111.000 + 64.0859i 0.327434 + 0.189044i
\(340\) 0 0
\(341\) −313.500 + 180.999i −0.919355 + 0.530790i
\(342\) −10.3923 −0.0303869
\(343\) 343.000i 1.00000i
\(344\) 182.000 0.529070
\(345\) 0 0
\(346\) −186.000 107.387i −0.537572 0.310367i
\(347\) −310.037 179.000i −0.893479 0.515850i −0.0183999 0.999831i \(-0.505857\pi\)
−0.875079 + 0.483981i \(0.839191\pi\)
\(348\) −64.9519 112.500i −0.186643 0.323276i
\(349\) 678.964i 1.94546i 0.231950 + 0.972728i \(0.425489\pi\)
−0.231950 + 0.972728i \(0.574511\pi\)
\(350\) 0 0
\(351\) 36.0000 0.102564
\(352\) −314.367 + 181.500i −0.893089 + 0.515625i
\(353\) −322.161 + 558.000i −0.912639 + 1.58074i −0.102317 + 0.994752i \(0.532625\pi\)
−0.810322 + 0.585985i \(0.800708\pi\)
\(354\) 7.50000 12.9904i 0.0211864 0.0366960i
\(355\) 0 0
\(356\) 239.023i 0.671413i
\(357\) 294.000i 0.823529i
\(358\) 46.0000i 0.128492i
\(359\) −142.000 245.951i −0.395543 0.685101i 0.597627 0.801774i \(-0.296110\pi\)
−0.993170 + 0.116673i \(0.962777\pi\)
\(360\) 0 0
\(361\) −174.500 + 302.243i −0.483380 + 0.837238i
\(362\) 15.5885 + 27.0000i 0.0430620 + 0.0745856i
\(363\) 0 0
\(364\) −126.000 + 72.7461i −0.346154 + 0.199852i
\(365\) 0 0
\(366\) −12.0000 20.7846i −0.0327869 0.0567886i
\(367\) −137.698 + 238.500i −0.375199 + 0.649864i −0.990357 0.138540i \(-0.955759\pi\)
0.615158 + 0.788404i \(0.289092\pi\)
\(368\) 121.244 + 70.0000i 0.329466 + 0.190217i
\(369\) −9.00000 + 5.19615i −0.0243902 + 0.0140817i
\(370\) 0 0
\(371\) −108.500 187.928i −0.292453 0.506543i
\(372\) 171.000i 0.459677i
\(373\) −43.3013 + 25.0000i −0.116089 + 0.0670241i −0.556920 0.830566i \(-0.688017\pi\)
0.440831 + 0.897590i \(0.354684\pi\)
\(374\) 231.000 + 133.368i 0.617647 + 0.356599i
\(375\) 0 0
\(376\) 462.000 266.736i 1.22872 0.709404i
\(377\) 173.205 0.459430
\(378\) 36.3731 0.0962250
\(379\) −458.000 −1.20844 −0.604222 0.796816i \(-0.706516\pi\)
−0.604222 + 0.796816i \(0.706516\pi\)
\(380\) 0 0
\(381\) −1.50000 0.866025i −0.00393701 0.00227303i
\(382\) −180.133 104.000i −0.471553 0.272251i
\(383\) −202.650 351.000i −0.529112 0.916449i −0.999424 0.0339486i \(-0.989192\pi\)
0.470311 0.882501i \(-0.344142\pi\)
\(384\) 206.114i 0.536755i
\(385\) 0 0
\(386\) 239.000 0.619171
\(387\) −67.5500 + 39.0000i −0.174548 + 0.100775i
\(388\) −137.698 + 238.500i −0.354892 + 0.614691i
\(389\) −349.000 + 604.486i −0.897172 + 1.55395i −0.0660793 + 0.997814i \(0.521049\pi\)
−0.831093 + 0.556134i \(0.812284\pi\)
\(390\) 0 0
\(391\) 678.964i 1.73648i
\(392\) −297.047 + 171.500i −0.757772 + 0.437500i
\(393\) 315.000i 0.801527i
\(394\) −13.0000 22.5167i −0.0329949 0.0571489i
\(395\) 0 0
\(396\) 49.5000 85.7365i 0.125000 0.216506i
\(397\) −287.520 498.000i −0.724233 1.25441i −0.959289 0.282426i \(-0.908861\pi\)
0.235056 0.971982i \(-0.424473\pi\)
\(398\) 242.487 0.609264
\(399\) −21.0000 + 36.3731i −0.0526316 + 0.0911606i
\(400\) 0 0
\(401\) 142.000 + 245.951i 0.354115 + 0.613345i 0.986966 0.160929i \(-0.0514489\pi\)
−0.632851 + 0.774273i \(0.718116\pi\)
\(402\) 45.0333 78.0000i 0.112023 0.194030i
\(403\) 197.454 + 114.000i 0.489960 + 0.282878i
\(404\) 54.0000 31.1769i 0.133663 0.0771706i
\(405\) 0 0
\(406\) 175.000 0.431034
\(407\) 638.000i 1.56757i
\(408\) −254.611 + 147.000i −0.624048 + 0.360294i
\(409\) 181.500 + 104.789i 0.443765 + 0.256208i 0.705193 0.709015i \(-0.250860\pi\)
−0.261428 + 0.965223i \(0.584193\pi\)
\(410\) 0 0
\(411\) −132.000 + 76.2102i −0.321168 + 0.185426i
\(412\) 0 0
\(413\) −30.3109 52.5000i −0.0733920 0.127119i
\(414\) 84.0000 0.202899
\(415\) 0 0
\(416\) 198.000 + 114.315i 0.475962 + 0.274797i
\(417\) −285.788 165.000i −0.685344 0.395683i
\(418\) −19.0526 33.0000i −0.0455803 0.0789474i
\(419\) 131.636i 0.314167i −0.987585 0.157083i \(-0.949791\pi\)
0.987585 0.157083i \(-0.0502091\pi\)
\(420\) 0 0
\(421\) −28.0000 −0.0665083 −0.0332542 0.999447i \(-0.510587\pi\)
−0.0332542 + 0.999447i \(0.510587\pi\)
\(422\) −45.0333 + 26.0000i −0.106714 + 0.0616114i
\(423\) −114.315 + 198.000i −0.270249 + 0.468085i
\(424\) −108.500 + 187.928i −0.255896 + 0.443225i
\(425\) 0 0
\(426\) 110.851i 0.260214i
\(427\) −96.9948 −0.227154
\(428\) 93.0000i 0.217290i
\(429\) 66.0000 + 114.315i 0.153846 + 0.266469i
\(430\) 0 0
\(431\) −59.0000 + 102.191i −0.136891 + 0.237102i −0.926318 0.376742i \(-0.877044\pi\)
0.789427 + 0.613844i \(0.210378\pi\)
\(432\) 12.9904 + 22.5000i 0.0300703 + 0.0520833i
\(433\) 561.184 1.29604 0.648019 0.761624i \(-0.275598\pi\)
0.648019 + 0.761624i \(0.275598\pi\)
\(434\) 199.500 + 115.181i 0.459677 + 0.265395i
\(435\) 0 0
\(436\) −204.000 353.338i −0.467890 0.810409i
\(437\) −48.4974 + 84.0000i −0.110978 + 0.192220i
\(438\) −10.3923 6.00000i −0.0237267 0.0136986i
\(439\) 640.500 369.793i 1.45900 0.842353i 0.460036 0.887900i \(-0.347837\pi\)
0.998962 + 0.0455478i \(0.0145033\pi\)
\(440\) 0 0
\(441\) 73.5000 127.306i 0.166667 0.288675i
\(442\) 168.000i 0.380090i
\(443\) 134.234 77.5000i 0.303011 0.174944i −0.340784 0.940142i \(-0.610692\pi\)
0.643795 + 0.765198i \(0.277359\pi\)
\(444\) −261.000 150.688i −0.587838 0.339388i
\(445\) 0 0
\(446\) 19.5000 11.2583i 0.0437220 0.0252429i
\(447\) −398.372 −0.891212
\(448\) 78.8083 + 45.5000i 0.175911 + 0.101562i
\(449\) 368.000 0.819599 0.409800 0.912176i \(-0.365599\pi\)
0.409800 + 0.912176i \(0.365599\pi\)
\(450\) 0 0
\(451\) −33.0000 19.0526i −0.0731707 0.0422451i
\(452\) −192.258 111.000i −0.425349 0.245575i
\(453\) 196.588 + 340.500i 0.433969 + 0.751656i
\(454\) 67.5500i 0.148789i
\(455\) 0 0
\(456\) 42.0000 0.0921053
\(457\) 295.315 170.500i 0.646203 0.373085i −0.140797 0.990038i \(-0.544967\pi\)
0.787000 + 0.616953i \(0.211633\pi\)
\(458\) 15.5885 27.0000i 0.0340359 0.0589520i
\(459\) 63.0000 109.119i 0.137255 0.237732i
\(460\) 0 0
\(461\) 55.4256i 0.120229i 0.998191 + 0.0601146i \(0.0191466\pi\)
−0.998191 + 0.0601146i \(0.980853\pi\)
\(462\) 66.6840 + 115.500i 0.144338 + 0.250000i
\(463\) 178.000i 0.384449i 0.981351 + 0.192225i \(0.0615702\pi\)
−0.981351 + 0.192225i \(0.938430\pi\)
\(464\) 62.5000 + 108.253i 0.134698 + 0.233304i
\(465\) 0 0
\(466\) −131.000 + 226.899i −0.281116 + 0.486907i
\(467\) 329.090 + 570.000i 0.704689 + 1.22056i 0.966804 + 0.255520i \(0.0822467\pi\)
−0.262115 + 0.965037i \(0.584420\pi\)
\(468\) −62.3538 −0.133235
\(469\) −182.000 315.233i −0.388060 0.672139i
\(470\) 0 0
\(471\) −42.0000 72.7461i −0.0891720 0.154450i
\(472\) −30.3109 + 52.5000i −0.0642180 + 0.111229i
\(473\) −247.683 143.000i −0.523643 0.302326i
\(474\) 25.5000 14.7224i 0.0537975 0.0310600i
\(475\) 0 0
\(476\) 509.223i 1.06980i
\(477\) 93.0000i 0.194969i
\(478\) −138.564 + 80.0000i −0.289883 + 0.167364i
\(479\) −441.000 254.611i −0.920668 0.531548i −0.0368199 0.999322i \(-0.511723\pi\)
−0.883848 + 0.467774i \(0.845056\pi\)
\(480\) 0 0
\(481\) 348.000 200.918i 0.723493 0.417709i
\(482\) 472.850 0.981016
\(483\) 169.741 294.000i 0.351431 0.608696i
\(484\) 0 0
\(485\) 0 0
\(486\) 13.5000 + 7.79423i 0.0277778 + 0.0160375i
\(487\) 728.327 + 420.500i 1.49554 + 0.863450i 0.999987 0.00512864i \(-0.00163251\pi\)
0.495552 + 0.868578i \(0.334966\pi\)
\(488\) 48.4974 + 84.0000i 0.0993800 + 0.172131i
\(489\) 367.195i 0.750910i
\(490\) 0 0
\(491\) −959.000 −1.95316 −0.976578 0.215162i \(-0.930972\pi\)
−0.976578 + 0.215162i \(0.930972\pi\)
\(492\) 15.5885 9.00000i 0.0316839 0.0182927i
\(493\) 303.109 525.000i 0.614825 1.06491i
\(494\) −12.0000 + 20.7846i −0.0242915 + 0.0420741i
\(495\) 0 0
\(496\) 164.545i 0.331744i
\(497\) −387.979 224.000i −0.780643 0.450704i
\(498\) 93.0000i 0.186747i
\(499\) −59.0000 102.191i −0.118236 0.204792i 0.800832 0.598889i \(-0.204391\pi\)
−0.919069 + 0.394097i \(0.871057\pi\)
\(500\) 0 0
\(501\) 84.0000 145.492i 0.167665 0.290404i
\(502\) 33.7750 + 58.5000i 0.0672809 + 0.116534i
\(503\) −363.731 −0.723123 −0.361561 0.932348i \(-0.617756\pi\)
−0.361561 + 0.932348i \(0.617756\pi\)
\(504\) −147.000 −0.291667
\(505\) 0 0
\(506\) 154.000 + 266.736i 0.304348 + 0.527146i
\(507\) −104.789 + 181.500i −0.206685 + 0.357988i
\(508\) 2.59808 + 1.50000i 0.00511432 + 0.00295276i
\(509\) −382.500 + 220.836i −0.751473 + 0.433863i −0.826226 0.563339i \(-0.809517\pi\)
0.0747526 + 0.997202i \(0.476183\pi\)
\(510\) 0 0
\(511\) −42.0000 + 24.2487i −0.0821918 + 0.0474534i
\(512\) 305.000i 0.595703i
\(513\) −15.5885 + 9.00000i −0.0303869 + 0.0175439i
\(514\) −351.000 202.650i −0.682879 0.394261i
\(515\) 0 0
\(516\) 117.000 67.5500i 0.226744 0.130911i
\(517\) −838.313 −1.62149
\(518\) 351.606 203.000i 0.678777 0.391892i
\(519\) −372.000 −0.716763
\(520\) 0 0
\(521\) −843.000 486.706i −1.61804 0.934177i −0.987426 0.158082i \(-0.949469\pi\)
−0.630616 0.776095i \(-0.717198\pi\)
\(522\) 64.9519 + 37.5000i 0.124429 + 0.0718391i
\(523\) 235.559 + 408.000i 0.450399 + 0.780115i 0.998411 0.0563562i \(-0.0179483\pi\)
−0.548011 + 0.836471i \(0.684615\pi\)
\(524\) 545.596i 1.04121i
\(525\) 0 0
\(526\) 106.000 0.201521
\(527\) 691.088 399.000i 1.31136 0.757116i
\(528\) −47.6314 + 82.5000i −0.0902110 + 0.156250i
\(529\) 127.500 220.836i 0.241021 0.417460i
\(530\) 0 0
\(531\) 25.9808i 0.0489280i
\(532\) 36.3731 63.0000i 0.0683704 0.118421i
\(533\) 24.0000i 0.0450281i
\(534\) −69.0000 119.512i −0.129213 0.223804i
\(535\) 0 0
\(536\) −182.000 + 315.233i −0.339552 + 0.588122i
\(537\) −39.8372 69.0000i −0.0741847 0.128492i
\(538\) −434.745 −0.808076
\(539\) 539.000 1.00000
\(540\) 0 0
\(541\) −403.000 698.016i −0.744917 1.29023i −0.950234 0.311538i \(-0.899156\pi\)
0.205317 0.978696i \(-0.434178\pi\)
\(542\) 63.2199 109.500i 0.116642 0.202030i
\(543\) 46.7654 + 27.0000i 0.0861241 + 0.0497238i
\(544\) 693.000 400.104i 1.27390 0.735485i
\(545\) 0 0
\(546\) 42.0000 72.7461i 0.0769231 0.133235i
\(547\) 154.000i 0.281536i −0.990043 0.140768i \(-0.955043\pi\)
0.990043 0.140768i \(-0.0449571\pi\)
\(548\) 228.631 132.000i 0.417209 0.240876i
\(549\) −36.0000 20.7846i −0.0655738 0.0378590i
\(550\) 0 0
\(551\) −75.0000 + 43.3013i −0.136116 + 0.0785867i
\(552\) −339.482 −0.615004
\(553\) 119.000i 0.215190i
\(554\) −236.000 −0.425993
\(555\) 0 0
\(556\) 495.000 + 285.788i 0.890288 + 0.514008i
\(557\) 736.988 + 425.500i 1.32314 + 0.763914i 0.984228 0.176905i \(-0.0566086\pi\)
0.338910 + 0.940819i \(0.389942\pi\)
\(558\) 49.3634 + 85.5000i 0.0884650 + 0.153226i
\(559\) 180.133i 0.322242i
\(560\) 0 0
\(561\) 462.000 0.823529
\(562\) −100.459 + 58.0000i −0.178753 + 0.103203i
\(563\) 213.908 370.500i 0.379944 0.658082i −0.611110 0.791546i \(-0.709277\pi\)
0.991054 + 0.133464i \(0.0426100\pi\)
\(564\) 198.000 342.946i 0.351064 0.608060i
\(565\) 0 0
\(566\) 370.659i 0.654874i
\(567\) 54.5596 31.5000i 0.0962250 0.0555556i
\(568\) 448.000i 0.788732i
\(569\) −409.000 708.409i −0.718805 1.24501i −0.961474 0.274897i \(-0.911356\pi\)
0.242669 0.970109i \(-0.421977\pi\)
\(570\) 0 0
\(571\) −142.000 + 245.951i −0.248687 + 0.430738i −0.963162 0.268923i \(-0.913332\pi\)
0.714475 + 0.699661i \(0.246666\pi\)
\(572\) −114.315 198.000i −0.199852 0.346154i
\(573\) −360.267 −0.628737
\(574\) 24.2487i 0.0422451i
\(575\) 0 0
\(576\) 19.5000 + 33.7750i 0.0338542 + 0.0586371i
\(577\) 378.453 655.500i 0.655898 1.13605i −0.325770 0.945449i \(-0.605623\pi\)
0.981668 0.190599i \(-0.0610432\pi\)
\(578\) −258.942 149.500i −0.447996 0.258651i
\(579\) 358.500 206.980i 0.619171 0.357479i
\(580\) 0 0
\(581\) 325.500 + 187.928i 0.560241 + 0.323455i
\(582\) 159.000i 0.273196i
\(583\) 295.315 170.500i 0.506543 0.292453i
\(584\) 42.0000 + 24.2487i 0.0719178 + 0.0415218i
\(585\) 0 0
\(586\) −16.5000 + 9.52628i −0.0281570 + 0.0162564i
\(587\) 947.432 1.61402 0.807012 0.590535i \(-0.201083\pi\)
0.807012 + 0.590535i \(0.201083\pi\)
\(588\) −127.306 + 220.500i −0.216506 + 0.375000i
\(589\) −114.000 −0.193548
\(590\) 0 0
\(591\) −39.0000 22.5167i −0.0659898 0.0380993i
\(592\) 251.147 + 145.000i 0.424235 + 0.244932i
\(593\) −204.382 354.000i −0.344658 0.596965i 0.640634 0.767847i \(-0.278672\pi\)
−0.985292 + 0.170882i \(0.945338\pi\)
\(594\) 57.1577i 0.0962250i
\(595\) 0 0
\(596\) 690.000 1.15772
\(597\) 363.731 210.000i 0.609264 0.351759i
\(598\) 96.9948 168.000i 0.162199 0.280936i
\(599\) 278.000 481.510i 0.464107 0.803857i −0.535054 0.844818i \(-0.679709\pi\)
0.999161 + 0.0409613i \(0.0130420\pi\)
\(600\) 0 0
\(601\) 580.237i 0.965453i −0.875771 0.482726i \(-0.839647\pi\)
0.875771 0.482726i \(-0.160353\pi\)
\(602\) 182.000i 0.302326i
\(603\) 156.000i 0.258706i
\(604\) −340.500 589.763i −0.563742 0.976429i
\(605\) 0 0
\(606\) −18.0000 + 31.1769i −0.0297030 + 0.0514471i
\(607\) 329.956 + 571.500i 0.543584 + 0.941516i 0.998695 + 0.0510805i \(0.0162665\pi\)
−0.455110 + 0.890435i \(0.650400\pi\)
\(608\) −114.315 −0.188019
\(609\) 262.500 151.554i 0.431034 0.248858i
\(610\) 0 0
\(611\) 264.000 + 457.261i 0.432079 + 0.748382i
\(612\) −109.119 + 189.000i −0.178299 + 0.308824i
\(613\) 277.128 + 160.000i 0.452085 + 0.261011i 0.708710 0.705500i \(-0.249277\pi\)
−0.256625 + 0.966511i \(0.582611\pi\)
\(614\) −396.000 + 228.631i −0.644951 + 0.372363i
\(615\) 0 0
\(616\) −269.500 466.788i −0.437500 0.757772i
\(617\) 652.000i 1.05673i 0.849019 + 0.528363i \(0.177194\pi\)
−0.849019 + 0.528363i \(0.822806\pi\)
\(618\) 0 0
\(619\) 558.000 + 322.161i 0.901454 + 0.520455i 0.877672 0.479262i \(-0.159096\pi\)
0.0237823 + 0.999717i \(0.492429\pi\)
\(620\) 0 0
\(621\) 126.000 72.7461i 0.202899 0.117144i
\(622\) 329.090 0.529083
\(623\) −557.720 −0.895217
\(624\) 60.0000 0.0961538
\(625\) 0 0
\(626\) −475.500 274.530i −0.759585 0.438546i
\(627\) −57.1577 33.0000i −0.0911606 0.0526316i
\(628\) 72.7461 + 126.000i 0.115838 + 0.200637i
\(629\) 1406.43i 2.23597i
\(630\) 0 0
\(631\) −97.0000 −0.153724 −0.0768621 0.997042i \(-0.524490\pi\)
−0.0768621 + 0.997042i \(0.524490\pi\)
\(632\) −103.057 + 59.5000i −0.163065 + 0.0941456i
\(633\) −45.0333 + 78.0000i −0.0711427 + 0.123223i
\(634\) 93.5000 161.947i 0.147476 0.255437i
\(635\) 0 0
\(636\) 161.081i 0.253272i
\(637\) −169.741 294.000i −0.266469 0.461538i
\(638\) 275.000i 0.431034i
\(639\) −96.0000 166.277i −0.150235 0.260214i
\(640\) 0 0
\(641\) −350.000 + 606.218i −0.546022 + 0.945738i 0.452520 + 0.891754i \(0.350525\pi\)
−0.998542 + 0.0539833i \(0.982808\pi\)
\(642\) −26.8468 46.5000i −0.0418174 0.0724299i
\(643\) 325.626 0.506416 0.253208 0.967412i \(-0.418514\pi\)
0.253208 + 0.967412i \(0.418514\pi\)
\(644\) −294.000 + 509.223i −0.456522 + 0.790719i
\(645\) 0 0
\(646\) 42.0000 + 72.7461i 0.0650155 + 0.112610i
\(647\) 180.133 312.000i 0.278413 0.482226i −0.692577 0.721344i \(-0.743525\pi\)
0.970991 + 0.239118i \(0.0768582\pi\)
\(648\) −54.5596 31.5000i −0.0841969 0.0486111i
\(649\) 82.5000 47.6314i 0.127119 0.0733920i
\(650\) 0 0
\(651\) 399.000 0.612903
\(652\) 636.000i 0.975460i
\(653\) −323.027 + 186.500i −0.494682 + 0.285605i −0.726515 0.687151i \(-0.758861\pi\)
0.231833 + 0.972756i \(0.425528\pi\)
\(654\) 204.000 + 117.779i 0.311927 + 0.180091i
\(655\) 0 0
\(656\) −15.0000 + 8.66025i −0.0228659 + 0.0132016i
\(657\) −20.7846 −0.0316356
\(658\) 266.736 + 462.000i 0.405374 + 0.702128i
\(659\) 818.000 1.24127 0.620637 0.784098i \(-0.286874\pi\)
0.620637 + 0.784098i \(0.286874\pi\)
\(660\) 0 0
\(661\) 327.000 + 188.794i 0.494705 + 0.285618i 0.726524 0.687141i \(-0.241134\pi\)
−0.231819 + 0.972759i \(0.574468\pi\)
\(662\) 13.8564 + 8.00000i 0.0209311 + 0.0120846i
\(663\) −145.492 252.000i −0.219445 0.380090i
\(664\) 375.855i 0.566047i
\(665\) 0 0
\(666\) 174.000 0.261261
\(667\) 606.218 350.000i 0.908872 0.524738i
\(668\) −145.492 + 252.000i −0.217803 + 0.377246i
\(669\) 19.5000 33.7750i 0.0291480 0.0504858i
\(670\) 0 0
\(671\) 152.420i 0.227154i
\(672\) 400.104 0.595392
\(673\) 1205.00i 1.79049i −0.445574 0.895245i \(-0.647000\pi\)
0.445574 0.895245i \(-0.353000\pi\)
\(674\) 41.5000 + 71.8801i 0.0615727 + 0.106647i
\(675\) 0 0
\(676\) 181.500 314.367i 0.268491 0.465040i
\(677\) −269.334 466.500i −0.397834 0.689069i 0.595624 0.803263i \(-0.296905\pi\)
−0.993458 + 0.114194i \(0.963571\pi\)
\(678\) 128.172 0.189044
\(679\) −556.500 321.295i −0.819588 0.473189i
\(680\) 0 0
\(681\) 58.5000 + 101.325i 0.0859031 + 0.148789i
\(682\) −180.999 + 313.500i −0.265395 + 0.459677i
\(683\) 821.858 + 474.500i 1.20331 + 0.694729i 0.961289 0.275543i \(-0.0888576\pi\)
0.242017 + 0.970272i \(0.422191\pi\)
\(684\) 27.0000 15.5885i 0.0394737 0.0227901i
\(685\) 0 0
\(686\) −171.500 297.047i −0.250000 0.433013i
\(687\) 54.0000i 0.0786026i
\(688\) −112.583 + 65.0000i −0.163639 + 0.0944767i
\(689\) −186.000 107.387i −0.269956 0.155859i
\(690\) 0 0
\(691\) −267.000 + 154.153i −0.386397 + 0.223086i −0.680598 0.732657i \(-0.738280\pi\)
0.294201 + 0.955744i \(0.404946\pi\)
\(692\) 644.323 0.931102
\(693\) 200.052 + 115.500i 0.288675 + 0.166667i
\(694\) −358.000 −0.515850
\(695\) 0 0
\(696\) −262.500 151.554i −0.377155 0.217751i
\(697\) 72.7461 + 42.0000i 0.104370 + 0.0602582i
\(698\) 339.482 + 588.000i 0.486364 + 0.842407i
\(699\) 453.797i 0.649209i
\(700\) 0 0
\(701\) −413.000 −0.589158 −0.294579 0.955627i \(-0.595179\pi\)
−0.294579 + 0.955627i \(0.595179\pi\)
\(702\) 31.1769 18.0000i 0.0444116 0.0256410i
\(703\) −100.459 + 174.000i −0.142900 + 0.247511i
\(704\) −71.5000 + 123.842i −0.101562 + 0.175911i
\(705\) 0 0
\(706\) 644.323i 0.912639i
\(707\) 72.7461 + 126.000i 0.102894 + 0.178218i
\(708\) 45.0000i 0.0635593i
\(709\) 445.000 + 770.763i 0.627645 + 1.08711i 0.988023 + 0.154306i \(0.0493142\pi\)
−0.360379 + 0.932806i \(0.617352\pi\)
\(710\) 0 0
\(711\) 25.5000 44.1673i 0.0358650 0.0621200i
\(712\) 278.860 + 483.000i 0.391658 + 0.678371i
\(713\) 921.451 1.29236
\(714\) −147.000 254.611i −0.205882 0.356599i
\(715\) 0 0
\(716\) 69.0000 + 119.512i 0.0963687 + 0.166916i
\(717\) −138.564 + 240.000i −0.193255 + 0.334728i
\(718\) −245.951 142.000i −0.342550 0.197772i
\(719\) −579.000 + 334.286i −0.805285 + 0.464932i −0.845316 0.534267i \(-0.820588\pi\)
0.0400307 + 0.999198i \(0.487254\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 349.000i 0.483380i
\(723\) 709.275 409.500i 0.981016 0.566390i
\(724\) −81.0000 46.7654i −0.111878 0.0645931i
\(725\) 0 0
\(726\) 0 0
\(727\) −417.424 −0.574174 −0.287087 0.957905i \(-0.592687\pi\)
−0.287087 + 0.957905i \(0.592687\pi\)
\(728\) −169.741 + 294.000i −0.233161 + 0.403846i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 546.000 + 315.233i 0.746922 + 0.431236i
\(732\) 62.3538 + 36.0000i 0.0851828 + 0.0491803i
\(733\) −98.7269 171.000i −0.134689 0.233288i 0.790790 0.612088i \(-0.209670\pi\)
−0.925479 + 0.378800i \(0.876337\pi\)
\(734\) 275.396i 0.375199i
\(735\) 0 0
\(736\) 924.000 1.25543
\(737\) 495.367 286.000i 0.672139 0.388060i
\(738\) −5.19615 + 9.00000i −0.00704086 + 0.0121951i
\(739\) −155.000 + 268.468i −0.209743 + 0.363285i −0.951633 0.307236i \(-0.900596\pi\)
0.741891 + 0.670521i \(0.233929\pi\)
\(740\) 0 0
\(741\) 41.5692i 0.0560988i
\(742\) −187.928 108.500i −0.253272 0.146226i
\(743\) 812.000i 1.09287i 0.837503 + 0.546433i \(0.184015\pi\)
−0.837503 + 0.546433i \(0.815985\pi\)
\(744\) −199.500 345.544i −0.268145 0.464441i
\(745\) 0 0
\(746\) −25.0000 + 43.3013i −0.0335121 + 0.0580446i
\(747\) 80.5404 + 139.500i 0.107818 + 0.186747i
\(748\) −800.207 −1.06980
\(749\) −217.000 −0.289720
\(750\) 0 0
\(751\) 537.500 + 930.977i 0.715712 + 1.23965i 0.962684 + 0.270628i \(0.0872312\pi\)
−0.246972 + 0.969023i \(0.579435\pi\)
\(752\) −190.526 + 330.000i −0.253358 + 0.438830i
\(753\) 101.325 + 58.5000i 0.134562 + 0.0776892i
\(754\) 150.000 86.6025i 0.198939 0.114857i
\(755\) 0 0
\(756\) −94.5000 + 54.5596i −0.125000 + 0.0721688i
\(757\) 484.000i 0.639366i −0.947525 0.319683i \(-0.896424\pi\)
0.947525 0.319683i \(-0.103576\pi\)
\(758\) −396.640 + 229.000i −0.523271 + 0.302111i
\(759\) 462.000 + 266.736i 0.608696 + 0.351431i
\(760\) 0 0
\(761\) 144.000 83.1384i 0.189225 0.109249i −0.402395 0.915466i \(-0.631822\pi\)
0.591620 + 0.806217i \(0.298489\pi\)
\(762\) −1.73205 −0.00227303
\(763\) 824.456 476.000i 1.08055 0.623853i
\(764\) 624.000 0.816754
\(765\) 0 0
\(766\) −351.000 202.650i −0.458225 0.264556i
\(767\) −51.9615 30.0000i −0.0677464 0.0391134i
\(768\) −148.090 256.500i −0.192826 0.333984i
\(769\) 594.093i 0.772553i 0.922383 + 0.386277i \(0.126239\pi\)
−0.922383 + 0.386277i \(0.873761\pi\)
\(770\) 0 0
\(771\) −702.000 −0.910506
\(772\) −620.940 + 358.500i −0.804327 + 0.464378i
\(773\) 516.151 894.000i 0.667725 1.15653i −0.310814 0.950471i \(-0.600602\pi\)
0.978539 0.206062i \(-0.0660650\pi\)
\(774\) −39.0000 + 67.5500i −0.0503876 + 0.0872739i
\(775\) 0 0
\(776\) 642.591i 0.828081i
\(777\) 351.606 609.000i 0.452518 0.783784i
\(778\) 698.000i 0.897172i
\(779\) −6.00000 10.3923i −0.00770218 0.0133406i
\(780\) 0 0
\(781\) 352.000 609.682i 0.450704 0.780643i
\(782\) −339.482 588.000i −0.434120 0.751918i
\(783\) 129.904 0.165905
\(784\) 122.500 212.176i 0.156250 0.270633i
\(785\) 0 0
\(786\) −157.500 272.798i −0.200382 0.347071i
\(787\) −204.382 + 354.000i −0.259698 + 0.449809i −0.966161 0.257940i \(-0.916956\pi\)
0.706463 + 0.707750i \(0.250290\pi\)
\(788\) 67.5500 + 39.0000i 0.0857233 + 0.0494924i
\(789\) 159.000 91.7987i 0.201521 0.116348i
\(790\) 0 0
\(791\) 259.000 448.601i 0.327434 0.567132i
\(792\) 231.000i 0.291667i
\(793\) −83.1384 + 48.0000i −0.104840 + 0.0605296i
\(794\) −498.000 287.520i −0.627204 0.362116i
\(795\) 0 0
\(796\) −630.000 + 363.731i −0.791457 + 0.456948i
\(797\) −625.270 −0.784530 −0.392265 0.919852i \(-0.628308\pi\)
−0.392265 + 0.919852i \(0.628308\pi\)
\(798\) 42.0000i 0.0526316i
\(799\) 1848.00 2.31289
\(800\) 0 0
\(801\) −207.000 119.512i −0.258427 0.149203i
\(802\) 245.951 + 142.000i 0.306672 + 0.177057i
\(803\) −38.1051 66.0000i −0.0474534 0.0821918i
\(804\) 270.200i 0.336070i
\(805\) 0 0
\(806\) 228.000 0.282878
\(807\) −652.117 + 376.500i −0.808076 + 0.466543i
\(808\) 72.7461 126.000i 0.0900323 0.155941i
\(809\) −376.000 + 651.251i −0.464771 + 0.805008i −0.999191 0.0402116i \(-0.987197\pi\)
0.534420 + 0.845219i \(0.320530\pi\)
\(810\) 0 0
\(811\) 270.200i 0.333169i −0.986027 0.166584i \(-0.946726\pi\)
0.986027 0.166584i \(-0.0532738\pi\)
\(812\) −454.663 + 262.500i −0.559930 + 0.323276i
\(813\) 219.000i 0.269373i
\(814\) 319.000 + 552.524i 0.391892 + 0.678777i
\(815\) 0 0
\(816\) 105.000 181.865i 0.128676 0.222874i
\(817\) −45.0333 78.0000i −0.0551203 0.0954712i
\(818\) 209.578 0.256208
\(819\) 145.492i 0.177646i
\(820\) 0 0
\(821\) −441.500 764.700i −0.537759 0.931426i −0.999024 0.0441635i \(-0.985938\pi\)
0.461265 0.887262i \(-0.347396\pi\)
\(822\) −76.2102 + 132.000i −0.0927132 + 0.160584i
\(823\) −424.352 245.000i −0.515617 0.297691i 0.219523 0.975607i \(-0.429550\pi\)
−0.735139 + 0.677916i \(0.762883\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −52.5000 30.3109i −0.0635593 0.0366960i
\(827\) 1279.00i 1.54655i 0.634068 + 0.773277i \(0.281384\pi\)
−0.634068 + 0.773277i \(0.718616\pi\)
\(828\) −218.238 + 126.000i −0.263573 + 0.152174i
\(829\) −1311.00 756.906i −1.58142 0.913035i −0.994652 0.103283i \(-0.967065\pi\)
−0.586771 0.809753i \(-0.699601\pi\)
\(830\) 0 0
\(831\) −354.000 + 204.382i −0.425993 + 0.245947i
\(832\) 90.0666 0.108253
\(833\) −1188.19 −1.42639
\(834\) −330.000 −0.395683
\(835\) 0 0
\(836\) 99.0000 + 57.1577i 0.118421 + 0.0683704i
\(837\) 148.090 + 85.5000i 0.176930 + 0.102151i
\(838\) −65.8179 114.000i −0.0785417 0.136038i
\(839\) 523.079i 0.623456i −0.950171 0.311728i \(-0.899092\pi\)
0.950171 0.311728i \(-0.100908\pi\)
\(840\) 0 0
\(841\) −216.000 −0.256837
\(842\) −24.2487 + 14.0000i −0.0287989 + 0.0166271i
\(843\) −100.459 + 174.000i −0.119168 + 0.206406i
\(844\) 78.0000 135.100i 0.0924171 0.160071i
\(845\) 0 0
\(846\) 228.631i 0.270249i
\(847\) 0 0
\(848\) 155.000i 0.182783i
\(849\) 321.000 + 555.988i 0.378092 + 0.654874i
\(850\) 0 0
\(851\) 812.000 1406.43i 0.954172 1.65267i
\(852\) 166.277 + 288.000i 0.195161 + 0.338028i
\(853\) −387.979 −0.454841 −0.227421 0.973797i \(-0.573029\pi\)
−0.227421 + 0.973797i \(0.573029\pi\)
\(854\) −84.0000 + 48.4974i −0.0983607 + 0.0567886i
\(855\) 0 0
\(856\) 108.500 + 187.928i 0.126752 + 0.219541i
\(857\) 415.692 720.000i 0.485055 0.840140i −0.514797 0.857312i \(-0.672133\pi\)
0.999853 + 0.0171718i \(0.00546622\pi\)
\(858\) 114.315 + 66.0000i 0.133235 + 0.0769231i
\(859\) −981.000 + 566.381i −1.14203 + 0.659349i −0.946931 0.321436i \(-0.895835\pi\)
−0.195094 + 0.980785i \(0.562501\pi\)
\(860\) 0 0
\(861\) 21.0000 + 36.3731i 0.0243902 + 0.0422451i
\(862\) 118.000i 0.136891i
\(863\) −19.0526 + 11.0000i −0.0220771 + 0.0127462i −0.510998 0.859582i \(-0.670724\pi\)
0.488921 + 0.872328i \(0.337391\pi\)
\(864\) 148.500 + 85.7365i 0.171875 + 0.0992321i
\(865\) 0 0
\(866\) 486.000 280.592i 0.561201 0.324010i
\(867\) −517.883 −0.597328
\(868\) −691.088 −0.796185
\(869\) 187.000 0.215190
\(870\) 0 0
\(871\) −312.000 180.133i −0.358209 0.206812i
\(872\) −824.456 476.000i −0.945477 0.545872i
\(873\) −137.698 238.500i −0.157730 0.273196i
\(874\) 96.9948i 0.110978i
\(875\) 0 0
\(876\) 36.0000 0.0410959
\(877\) −34.6410 + 20.0000i −0.0394994 + 0.0228050i −0.519620 0.854398i \(-0.673926\pi\)
0.480120 + 0.877203i \(0.340593\pi\)
\(878\) 369.793 640.500i 0.421176 0.729499i
\(879\) −16.5000 + 28.5788i −0.0187713 + 0.0325129i
\(880\) 0 0
\(881\) 20.7846i 0.0235921i −0.999930 0.0117960i \(-0.996245\pi\)
0.999930 0.0117960i \(-0.00375488\pi\)
\(882\) 147.000i 0.166667i
\(883\) 386.000i 0.437146i −0.975821 0.218573i \(-0.929860\pi\)
0.975821 0.218573i \(-0.0701402\pi\)
\(884\) 252.000 + 436.477i 0.285068 + 0.493752i
\(885\) 0 0
\(886\) 77.5000 134.234i 0.0874718 0.151506i
\(887\) −862.561 1494.00i −0.972448 1.68433i −0.688112 0.725604i \(-0.741560\pi\)
−0.284336 0.958725i \(-0.591773\pi\)
\(888\) −703.213 −0.791906
\(889\) −3.50000 + 6.06218i −0.00393701 + 0.00681910i
\(890\) 0 0
\(891\) 49.5000 + 85.7365i 0.0555556 + 0.0962250i
\(892\) −33.7750 + 58.5000i −0.0378643 + 0.0655830i
\(893\) −228.631 132.000i −0.256025 0.147816i
\(894\) −345.000 + 199.186i −0.385906 + 0.222803i
\(895\) 0 0
\(896\) −833.000 −0.929688
\(897\) 336.000i 0.374582i
\(898\) 318.697 184.000i 0.354897 0.204900i
\(899\) 712.500 + 411.362i 0.792547 + 0.457577i
\(900\) 0 0
\(901\) −651.000 + 375.855i −0.722531 + 0.417153i
\(902\) −38.1051 −0.0422451
\(903\) 157.617 + 273.000i 0.174548 + 0.302326i
\(904\) −518.000 −0.573009
\(905\) 0 0
\(906\) 340.500 + 196.588i 0.375828 + 0.216984i
\(907\) 512.687 + 296.000i 0.565256 + 0.326351i 0.755252 0.655434i \(-0.227514\pi\)
−0.189996 + 0.981785i \(0.560848\pi\)
\(908\) −101.325 175.500i −0.111591 0.193282i
\(909\) 62.3538i 0.0685961i
\(910\) 0 0
\(911\) −416.000 −0.456641 −0.228321 0.973586i \(-0.573323\pi\)
−0.228321 + 0.973586i \(0.573323\pi\)
\(912\) −25.9808 + 15.0000i −0.0284877 + 0.0164474i
\(913\) −295.315 + 511.500i −0.323455 + 0.560241i
\(914\) 170.500 295.315i 0.186543 0.323101i
\(915\) 0 0
\(916\) 93.5307i 0.102108i
\(917\) −1273.06 −1.38828
\(918\) 126.000i 0.137255i
\(919\) 25.0000 + 43.3013i 0.0272035 + 0.0471178i 0.879307 0.476256i \(-0.158006\pi\)
−0.852103 + 0.523374i \(0.824673\pi\)
\(920\) 0 0
\(921\) −396.000 + 685.892i −0.429967 + 0.744725i
\(922\) 27.7128 + 48.0000i 0.0300573 + 0.0520607i
\(923\) −443.405 −0.480395
\(924\) −346.500 200.052i −0.375000 0.216506i
\(925\) 0 0
\(926\) 89.0000 + 154.153i 0.0961123 + 0.166471i
\(927\) 0 0
\(928\) 714.471 + 412.500i 0.769904 + 0.444504i
\(929\) −357.000 + 206.114i −0.384284 + 0.221867i −0.679681 0.733508i \(-0.737882\pi\)
0.295396 + 0.955375i \(0.404548\pi\)
\(930\) 0 0
\(931\) 147.000 + 84.8705i 0.157895 + 0.0911606i
\(932\) 786.000i 0.843348i
\(933\) 493.634 285.000i 0.529083 0.305466i
\(934\) 570.000 + 329.090i 0.610278 + 0.352344i
\(935\) 0 0
\(936\) −126.000 + 72.7461i −0.134615 + 0.0777202i
\(937\) −1605.61 −1.71357 −0.856783 0.515677i \(-0.827540\pi\)
−0.856783 + 0.515677i \(0.827540\pi\)
\(938\) −315.233 182.000i −0.336070 0.194030i
\(939\) −951.000 −1.01278
\(940\) 0 0
\(941\) −1150.50 664.241i −1.22264 0.705889i −0.257156 0.966370i \(-0.582786\pi\)
−0.965479 + 0.260481i \(0.916119\pi\)
\(942\) −72.7461 42.0000i −0.0772252 0.0445860i
\(943\) 48.4974 + 84.0000i 0.0514289 + 0.0890774i
\(944\) 43.3013i 0.0458700i
\(945\) 0 0
\(946\) −286.000 −0.302326
\(947\) −1186.45 + 685.000i −1.25286 + 0.723337i −0.971676 0.236318i \(-0.924059\pi\)
−0.281180 + 0.959655i \(0.590726\pi\)
\(948\) −44.1673 + 76.5000i −0.0465900 + 0.0806962i
\(949\) −24.0000 + 41.5692i −0.0252898 + 0.0438032i
\(950\) 0 0
\(951\) 323.894i 0.340582i
\(952\) 594.093 + 1029.00i 0.624048 + 1.08088i
\(953\) 1150.00i 1.20672i −0.797471 0.603358i \(-0.793829\pi\)
0.797471 0.603358i \(-0.206171\pi\)
\(954\) −46.5000 80.5404i −0.0487421 0.0844239i
\(955\) 0 0
\(956\) 240.000 415.692i 0.251046 0.434824i
\(957\) 238.157 + 412.500i 0.248858 + 0.431034i
\(958\) −509.223 −0.531548
\(959\) 308.000 + 533.472i 0.321168 + 0.556279i
\(960\) 0 0
\(961\) 61.0000 + 105.655i 0.0634755 + 0.109943i
\(962\) 200.918 348.000i 0.208854 0.361746i
\(963\) −80.5404 46.5000i −0.0836349 0.0482866i
\(964\) −1228.50 + 709.275i −1.27438 + 0.735762i
\(965\) 0 0
\(966\) 339.482i 0.351431i
\(967\) 5.00000i 0.00517063i 0.999997 + 0.00258532i \(0.000822932\pi\)
−0.999997 + 0.00258532i \(0.999177\pi\)
\(968\) 0 0
\(969\) 126.000 + 72.7461i 0.130031 + 0.0750734i
\(970\) 0 0
\(971\) 385.500 222.569i 0.397013 0.229216i −0.288181 0.957576i \(-0.593051\pi\)
0.685195 + 0.728360i \(0.259717\pi\)
\(972\) −46.7654 −0.0481125
\(973\) −666.840 + 1155.00i −0.685344 + 1.18705i
\(974\) 841.000 0.863450
\(975\) 0 0
\(976\) −60.0000 34.6410i −0.0614754 0.0354928i
\(977\) −829.652 479.000i −0.849184 0.490276i 0.0111917 0.999937i \(-0.496437\pi\)
−0.860375 + 0.509661i \(0.829771\pi\)
\(978\) 183.597 + 318.000i 0.187727 + 0.325153i
\(979\) 876.418i 0.895217i
\(980\) 0 0
\(981\) 408.000 0.415902
\(982\) −830.518 + 479.500i −0.845742 + 0.488289i
\(983\) 140.296 243.000i 0.142722 0.247202i −0.785798 0.618483i \(-0.787748\pi\)
0.928521 + 0.371280i \(0.121081\pi\)
\(984\) 21.0000 36.3731i 0.0213415 0.0369645i
\(985\) 0 0
\(986\) 606.218i 0.614825i
\(987\) 800.207 + 462.000i 0.810747 + 0.468085i
\(988\) 72.0000i 0.0728745i
\(989\) 364.000 + 630.466i 0.368049 + 0.637479i
\(990\) 0 0
\(991\) −461.500 + 799.341i −0.465691 + 0.806601i −0.999232 0.0391732i \(-0.987528\pi\)
0.533541 + 0.845774i \(0.320861\pi\)
\(992\) 542.998 + 940.500i 0.547377 + 0.948085i
\(993\) 27.7128 0.0279082
\(994\) −448.000 −0.450704
\(995\) 0 0
\(996\) −139.500 241.621i −0.140060 0.242591i
\(997\) −10.3923 + 18.0000i −0.0104236 + 0.0180542i −0.871190 0.490946i \(-0.836651\pi\)
0.860767 + 0.509000i \(0.169985\pi\)
\(998\) −102.191 59.0000i −0.102396 0.0591182i
\(999\) 261.000 150.688i 0.261261 0.150839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.3.s.c.199.2 4
5.2 odd 4 525.3.o.g.451.1 2
5.3 odd 4 21.3.f.b.10.1 2
5.4 even 2 inner 525.3.s.c.199.1 4
7.5 odd 6 inner 525.3.s.c.124.1 4
15.8 even 4 63.3.m.c.10.1 2
20.3 even 4 336.3.bh.a.241.1 2
35.3 even 12 147.3.d.b.97.2 2
35.12 even 12 525.3.o.g.376.1 2
35.13 even 4 147.3.f.c.31.1 2
35.18 odd 12 147.3.d.b.97.1 2
35.19 odd 6 inner 525.3.s.c.124.2 4
35.23 odd 12 147.3.f.c.19.1 2
35.33 even 12 21.3.f.b.19.1 yes 2
60.23 odd 4 1008.3.cg.g.577.1 2
105.23 even 12 441.3.m.e.19.1 2
105.38 odd 12 441.3.d.b.244.1 2
105.53 even 12 441.3.d.b.244.2 2
105.68 odd 12 63.3.m.c.19.1 2
105.83 odd 4 441.3.m.e.325.1 2
140.3 odd 12 2352.3.f.d.97.1 2
140.103 odd 12 336.3.bh.a.145.1 2
140.123 even 12 2352.3.f.d.97.2 2
420.383 even 12 1008.3.cg.g.145.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.3.f.b.10.1 2 5.3 odd 4
21.3.f.b.19.1 yes 2 35.33 even 12
63.3.m.c.10.1 2 15.8 even 4
63.3.m.c.19.1 2 105.68 odd 12
147.3.d.b.97.1 2 35.18 odd 12
147.3.d.b.97.2 2 35.3 even 12
147.3.f.c.19.1 2 35.23 odd 12
147.3.f.c.31.1 2 35.13 even 4
336.3.bh.a.145.1 2 140.103 odd 12
336.3.bh.a.241.1 2 20.3 even 4
441.3.d.b.244.1 2 105.38 odd 12
441.3.d.b.244.2 2 105.53 even 12
441.3.m.e.19.1 2 105.23 even 12
441.3.m.e.325.1 2 105.83 odd 4
525.3.o.g.376.1 2 35.12 even 12
525.3.o.g.451.1 2 5.2 odd 4
525.3.s.c.124.1 4 7.5 odd 6 inner
525.3.s.c.124.2 4 35.19 odd 6 inner
525.3.s.c.199.1 4 5.4 even 2 inner
525.3.s.c.199.2 4 1.1 even 1 trivial
1008.3.cg.g.145.1 2 420.383 even 12
1008.3.cg.g.577.1 2 60.23 odd 4
2352.3.f.d.97.1 2 140.3 odd 12
2352.3.f.d.97.2 2 140.123 even 12