Properties

Label 528.4.b.d.65.4
Level $528$
Weight $4$
Character 528.65
Analytic conductor $31.153$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [528,4,Mod(65,528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(528, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("528.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 528.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1530084830\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 21x^{4} + 114x^{3} - 567x^{2} - 729x + 19683 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 65.4
Root \(0.832570 + 5.12902i\) of defining polynomial
Character \(\chi\) \(=\) 528.65
Dual form 528.4.b.d.65.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.832570 + 5.12902i) q^{3} -6.09929i q^{5} -1.16981i q^{7} +(-25.6137 - 8.54053i) q^{9} +(30.4508 + 20.0935i) q^{11} -37.5697i q^{13} +(31.2834 + 5.07809i) q^{15} -40.8925 q^{17} +84.3569i q^{19} +(6.00000 + 0.973952i) q^{21} -101.207i q^{23} +87.7986 q^{25} +(65.1297 - 124.262i) q^{27} +251.561 q^{29} -19.9245 q^{31} +(-128.412 + 139.454i) q^{33} -7.13504 q^{35} +45.9062 q^{37} +(192.696 + 31.2794i) q^{39} +175.597 q^{41} +332.498i q^{43} +(-52.0912 + 156.225i) q^{45} +186.815i q^{47} +341.632 q^{49} +(34.0458 - 209.738i) q^{51} -554.462i q^{53} +(122.556 - 185.728i) q^{55} +(-432.668 - 70.2330i) q^{57} +185.177i q^{59} +754.209i q^{61} +(-9.99084 + 29.9632i) q^{63} -229.149 q^{65} +381.334 q^{67} +(519.094 + 84.2622i) q^{69} -401.820i q^{71} +1034.57i q^{73} +(-73.0985 + 450.321i) q^{75} +(23.5057 - 35.6218i) q^{77} +1044.32i q^{79} +(583.119 + 437.508i) q^{81} -847.048 q^{83} +249.415i q^{85} +(-209.442 + 1290.26i) q^{87} +675.083i q^{89} -43.9496 q^{91} +(16.5886 - 102.193i) q^{93} +514.517 q^{95} -378.080 q^{97} +(-608.347 - 774.734i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 43 q^{9} + 6 q^{11} + 7 q^{15} + 156 q^{17} + 36 q^{21} - 204 q^{25} + 278 q^{27} - 144 q^{29} + 114 q^{31} + 157 q^{33} - 588 q^{35} - 54 q^{37} + 48 q^{39} - 408 q^{41} + 551 q^{45} + 606 q^{49}+ \cdots - 1753 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.832570 + 5.12902i −0.160228 + 0.987080i
\(4\) 0 0
\(5\) 6.09929i 0.545537i −0.962080 0.272769i \(-0.912061\pi\)
0.962080 0.272769i \(-0.0879393\pi\)
\(6\) 0 0
\(7\) 1.16981i 0.0631640i −0.999501 0.0315820i \(-0.989945\pi\)
0.999501 0.0315820i \(-0.0100545\pi\)
\(8\) 0 0
\(9\) −25.6137 8.54053i −0.948654 0.316316i
\(10\) 0 0
\(11\) 30.4508 + 20.0935i 0.834660 + 0.550765i
\(12\) 0 0
\(13\) 37.5697i 0.801535i −0.916180 0.400768i \(-0.868743\pi\)
0.916180 0.400768i \(-0.131257\pi\)
\(14\) 0 0
\(15\) 31.2834 + 5.07809i 0.538489 + 0.0874104i
\(16\) 0 0
\(17\) −40.8925 −0.583404 −0.291702 0.956509i \(-0.594222\pi\)
−0.291702 + 0.956509i \(0.594222\pi\)
\(18\) 0 0
\(19\) 84.3569i 1.01857i 0.860598 + 0.509284i \(0.170090\pi\)
−0.860598 + 0.509284i \(0.829910\pi\)
\(20\) 0 0
\(21\) 6.00000 + 0.973952i 0.0623480 + 0.0101207i
\(22\) 0 0
\(23\) 101.207i 0.917530i −0.888558 0.458765i \(-0.848292\pi\)
0.888558 0.458765i \(-0.151708\pi\)
\(24\) 0 0
\(25\) 87.7986 0.702389
\(26\) 0 0
\(27\) 65.1297 124.262i 0.464230 0.885715i
\(28\) 0 0
\(29\) 251.561 1.61082 0.805408 0.592721i \(-0.201946\pi\)
0.805408 + 0.592721i \(0.201946\pi\)
\(30\) 0 0
\(31\) −19.9245 −0.115437 −0.0577185 0.998333i \(-0.518383\pi\)
−0.0577185 + 0.998333i \(0.518383\pi\)
\(32\) 0 0
\(33\) −128.412 + 139.454i −0.677385 + 0.735628i
\(34\) 0 0
\(35\) −7.13504 −0.0344583
\(36\) 0 0
\(37\) 45.9062 0.203971 0.101986 0.994786i \(-0.467480\pi\)
0.101986 + 0.994786i \(0.467480\pi\)
\(38\) 0 0
\(39\) 192.696 + 31.2794i 0.791180 + 0.128429i
\(40\) 0 0
\(41\) 175.597 0.668870 0.334435 0.942419i \(-0.391454\pi\)
0.334435 + 0.942419i \(0.391454\pi\)
\(42\) 0 0
\(43\) 332.498i 1.17920i 0.807697 + 0.589598i \(0.200714\pi\)
−0.807697 + 0.589598i \(0.799286\pi\)
\(44\) 0 0
\(45\) −52.0912 + 156.225i −0.172562 + 0.517526i
\(46\) 0 0
\(47\) 186.815i 0.579783i 0.957059 + 0.289892i \(0.0936193\pi\)
−0.957059 + 0.289892i \(0.906381\pi\)
\(48\) 0 0
\(49\) 341.632 0.996010
\(50\) 0 0
\(51\) 34.0458 209.738i 0.0934778 0.575867i
\(52\) 0 0
\(53\) 554.462i 1.43700i −0.695524 0.718502i \(-0.744828\pi\)
0.695524 0.718502i \(-0.255172\pi\)
\(54\) 0 0
\(55\) 122.556 185.728i 0.300463 0.455338i
\(56\) 0 0
\(57\) −432.668 70.2330i −1.00541 0.163203i
\(58\) 0 0
\(59\) 185.177i 0.408610i 0.978907 + 0.204305i \(0.0654934\pi\)
−0.978907 + 0.204305i \(0.934507\pi\)
\(60\) 0 0
\(61\) 754.209i 1.58306i 0.611131 + 0.791529i \(0.290715\pi\)
−0.611131 + 0.791529i \(0.709285\pi\)
\(62\) 0 0
\(63\) −9.99084 + 29.9632i −0.0199798 + 0.0599208i
\(64\) 0 0
\(65\) −229.149 −0.437267
\(66\) 0 0
\(67\) 381.334 0.695334 0.347667 0.937618i \(-0.386974\pi\)
0.347667 + 0.937618i \(0.386974\pi\)
\(68\) 0 0
\(69\) 519.094 + 84.2622i 0.905675 + 0.147014i
\(70\) 0 0
\(71\) 401.820i 0.671651i −0.941924 0.335826i \(-0.890985\pi\)
0.941924 0.335826i \(-0.109015\pi\)
\(72\) 0 0
\(73\) 1034.57i 1.65872i 0.558711 + 0.829362i \(0.311296\pi\)
−0.558711 + 0.829362i \(0.688704\pi\)
\(74\) 0 0
\(75\) −73.0985 + 450.321i −0.112542 + 0.693314i
\(76\) 0 0
\(77\) 23.5057 35.6218i 0.0347885 0.0527205i
\(78\) 0 0
\(79\) 1044.32i 1.48728i 0.668578 + 0.743642i \(0.266903\pi\)
−0.668578 + 0.743642i \(0.733097\pi\)
\(80\) 0 0
\(81\) 583.119 + 437.508i 0.799888 + 0.600149i
\(82\) 0 0
\(83\) −847.048 −1.12019 −0.560094 0.828429i \(-0.689235\pi\)
−0.560094 + 0.828429i \(0.689235\pi\)
\(84\) 0 0
\(85\) 249.415i 0.318269i
\(86\) 0 0
\(87\) −209.442 + 1290.26i −0.258098 + 1.59000i
\(88\) 0 0
\(89\) 675.083i 0.804030i 0.915633 + 0.402015i \(0.131690\pi\)
−0.915633 + 0.402015i \(0.868310\pi\)
\(90\) 0 0
\(91\) −43.9496 −0.0506282
\(92\) 0 0
\(93\) 16.5886 102.193i 0.0184963 0.113946i
\(94\) 0 0
\(95\) 514.517 0.555667
\(96\) 0 0
\(97\) −378.080 −0.395755 −0.197877 0.980227i \(-0.563405\pi\)
−0.197877 + 0.980227i \(0.563405\pi\)
\(98\) 0 0
\(99\) −608.347 774.734i −0.617588 0.786502i
\(100\) 0 0
\(101\) 870.938 0.858036 0.429018 0.903296i \(-0.358860\pi\)
0.429018 + 0.903296i \(0.358860\pi\)
\(102\) 0 0
\(103\) 1940.06 1.85592 0.927962 0.372675i \(-0.121559\pi\)
0.927962 + 0.372675i \(0.121559\pi\)
\(104\) 0 0
\(105\) 5.94042 36.5957i 0.00552119 0.0340131i
\(106\) 0 0
\(107\) 503.199 0.454636 0.227318 0.973821i \(-0.427004\pi\)
0.227318 + 0.973821i \(0.427004\pi\)
\(108\) 0 0
\(109\) 1952.64i 1.71586i −0.513766 0.857930i \(-0.671750\pi\)
0.513766 0.857930i \(-0.328250\pi\)
\(110\) 0 0
\(111\) −38.2201 + 235.454i −0.0326819 + 0.201336i
\(112\) 0 0
\(113\) 1009.29i 0.840227i 0.907472 + 0.420113i \(0.138010\pi\)
−0.907472 + 0.420113i \(0.861990\pi\)
\(114\) 0 0
\(115\) −617.293 −0.500547
\(116\) 0 0
\(117\) −320.865 + 962.297i −0.253538 + 0.760380i
\(118\) 0 0
\(119\) 47.8366i 0.0368502i
\(120\) 0 0
\(121\) 523.503 + 1223.73i 0.393316 + 0.919403i
\(122\) 0 0
\(123\) −146.197 + 900.642i −0.107172 + 0.660229i
\(124\) 0 0
\(125\) 1297.92i 0.928717i
\(126\) 0 0
\(127\) 84.3828i 0.0589588i 0.999565 + 0.0294794i \(0.00938494\pi\)
−0.999565 + 0.0294794i \(0.990615\pi\)
\(128\) 0 0
\(129\) −1705.39 276.828i −1.16396 0.188940i
\(130\) 0 0
\(131\) 1786.96 1.19181 0.595905 0.803055i \(-0.296793\pi\)
0.595905 + 0.803055i \(0.296793\pi\)
\(132\) 0 0
\(133\) 98.6820 0.0643369
\(134\) 0 0
\(135\) −757.912 397.245i −0.483190 0.253255i
\(136\) 0 0
\(137\) 2371.76i 1.47907i −0.673117 0.739536i \(-0.735045\pi\)
0.673117 0.739536i \(-0.264955\pi\)
\(138\) 0 0
\(139\) 1760.85i 1.07449i −0.843428 0.537243i \(-0.819466\pi\)
0.843428 0.537243i \(-0.180534\pi\)
\(140\) 0 0
\(141\) −958.179 155.537i −0.572293 0.0928976i
\(142\) 0 0
\(143\) 754.906 1144.03i 0.441458 0.669010i
\(144\) 0 0
\(145\) 1534.34i 0.878760i
\(146\) 0 0
\(147\) −284.432 + 1752.23i −0.159589 + 0.983142i
\(148\) 0 0
\(149\) 970.169 0.533419 0.266709 0.963777i \(-0.414064\pi\)
0.266709 + 0.963777i \(0.414064\pi\)
\(150\) 0 0
\(151\) 1433.20i 0.772399i 0.922415 + 0.386199i \(0.126212\pi\)
−0.922415 + 0.386199i \(0.873788\pi\)
\(152\) 0 0
\(153\) 1047.41 + 349.243i 0.553449 + 0.184540i
\(154\) 0 0
\(155\) 121.525i 0.0629752i
\(156\) 0 0
\(157\) −1787.64 −0.908719 −0.454360 0.890818i \(-0.650132\pi\)
−0.454360 + 0.890818i \(0.650132\pi\)
\(158\) 0 0
\(159\) 2843.85 + 461.629i 1.41844 + 0.230249i
\(160\) 0 0
\(161\) −118.394 −0.0579549
\(162\) 0 0
\(163\) −2607.09 −1.25278 −0.626390 0.779510i \(-0.715468\pi\)
−0.626390 + 0.779510i \(0.715468\pi\)
\(164\) 0 0
\(165\) 850.568 + 783.224i 0.401313 + 0.369539i
\(166\) 0 0
\(167\) 1615.67 0.748649 0.374324 0.927298i \(-0.377875\pi\)
0.374324 + 0.927298i \(0.377875\pi\)
\(168\) 0 0
\(169\) 785.518 0.357541
\(170\) 0 0
\(171\) 720.453 2160.69i 0.322190 0.966269i
\(172\) 0 0
\(173\) 3145.99 1.38257 0.691286 0.722581i \(-0.257045\pi\)
0.691286 + 0.722581i \(0.257045\pi\)
\(174\) 0 0
\(175\) 102.708i 0.0443657i
\(176\) 0 0
\(177\) −949.776 154.173i −0.403331 0.0654708i
\(178\) 0 0
\(179\) 4440.78i 1.85430i −0.374693 0.927149i \(-0.622252\pi\)
0.374693 0.927149i \(-0.377748\pi\)
\(180\) 0 0
\(181\) 2744.08 1.12688 0.563442 0.826156i \(-0.309477\pi\)
0.563442 + 0.826156i \(0.309477\pi\)
\(182\) 0 0
\(183\) −3868.35 627.932i −1.56261 0.253651i
\(184\) 0 0
\(185\) 279.995i 0.111274i
\(186\) 0 0
\(187\) −1245.21 821.672i −0.486945 0.321319i
\(188\) 0 0
\(189\) −145.364 76.1897i −0.0559453 0.0293227i
\(190\) 0 0
\(191\) 529.261i 0.200502i 0.994962 + 0.100251i \(0.0319646\pi\)
−0.994962 + 0.100251i \(0.968035\pi\)
\(192\) 0 0
\(193\) 688.329i 0.256720i −0.991728 0.128360i \(-0.959029\pi\)
0.991728 0.128360i \(-0.0409714\pi\)
\(194\) 0 0
\(195\) 190.782 1175.31i 0.0700625 0.431618i
\(196\) 0 0
\(197\) −1562.71 −0.565170 −0.282585 0.959242i \(-0.591192\pi\)
−0.282585 + 0.959242i \(0.591192\pi\)
\(198\) 0 0
\(199\) −3580.49 −1.27545 −0.637725 0.770264i \(-0.720124\pi\)
−0.637725 + 0.770264i \(0.720124\pi\)
\(200\) 0 0
\(201\) −317.487 + 1955.87i −0.111412 + 0.686350i
\(202\) 0 0
\(203\) 294.279i 0.101746i
\(204\) 0 0
\(205\) 1071.02i 0.364894i
\(206\) 0 0
\(207\) −864.364 + 2592.29i −0.290229 + 0.870418i
\(208\) 0 0
\(209\) −1695.03 + 2568.74i −0.560992 + 0.850159i
\(210\) 0 0
\(211\) 3783.06i 1.23430i −0.786847 0.617149i \(-0.788288\pi\)
0.786847 0.617149i \(-0.211712\pi\)
\(212\) 0 0
\(213\) 2060.94 + 334.543i 0.662973 + 0.107617i
\(214\) 0 0
\(215\) 2028.00 0.643295
\(216\) 0 0
\(217\) 23.3080i 0.00729147i
\(218\) 0 0
\(219\) −5306.31 861.349i −1.63729 0.265774i
\(220\) 0 0
\(221\) 1536.32i 0.467619i
\(222\) 0 0
\(223\) 642.113 0.192821 0.0964104 0.995342i \(-0.469264\pi\)
0.0964104 + 0.995342i \(0.469264\pi\)
\(224\) 0 0
\(225\) −2248.84 749.847i −0.666324 0.222177i
\(226\) 0 0
\(227\) 2331.21 0.681620 0.340810 0.940132i \(-0.389299\pi\)
0.340810 + 0.940132i \(0.389299\pi\)
\(228\) 0 0
\(229\) −6167.24 −1.77966 −0.889831 0.456290i \(-0.849178\pi\)
−0.889831 + 0.456290i \(0.849178\pi\)
\(230\) 0 0
\(231\) 163.135 + 150.219i 0.0464653 + 0.0427864i
\(232\) 0 0
\(233\) −1475.11 −0.414755 −0.207377 0.978261i \(-0.566493\pi\)
−0.207377 + 0.978261i \(0.566493\pi\)
\(234\) 0 0
\(235\) 1139.44 0.316293
\(236\) 0 0
\(237\) −5356.35 869.471i −1.46807 0.238305i
\(238\) 0 0
\(239\) −5448.65 −1.47466 −0.737330 0.675532i \(-0.763914\pi\)
−0.737330 + 0.675532i \(0.763914\pi\)
\(240\) 0 0
\(241\) 188.475i 0.0503766i −0.999683 0.0251883i \(-0.991981\pi\)
0.999683 0.0251883i \(-0.00801853\pi\)
\(242\) 0 0
\(243\) −2729.48 + 2626.57i −0.720559 + 0.693393i
\(244\) 0 0
\(245\) 2083.71i 0.543361i
\(246\) 0 0
\(247\) 3169.26 0.816419
\(248\) 0 0
\(249\) 705.226 4344.52i 0.179486 1.10572i
\(250\) 0 0
\(251\) 4726.64i 1.18862i 0.804237 + 0.594309i \(0.202574\pi\)
−0.804237 + 0.594309i \(0.797426\pi\)
\(252\) 0 0
\(253\) 2033.61 3081.84i 0.505343 0.765826i
\(254\) 0 0
\(255\) −1279.25 207.655i −0.314157 0.0509956i
\(256\) 0 0
\(257\) 4898.69i 1.18900i −0.804097 0.594498i \(-0.797351\pi\)
0.804097 0.594498i \(-0.202649\pi\)
\(258\) 0 0
\(259\) 53.7017i 0.0128836i
\(260\) 0 0
\(261\) −6443.39 2148.46i −1.52811 0.509527i
\(262\) 0 0
\(263\) 3627.90 0.850593 0.425296 0.905054i \(-0.360170\pi\)
0.425296 + 0.905054i \(0.360170\pi\)
\(264\) 0 0
\(265\) −3381.83 −0.783940
\(266\) 0 0
\(267\) −3462.51 562.054i −0.793642 0.128828i
\(268\) 0 0
\(269\) 3349.61i 0.759218i 0.925147 + 0.379609i \(0.123941\pi\)
−0.925147 + 0.379609i \(0.876059\pi\)
\(270\) 0 0
\(271\) 6472.32i 1.45079i 0.688330 + 0.725397i \(0.258344\pi\)
−0.688330 + 0.725397i \(0.741656\pi\)
\(272\) 0 0
\(273\) 36.5911 225.418i 0.00811206 0.0499741i
\(274\) 0 0
\(275\) 2673.54 + 1764.18i 0.586256 + 0.386851i
\(276\) 0 0
\(277\) 2365.72i 0.513149i 0.966525 + 0.256574i \(0.0825938\pi\)
−0.966525 + 0.256574i \(0.917406\pi\)
\(278\) 0 0
\(279\) 510.340 + 170.166i 0.109510 + 0.0365146i
\(280\) 0 0
\(281\) 7527.53 1.59806 0.799030 0.601291i \(-0.205347\pi\)
0.799030 + 0.601291i \(0.205347\pi\)
\(282\) 0 0
\(283\) 5881.45i 1.23539i −0.786417 0.617696i \(-0.788066\pi\)
0.786417 0.617696i \(-0.211934\pi\)
\(284\) 0 0
\(285\) −428.372 + 2638.97i −0.0890335 + 0.548488i
\(286\) 0 0
\(287\) 205.416i 0.0422486i
\(288\) 0 0
\(289\) −3240.81 −0.659639
\(290\) 0 0
\(291\) 314.778 1939.18i 0.0634110 0.390642i
\(292\) 0 0
\(293\) −1110.23 −0.221367 −0.110683 0.993856i \(-0.535304\pi\)
−0.110683 + 0.993856i \(0.535304\pi\)
\(294\) 0 0
\(295\) 1129.45 0.222912
\(296\) 0 0
\(297\) 4480.12 2475.20i 0.875295 0.483589i
\(298\) 0 0
\(299\) −3802.33 −0.735433
\(300\) 0 0
\(301\) 388.961 0.0744828
\(302\) 0 0
\(303\) −725.117 + 4467.06i −0.137481 + 0.846950i
\(304\) 0 0
\(305\) 4600.14 0.863618
\(306\) 0 0
\(307\) 9223.13i 1.71463i −0.514792 0.857315i \(-0.672131\pi\)
0.514792 0.857315i \(-0.327869\pi\)
\(308\) 0 0
\(309\) −1615.24 + 9950.62i −0.297371 + 1.83195i
\(310\) 0 0
\(311\) 6601.30i 1.20362i −0.798640 0.601809i \(-0.794447\pi\)
0.798640 0.601809i \(-0.205553\pi\)
\(312\) 0 0
\(313\) 3325.08 0.600463 0.300231 0.953866i \(-0.402936\pi\)
0.300231 + 0.953866i \(0.402936\pi\)
\(314\) 0 0
\(315\) 182.754 + 60.9370i 0.0326890 + 0.0108997i
\(316\) 0 0
\(317\) 6364.80i 1.12771i −0.825875 0.563853i \(-0.809318\pi\)
0.825875 0.563853i \(-0.190682\pi\)
\(318\) 0 0
\(319\) 7660.22 + 5054.73i 1.34448 + 0.887181i
\(320\) 0 0
\(321\) −418.948 + 2580.92i −0.0728455 + 0.448763i
\(322\) 0 0
\(323\) 3449.56i 0.594238i
\(324\) 0 0
\(325\) 3298.57i 0.562990i
\(326\) 0 0
\(327\) 10015.1 + 1625.71i 1.69369 + 0.274929i
\(328\) 0 0
\(329\) 218.539 0.0366215
\(330\) 0 0
\(331\) −6316.60 −1.04892 −0.524459 0.851436i \(-0.675732\pi\)
−0.524459 + 0.851436i \(0.675732\pi\)
\(332\) 0 0
\(333\) −1175.83 392.063i −0.193498 0.0645193i
\(334\) 0 0
\(335\) 2325.87i 0.379331i
\(336\) 0 0
\(337\) 3332.25i 0.538633i −0.963052 0.269317i \(-0.913202\pi\)
0.963052 0.269317i \(-0.0867978\pi\)
\(338\) 0 0
\(339\) −5176.64 840.301i −0.829371 0.134628i
\(340\) 0 0
\(341\) −606.718 400.353i −0.0963508 0.0635787i
\(342\) 0 0
\(343\) 800.892i 0.126076i
\(344\) 0 0
\(345\) 513.939 3166.11i 0.0802017 0.494080i
\(346\) 0 0
\(347\) −6024.71 −0.932055 −0.466028 0.884770i \(-0.654315\pi\)
−0.466028 + 0.884770i \(0.654315\pi\)
\(348\) 0 0
\(349\) 1442.33i 0.221222i −0.993864 0.110611i \(-0.964719\pi\)
0.993864 0.110611i \(-0.0352807\pi\)
\(350\) 0 0
\(351\) −4668.50 2446.90i −0.709932 0.372097i
\(352\) 0 0
\(353\) 5171.99i 0.779822i 0.920853 + 0.389911i \(0.127494\pi\)
−0.920853 + 0.389911i \(0.872506\pi\)
\(354\) 0 0
\(355\) −2450.82 −0.366411
\(356\) 0 0
\(357\) −245.355 39.8273i −0.0363741 0.00590444i
\(358\) 0 0
\(359\) 8749.85 1.28635 0.643175 0.765720i \(-0.277617\pi\)
0.643175 + 0.765720i \(0.277617\pi\)
\(360\) 0 0
\(361\) −257.090 −0.0374822
\(362\) 0 0
\(363\) −6712.37 + 1666.22i −0.970545 + 0.240920i
\(364\) 0 0
\(365\) 6310.12 0.904896
\(366\) 0 0
\(367\) 334.322 0.0475517 0.0237759 0.999717i \(-0.492431\pi\)
0.0237759 + 0.999717i \(0.492431\pi\)
\(368\) 0 0
\(369\) −4497.69 1499.69i −0.634527 0.211574i
\(370\) 0 0
\(371\) −648.618 −0.0907670
\(372\) 0 0
\(373\) 12485.2i 1.73313i 0.499062 + 0.866566i \(0.333678\pi\)
−0.499062 + 0.866566i \(0.666322\pi\)
\(374\) 0 0
\(375\) 6657.06 + 1080.61i 0.916718 + 0.148807i
\(376\) 0 0
\(377\) 9451.06i 1.29113i
\(378\) 0 0
\(379\) −7043.92 −0.954676 −0.477338 0.878720i \(-0.658398\pi\)
−0.477338 + 0.878720i \(0.658398\pi\)
\(380\) 0 0
\(381\) −432.801 70.2546i −0.0581970 0.00944685i
\(382\) 0 0
\(383\) 3641.30i 0.485801i 0.970051 + 0.242900i \(0.0780988\pi\)
−0.970051 + 0.242900i \(0.921901\pi\)
\(384\) 0 0
\(385\) −217.268 143.368i −0.0287610 0.0189784i
\(386\) 0 0
\(387\) 2839.71 8516.48i 0.372998 1.11865i
\(388\) 0 0
\(389\) 305.012i 0.0397551i 0.999802 + 0.0198775i \(0.00632763\pi\)
−0.999802 + 0.0198775i \(0.993672\pi\)
\(390\) 0 0
\(391\) 4138.62i 0.535291i
\(392\) 0 0
\(393\) −1487.77 + 9165.33i −0.190961 + 1.17641i
\(394\) 0 0
\(395\) 6369.63 0.811369
\(396\) 0 0
\(397\) 1097.19 0.138707 0.0693534 0.997592i \(-0.477906\pi\)
0.0693534 + 0.997592i \(0.477906\pi\)
\(398\) 0 0
\(399\) −82.1596 + 506.142i −0.0103086 + 0.0635057i
\(400\) 0 0
\(401\) 7833.32i 0.975504i −0.872982 0.487752i \(-0.837817\pi\)
0.872982 0.487752i \(-0.162183\pi\)
\(402\) 0 0
\(403\) 748.558i 0.0925269i
\(404\) 0 0
\(405\) 2668.49 3556.61i 0.327403 0.436369i
\(406\) 0 0
\(407\) 1397.88 + 922.416i 0.170247 + 0.112340i
\(408\) 0 0
\(409\) 4130.56i 0.499371i 0.968327 + 0.249686i \(0.0803273\pi\)
−0.968327 + 0.249686i \(0.919673\pi\)
\(410\) 0 0
\(411\) 12164.8 + 1974.65i 1.45996 + 0.236989i
\(412\) 0 0
\(413\) 216.623 0.0258094
\(414\) 0 0
\(415\) 5166.39i 0.611104i
\(416\) 0 0
\(417\) 9031.44 + 1466.03i 1.06060 + 0.172163i
\(418\) 0 0
\(419\) 8613.76i 1.00432i 0.864775 + 0.502160i \(0.167461\pi\)
−0.864775 + 0.502160i \(0.832539\pi\)
\(420\) 0 0
\(421\) 8896.13 1.02986 0.514929 0.857233i \(-0.327818\pi\)
0.514929 + 0.857233i \(0.327818\pi\)
\(422\) 0 0
\(423\) 1595.50 4785.02i 0.183395 0.550014i
\(424\) 0 0
\(425\) −3590.30 −0.409777
\(426\) 0 0
\(427\) 882.285 0.0999924
\(428\) 0 0
\(429\) 5239.23 + 4824.41i 0.589632 + 0.542948i
\(430\) 0 0
\(431\) 939.369 0.104983 0.0524917 0.998621i \(-0.483284\pi\)
0.0524917 + 0.998621i \(0.483284\pi\)
\(432\) 0 0
\(433\) 9426.38 1.04620 0.523098 0.852272i \(-0.324776\pi\)
0.523098 + 0.852272i \(0.324776\pi\)
\(434\) 0 0
\(435\) 7869.67 + 1277.45i 0.867406 + 0.140802i
\(436\) 0 0
\(437\) 8537.54 0.934567
\(438\) 0 0
\(439\) 8187.39i 0.890121i 0.895501 + 0.445060i \(0.146818\pi\)
−0.895501 + 0.445060i \(0.853182\pi\)
\(440\) 0 0
\(441\) −8750.43 2917.71i −0.944869 0.315054i
\(442\) 0 0
\(443\) 4287.18i 0.459797i −0.973215 0.229898i \(-0.926161\pi\)
0.973215 0.229898i \(-0.0738394\pi\)
\(444\) 0 0
\(445\) 4117.53 0.438628
\(446\) 0 0
\(447\) −807.734 + 4976.02i −0.0854687 + 0.526527i
\(448\) 0 0
\(449\) 12593.5i 1.32366i 0.749652 + 0.661832i \(0.230221\pi\)
−0.749652 + 0.661832i \(0.769779\pi\)
\(450\) 0 0
\(451\) 5347.08 + 3528.36i 0.558280 + 0.368390i
\(452\) 0 0
\(453\) −7350.91 1193.24i −0.762419 0.123760i
\(454\) 0 0
\(455\) 268.061i 0.0276196i
\(456\) 0 0
\(457\) 4093.90i 0.419047i 0.977804 + 0.209523i \(0.0671913\pi\)
−0.977804 + 0.209523i \(0.932809\pi\)
\(458\) 0 0
\(459\) −2663.31 + 5081.39i −0.270834 + 0.516730i
\(460\) 0 0
\(461\) −3374.90 −0.340965 −0.170482 0.985361i \(-0.554533\pi\)
−0.170482 + 0.985361i \(0.554533\pi\)
\(462\) 0 0
\(463\) 2113.75 0.212169 0.106084 0.994357i \(-0.466169\pi\)
0.106084 + 0.994357i \(0.466169\pi\)
\(464\) 0 0
\(465\) −623.306 101.178i −0.0621616 0.0100904i
\(466\) 0 0
\(467\) 3549.00i 0.351666i −0.984420 0.175833i \(-0.943738\pi\)
0.984420 0.175833i \(-0.0562619\pi\)
\(468\) 0 0
\(469\) 446.090i 0.0439201i
\(470\) 0 0
\(471\) 1488.33 9168.82i 0.145602 0.896979i
\(472\) 0 0
\(473\) −6681.04 + 10124.8i −0.649460 + 0.984228i
\(474\) 0 0
\(475\) 7406.42i 0.715432i
\(476\) 0 0
\(477\) −4735.40 + 14201.8i −0.454548 + 1.36322i
\(478\) 0 0
\(479\) −4651.83 −0.443731 −0.221866 0.975077i \(-0.571215\pi\)
−0.221866 + 0.975077i \(0.571215\pi\)
\(480\) 0 0
\(481\) 1724.68i 0.163490i
\(482\) 0 0
\(483\) 98.5711 607.244i 0.00928600 0.0572061i
\(484\) 0 0
\(485\) 2306.02i 0.215899i
\(486\) 0 0
\(487\) 575.427 0.0535422 0.0267711 0.999642i \(-0.491477\pi\)
0.0267711 + 0.999642i \(0.491477\pi\)
\(488\) 0 0
\(489\) 2170.58 13371.8i 0.200730 1.23659i
\(490\) 0 0
\(491\) −15977.7 −1.46856 −0.734279 0.678848i \(-0.762479\pi\)
−0.734279 + 0.678848i \(0.762479\pi\)
\(492\) 0 0
\(493\) −10286.9 −0.939757
\(494\) 0 0
\(495\) −4725.33 + 3710.49i −0.429066 + 0.336917i
\(496\) 0 0
\(497\) −470.055 −0.0424242
\(498\) 0 0
\(499\) 4327.29 0.388209 0.194104 0.980981i \(-0.437820\pi\)
0.194104 + 0.980981i \(0.437820\pi\)
\(500\) 0 0
\(501\) −1345.16 + 8286.80i −0.119955 + 0.738976i
\(502\) 0 0
\(503\) −5390.13 −0.477801 −0.238901 0.971044i \(-0.576787\pi\)
−0.238901 + 0.971044i \(0.576787\pi\)
\(504\) 0 0
\(505\) 5312.11i 0.468090i
\(506\) 0 0
\(507\) −653.998 + 4028.93i −0.0572881 + 0.352922i
\(508\) 0 0
\(509\) 13340.3i 1.16168i −0.814016 0.580842i \(-0.802723\pi\)
0.814016 0.580842i \(-0.197277\pi\)
\(510\) 0 0
\(511\) 1210.25 0.104772
\(512\) 0 0
\(513\) 10482.4 + 5494.14i 0.902161 + 0.472850i
\(514\) 0 0
\(515\) 11833.0i 1.01248i
\(516\) 0 0
\(517\) −3753.77 + 5688.68i −0.319324 + 0.483922i
\(518\) 0 0
\(519\) −2619.25 + 16135.8i −0.221527 + 1.36471i
\(520\) 0 0
\(521\) 14671.7i 1.23374i 0.787066 + 0.616869i \(0.211599\pi\)
−0.787066 + 0.616869i \(0.788401\pi\)
\(522\) 0 0
\(523\) 7638.50i 0.638639i −0.947647 0.319320i \(-0.896546\pi\)
0.947647 0.319320i \(-0.103454\pi\)
\(524\) 0 0
\(525\) 526.792 + 85.5117i 0.0437925 + 0.00710864i
\(526\) 0 0
\(527\) 814.762 0.0673465
\(528\) 0 0
\(529\) 1924.08 0.158139
\(530\) 0 0
\(531\) 1581.51 4743.06i 0.129250 0.387629i
\(532\) 0 0
\(533\) 6597.14i 0.536123i
\(534\) 0 0
\(535\) 3069.16i 0.248021i
\(536\) 0 0
\(537\) 22776.8 + 3697.26i 1.83034 + 0.297111i
\(538\) 0 0
\(539\) 10403.0 + 6864.57i 0.831330 + 0.548568i
\(540\) 0 0
\(541\) 625.465i 0.0497058i 0.999691 + 0.0248529i \(0.00791173\pi\)
−0.999691 + 0.0248529i \(0.992088\pi\)
\(542\) 0 0
\(543\) −2284.64 + 14074.4i −0.180558 + 1.11232i
\(544\) 0 0
\(545\) −11909.7 −0.936066
\(546\) 0 0
\(547\) 1099.96i 0.0859797i 0.999076 + 0.0429899i \(0.0136883\pi\)
−0.999076 + 0.0429899i \(0.986312\pi\)
\(548\) 0 0
\(549\) 6441.35 19318.1i 0.500747 1.50177i
\(550\) 0 0
\(551\) 21220.9i 1.64073i
\(552\) 0 0
\(553\) 1221.66 0.0939429
\(554\) 0 0
\(555\) 1436.10 + 233.116i 0.109836 + 0.0178292i
\(556\) 0 0
\(557\) 3439.75 0.261664 0.130832 0.991405i \(-0.458235\pi\)
0.130832 + 0.991405i \(0.458235\pi\)
\(558\) 0 0
\(559\) 12491.8 0.945167
\(560\) 0 0
\(561\) 5251.09 5702.60i 0.395190 0.429169i
\(562\) 0 0
\(563\) 7959.85 0.595857 0.297929 0.954588i \(-0.403704\pi\)
0.297929 + 0.954588i \(0.403704\pi\)
\(564\) 0 0
\(565\) 6155.93 0.458375
\(566\) 0 0
\(567\) 511.804 682.141i 0.0379078 0.0505242i
\(568\) 0 0
\(569\) −12864.2 −0.947791 −0.473896 0.880581i \(-0.657153\pi\)
−0.473896 + 0.880581i \(0.657153\pi\)
\(570\) 0 0
\(571\) 17952.2i 1.31572i 0.753141 + 0.657859i \(0.228538\pi\)
−0.753141 + 0.657859i \(0.771462\pi\)
\(572\) 0 0
\(573\) −2714.59 440.646i −0.197912 0.0321261i
\(574\) 0 0
\(575\) 8885.87i 0.644463i
\(576\) 0 0
\(577\) −17586.2 −1.26884 −0.634421 0.772988i \(-0.718761\pi\)
−0.634421 + 0.772988i \(0.718761\pi\)
\(578\) 0 0
\(579\) 3530.45 + 573.082i 0.253404 + 0.0411338i
\(580\) 0 0
\(581\) 990.889i 0.0707556i
\(582\) 0 0
\(583\) 11141.1 16883.8i 0.791452 1.19941i
\(584\) 0 0
\(585\) 5869.33 + 1957.05i 0.414815 + 0.138315i
\(586\) 0 0
\(587\) 6329.62i 0.445062i 0.974926 + 0.222531i \(0.0714318\pi\)
−0.974926 + 0.222531i \(0.928568\pi\)
\(588\) 0 0
\(589\) 1680.77i 0.117581i
\(590\) 0 0
\(591\) 1301.06 8015.17i 0.0905561 0.557868i
\(592\) 0 0
\(593\) −24403.9 −1.68997 −0.844983 0.534794i \(-0.820389\pi\)
−0.844983 + 0.534794i \(0.820389\pi\)
\(594\) 0 0
\(595\) 291.769 0.0201031
\(596\) 0 0
\(597\) 2981.01 18364.4i 0.204363 1.25897i
\(598\) 0 0
\(599\) 6281.88i 0.428498i −0.976779 0.214249i \(-0.931270\pi\)
0.976779 0.214249i \(-0.0687304\pi\)
\(600\) 0 0
\(601\) 20299.7i 1.37777i 0.724869 + 0.688887i \(0.241900\pi\)
−0.724869 + 0.688887i \(0.758100\pi\)
\(602\) 0 0
\(603\) −9767.36 3256.80i −0.659631 0.219945i
\(604\) 0 0
\(605\) 7463.86 3193.00i 0.501569 0.214568i
\(606\) 0 0
\(607\) 1642.65i 0.109840i 0.998491 + 0.0549202i \(0.0174904\pi\)
−0.998491 + 0.0549202i \(0.982510\pi\)
\(608\) 0 0
\(609\) 1509.36 + 245.008i 0.100431 + 0.0163025i
\(610\) 0 0
\(611\) 7018.60 0.464717
\(612\) 0 0
\(613\) 9464.85i 0.623624i 0.950144 + 0.311812i \(0.100936\pi\)
−0.950144 + 0.311812i \(0.899064\pi\)
\(614\) 0 0
\(615\) 5493.28 + 891.698i 0.360179 + 0.0584662i
\(616\) 0 0
\(617\) 20313.6i 1.32544i 0.748869 + 0.662718i \(0.230597\pi\)
−0.748869 + 0.662718i \(0.769403\pi\)
\(618\) 0 0
\(619\) 21020.9 1.36494 0.682471 0.730912i \(-0.260905\pi\)
0.682471 + 0.730912i \(0.260905\pi\)
\(620\) 0 0
\(621\) −12576.3 6591.60i −0.812670 0.425945i
\(622\) 0 0
\(623\) 789.722 0.0507858
\(624\) 0 0
\(625\) 3058.43 0.195740
\(626\) 0 0
\(627\) −11763.9 10832.5i −0.749288 0.689963i
\(628\) 0 0
\(629\) −1877.22 −0.118998
\(630\) 0 0
\(631\) −24742.9 −1.56101 −0.780507 0.625148i \(-0.785039\pi\)
−0.780507 + 0.625148i \(0.785039\pi\)
\(632\) 0 0
\(633\) 19403.4 + 3149.66i 1.21835 + 0.197769i
\(634\) 0 0
\(635\) 514.675 0.0321642
\(636\) 0 0
\(637\) 12835.0i 0.798338i
\(638\) 0 0
\(639\) −3431.75 + 10292.1i −0.212454 + 0.637165i
\(640\) 0 0
\(641\) 8846.29i 0.545098i −0.962142 0.272549i \(-0.912133\pi\)
0.962142 0.272549i \(-0.0878666\pi\)
\(642\) 0 0
\(643\) −28124.9 −1.72494 −0.862471 0.506106i \(-0.831084\pi\)
−0.862471 + 0.506106i \(0.831084\pi\)
\(644\) 0 0
\(645\) −1688.45 + 10401.7i −0.103074 + 0.634984i
\(646\) 0 0
\(647\) 22919.1i 1.39265i −0.717728 0.696323i \(-0.754818\pi\)
0.717728 0.696323i \(-0.245182\pi\)
\(648\) 0 0
\(649\) −3720.85 + 5638.78i −0.225048 + 0.341050i
\(650\) 0 0
\(651\) −119.547 19.4055i −0.00719727 0.00116830i
\(652\) 0 0
\(653\) 12310.5i 0.737747i 0.929480 + 0.368873i \(0.120256\pi\)
−0.929480 + 0.368873i \(0.879744\pi\)
\(654\) 0 0
\(655\) 10899.2i 0.650177i
\(656\) 0 0
\(657\) 8835.75 26499.0i 0.524681 1.57356i
\(658\) 0 0
\(659\) −21638.9 −1.27911 −0.639554 0.768746i \(-0.720881\pi\)
−0.639554 + 0.768746i \(0.720881\pi\)
\(660\) 0 0
\(661\) 24343.1 1.43243 0.716217 0.697878i \(-0.245872\pi\)
0.716217 + 0.697878i \(0.245872\pi\)
\(662\) 0 0
\(663\) −7879.80 1279.09i −0.461578 0.0749258i
\(664\) 0 0
\(665\) 601.890i 0.0350982i
\(666\) 0 0
\(667\) 25459.8i 1.47797i
\(668\) 0 0
\(669\) −534.604 + 3293.41i −0.0308953 + 0.190330i
\(670\) 0 0
\(671\) −15154.7 + 22966.3i −0.871893 + 1.32132i
\(672\) 0 0
\(673\) 20487.4i 1.17345i −0.809787 0.586724i \(-0.800417\pi\)
0.809787 0.586724i \(-0.199583\pi\)
\(674\) 0 0
\(675\) 5718.30 10910.1i 0.326070 0.622116i
\(676\) 0 0
\(677\) 23872.9 1.35526 0.677628 0.735404i \(-0.263008\pi\)
0.677628 + 0.735404i \(0.263008\pi\)
\(678\) 0 0
\(679\) 442.284i 0.0249975i
\(680\) 0 0
\(681\) −1940.89 + 11956.8i −0.109215 + 0.672813i
\(682\) 0 0
\(683\) 8085.75i 0.452991i 0.974012 + 0.226495i \(0.0727268\pi\)
−0.974012 + 0.226495i \(0.927273\pi\)
\(684\) 0 0
\(685\) −14466.0 −0.806888
\(686\) 0 0
\(687\) 5134.66 31631.9i 0.285152 1.75667i
\(688\) 0 0
\(689\) −20831.0 −1.15181
\(690\) 0 0
\(691\) 3896.37 0.214508 0.107254 0.994232i \(-0.465794\pi\)
0.107254 + 0.994232i \(0.465794\pi\)
\(692\) 0 0
\(693\) −906.295 + 711.654i −0.0496786 + 0.0390094i
\(694\) 0 0
\(695\) −10739.9 −0.586172
\(696\) 0 0
\(697\) −7180.60 −0.390222
\(698\) 0 0
\(699\) 1228.13 7565.88i 0.0664554 0.409396i
\(700\) 0 0
\(701\) −9607.99 −0.517673 −0.258837 0.965921i \(-0.583339\pi\)
−0.258837 + 0.965921i \(0.583339\pi\)
\(702\) 0 0
\(703\) 3872.51i 0.207759i
\(704\) 0 0
\(705\) −948.664 + 5844.21i −0.0506791 + 0.312207i
\(706\) 0 0
\(707\) 1018.84i 0.0541970i
\(708\) 0 0
\(709\) −3758.71 −0.199099 −0.0995495 0.995033i \(-0.531740\pi\)
−0.0995495 + 0.995033i \(0.531740\pi\)
\(710\) 0 0
\(711\) 8919.07 26748.9i 0.470452 1.41092i
\(712\) 0 0
\(713\) 2016.51i 0.105917i
\(714\) 0 0
\(715\) −6977.76 4604.39i −0.364970 0.240832i
\(716\) 0 0
\(717\) 4536.38 27946.2i 0.236282 1.45561i
\(718\) 0 0
\(719\) 8115.64i 0.420949i 0.977599 + 0.210474i \(0.0675008\pi\)
−0.977599 + 0.210474i \(0.932499\pi\)
\(720\) 0 0
\(721\) 2269.52i 0.117228i
\(722\) 0 0
\(723\) 966.692 + 156.919i 0.0497257 + 0.00807174i
\(724\) 0 0
\(725\) 22086.7 1.13142
\(726\) 0 0
\(727\) −4061.52 −0.207199 −0.103599 0.994619i \(-0.533036\pi\)
−0.103599 + 0.994619i \(0.533036\pi\)
\(728\) 0 0
\(729\) −11199.2 16186.3i −0.568981 0.822351i
\(730\) 0 0
\(731\) 13596.6i 0.687948i
\(732\) 0 0
\(733\) 16076.9i 0.810112i −0.914292 0.405056i \(-0.867252\pi\)
0.914292 0.405056i \(-0.132748\pi\)
\(734\) 0 0
\(735\) 10687.4 + 1734.83i 0.536340 + 0.0870617i
\(736\) 0 0
\(737\) 11611.9 + 7662.34i 0.580368 + 0.382966i
\(738\) 0 0
\(739\) 9518.02i 0.473783i 0.971536 + 0.236892i \(0.0761287\pi\)
−0.971536 + 0.236892i \(0.923871\pi\)
\(740\) 0 0
\(741\) −2638.63 + 16255.2i −0.130813 + 0.805871i
\(742\) 0 0
\(743\) −6327.27 −0.312416 −0.156208 0.987724i \(-0.549927\pi\)
−0.156208 + 0.987724i \(0.549927\pi\)
\(744\) 0 0
\(745\) 5917.35i 0.291000i
\(746\) 0 0
\(747\) 21696.0 + 7234.24i 1.06267 + 0.354333i
\(748\) 0 0
\(749\) 588.650i 0.0287167i
\(750\) 0 0
\(751\) −26753.1 −1.29991 −0.649956 0.759972i \(-0.725213\pi\)
−0.649956 + 0.759972i \(0.725213\pi\)
\(752\) 0 0
\(753\) −24243.0 3935.26i −1.17326 0.190450i
\(754\) 0 0
\(755\) 8741.51 0.421372
\(756\) 0 0
\(757\) −14244.7 −0.683927 −0.341964 0.939713i \(-0.611092\pi\)
−0.341964 + 0.939713i \(0.611092\pi\)
\(758\) 0 0
\(759\) 14113.7 + 12996.3i 0.674961 + 0.621521i
\(760\) 0 0
\(761\) −18619.7 −0.886944 −0.443472 0.896288i \(-0.646254\pi\)
−0.443472 + 0.896288i \(0.646254\pi\)
\(762\) 0 0
\(763\) −2284.22 −0.108381
\(764\) 0 0
\(765\) 2130.14 6388.43i 0.100674 0.301927i
\(766\) 0 0
\(767\) 6957.04 0.327515
\(768\) 0 0
\(769\) 20303.7i 0.952109i −0.879416 0.476054i \(-0.842067\pi\)
0.879416 0.476054i \(-0.157933\pi\)
\(770\) 0 0
\(771\) 25125.5 + 4078.50i 1.17363 + 0.190510i
\(772\) 0 0
\(773\) 34707.7i 1.61494i −0.589907 0.807471i \(-0.700836\pi\)
0.589907 0.807471i \(-0.299164\pi\)
\(774\) 0 0
\(775\) −1749.35 −0.0810818
\(776\) 0 0
\(777\) 275.437 + 44.7104i 0.0127172 + 0.00206432i
\(778\) 0 0
\(779\) 14812.8i 0.681291i
\(780\) 0 0
\(781\) 8073.96 12235.7i 0.369922 0.560601i
\(782\) 0 0
\(783\) 16384.1 31259.5i 0.747789 1.42672i
\(784\) 0 0
\(785\) 10903.3i 0.495740i
\(786\) 0 0
\(787\) 20177.4i 0.913910i 0.889490 + 0.456955i \(0.151060\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(788\) 0 0
\(789\) −3020.48 + 18607.6i −0.136289 + 0.839603i
\(790\) 0 0
\(791\) 1180.68 0.0530721
\(792\) 0 0
\(793\) 28335.4 1.26888
\(794\) 0 0
\(795\) 2815.61 17345.5i 0.125609 0.773811i
\(796\) 0 0
\(797\) 7076.83i 0.314522i 0.987557 + 0.157261i \(0.0502664\pi\)
−0.987557 + 0.157261i \(0.949734\pi\)
\(798\) 0 0
\(799\) 7639.34i 0.338248i
\(800\) 0 0
\(801\) 5765.57 17291.3i 0.254327 0.762746i
\(802\) 0 0
\(803\) −20788.1 + 31503.4i −0.913567 + 1.38447i
\(804\) 0 0
\(805\) 722.118i 0.0316166i
\(806\) 0 0
\(807\) −17180.2 2788.79i −0.749409 0.121648i
\(808\) 0 0
\(809\) −42531.5 −1.84837 −0.924183 0.381951i \(-0.875252\pi\)
−0.924183 + 0.381951i \(0.875252\pi\)
\(810\) 0 0
\(811\) 2213.84i 0.0958552i 0.998851 + 0.0479276i \(0.0152617\pi\)
−0.998851 + 0.0479276i \(0.984738\pi\)
\(812\) 0 0
\(813\) −33196.6 5388.66i −1.43205 0.232458i
\(814\) 0 0
\(815\) 15901.4i 0.683438i
\(816\) 0 0
\(817\) −28048.5 −1.20109
\(818\) 0 0
\(819\) 1125.71 + 375.353i 0.0480287 + 0.0160145i
\(820\) 0 0
\(821\) 19530.6 0.830234 0.415117 0.909768i \(-0.363741\pi\)
0.415117 + 0.909768i \(0.363741\pi\)
\(822\) 0 0
\(823\) −12872.0 −0.545186 −0.272593 0.962129i \(-0.587881\pi\)
−0.272593 + 0.962129i \(0.587881\pi\)
\(824\) 0 0
\(825\) −11274.4 + 12243.8i −0.475788 + 0.516697i
\(826\) 0 0
\(827\) −10319.7 −0.433920 −0.216960 0.976181i \(-0.569614\pi\)
−0.216960 + 0.976181i \(0.569614\pi\)
\(828\) 0 0
\(829\) −40067.5 −1.67865 −0.839326 0.543629i \(-0.817050\pi\)
−0.839326 + 0.543629i \(0.817050\pi\)
\(830\) 0 0
\(831\) −12133.8 1969.62i −0.506519 0.0822208i
\(832\) 0 0
\(833\) −13970.2 −0.581077
\(834\) 0 0
\(835\) 9854.45i 0.408416i
\(836\) 0 0
\(837\) −1297.68 + 2475.87i −0.0535894 + 0.102244i
\(838\) 0 0
\(839\) 1122.81i 0.0462022i −0.999733 0.0231011i \(-0.992646\pi\)
0.999733 0.0231011i \(-0.00735397\pi\)
\(840\) 0 0
\(841\) 38893.8 1.59473
\(842\) 0 0
\(843\) −6267.19 + 38608.8i −0.256054 + 1.57741i
\(844\) 0 0
\(845\) 4791.10i 0.195052i
\(846\) 0 0
\(847\) 1431.53 612.402i 0.0580732 0.0248434i
\(848\) 0 0
\(849\) 30166.1 + 4896.72i 1.21943 + 0.197945i
\(850\) 0 0
\(851\) 4646.04i 0.187150i
\(852\) 0 0
\(853\) 10578.2i 0.424609i 0.977204 + 0.212305i \(0.0680969\pi\)
−0.977204 + 0.212305i \(0.931903\pi\)
\(854\) 0 0
\(855\) −13178.7 4394.25i −0.527136 0.175766i
\(856\) 0 0
\(857\) 21583.1 0.860287 0.430143 0.902761i \(-0.358463\pi\)
0.430143 + 0.902761i \(0.358463\pi\)
\(858\) 0 0
\(859\) 35493.3 1.40980 0.704898 0.709309i \(-0.250993\pi\)
0.704898 + 0.709309i \(0.250993\pi\)
\(860\) 0 0
\(861\) 1053.58 + 171.023i 0.0417027 + 0.00676941i
\(862\) 0 0
\(863\) 6119.91i 0.241395i −0.992689 0.120698i \(-0.961487\pi\)
0.992689 0.120698i \(-0.0385131\pi\)
\(864\) 0 0
\(865\) 19188.3i 0.754244i
\(866\) 0 0
\(867\) 2698.20 16622.2i 0.105693 0.651117i
\(868\) 0 0
\(869\) −20984.1 + 31800.5i −0.819144 + 1.24138i
\(870\) 0 0
\(871\) 14326.6i 0.557335i
\(872\) 0 0
\(873\) 9684.01 + 3229.00i 0.375434 + 0.125184i
\(874\) 0 0
\(875\) −1518.33 −0.0586615
\(876\) 0 0
\(877\) 14460.8i 0.556793i −0.960466 0.278397i \(-0.910197\pi\)
0.960466 0.278397i \(-0.0898030\pi\)
\(878\) 0 0
\(879\) 924.346 5694.40i 0.0354692 0.218507i
\(880\) 0 0
\(881\) 36160.3i 1.38283i 0.722458 + 0.691415i \(0.243012\pi\)
−0.722458 + 0.691415i \(0.756988\pi\)
\(882\) 0 0
\(883\) 46776.3 1.78273 0.891364 0.453288i \(-0.149749\pi\)
0.891364 + 0.453288i \(0.149749\pi\)
\(884\) 0 0
\(885\) −940.344 + 5792.96i −0.0357167 + 0.220032i
\(886\) 0 0
\(887\) −45438.0 −1.72002 −0.860011 0.510276i \(-0.829543\pi\)
−0.860011 + 0.510276i \(0.829543\pi\)
\(888\) 0 0
\(889\) 98.7123 0.00372407
\(890\) 0 0
\(891\) 8965.36 + 25039.4i 0.337094 + 0.941471i
\(892\) 0 0
\(893\) −15759.2 −0.590549
\(894\) 0 0
\(895\) −27085.6 −1.01159
\(896\) 0 0
\(897\) 3165.70 19502.2i 0.117837 0.725931i
\(898\) 0 0
\(899\) −5012.23 −0.185948
\(900\) 0 0
\(901\) 22673.3i 0.838355i
\(902\) 0 0
\(903\) −323.837 + 1994.99i −0.0119342 + 0.0735205i
\(904\) 0 0
\(905\) 16736.9i 0.614757i
\(906\) 0 0
\(907\) −24873.9 −0.910612 −0.455306 0.890335i \(-0.650470\pi\)
−0.455306 + 0.890335i \(0.650470\pi\)
\(908\) 0 0
\(909\) −22307.9 7438.28i −0.813979 0.271410i
\(910\) 0 0
\(911\) 5633.58i 0.204884i −0.994739 0.102442i \(-0.967334\pi\)
0.994739 0.102442i \(-0.0326655\pi\)
\(912\) 0 0
\(913\) −25793.3 17020.2i −0.934976 0.616960i
\(914\) 0 0
\(915\) −3829.94 + 23594.2i −0.138376 + 0.852460i
\(916\) 0 0
\(917\) 2090.41i 0.0752795i
\(918\) 0 0
\(919\) 27624.4i 0.991561i −0.868448 0.495780i \(-0.834882\pi\)
0.868448 0.495780i \(-0.165118\pi\)
\(920\) 0 0
\(921\) 47305.6 + 7678.89i 1.69248 + 0.274732i
\(922\) 0 0
\(923\) −15096.2 −0.538352
\(924\) 0 0
\(925\) 4030.50 0.143267
\(926\) 0 0
\(927\) −49692.1 16569.2i −1.76063 0.587058i
\(928\) 0 0
\(929\) 11931.4i 0.421376i −0.977553 0.210688i \(-0.932430\pi\)
0.977553 0.210688i \(-0.0675703\pi\)
\(930\) 0 0
\(931\) 28819.0i 1.01450i
\(932\) 0 0
\(933\) 33858.2 + 5496.04i 1.18807 + 0.192853i
\(934\) 0 0
\(935\) −5011.62 + 7594.89i −0.175291 + 0.265646i
\(936\) 0 0
\(937\) 29994.5i 1.04576i 0.852407 + 0.522879i \(0.175142\pi\)
−0.852407 + 0.522879i \(0.824858\pi\)
\(938\) 0 0
\(939\) −2768.36 + 17054.4i −0.0962110 + 0.592705i
\(940\) 0 0
\(941\) −21952.3 −0.760493 −0.380247 0.924885i \(-0.624161\pi\)
−0.380247 + 0.924885i \(0.624161\pi\)
\(942\) 0 0
\(943\) 17771.7i 0.613709i
\(944\) 0 0
\(945\) −464.703 + 886.617i −0.0159966 + 0.0305203i
\(946\) 0 0
\(947\) 4114.14i 0.141174i 0.997506 + 0.0705870i \(0.0224872\pi\)
−0.997506 + 0.0705870i \(0.977513\pi\)
\(948\) 0 0
\(949\) 38868.4 1.32953
\(950\) 0 0
\(951\) 32645.2 + 5299.14i 1.11314 + 0.180690i
\(952\) 0 0
\(953\) 30162.8 1.02525 0.512627 0.858611i \(-0.328672\pi\)
0.512627 + 0.858611i \(0.328672\pi\)
\(954\) 0 0
\(955\) 3228.12 0.109382
\(956\) 0 0
\(957\) −32303.5 + 35081.0i −1.09114 + 1.18496i
\(958\) 0 0
\(959\) −2774.51 −0.0934241
\(960\) 0 0
\(961\) −29394.0 −0.986674
\(962\) 0 0
\(963\) −12888.8 4297.59i −0.431293 0.143809i
\(964\) 0 0
\(965\) −4198.32 −0.140051
\(966\) 0 0
\(967\) 58764.2i 1.95422i −0.212742 0.977109i \(-0.568239\pi\)
0.212742 0.977109i \(-0.431761\pi\)
\(968\) 0 0
\(969\) 17692.9 + 2872.00i 0.586560 + 0.0952136i
\(970\) 0 0
\(971\) 57412.1i 1.89747i −0.316076 0.948734i \(-0.602365\pi\)
0.316076 0.948734i \(-0.397635\pi\)
\(972\) 0 0
\(973\) −2059.87 −0.0678689
\(974\) 0 0
\(975\) 16918.4 + 2746.29i 0.555716 + 0.0902068i
\(976\) 0 0
\(977\) 13185.5i 0.431772i 0.976419 + 0.215886i \(0.0692639\pi\)
−0.976419 + 0.215886i \(0.930736\pi\)
\(978\) 0 0
\(979\) −13564.8 + 20556.8i −0.442832 + 0.671092i
\(980\) 0 0
\(981\) −16676.6 + 50014.2i −0.542754 + 1.62776i
\(982\) 0 0
\(983\) 26690.9i 0.866032i 0.901386 + 0.433016i \(0.142551\pi\)
−0.901386 + 0.433016i \(0.857449\pi\)
\(984\) 0 0
\(985\) 9531.42i 0.308321i
\(986\) 0 0
\(987\) −181.949 + 1120.89i −0.00586779 + 0.0361483i
\(988\) 0 0
\(989\) 33651.2 1.08195
\(990\) 0 0
\(991\) 9295.87 0.297975 0.148987 0.988839i \(-0.452399\pi\)
0.148987 + 0.988839i \(0.452399\pi\)
\(992\) 0 0
\(993\) 5259.01 32398.0i 0.168066 1.03537i
\(994\) 0 0
\(995\) 21838.5i 0.695805i
\(996\) 0 0
\(997\) 11713.6i 0.372089i 0.982541 + 0.186045i \(0.0595669\pi\)
−0.982541 + 0.186045i \(0.940433\pi\)
\(998\) 0 0
\(999\) 2989.86 5704.41i 0.0946896 0.180660i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.4.b.d.65.4 6
3.2 odd 2 528.4.b.c.65.3 6
4.3 odd 2 66.4.b.a.65.3 6
11.10 odd 2 528.4.b.c.65.4 6
12.11 even 2 66.4.b.b.65.4 yes 6
33.32 even 2 inner 528.4.b.d.65.3 6
44.43 even 2 66.4.b.b.65.3 yes 6
132.131 odd 2 66.4.b.a.65.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.4.b.a.65.3 6 4.3 odd 2
66.4.b.a.65.4 yes 6 132.131 odd 2
66.4.b.b.65.3 yes 6 44.43 even 2
66.4.b.b.65.4 yes 6 12.11 even 2
528.4.b.c.65.3 6 3.2 odd 2
528.4.b.c.65.4 6 11.10 odd 2
528.4.b.d.65.3 6 33.32 even 2 inner
528.4.b.d.65.4 6 1.1 even 1 trivial