Properties

Label 63.3.m.c.10.1
Level $63$
Weight $3$
Character 63.10
Analytic conductor $1.717$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(10,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.10");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 10.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 63.10
Dual form 63.3.m.c.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.50000 - 2.59808i) q^{4} +(4.50000 - 2.59808i) q^{5} +(-3.50000 + 6.06218i) q^{7} +7.00000 q^{8} +(4.50000 + 2.59808i) q^{10} +(-5.50000 + 9.52628i) q^{11} -6.92820i q^{13} -7.00000 q^{14} +(-2.50000 - 4.33013i) q^{16} +(-21.0000 - 12.1244i) q^{17} +(-3.00000 + 1.73205i) q^{19} -15.5885i q^{20} -11.0000 q^{22} +(14.0000 + 24.2487i) q^{23} +(1.00000 - 1.73205i) q^{25} +(6.00000 - 3.46410i) q^{26} +(10.5000 + 18.1865i) q^{28} -25.0000 q^{29} +(-28.5000 - 16.4545i) q^{31} +(16.5000 - 28.5788i) q^{32} -24.2487i q^{34} +36.3731i q^{35} +(29.0000 + 50.2295i) q^{37} +(-3.00000 - 1.73205i) q^{38} +(31.5000 - 18.1865i) q^{40} +3.46410i q^{41} +26.0000 q^{43} +(16.5000 + 28.5788i) q^{44} +(-14.0000 + 24.2487i) q^{46} +(66.0000 - 38.1051i) q^{47} +(-24.5000 - 42.4352i) q^{49} +2.00000 q^{50} +(-18.0000 - 10.3923i) q^{52} +(15.5000 - 26.8468i) q^{53} +57.1577i q^{55} +(-24.5000 + 42.4352i) q^{56} +(-12.5000 - 21.6506i) q^{58} +(7.50000 + 4.33013i) q^{59} +(12.0000 - 6.92820i) q^{61} -32.9090i q^{62} +13.0000 q^{64} +(-18.0000 - 31.1769i) q^{65} +(26.0000 - 45.0333i) q^{67} +(-63.0000 + 36.3731i) q^{68} +(-31.5000 + 18.1865i) q^{70} -64.0000 q^{71} +(6.00000 + 3.46410i) q^{73} +(-29.0000 + 50.2295i) q^{74} +10.3923i q^{76} +(-38.5000 - 66.6840i) q^{77} +(-8.50000 - 14.7224i) q^{79} +(-22.5000 - 12.9904i) q^{80} +(-3.00000 + 1.73205i) q^{82} +53.6936i q^{83} -126.000 q^{85} +(13.0000 + 22.5167i) q^{86} +(-38.5000 + 66.6840i) q^{88} +(69.0000 - 39.8372i) q^{89} +(42.0000 + 24.2487i) q^{91} +84.0000 q^{92} +(66.0000 + 38.1051i) q^{94} +(-9.00000 + 15.5885i) q^{95} -91.7987i q^{97} +(24.5000 - 42.4352i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{4} + 9 q^{5} - 7 q^{7} + 14 q^{8} + 9 q^{10} - 11 q^{11} - 14 q^{14} - 5 q^{16} - 42 q^{17} - 6 q^{19} - 22 q^{22} + 28 q^{23} + 2 q^{25} + 12 q^{26} + 21 q^{28} - 50 q^{29} - 57 q^{31}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.250000 + 0.433013i 0.963525 0.267617i \(-0.0862360\pi\)
−0.713525 + 0.700629i \(0.752903\pi\)
\(3\) 0 0
\(4\) 1.50000 2.59808i 0.375000 0.649519i
\(5\) 4.50000 2.59808i 0.900000 0.519615i 0.0227998 0.999740i \(-0.492742\pi\)
0.877200 + 0.480125i \(0.159409\pi\)
\(6\) 0 0
\(7\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(8\) 7.00000 0.875000
\(9\) 0 0
\(10\) 4.50000 + 2.59808i 0.450000 + 0.259808i
\(11\) −5.50000 + 9.52628i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 6.92820i 0.532939i −0.963843 0.266469i \(-0.914143\pi\)
0.963843 0.266469i \(-0.0858571\pi\)
\(14\) −7.00000 −0.500000
\(15\) 0 0
\(16\) −2.50000 4.33013i −0.156250 0.270633i
\(17\) −21.0000 12.1244i −1.23529 0.713197i −0.267165 0.963651i \(-0.586087\pi\)
−0.968129 + 0.250453i \(0.919420\pi\)
\(18\) 0 0
\(19\) −3.00000 + 1.73205i −0.157895 + 0.0911606i −0.576865 0.816839i \(-0.695724\pi\)
0.418971 + 0.908000i \(0.362391\pi\)
\(20\) 15.5885i 0.779423i
\(21\) 0 0
\(22\) −11.0000 −0.500000
\(23\) 14.0000 + 24.2487i 0.608696 + 1.05429i 0.991456 + 0.130444i \(0.0416403\pi\)
−0.382760 + 0.923848i \(0.625026\pi\)
\(24\) 0 0
\(25\) 1.00000 1.73205i 0.0400000 0.0692820i
\(26\) 6.00000 3.46410i 0.230769 0.133235i
\(27\) 0 0
\(28\) 10.5000 + 18.1865i 0.375000 + 0.649519i
\(29\) −25.0000 −0.862069 −0.431034 0.902335i \(-0.641851\pi\)
−0.431034 + 0.902335i \(0.641851\pi\)
\(30\) 0 0
\(31\) −28.5000 16.4545i −0.919355 0.530790i −0.0359257 0.999354i \(-0.511438\pi\)
−0.883429 + 0.468565i \(0.844771\pi\)
\(32\) 16.5000 28.5788i 0.515625 0.893089i
\(33\) 0 0
\(34\) 24.2487i 0.713197i
\(35\) 36.3731i 1.03923i
\(36\) 0 0
\(37\) 29.0000 + 50.2295i 0.783784 + 1.35755i 0.929723 + 0.368260i \(0.120046\pi\)
−0.145939 + 0.989294i \(0.546620\pi\)
\(38\) −3.00000 1.73205i −0.0789474 0.0455803i
\(39\) 0 0
\(40\) 31.5000 18.1865i 0.787500 0.454663i
\(41\) 3.46410i 0.0844903i 0.999107 + 0.0422451i \(0.0134510\pi\)
−0.999107 + 0.0422451i \(0.986549\pi\)
\(42\) 0 0
\(43\) 26.0000 0.604651 0.302326 0.953205i \(-0.402237\pi\)
0.302326 + 0.953205i \(0.402237\pi\)
\(44\) 16.5000 + 28.5788i 0.375000 + 0.649519i
\(45\) 0 0
\(46\) −14.0000 + 24.2487i −0.304348 + 0.527146i
\(47\) 66.0000 38.1051i 1.40426 0.810747i 0.409429 0.912342i \(-0.365728\pi\)
0.994826 + 0.101595i \(0.0323945\pi\)
\(48\) 0 0
\(49\) −24.5000 42.4352i −0.500000 0.866025i
\(50\) 2.00000 0.0400000
\(51\) 0 0
\(52\) −18.0000 10.3923i −0.346154 0.199852i
\(53\) 15.5000 26.8468i 0.292453 0.506543i −0.681936 0.731412i \(-0.738862\pi\)
0.974389 + 0.224868i \(0.0721952\pi\)
\(54\) 0 0
\(55\) 57.1577i 1.03923i
\(56\) −24.5000 + 42.4352i −0.437500 + 0.757772i
\(57\) 0 0
\(58\) −12.5000 21.6506i −0.215517 0.373287i
\(59\) 7.50000 + 4.33013i 0.127119 + 0.0733920i 0.562211 0.826994i \(-0.309951\pi\)
−0.435092 + 0.900386i \(0.643284\pi\)
\(60\) 0 0
\(61\) 12.0000 6.92820i 0.196721 0.113577i −0.398404 0.917210i \(-0.630436\pi\)
0.595125 + 0.803633i \(0.297102\pi\)
\(62\) 32.9090i 0.530790i
\(63\) 0 0
\(64\) 13.0000 0.203125
\(65\) −18.0000 31.1769i −0.276923 0.479645i
\(66\) 0 0
\(67\) 26.0000 45.0333i 0.388060 0.672139i −0.604129 0.796887i \(-0.706479\pi\)
0.992189 + 0.124748i \(0.0398121\pi\)
\(68\) −63.0000 + 36.3731i −0.926471 + 0.534898i
\(69\) 0 0
\(70\) −31.5000 + 18.1865i −0.450000 + 0.259808i
\(71\) −64.0000 −0.901408 −0.450704 0.892673i \(-0.648827\pi\)
−0.450704 + 0.892673i \(0.648827\pi\)
\(72\) 0 0
\(73\) 6.00000 + 3.46410i 0.0821918 + 0.0474534i 0.540533 0.841323i \(-0.318223\pi\)
−0.458341 + 0.888777i \(0.651556\pi\)
\(74\) −29.0000 + 50.2295i −0.391892 + 0.678777i
\(75\) 0 0
\(76\) 10.3923i 0.136741i
\(77\) −38.5000 66.6840i −0.500000 0.866025i
\(78\) 0 0
\(79\) −8.50000 14.7224i −0.107595 0.186360i 0.807200 0.590277i \(-0.200982\pi\)
−0.914795 + 0.403917i \(0.867648\pi\)
\(80\) −22.5000 12.9904i −0.281250 0.162380i
\(81\) 0 0
\(82\) −3.00000 + 1.73205i −0.0365854 + 0.0211226i
\(83\) 53.6936i 0.646911i 0.946243 + 0.323455i \(0.104845\pi\)
−0.946243 + 0.323455i \(0.895155\pi\)
\(84\) 0 0
\(85\) −126.000 −1.48235
\(86\) 13.0000 + 22.5167i 0.151163 + 0.261822i
\(87\) 0 0
\(88\) −38.5000 + 66.6840i −0.437500 + 0.757772i
\(89\) 69.0000 39.8372i 0.775281 0.447609i −0.0594743 0.998230i \(-0.518942\pi\)
0.834755 + 0.550621i \(0.185609\pi\)
\(90\) 0 0
\(91\) 42.0000 + 24.2487i 0.461538 + 0.266469i
\(92\) 84.0000 0.913043
\(93\) 0 0
\(94\) 66.0000 + 38.1051i 0.702128 + 0.405374i
\(95\) −9.00000 + 15.5885i −0.0947368 + 0.164089i
\(96\) 0 0
\(97\) 91.7987i 0.946378i −0.880961 0.473189i \(-0.843103\pi\)
0.880961 0.473189i \(-0.156897\pi\)
\(98\) 24.5000 42.4352i 0.250000 0.433013i
\(99\) 0 0
\(100\) −3.00000 5.19615i −0.0300000 0.0519615i
\(101\) 18.0000 + 10.3923i 0.178218 + 0.102894i 0.586455 0.809982i \(-0.300523\pi\)
−0.408237 + 0.912876i \(0.633856\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 48.4974i 0.466321i
\(105\) 0 0
\(106\) 31.0000 0.292453
\(107\) 15.5000 + 26.8468i 0.144860 + 0.250905i 0.929321 0.369274i \(-0.120394\pi\)
−0.784461 + 0.620178i \(0.787060\pi\)
\(108\) 0 0
\(109\) 68.0000 117.779i 0.623853 1.08055i −0.364908 0.931043i \(-0.618900\pi\)
0.988761 0.149502i \(-0.0477670\pi\)
\(110\) −49.5000 + 28.5788i −0.450000 + 0.259808i
\(111\) 0 0
\(112\) 35.0000 0.312500
\(113\) 74.0000 0.654867 0.327434 0.944874i \(-0.393816\pi\)
0.327434 + 0.944874i \(0.393816\pi\)
\(114\) 0 0
\(115\) 126.000 + 72.7461i 1.09565 + 0.632575i
\(116\) −37.5000 + 64.9519i −0.323276 + 0.559930i
\(117\) 0 0
\(118\) 8.66025i 0.0733920i
\(119\) 147.000 84.8705i 1.23529 0.713197i
\(120\) 0 0
\(121\) 0 0
\(122\) 12.0000 + 6.92820i 0.0983607 + 0.0567886i
\(123\) 0 0
\(124\) −85.5000 + 49.3634i −0.689516 + 0.398092i
\(125\) 119.512i 0.956092i
\(126\) 0 0
\(127\) −1.00000 −0.00787402 −0.00393701 0.999992i \(-0.501253\pi\)
−0.00393701 + 0.999992i \(0.501253\pi\)
\(128\) −59.5000 103.057i −0.464844 0.805133i
\(129\) 0 0
\(130\) 18.0000 31.1769i 0.138462 0.239822i
\(131\) −157.500 + 90.9327i −1.20229 + 0.694142i −0.961064 0.276326i \(-0.910883\pi\)
−0.241226 + 0.970469i \(0.577550\pi\)
\(132\) 0 0
\(133\) 24.2487i 0.182321i
\(134\) 52.0000 0.388060
\(135\) 0 0
\(136\) −147.000 84.8705i −1.08088 0.624048i
\(137\) 44.0000 76.2102i 0.321168 0.556279i −0.659561 0.751651i \(-0.729258\pi\)
0.980729 + 0.195372i \(0.0625913\pi\)
\(138\) 0 0
\(139\) 190.526i 1.37069i 0.728220 + 0.685344i \(0.240348\pi\)
−0.728220 + 0.685344i \(0.759652\pi\)
\(140\) 94.5000 + 54.5596i 0.675000 + 0.389711i
\(141\) 0 0
\(142\) −32.0000 55.4256i −0.225352 0.390321i
\(143\) 66.0000 + 38.1051i 0.461538 + 0.266469i
\(144\) 0 0
\(145\) −112.500 + 64.9519i −0.775862 + 0.447944i
\(146\) 6.92820i 0.0474534i
\(147\) 0 0
\(148\) 174.000 1.17568
\(149\) −115.000 199.186i −0.771812 1.33682i −0.936569 0.350484i \(-0.886017\pi\)
0.164757 0.986334i \(-0.447316\pi\)
\(150\) 0 0
\(151\) −113.500 + 196.588i −0.751656 + 1.30191i 0.195364 + 0.980731i \(0.437411\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) −21.0000 + 12.1244i −0.138158 + 0.0797655i
\(153\) 0 0
\(154\) 38.5000 66.6840i 0.250000 0.433013i
\(155\) −171.000 −1.10323
\(156\) 0 0
\(157\) −42.0000 24.2487i −0.267516 0.154450i 0.360242 0.932859i \(-0.382694\pi\)
−0.627758 + 0.778408i \(0.716027\pi\)
\(158\) 8.50000 14.7224i 0.0537975 0.0931799i
\(159\) 0 0
\(160\) 171.473i 1.07171i
\(161\) −196.000 −1.21739
\(162\) 0 0
\(163\) −106.000 183.597i −0.650307 1.12636i −0.983048 0.183346i \(-0.941307\pi\)
0.332742 0.943018i \(-0.392026\pi\)
\(164\) 9.00000 + 5.19615i 0.0548780 + 0.0316839i
\(165\) 0 0
\(166\) −46.5000 + 26.8468i −0.280120 + 0.161728i
\(167\) 96.9948i 0.580807i 0.956904 + 0.290404i \(0.0937896\pi\)
−0.956904 + 0.290404i \(0.906210\pi\)
\(168\) 0 0
\(169\) 121.000 0.715976
\(170\) −63.0000 109.119i −0.370588 0.641878i
\(171\) 0 0
\(172\) 39.0000 67.5500i 0.226744 0.392732i
\(173\) −186.000 + 107.387i −1.07514 + 0.620735i −0.929582 0.368614i \(-0.879832\pi\)
−0.145562 + 0.989349i \(0.546499\pi\)
\(174\) 0 0
\(175\) 7.00000 + 12.1244i 0.0400000 + 0.0692820i
\(176\) 55.0000 0.312500
\(177\) 0 0
\(178\) 69.0000 + 39.8372i 0.387640 + 0.223804i
\(179\) 23.0000 39.8372i 0.128492 0.222554i −0.794601 0.607132i \(-0.792320\pi\)
0.923092 + 0.384578i \(0.125653\pi\)
\(180\) 0 0
\(181\) 31.1769i 0.172248i 0.996284 + 0.0861241i \(0.0274481\pi\)
−0.996284 + 0.0861241i \(0.972552\pi\)
\(182\) 48.4974i 0.266469i
\(183\) 0 0
\(184\) 98.0000 + 169.741i 0.532609 + 0.922505i
\(185\) 261.000 + 150.688i 1.41081 + 0.814532i
\(186\) 0 0
\(187\) 231.000 133.368i 1.23529 0.713197i
\(188\) 228.631i 1.21612i
\(189\) 0 0
\(190\) −18.0000 −0.0947368
\(191\) 104.000 + 180.133i 0.544503 + 0.943106i 0.998638 + 0.0521735i \(0.0166149\pi\)
−0.454135 + 0.890933i \(0.650052\pi\)
\(192\) 0 0
\(193\) −119.500 + 206.980i −0.619171 + 1.07244i 0.370466 + 0.928846i \(0.379198\pi\)
−0.989637 + 0.143590i \(0.954135\pi\)
\(194\) 79.5000 45.8993i 0.409794 0.236595i
\(195\) 0 0
\(196\) −147.000 −0.750000
\(197\) 26.0000 0.131980 0.0659898 0.997820i \(-0.478980\pi\)
0.0659898 + 0.997820i \(0.478980\pi\)
\(198\) 0 0
\(199\) −210.000 121.244i −1.05528 0.609264i −0.131155 0.991362i \(-0.541868\pi\)
−0.924122 + 0.382098i \(0.875202\pi\)
\(200\) 7.00000 12.1244i 0.0350000 0.0606218i
\(201\) 0 0
\(202\) 20.7846i 0.102894i
\(203\) 87.5000 151.554i 0.431034 0.746574i
\(204\) 0 0
\(205\) 9.00000 + 15.5885i 0.0439024 + 0.0760413i
\(206\) 0 0
\(207\) 0 0
\(208\) −30.0000 + 17.3205i −0.144231 + 0.0832717i
\(209\) 38.1051i 0.182321i
\(210\) 0 0
\(211\) −52.0000 −0.246445 −0.123223 0.992379i \(-0.539323\pi\)
−0.123223 + 0.992379i \(0.539323\pi\)
\(212\) −46.5000 80.5404i −0.219340 0.379907i
\(213\) 0 0
\(214\) −15.5000 + 26.8468i −0.0724299 + 0.125452i
\(215\) 117.000 67.5500i 0.544186 0.314186i
\(216\) 0 0
\(217\) 199.500 115.181i 0.919355 0.530790i
\(218\) 136.000 0.623853
\(219\) 0 0
\(220\) 148.500 + 85.7365i 0.675000 + 0.389711i
\(221\) −84.0000 + 145.492i −0.380090 + 0.658336i
\(222\) 0 0
\(223\) 22.5167i 0.100972i 0.998725 + 0.0504858i \(0.0160770\pi\)
−0.998725 + 0.0504858i \(0.983923\pi\)
\(224\) 115.500 + 200.052i 0.515625 + 0.893089i
\(225\) 0 0
\(226\) 37.0000 + 64.0859i 0.163717 + 0.283566i
\(227\) −58.5000 33.7750i −0.257709 0.148789i 0.365580 0.930780i \(-0.380871\pi\)
−0.623289 + 0.781991i \(0.714204\pi\)
\(228\) 0 0
\(229\) −27.0000 + 15.5885i −0.117904 + 0.0680719i −0.557792 0.829981i \(-0.688351\pi\)
0.439888 + 0.898053i \(0.355018\pi\)
\(230\) 145.492i 0.632575i
\(231\) 0 0
\(232\) −175.000 −0.754310
\(233\) 131.000 + 226.899i 0.562232 + 0.973814i 0.997301 + 0.0734171i \(0.0233904\pi\)
−0.435070 + 0.900397i \(0.643276\pi\)
\(234\) 0 0
\(235\) 198.000 342.946i 0.842553 1.45934i
\(236\) 22.5000 12.9904i 0.0953390 0.0550440i
\(237\) 0 0
\(238\) 147.000 + 84.8705i 0.617647 + 0.356599i
\(239\) −160.000 −0.669456 −0.334728 0.942315i \(-0.608644\pi\)
−0.334728 + 0.942315i \(0.608644\pi\)
\(240\) 0 0
\(241\) 409.500 + 236.425i 1.69917 + 0.981016i 0.946548 + 0.322564i \(0.104545\pi\)
0.752622 + 0.658452i \(0.228789\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 41.5692i 0.170366i
\(245\) −220.500 127.306i −0.900000 0.519615i
\(246\) 0 0
\(247\) 12.0000 + 20.7846i 0.0485830 + 0.0841482i
\(248\) −199.500 115.181i −0.804435 0.464441i
\(249\) 0 0
\(250\) −103.500 + 59.7558i −0.414000 + 0.239023i
\(251\) 67.5500i 0.269123i −0.990905 0.134562i \(-0.957037\pi\)
0.990905 0.134562i \(-0.0429626\pi\)
\(252\) 0 0
\(253\) −308.000 −1.21739
\(254\) −0.500000 0.866025i −0.00196850 0.00340955i
\(255\) 0 0
\(256\) 85.5000 148.090i 0.333984 0.578478i
\(257\) 351.000 202.650i 1.36576 0.788521i 0.375376 0.926873i \(-0.377514\pi\)
0.990383 + 0.138352i \(0.0441804\pi\)
\(258\) 0 0
\(259\) −406.000 −1.56757
\(260\) −108.000 −0.415385
\(261\) 0 0
\(262\) −157.500 90.9327i −0.601145 0.347071i
\(263\) 53.0000 91.7987i 0.201521 0.349044i −0.747498 0.664264i \(-0.768745\pi\)
0.949019 + 0.315220i \(0.102078\pi\)
\(264\) 0 0
\(265\) 161.081i 0.607852i
\(266\) 21.0000 12.1244i 0.0789474 0.0455803i
\(267\) 0 0
\(268\) −78.0000 135.100i −0.291045 0.504104i
\(269\) −376.500 217.372i −1.39963 0.808076i −0.405275 0.914195i \(-0.632824\pi\)
−0.994353 + 0.106119i \(0.966158\pi\)
\(270\) 0 0
\(271\) 109.500 63.2199i 0.404059 0.233284i −0.284175 0.958772i \(-0.591720\pi\)
0.688234 + 0.725489i \(0.258386\pi\)
\(272\) 121.244i 0.445748i
\(273\) 0 0
\(274\) 88.0000 0.321168
\(275\) 11.0000 + 19.0526i 0.0400000 + 0.0692820i
\(276\) 0 0
\(277\) −118.000 + 204.382i −0.425993 + 0.737841i −0.996513 0.0834427i \(-0.973408\pi\)
0.570520 + 0.821284i \(0.306742\pi\)
\(278\) −165.000 + 95.2628i −0.593525 + 0.342672i
\(279\) 0 0
\(280\) 254.611i 0.909327i
\(281\) 116.000 0.412811 0.206406 0.978466i \(-0.433823\pi\)
0.206406 + 0.978466i \(0.433823\pi\)
\(282\) 0 0
\(283\) −321.000 185.329i −1.13428 0.654874i −0.189269 0.981925i \(-0.560612\pi\)
−0.945007 + 0.327051i \(0.893945\pi\)
\(284\) −96.0000 + 166.277i −0.338028 + 0.585482i
\(285\) 0 0
\(286\) 76.2102i 0.266469i
\(287\) −21.0000 12.1244i −0.0731707 0.0422451i
\(288\) 0 0
\(289\) 149.500 + 258.942i 0.517301 + 0.895992i
\(290\) −112.500 64.9519i −0.387931 0.223972i
\(291\) 0 0
\(292\) 18.0000 10.3923i 0.0616438 0.0355901i
\(293\) 19.0526i 0.0650258i 0.999471 + 0.0325129i \(0.0103510\pi\)
−0.999471 + 0.0325129i \(0.989649\pi\)
\(294\) 0 0
\(295\) 45.0000 0.152542
\(296\) 203.000 + 351.606i 0.685811 + 1.18786i
\(297\) 0 0
\(298\) 115.000 199.186i 0.385906 0.668409i
\(299\) 168.000 96.9948i 0.561873 0.324397i
\(300\) 0 0
\(301\) −91.0000 + 157.617i −0.302326 + 0.523643i
\(302\) −227.000 −0.751656
\(303\) 0 0
\(304\) 15.0000 + 8.66025i 0.0493421 + 0.0284877i
\(305\) 36.0000 62.3538i 0.118033 0.204439i
\(306\) 0 0
\(307\) 457.261i 1.48945i 0.667371 + 0.744725i \(0.267420\pi\)
−0.667371 + 0.744725i \(0.732580\pi\)
\(308\) −231.000 −0.750000
\(309\) 0 0
\(310\) −85.5000 148.090i −0.275806 0.477711i
\(311\) −285.000 164.545i −0.916399 0.529083i −0.0339143 0.999425i \(-0.510797\pi\)
−0.882484 + 0.470342i \(0.844131\pi\)
\(312\) 0 0
\(313\) 475.500 274.530i 1.51917 0.877093i 0.519424 0.854517i \(-0.326146\pi\)
0.999745 0.0225763i \(-0.00718687\pi\)
\(314\) 48.4974i 0.154450i
\(315\) 0 0
\(316\) −51.0000 −0.161392
\(317\) 93.5000 + 161.947i 0.294953 + 0.510873i 0.974974 0.222319i \(-0.0713628\pi\)
−0.680021 + 0.733192i \(0.738029\pi\)
\(318\) 0 0
\(319\) 137.500 238.157i 0.431034 0.746574i
\(320\) 58.5000 33.7750i 0.182812 0.105547i
\(321\) 0 0
\(322\) −98.0000 169.741i −0.304348 0.527146i
\(323\) 84.0000 0.260062
\(324\) 0 0
\(325\) −12.0000 6.92820i −0.0369231 0.0213175i
\(326\) 106.000 183.597i 0.325153 0.563182i
\(327\) 0 0
\(328\) 24.2487i 0.0739290i
\(329\) 533.472i 1.62149i
\(330\) 0 0
\(331\) 8.00000 + 13.8564i 0.0241692 + 0.0418623i 0.877857 0.478923i \(-0.158973\pi\)
−0.853688 + 0.520785i \(0.825639\pi\)
\(332\) 139.500 + 80.5404i 0.420181 + 0.242591i
\(333\) 0 0
\(334\) −84.0000 + 48.4974i −0.251497 + 0.145202i
\(335\) 270.200i 0.806567i
\(336\) 0 0
\(337\) 83.0000 0.246291 0.123145 0.992389i \(-0.460702\pi\)
0.123145 + 0.992389i \(0.460702\pi\)
\(338\) 60.5000 + 104.789i 0.178994 + 0.310027i
\(339\) 0 0
\(340\) −189.000 + 327.358i −0.555882 + 0.962816i
\(341\) 313.500 180.999i 0.919355 0.530790i
\(342\) 0 0
\(343\) 343.000 1.00000
\(344\) 182.000 0.529070
\(345\) 0 0
\(346\) −186.000 107.387i −0.537572 0.310367i
\(347\) 179.000 310.037i 0.515850 0.893479i −0.483981 0.875079i \(-0.660809\pi\)
0.999831 0.0183999i \(-0.00585720\pi\)
\(348\) 0 0
\(349\) 678.964i 1.94546i −0.231950 0.972728i \(-0.574511\pi\)
0.231950 0.972728i \(-0.425489\pi\)
\(350\) −7.00000 + 12.1244i −0.0200000 + 0.0346410i
\(351\) 0 0
\(352\) 181.500 + 314.367i 0.515625 + 0.893089i
\(353\) 558.000 + 322.161i 1.58074 + 0.912639i 0.994752 + 0.102317i \(0.0326255\pi\)
0.585985 + 0.810322i \(0.300708\pi\)
\(354\) 0 0
\(355\) −288.000 + 166.277i −0.811268 + 0.468386i
\(356\) 239.023i 0.671413i
\(357\) 0 0
\(358\) 46.0000 0.128492
\(359\) −142.000 245.951i −0.395543 0.685101i 0.597627 0.801774i \(-0.296110\pi\)
−0.993170 + 0.116673i \(0.962777\pi\)
\(360\) 0 0
\(361\) −174.500 + 302.243i −0.483380 + 0.837238i
\(362\) −27.0000 + 15.5885i −0.0745856 + 0.0430620i
\(363\) 0 0
\(364\) 126.000 72.7461i 0.346154 0.199852i
\(365\) 36.0000 0.0986301
\(366\) 0 0
\(367\) 238.500 + 137.698i 0.649864 + 0.375199i 0.788404 0.615158i \(-0.210908\pi\)
−0.138540 + 0.990357i \(0.544241\pi\)
\(368\) 70.0000 121.244i 0.190217 0.329466i
\(369\) 0 0
\(370\) 301.377i 0.814532i
\(371\) 108.500 + 187.928i 0.292453 + 0.506543i
\(372\) 0 0
\(373\) −25.0000 43.3013i −0.0670241 0.116089i 0.830566 0.556920i \(-0.188017\pi\)
−0.897590 + 0.440831i \(0.854684\pi\)
\(374\) 231.000 + 133.368i 0.617647 + 0.356599i
\(375\) 0 0
\(376\) 462.000 266.736i 1.22872 0.709404i
\(377\) 173.205i 0.459430i
\(378\) 0 0
\(379\) 458.000 1.20844 0.604222 0.796816i \(-0.293484\pi\)
0.604222 + 0.796816i \(0.293484\pi\)
\(380\) 27.0000 + 46.7654i 0.0710526 + 0.123067i
\(381\) 0 0
\(382\) −104.000 + 180.133i −0.272251 + 0.471553i
\(383\) −351.000 + 202.650i −0.916449 + 0.529112i −0.882501 0.470311i \(-0.844142\pi\)
−0.0339486 + 0.999424i \(0.510808\pi\)
\(384\) 0 0
\(385\) −346.500 200.052i −0.900000 0.519615i
\(386\) −239.000 −0.619171
\(387\) 0 0
\(388\) −238.500 137.698i −0.614691 0.354892i
\(389\) −349.000 + 604.486i −0.897172 + 1.55395i −0.0660793 + 0.997814i \(0.521049\pi\)
−0.831093 + 0.556134i \(0.812284\pi\)
\(390\) 0 0
\(391\) 678.964i 1.73648i
\(392\) −171.500 297.047i −0.437500 0.757772i
\(393\) 0 0
\(394\) 13.0000 + 22.5167i 0.0329949 + 0.0571489i
\(395\) −76.5000 44.1673i −0.193671 0.111816i
\(396\) 0 0
\(397\) −498.000 + 287.520i −1.25441 + 0.724233i −0.971982 0.235056i \(-0.924473\pi\)
−0.282426 + 0.959289i \(0.591139\pi\)
\(398\) 242.487i 0.609264i
\(399\) 0 0
\(400\) −10.0000 −0.0250000
\(401\) −142.000 245.951i −0.354115 0.613345i 0.632851 0.774273i \(-0.281884\pi\)
−0.986966 + 0.160929i \(0.948551\pi\)
\(402\) 0 0
\(403\) −114.000 + 197.454i −0.282878 + 0.489960i
\(404\) 54.0000 31.1769i 0.133663 0.0771706i
\(405\) 0 0
\(406\) 175.000 0.431034
\(407\) −638.000 −1.56757
\(408\) 0 0
\(409\) −181.500 104.789i −0.443765 0.256208i 0.261428 0.965223i \(-0.415807\pi\)
−0.705193 + 0.709015i \(0.749140\pi\)
\(410\) −9.00000 + 15.5885i −0.0219512 + 0.0380206i
\(411\) 0 0
\(412\) 0 0
\(413\) −52.5000 + 30.3109i −0.127119 + 0.0733920i
\(414\) 0 0
\(415\) 139.500 + 241.621i 0.336145 + 0.582219i
\(416\) −198.000 114.315i −0.475962 0.274797i
\(417\) 0 0
\(418\) 33.0000 19.0526i 0.0789474 0.0455803i
\(419\) 131.636i 0.314167i −0.987585 0.157083i \(-0.949791\pi\)
0.987585 0.157083i \(-0.0502091\pi\)
\(420\) 0 0
\(421\) −28.0000 −0.0665083 −0.0332542 0.999447i \(-0.510587\pi\)
−0.0332542 + 0.999447i \(0.510587\pi\)
\(422\) −26.0000 45.0333i −0.0616114 0.106714i
\(423\) 0 0
\(424\) 108.500 187.928i 0.255896 0.443225i
\(425\) −42.0000 + 24.2487i −0.0988235 + 0.0570558i
\(426\) 0 0
\(427\) 96.9948i 0.227154i
\(428\) 93.0000 0.217290
\(429\) 0 0
\(430\) 117.000 + 67.5500i 0.272093 + 0.157093i
\(431\) 59.0000 102.191i 0.136891 0.237102i −0.789427 0.613844i \(-0.789622\pi\)
0.926318 + 0.376742i \(0.122956\pi\)
\(432\) 0 0
\(433\) 561.184i 1.29604i 0.761624 + 0.648019i \(0.224402\pi\)
−0.761624 + 0.648019i \(0.775598\pi\)
\(434\) 199.500 + 115.181i 0.459677 + 0.265395i
\(435\) 0 0
\(436\) −204.000 353.338i −0.467890 0.810409i
\(437\) −84.0000 48.4974i −0.192220 0.110978i
\(438\) 0 0
\(439\) −640.500 + 369.793i −1.45900 + 0.842353i −0.998962 0.0455478i \(-0.985497\pi\)
−0.460036 + 0.887900i \(0.652163\pi\)
\(440\) 400.104i 0.909327i
\(441\) 0 0
\(442\) −168.000 −0.380090
\(443\) −77.5000 134.234i −0.174944 0.303011i 0.765198 0.643795i \(-0.222641\pi\)
−0.940142 + 0.340784i \(0.889308\pi\)
\(444\) 0 0
\(445\) 207.000 358.535i 0.465169 0.805696i
\(446\) −19.5000 + 11.2583i −0.0437220 + 0.0252429i
\(447\) 0 0
\(448\) −45.5000 + 78.8083i −0.101562 + 0.175911i
\(449\) 368.000 0.819599 0.409800 0.912176i \(-0.365599\pi\)
0.409800 + 0.912176i \(0.365599\pi\)
\(450\) 0 0
\(451\) −33.0000 19.0526i −0.0731707 0.0422451i
\(452\) 111.000 192.258i 0.245575 0.425349i
\(453\) 0 0
\(454\) 67.5500i 0.148789i
\(455\) 252.000 0.553846
\(456\) 0 0
\(457\) −170.500 295.315i −0.373085 0.646203i 0.616953 0.787000i \(-0.288367\pi\)
−0.990038 + 0.140797i \(0.955033\pi\)
\(458\) −27.0000 15.5885i −0.0589520 0.0340359i
\(459\) 0 0
\(460\) 378.000 218.238i 0.821739 0.474431i
\(461\) 55.4256i 0.120229i −0.998191 0.0601146i \(-0.980853\pi\)
0.998191 0.0601146i \(-0.0191466\pi\)
\(462\) 0 0
\(463\) −178.000 −0.384449 −0.192225 0.981351i \(-0.561570\pi\)
−0.192225 + 0.981351i \(0.561570\pi\)
\(464\) 62.5000 + 108.253i 0.134698 + 0.233304i
\(465\) 0 0
\(466\) −131.000 + 226.899i −0.281116 + 0.486907i
\(467\) −570.000 + 329.090i −1.22056 + 0.704689i −0.965037 0.262115i \(-0.915580\pi\)
−0.255520 + 0.966804i \(0.582247\pi\)
\(468\) 0 0
\(469\) 182.000 + 315.233i 0.388060 + 0.672139i
\(470\) 396.000 0.842553
\(471\) 0 0
\(472\) 52.5000 + 30.3109i 0.111229 + 0.0642180i
\(473\) −143.000 + 247.683i −0.302326 + 0.523643i
\(474\) 0 0
\(475\) 6.92820i 0.0145857i
\(476\) 509.223i 1.06980i
\(477\) 0 0
\(478\) −80.0000 138.564i −0.167364 0.289883i
\(479\) −441.000 254.611i −0.920668 0.531548i −0.0368199 0.999322i \(-0.511723\pi\)
−0.883848 + 0.467774i \(0.845056\pi\)
\(480\) 0 0
\(481\) 348.000 200.918i 0.723493 0.417709i
\(482\) 472.850i 0.981016i
\(483\) 0 0
\(484\) 0 0
\(485\) −238.500 413.094i −0.491753 0.851740i
\(486\) 0 0
\(487\) 420.500 728.327i 0.863450 1.49554i −0.00512864 0.999987i \(-0.501633\pi\)
0.868578 0.495552i \(-0.165034\pi\)
\(488\) 84.0000 48.4974i 0.172131 0.0993800i
\(489\) 0 0
\(490\) 254.611i 0.519615i
\(491\) 959.000 1.95316 0.976578 0.215162i \(-0.0690279\pi\)
0.976578 + 0.215162i \(0.0690279\pi\)
\(492\) 0 0
\(493\) 525.000 + 303.109i 1.06491 + 0.614825i
\(494\) −12.0000 + 20.7846i −0.0242915 + 0.0420741i
\(495\) 0 0
\(496\) 164.545i 0.331744i
\(497\) 224.000 387.979i 0.450704 0.780643i
\(498\) 0 0
\(499\) 59.0000 + 102.191i 0.118236 + 0.204792i 0.919069 0.394097i \(-0.128943\pi\)
−0.800832 + 0.598889i \(0.795609\pi\)
\(500\) 310.500 + 179.267i 0.621000 + 0.358535i
\(501\) 0 0
\(502\) 58.5000 33.7750i 0.116534 0.0672809i
\(503\) 363.731i 0.723123i 0.932348 + 0.361561i \(0.117756\pi\)
−0.932348 + 0.361561i \(0.882244\pi\)
\(504\) 0 0
\(505\) 108.000 0.213861
\(506\) −154.000 266.736i −0.304348 0.527146i
\(507\) 0 0
\(508\) −1.50000 + 2.59808i −0.00295276 + 0.00511432i
\(509\) −382.500 + 220.836i −0.751473 + 0.433863i −0.826226 0.563339i \(-0.809517\pi\)
0.0747526 + 0.997202i \(0.476183\pi\)
\(510\) 0 0
\(511\) −42.0000 + 24.2487i −0.0821918 + 0.0474534i
\(512\) −305.000 −0.595703
\(513\) 0 0
\(514\) 351.000 + 202.650i 0.682879 + 0.394261i
\(515\) 0 0
\(516\) 0 0
\(517\) 838.313i 1.62149i
\(518\) −203.000 351.606i −0.391892 0.678777i
\(519\) 0 0
\(520\) −126.000 218.238i −0.242308 0.419689i
\(521\) 843.000 + 486.706i 1.61804 + 0.934177i 0.987426 + 0.158082i \(0.0505311\pi\)
0.630616 + 0.776095i \(0.282802\pi\)
\(522\) 0 0
\(523\) −408.000 + 235.559i −0.780115 + 0.450399i −0.836471 0.548011i \(-0.815385\pi\)
0.0563562 + 0.998411i \(0.482052\pi\)
\(524\) 545.596i 1.04121i
\(525\) 0 0
\(526\) 106.000 0.201521
\(527\) 399.000 + 691.088i 0.757116 + 1.31136i
\(528\) 0 0
\(529\) −127.500 + 220.836i −0.241021 + 0.417460i
\(530\) 139.500 80.5404i 0.263208 0.151963i
\(531\) 0 0
\(532\) −63.0000 36.3731i −0.118421 0.0683704i
\(533\) 24.0000 0.0450281
\(534\) 0 0
\(535\) 139.500 + 80.5404i 0.260748 + 0.150543i
\(536\) 182.000 315.233i 0.339552 0.588122i
\(537\) 0 0
\(538\) 434.745i 0.808076i
\(539\) 539.000 1.00000
\(540\) 0 0
\(541\) −403.000 698.016i −0.744917 1.29023i −0.950234 0.311538i \(-0.899156\pi\)
0.205317 0.978696i \(-0.434178\pi\)
\(542\) 109.500 + 63.2199i 0.202030 + 0.116642i
\(543\) 0 0
\(544\) −693.000 + 400.104i −1.27390 + 0.735485i
\(545\) 706.677i 1.29665i
\(546\) 0 0
\(547\) −154.000 −0.281536 −0.140768 0.990043i \(-0.544957\pi\)
−0.140768 + 0.990043i \(0.544957\pi\)
\(548\) −132.000 228.631i −0.240876 0.417209i
\(549\) 0 0
\(550\) −11.0000 + 19.0526i −0.0200000 + 0.0346410i
\(551\) 75.0000 43.3013i 0.136116 0.0785867i
\(552\) 0 0
\(553\) 119.000 0.215190
\(554\) −236.000 −0.425993
\(555\) 0 0
\(556\) 495.000 + 285.788i 0.890288 + 0.514008i
\(557\) −425.500 + 736.988i −0.763914 + 1.32314i 0.176905 + 0.984228i \(0.443391\pi\)
−0.940819 + 0.338910i \(0.889942\pi\)
\(558\) 0 0
\(559\) 180.133i 0.322242i
\(560\) 157.500 90.9327i 0.281250 0.162380i
\(561\) 0 0
\(562\) 58.0000 + 100.459i 0.103203 + 0.178753i
\(563\) −370.500 213.908i −0.658082 0.379944i 0.133464 0.991054i \(-0.457390\pi\)
−0.791546 + 0.611110i \(0.790723\pi\)
\(564\) 0 0
\(565\) 333.000 192.258i 0.589381 0.340279i
\(566\) 370.659i 0.654874i
\(567\) 0 0
\(568\) −448.000 −0.788732
\(569\) −409.000 708.409i −0.718805 1.24501i −0.961474 0.274897i \(-0.911356\pi\)
0.242669 0.970109i \(-0.421977\pi\)
\(570\) 0 0
\(571\) −142.000 + 245.951i −0.248687 + 0.430738i −0.963162 0.268923i \(-0.913332\pi\)
0.714475 + 0.699661i \(0.246666\pi\)
\(572\) 198.000 114.315i 0.346154 0.199852i
\(573\) 0 0
\(574\) 24.2487i 0.0422451i
\(575\) 56.0000 0.0973913
\(576\) 0 0
\(577\) −655.500 378.453i −1.13605 0.655898i −0.190599 0.981668i \(-0.561043\pi\)
−0.945449 + 0.325770i \(0.894377\pi\)
\(578\) −149.500 + 258.942i −0.258651 + 0.447996i
\(579\) 0 0
\(580\) 389.711i 0.671916i
\(581\) −325.500 187.928i −0.560241 0.323455i
\(582\) 0 0
\(583\) 170.500 + 295.315i 0.292453 + 0.506543i
\(584\) 42.0000 + 24.2487i 0.0719178 + 0.0415218i
\(585\) 0 0
\(586\) −16.5000 + 9.52628i −0.0281570 + 0.0162564i
\(587\) 947.432i 1.61402i 0.590535 + 0.807012i \(0.298917\pi\)
−0.590535 + 0.807012i \(0.701083\pi\)
\(588\) 0 0
\(589\) 114.000 0.193548
\(590\) 22.5000 + 38.9711i 0.0381356 + 0.0660528i
\(591\) 0 0
\(592\) 145.000 251.147i 0.244932 0.424235i
\(593\) −354.000 + 204.382i −0.596965 + 0.344658i −0.767847 0.640634i \(-0.778672\pi\)
0.170882 + 0.985292i \(0.445338\pi\)
\(594\) 0 0
\(595\) 441.000 763.834i 0.741176 1.28376i
\(596\) −690.000 −1.15772
\(597\) 0 0
\(598\) 168.000 + 96.9948i 0.280936 + 0.162199i
\(599\) 278.000 481.510i 0.464107 0.803857i −0.535054 0.844818i \(-0.679709\pi\)
0.999161 + 0.0409613i \(0.0130420\pi\)
\(600\) 0 0
\(601\) 580.237i 0.965453i −0.875771 0.482726i \(-0.839647\pi\)
0.875771 0.482726i \(-0.160353\pi\)
\(602\) −182.000 −0.302326
\(603\) 0 0
\(604\) 340.500 + 589.763i 0.563742 + 0.976429i
\(605\) 0 0
\(606\) 0 0
\(607\) 571.500 329.956i 0.941516 0.543584i 0.0510805 0.998695i \(-0.483733\pi\)
0.890435 + 0.455110i \(0.150400\pi\)
\(608\) 114.315i 0.188019i
\(609\) 0 0
\(610\) 72.0000 0.118033
\(611\) −264.000 457.261i −0.432079 0.748382i
\(612\) 0 0
\(613\) −160.000 + 277.128i −0.261011 + 0.452085i −0.966511 0.256625i \(-0.917389\pi\)
0.705500 + 0.708710i \(0.250723\pi\)
\(614\) −396.000 + 228.631i −0.644951 + 0.372363i
\(615\) 0 0
\(616\) −269.500 466.788i −0.437500 0.757772i
\(617\) −652.000 −1.05673 −0.528363 0.849019i \(-0.677194\pi\)
−0.528363 + 0.849019i \(0.677194\pi\)
\(618\) 0 0
\(619\) −558.000 322.161i −0.901454 0.520455i −0.0237823 0.999717i \(-0.507571\pi\)
−0.877672 + 0.479262i \(0.840904\pi\)
\(620\) −256.500 + 444.271i −0.413710 + 0.716566i
\(621\) 0 0
\(622\) 329.090i 0.529083i
\(623\) 557.720i 0.895217i
\(624\) 0 0
\(625\) 335.500 + 581.103i 0.536800 + 0.929765i
\(626\) 475.500 + 274.530i 0.759585 + 0.438546i
\(627\) 0 0
\(628\) −126.000 + 72.7461i −0.200637 + 0.115838i
\(629\) 1406.43i 2.23597i
\(630\) 0 0
\(631\) −97.0000 −0.153724 −0.0768621 0.997042i \(-0.524490\pi\)
−0.0768621 + 0.997042i \(0.524490\pi\)
\(632\) −59.5000 103.057i −0.0941456 0.163065i
\(633\) 0 0
\(634\) −93.5000 + 161.947i −0.147476 + 0.255437i
\(635\) −4.50000 + 2.59808i −0.00708661 + 0.00409146i
\(636\) 0 0
\(637\) −294.000 + 169.741i −0.461538 + 0.266469i
\(638\) 275.000 0.431034
\(639\) 0 0
\(640\) −535.500 309.171i −0.836719 0.483080i
\(641\) 350.000 606.218i 0.546022 0.945738i −0.452520 0.891754i \(-0.649475\pi\)
0.998542 0.0539833i \(-0.0171918\pi\)
\(642\) 0 0
\(643\) 325.626i 0.506416i 0.967412 + 0.253208i \(0.0814857\pi\)
−0.967412 + 0.253208i \(0.918514\pi\)
\(644\) −294.000 + 509.223i −0.456522 + 0.790719i
\(645\) 0 0
\(646\) 42.0000 + 72.7461i 0.0650155 + 0.112610i
\(647\) 312.000 + 180.133i 0.482226 + 0.278413i 0.721344 0.692577i \(-0.243525\pi\)
−0.239118 + 0.970991i \(0.576858\pi\)
\(648\) 0 0
\(649\) −82.5000 + 47.6314i −0.127119 + 0.0733920i
\(650\) 13.8564i 0.0213175i
\(651\) 0 0
\(652\) −636.000 −0.975460
\(653\) 186.500 + 323.027i 0.285605 + 0.494682i 0.972756 0.231833i \(-0.0744722\pi\)
−0.687151 + 0.726515i \(0.741139\pi\)
\(654\) 0 0
\(655\) −472.500 + 818.394i −0.721374 + 1.24946i
\(656\) 15.0000 8.66025i 0.0228659 0.0132016i
\(657\) 0 0
\(658\) −462.000 + 266.736i −0.702128 + 0.405374i
\(659\) 818.000 1.24127 0.620637 0.784098i \(-0.286874\pi\)
0.620637 + 0.784098i \(0.286874\pi\)
\(660\) 0 0
\(661\) 327.000 + 188.794i 0.494705 + 0.285618i 0.726524 0.687141i \(-0.241134\pi\)
−0.231819 + 0.972759i \(0.574468\pi\)
\(662\) −8.00000 + 13.8564i −0.0120846 + 0.0209311i
\(663\) 0 0
\(664\) 375.855i 0.566047i
\(665\) −63.0000 109.119i −0.0947368 0.164089i
\(666\) 0 0
\(667\) −350.000 606.218i −0.524738 0.908872i
\(668\) 252.000 + 145.492i 0.377246 + 0.217803i
\(669\) 0 0
\(670\) 234.000 135.100i 0.349254 0.201642i
\(671\) 152.420i 0.227154i
\(672\) 0 0
\(673\) 1205.00 1.79049 0.895245 0.445574i \(-0.147000\pi\)
0.895245 + 0.445574i \(0.147000\pi\)
\(674\) 41.5000 + 71.8801i 0.0615727 + 0.106647i
\(675\) 0 0
\(676\) 181.500 314.367i 0.268491 0.465040i
\(677\) 466.500 269.334i 0.689069 0.397834i −0.114194 0.993458i \(-0.536429\pi\)
0.803263 + 0.595624i \(0.203095\pi\)
\(678\) 0 0
\(679\) 556.500 + 321.295i 0.819588 + 0.473189i
\(680\) −882.000 −1.29706
\(681\) 0 0
\(682\) 313.500 + 180.999i 0.459677 + 0.265395i
\(683\) 474.500 821.858i 0.694729 1.20331i −0.275543 0.961289i \(-0.588858\pi\)
0.970272 0.242017i \(-0.0778091\pi\)
\(684\) 0 0
\(685\) 457.261i 0.667535i
\(686\) 171.500 + 297.047i 0.250000 + 0.433013i
\(687\) 0 0
\(688\) −65.0000 112.583i −0.0944767 0.163639i
\(689\) −186.000 107.387i −0.269956 0.155859i
\(690\) 0 0
\(691\) −267.000 + 154.153i −0.386397 + 0.223086i −0.680598 0.732657i \(-0.738280\pi\)
0.294201 + 0.955744i \(0.404946\pi\)
\(692\) 644.323i 0.931102i
\(693\) 0 0
\(694\) 358.000 0.515850
\(695\) 495.000 + 857.365i 0.712230 + 1.23362i
\(696\) 0 0
\(697\) 42.0000 72.7461i 0.0602582 0.104370i
\(698\) 588.000 339.482i 0.842407 0.486364i
\(699\) 0 0
\(700\) 42.0000 0.0600000
\(701\) 413.000 0.589158 0.294579 0.955627i \(-0.404821\pi\)
0.294579 + 0.955627i \(0.404821\pi\)
\(702\) 0 0
\(703\) −174.000 100.459i −0.247511 0.142900i
\(704\) −71.5000 + 123.842i −0.101562 + 0.175911i
\(705\) 0 0
\(706\) 644.323i 0.912639i
\(707\) −126.000 + 72.7461i −0.178218 + 0.102894i
\(708\) 0 0
\(709\) −445.000 770.763i −0.627645 1.08711i −0.988023 0.154306i \(-0.950686\pi\)
0.360379 0.932806i \(-0.382648\pi\)
\(710\) −288.000 166.277i −0.405634 0.234193i
\(711\) 0 0
\(712\) 483.000 278.860i 0.678371 0.391658i
\(713\) 921.451i 1.29236i
\(714\) 0 0
\(715\) 396.000 0.553846
\(716\) −69.0000 119.512i −0.0963687 0.166916i
\(717\) 0 0
\(718\) 142.000 245.951i 0.197772 0.342550i
\(719\) −579.000 + 334.286i −0.805285 + 0.464932i −0.845316 0.534267i \(-0.820588\pi\)
0.0400307 + 0.999198i \(0.487254\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −349.000 −0.483380
\(723\) 0 0
\(724\) 81.0000 + 46.7654i 0.111878 + 0.0645931i
\(725\) −25.0000 + 43.3013i −0.0344828 + 0.0597259i
\(726\) 0 0
\(727\) 417.424i 0.574174i 0.957905 + 0.287087i \(0.0926868\pi\)
−0.957905 + 0.287087i \(0.907313\pi\)
\(728\) 294.000 + 169.741i 0.403846 + 0.233161i
\(729\) 0 0
\(730\) 18.0000 + 31.1769i 0.0246575 + 0.0427081i
\(731\) −546.000 315.233i −0.746922 0.431236i
\(732\) 0 0
\(733\) 171.000 98.7269i 0.233288 0.134689i −0.378800 0.925479i \(-0.623663\pi\)
0.612088 + 0.790790i \(0.290330\pi\)
\(734\) 275.396i 0.375199i
\(735\) 0 0
\(736\) 924.000 1.25543
\(737\) 286.000 + 495.367i 0.388060 + 0.672139i
\(738\) 0 0
\(739\) 155.000 268.468i 0.209743 0.363285i −0.741891 0.670521i \(-0.766071\pi\)
0.951633 + 0.307236i \(0.0994040\pi\)
\(740\) 783.000 452.065i 1.05811 0.610899i
\(741\) 0 0
\(742\) −108.500 + 187.928i −0.146226 + 0.253272i
\(743\) 812.000 1.09287 0.546433 0.837503i \(-0.315985\pi\)
0.546433 + 0.837503i \(0.315985\pi\)
\(744\) 0 0
\(745\) −1035.00 597.558i −1.38926 0.802091i
\(746\) 25.0000 43.3013i 0.0335121 0.0580446i
\(747\) 0 0
\(748\) 800.207i 1.06980i
\(749\) −217.000 −0.289720
\(750\) 0 0
\(751\) 537.500 + 930.977i 0.715712 + 1.23965i 0.962684 + 0.270628i \(0.0872312\pi\)
−0.246972 + 0.969023i \(0.579435\pi\)
\(752\) −330.000 190.526i −0.438830 0.253358i
\(753\) 0 0
\(754\) −150.000 + 86.6025i −0.198939 + 0.114857i
\(755\) 1179.53i 1.56229i
\(756\) 0 0
\(757\) −484.000 −0.639366 −0.319683 0.947525i \(-0.603576\pi\)
−0.319683 + 0.947525i \(0.603576\pi\)
\(758\) 229.000 + 396.640i 0.302111 + 0.523271i
\(759\) 0 0
\(760\) −63.0000 + 109.119i −0.0828947 + 0.143578i
\(761\) −144.000 + 83.1384i −0.189225 + 0.109249i −0.591620 0.806217i \(-0.701511\pi\)
0.402395 + 0.915466i \(0.368178\pi\)
\(762\) 0 0
\(763\) 476.000 + 824.456i 0.623853 + 1.08055i
\(764\) 624.000 0.816754
\(765\) 0 0
\(766\) −351.000 202.650i −0.458225 0.264556i
\(767\) 30.0000 51.9615i 0.0391134 0.0677464i
\(768\) 0 0
\(769\) 594.093i 0.772553i −0.922383 0.386277i \(-0.873761\pi\)
0.922383 0.386277i \(-0.126239\pi\)
\(770\) 400.104i 0.519615i
\(771\) 0 0
\(772\) 358.500 + 620.940i 0.464378 + 0.804327i
\(773\) −894.000 516.151i −1.15653 0.667725i −0.206062 0.978539i \(-0.566065\pi\)
−0.950471 + 0.310814i \(0.899398\pi\)
\(774\) 0 0
\(775\) −57.0000 + 32.9090i −0.0735484 + 0.0424632i
\(776\) 642.591i 0.828081i
\(777\) 0 0
\(778\) −698.000 −0.897172
\(779\) −6.00000 10.3923i −0.00770218 0.0133406i
\(780\) 0 0
\(781\) 352.000 609.682i 0.450704 0.780643i
\(782\) 588.000 339.482i 0.751918 0.434120i
\(783\) 0 0
\(784\) −122.500 + 212.176i −0.156250 + 0.270633i
\(785\) −252.000 −0.321019
\(786\) 0 0
\(787\) 354.000 + 204.382i 0.449809 + 0.259698i 0.707750 0.706463i \(-0.249710\pi\)
−0.257940 + 0.966161i \(0.583044\pi\)
\(788\) 39.0000 67.5500i 0.0494924 0.0857233i
\(789\) 0 0
\(790\) 88.3346i 0.111816i
\(791\) −259.000 + 448.601i −0.327434 + 0.567132i
\(792\) 0 0
\(793\) −48.0000 83.1384i −0.0605296 0.104840i
\(794\) −498.000 287.520i −0.627204 0.362116i
\(795\) 0 0
\(796\) −630.000 + 363.731i −0.791457 + 0.456948i
\(797\) 625.270i 0.784530i −0.919852 0.392265i \(-0.871692\pi\)
0.919852 0.392265i \(-0.128308\pi\)
\(798\) 0 0
\(799\) −1848.00 −2.31289
\(800\) −33.0000 57.1577i −0.0412500 0.0714471i
\(801\) 0 0
\(802\) 142.000 245.951i 0.177057 0.306672i
\(803\) −66.0000 + 38.1051i −0.0821918 + 0.0474534i
\(804\) 0 0
\(805\) −882.000 + 509.223i −1.09565 + 0.632575i
\(806\) −228.000 −0.282878
\(807\) 0 0
\(808\) 126.000 + 72.7461i 0.155941 + 0.0900323i
\(809\) −376.000 + 651.251i −0.464771 + 0.805008i −0.999191 0.0402116i \(-0.987197\pi\)
0.534420 + 0.845219i \(0.320530\pi\)
\(810\) 0 0
\(811\) 270.200i 0.333169i −0.986027 0.166584i \(-0.946726\pi\)
0.986027 0.166584i \(-0.0532738\pi\)
\(812\) −262.500 454.663i −0.323276 0.559930i
\(813\) 0 0
\(814\) −319.000 552.524i −0.391892 0.678777i
\(815\) −954.000 550.792i −1.17055 0.675819i
\(816\) 0 0
\(817\) −78.0000 + 45.0333i −0.0954712 + 0.0551203i
\(818\) 209.578i 0.256208i
\(819\) 0 0
\(820\) 54.0000 0.0658537
\(821\) 441.500 + 764.700i 0.537759 + 0.931426i 0.999024 + 0.0441635i \(0.0140622\pi\)
−0.461265 + 0.887262i \(0.652604\pi\)
\(822\) 0 0
\(823\) 245.000 424.352i 0.297691 0.515617i −0.677916 0.735139i \(-0.737117\pi\)
0.975607 + 0.219523i \(0.0704500\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −52.5000 30.3109i −0.0635593 0.0366960i
\(827\) −1279.00 −1.54655 −0.773277 0.634068i \(-0.781384\pi\)
−0.773277 + 0.634068i \(0.781384\pi\)
\(828\) 0 0
\(829\) 1311.00 + 756.906i 1.58142 + 0.913035i 0.994652 + 0.103283i \(0.0329346\pi\)
0.586771 + 0.809753i \(0.300399\pi\)
\(830\) −139.500 + 241.621i −0.168072 + 0.291110i
\(831\) 0 0
\(832\) 90.0666i 0.108253i
\(833\) 1188.19i 1.42639i
\(834\) 0 0
\(835\) 252.000 + 436.477i 0.301796 + 0.522727i
\(836\) −99.0000 57.1577i −0.118421 0.0683704i
\(837\) 0 0
\(838\) 114.000 65.8179i 0.136038 0.0785417i
\(839\) 523.079i 0.623456i −0.950171 0.311728i \(-0.899092\pi\)
0.950171 0.311728i \(-0.100908\pi\)
\(840\) 0 0
\(841\) −216.000 −0.256837
\(842\) −14.0000 24.2487i −0.0166271 0.0287989i
\(843\) 0 0
\(844\) −78.0000 + 135.100i −0.0924171 + 0.160071i
\(845\) 544.500 314.367i 0.644379 0.372032i
\(846\) 0 0
\(847\) 0 0
\(848\) −155.000 −0.182783
\(849\) 0 0
\(850\) −42.0000 24.2487i −0.0494118 0.0285279i
\(851\) −812.000 + 1406.43i −0.954172 + 1.65267i
\(852\) 0 0
\(853\) 387.979i 0.454841i −0.973797 0.227421i \(-0.926971\pi\)
0.973797 0.227421i \(-0.0730292\pi\)
\(854\) −84.0000 + 48.4974i −0.0983607 + 0.0567886i
\(855\) 0 0
\(856\) 108.500 + 187.928i 0.126752 + 0.219541i
\(857\) 720.000 + 415.692i 0.840140 + 0.485055i 0.857312 0.514797i \(-0.172133\pi\)
−0.0171718 + 0.999853i \(0.505466\pi\)
\(858\) 0 0
\(859\) 981.000 566.381i 1.14203 0.659349i 0.195094 0.980785i \(-0.437499\pi\)
0.946931 + 0.321436i \(0.104165\pi\)
\(860\) 405.300i 0.471279i
\(861\) 0 0
\(862\) 118.000 0.136891
\(863\) 11.0000 + 19.0526i 0.0127462 + 0.0220771i 0.872328 0.488921i \(-0.162609\pi\)
−0.859582 + 0.510998i \(0.829276\pi\)
\(864\) 0 0
\(865\) −558.000 + 966.484i −0.645087 + 1.11732i
\(866\) −486.000 + 280.592i −0.561201 + 0.324010i
\(867\) 0 0
\(868\) 691.088i 0.796185i
\(869\) 187.000 0.215190
\(870\) 0 0
\(871\) −312.000 180.133i −0.358209 0.206812i
\(872\) 476.000 824.456i 0.545872 0.945477i
\(873\) 0 0
\(874\) 96.9948i 0.110978i
\(875\) −724.500 418.290i −0.828000 0.478046i
\(876\) 0 0
\(877\) 20.0000 + 34.6410i 0.0228050 + 0.0394994i 0.877203 0.480120i \(-0.159407\pi\)
−0.854398 + 0.519620i \(0.826074\pi\)
\(878\) −640.500 369.793i −0.729499 0.421176i
\(879\) 0 0
\(880\) 247.500 142.894i 0.281250 0.162380i
\(881\) 20.7846i 0.0235921i 0.999930 + 0.0117960i \(0.00375488\pi\)
−0.999930 + 0.0117960i \(0.996245\pi\)
\(882\) 0 0
\(883\) 386.000 0.437146 0.218573 0.975821i \(-0.429860\pi\)
0.218573 + 0.975821i \(0.429860\pi\)
\(884\) 252.000 + 436.477i 0.285068 + 0.493752i
\(885\) 0 0
\(886\) 77.5000 134.234i 0.0874718 0.151506i
\(887\) 1494.00 862.561i 1.68433 0.972448i 0.725604 0.688112i \(-0.241560\pi\)
0.958725 0.284336i \(-0.0917731\pi\)
\(888\) 0 0
\(889\) 3.50000 6.06218i 0.00393701 0.00681910i
\(890\) 414.000 0.465169
\(891\) 0 0
\(892\) 58.5000 + 33.7750i 0.0655830 + 0.0378643i
\(893\) −132.000 + 228.631i −0.147816 + 0.256025i
\(894\) 0 0
\(895\) 239.023i 0.267065i
\(896\) 833.000 0.929688
\(897\) 0 0
\(898\) 184.000 + 318.697i 0.204900 + 0.354897i
\(899\) 712.500 + 411.362i 0.792547 + 0.457577i
\(900\) 0 0
\(901\) −651.000 + 375.855i −0.722531 + 0.417153i
\(902\) 38.1051i 0.0422451i
\(903\) 0 0
\(904\) 518.000 0.573009
\(905\) 81.0000 + 140.296i 0.0895028 + 0.155023i
\(906\) 0 0
\(907\) 296.000 512.687i 0.326351 0.565256i −0.655434 0.755252i \(-0.727514\pi\)
0.981785 + 0.189996i \(0.0608477\pi\)
\(908\) −175.500 + 101.325i −0.193282 + 0.111591i
\(909\) 0 0
\(910\) 126.000 + 218.238i 0.138462 + 0.239822i
\(911\) 416.000 0.456641 0.228321 0.973586i \(-0.426677\pi\)
0.228321 + 0.973586i \(0.426677\pi\)
\(912\) 0 0
\(913\) −511.500 295.315i −0.560241 0.323455i
\(914\) 170.500 295.315i 0.186543 0.323101i
\(915\) 0 0
\(916\) 93.5307i 0.102108i
\(917\) 1273.06i 1.38828i
\(918\) 0 0
\(919\) −25.0000 43.3013i −0.0272035 0.0471178i 0.852103 0.523374i \(-0.175327\pi\)
−0.879307 + 0.476256i \(0.841994\pi\)
\(920\) 882.000 + 509.223i 0.958696 + 0.553503i
\(921\) 0 0
\(922\) 48.0000 27.7128i 0.0520607 0.0300573i
\(923\) 443.405i 0.480395i
\(924\) 0 0
\(925\) 116.000 0.125405
\(926\) −89.0000 154.153i −0.0961123 0.166471i
\(927\) 0 0
\(928\) −412.500 + 714.471i −0.444504 + 0.769904i
\(929\) −357.000 + 206.114i −0.384284 + 0.221867i −0.679681 0.733508i \(-0.737882\pi\)
0.295396 + 0.955375i \(0.404548\pi\)
\(930\) 0 0
\(931\) 147.000 + 84.8705i 0.157895 + 0.0911606i
\(932\) 786.000 0.843348
\(933\) 0 0
\(934\) −570.000 329.090i −0.610278 0.352344i
\(935\) 693.000 1200.31i 0.741176 1.28376i
\(936\) 0 0
\(937\) 1605.61i 1.71357i 0.515677 + 0.856783i \(0.327540\pi\)
−0.515677 + 0.856783i \(0.672460\pi\)
\(938\) −182.000 + 315.233i −0.194030 + 0.336070i
\(939\) 0 0
\(940\) −594.000 1028.84i −0.631915 1.09451i
\(941\) 1150.50 + 664.241i 1.22264 + 0.705889i 0.965479 0.260481i \(-0.0838811\pi\)
0.257156 + 0.966370i \(0.417214\pi\)
\(942\) 0 0
\(943\) −84.0000 + 48.4974i −0.0890774 + 0.0514289i
\(944\) 43.3013i 0.0458700i
\(945\) 0 0
\(946\) −286.000 −0.302326
\(947\) −685.000 1186.45i −0.723337 1.25286i −0.959655 0.281180i \(-0.909274\pi\)
0.236318 0.971676i \(-0.424059\pi\)
\(948\) 0 0
\(949\) 24.0000 41.5692i 0.0252898 0.0438032i
\(950\) −6.00000 + 3.46410i −0.00631579 + 0.00364642i
\(951\) 0 0
\(952\) 1029.00 594.093i 1.08088 0.624048i
\(953\) −1150.00 −1.20672 −0.603358 0.797471i \(-0.706171\pi\)
−0.603358 + 0.797471i \(0.706171\pi\)
\(954\) 0 0
\(955\) 936.000 + 540.400i 0.980105 + 0.565864i
\(956\) −240.000 + 415.692i −0.251046 + 0.434824i
\(957\) 0 0
\(958\) 509.223i 0.531548i
\(959\) 308.000 + 533.472i 0.321168 + 0.556279i
\(960\) 0 0
\(961\) 61.0000 + 105.655i 0.0634755 + 0.109943i
\(962\) 348.000 + 200.918i 0.361746 + 0.208854i
\(963\) 0 0
\(964\) 1228.50 709.275i 1.27438 0.735762i
\(965\) 1241.88i 1.28692i
\(966\) 0 0
\(967\) 5.00000 0.00517063 0.00258532 0.999997i \(-0.499177\pi\)
0.00258532 + 0.999997i \(0.499177\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 238.500 413.094i 0.245876 0.425870i
\(971\) −385.500 + 222.569i −0.397013 + 0.229216i −0.685195 0.728360i \(-0.740283\pi\)
0.288181 + 0.957576i \(0.406949\pi\)
\(972\) 0 0
\(973\) −1155.00 666.840i −1.18705 0.685344i
\(974\) 841.000 0.863450
\(975\) 0 0
\(976\) −60.0000 34.6410i −0.0614754 0.0354928i
\(977\) 479.000 829.652i 0.490276 0.849184i −0.509661 0.860375i \(-0.670229\pi\)
0.999937 + 0.0111917i \(0.00356252\pi\)
\(978\) 0 0
\(979\) 876.418i 0.895217i
\(980\) −661.500 + 381.917i −0.675000 + 0.389711i
\(981\) 0 0
\(982\) 479.500 + 830.518i 0.488289 + 0.845742i
\(983\) −243.000 140.296i −0.247202 0.142722i 0.371280 0.928521i \(-0.378919\pi\)
−0.618483 + 0.785798i \(0.712252\pi\)
\(984\) 0 0
\(985\) 117.000 67.5500i 0.118782 0.0685787i
\(986\) 606.218i 0.614825i
\(987\) 0 0
\(988\) 72.0000 0.0728745
\(989\) 364.000 + 630.466i 0.368049 + 0.637479i
\(990\) 0 0
\(991\) −461.500 + 799.341i −0.465691 + 0.806601i −0.999232 0.0391732i \(-0.987528\pi\)
0.533541 + 0.845774i \(0.320861\pi\)
\(992\) −940.500 + 542.998i −0.948085 + 0.547377i
\(993\) 0 0
\(994\) 448.000 0.450704
\(995\) −1260.00 −1.26633
\(996\) 0 0
\(997\) 18.0000 + 10.3923i 0.0180542 + 0.0104236i 0.509000 0.860767i \(-0.330015\pi\)
−0.490946 + 0.871190i \(0.663349\pi\)
\(998\) −59.0000 + 102.191i −0.0591182 + 0.102396i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.m.c.10.1 2
3.2 odd 2 21.3.f.b.10.1 2
4.3 odd 2 1008.3.cg.g.577.1 2
7.2 even 3 441.3.m.e.19.1 2
7.3 odd 6 441.3.d.b.244.1 2
7.4 even 3 441.3.d.b.244.2 2
7.5 odd 6 inner 63.3.m.c.19.1 2
7.6 odd 2 441.3.m.e.325.1 2
12.11 even 2 336.3.bh.a.241.1 2
15.2 even 4 525.3.s.c.199.2 4
15.8 even 4 525.3.s.c.199.1 4
15.14 odd 2 525.3.o.g.451.1 2
21.2 odd 6 147.3.f.c.19.1 2
21.5 even 6 21.3.f.b.19.1 yes 2
21.11 odd 6 147.3.d.b.97.1 2
21.17 even 6 147.3.d.b.97.2 2
21.20 even 2 147.3.f.c.31.1 2
28.19 even 6 1008.3.cg.g.145.1 2
84.11 even 6 2352.3.f.d.97.2 2
84.47 odd 6 336.3.bh.a.145.1 2
84.59 odd 6 2352.3.f.d.97.1 2
105.47 odd 12 525.3.s.c.124.1 4
105.68 odd 12 525.3.s.c.124.2 4
105.89 even 6 525.3.o.g.376.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.3.f.b.10.1 2 3.2 odd 2
21.3.f.b.19.1 yes 2 21.5 even 6
63.3.m.c.10.1 2 1.1 even 1 trivial
63.3.m.c.19.1 2 7.5 odd 6 inner
147.3.d.b.97.1 2 21.11 odd 6
147.3.d.b.97.2 2 21.17 even 6
147.3.f.c.19.1 2 21.2 odd 6
147.3.f.c.31.1 2 21.20 even 2
336.3.bh.a.145.1 2 84.47 odd 6
336.3.bh.a.241.1 2 12.11 even 2
441.3.d.b.244.1 2 7.3 odd 6
441.3.d.b.244.2 2 7.4 even 3
441.3.m.e.19.1 2 7.2 even 3
441.3.m.e.325.1 2 7.6 odd 2
525.3.o.g.376.1 2 105.89 even 6
525.3.o.g.451.1 2 15.14 odd 2
525.3.s.c.124.1 4 105.47 odd 12
525.3.s.c.124.2 4 105.68 odd 12
525.3.s.c.199.1 4 15.8 even 4
525.3.s.c.199.2 4 15.2 even 4
1008.3.cg.g.145.1 2 28.19 even 6
1008.3.cg.g.577.1 2 4.3 odd 2
2352.3.f.d.97.1 2 84.59 odd 6
2352.3.f.d.97.2 2 84.11 even 6