Properties

Label 529.4.a.m.1.1
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.34818 q^{2} -4.97765 q^{3} +20.6030 q^{4} -16.6747 q^{5} +26.6214 q^{6} +7.69394 q^{7} -67.4034 q^{8} -2.22303 q^{9} +89.1791 q^{10} -18.6441 q^{11} -102.555 q^{12} +29.5700 q^{13} -41.1486 q^{14} +83.0005 q^{15} +195.661 q^{16} -44.2479 q^{17} +11.8892 q^{18} -57.7509 q^{19} -343.549 q^{20} -38.2977 q^{21} +99.7120 q^{22} +335.510 q^{24} +153.044 q^{25} -158.146 q^{26} +145.462 q^{27} +158.519 q^{28} -130.893 q^{29} -443.902 q^{30} +152.368 q^{31} -507.204 q^{32} +92.8038 q^{33} +236.646 q^{34} -128.294 q^{35} -45.8012 q^{36} +85.8578 q^{37} +308.862 q^{38} -147.189 q^{39} +1123.93 q^{40} +334.244 q^{41} +204.823 q^{42} +199.918 q^{43} -384.125 q^{44} +37.0683 q^{45} +126.827 q^{47} -973.932 q^{48} -283.803 q^{49} -818.507 q^{50} +220.250 q^{51} +609.233 q^{52} +759.122 q^{53} -777.957 q^{54} +310.884 q^{55} -518.598 q^{56} +287.464 q^{57} +700.040 q^{58} +741.673 q^{59} +1710.06 q^{60} +262.966 q^{61} -814.890 q^{62} -17.1039 q^{63} +1147.33 q^{64} -493.070 q^{65} -496.331 q^{66} +102.208 q^{67} -911.641 q^{68} +686.139 q^{70} +275.514 q^{71} +149.840 q^{72} -610.501 q^{73} -459.183 q^{74} -761.799 q^{75} -1189.84 q^{76} -143.447 q^{77} +787.194 q^{78} -994.915 q^{79} -3262.58 q^{80} -664.036 q^{81} -1787.60 q^{82} -370.778 q^{83} -789.050 q^{84} +737.818 q^{85} -1069.20 q^{86} +651.540 q^{87} +1256.68 q^{88} -748.991 q^{89} -198.248 q^{90} +227.510 q^{91} -758.432 q^{93} -678.295 q^{94} +962.976 q^{95} +2524.68 q^{96} +370.644 q^{97} +1517.83 q^{98} +41.4464 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.34818 −1.89087 −0.945434 0.325814i \(-0.894362\pi\)
−0.945434 + 0.325814i \(0.894362\pi\)
\(3\) −4.97765 −0.957949 −0.478974 0.877829i \(-0.658991\pi\)
−0.478974 + 0.877829i \(0.658991\pi\)
\(4\) 20.6030 2.57538
\(5\) −16.6747 −1.49143 −0.745713 0.666267i \(-0.767891\pi\)
−0.745713 + 0.666267i \(0.767891\pi\)
\(6\) 26.6214 1.81135
\(7\) 7.69394 0.415434 0.207717 0.978189i \(-0.433397\pi\)
0.207717 + 0.978189i \(0.433397\pi\)
\(8\) −67.4034 −2.97884
\(9\) −2.22303 −0.0823345
\(10\) 89.1791 2.82009
\(11\) −18.6441 −0.511037 −0.255519 0.966804i \(-0.582246\pi\)
−0.255519 + 0.966804i \(0.582246\pi\)
\(12\) −102.555 −2.46708
\(13\) 29.5700 0.630865 0.315433 0.948948i \(-0.397850\pi\)
0.315433 + 0.948948i \(0.397850\pi\)
\(14\) −41.1486 −0.785531
\(15\) 83.0005 1.42871
\(16\) 195.661 3.05721
\(17\) −44.2479 −0.631276 −0.315638 0.948880i \(-0.602218\pi\)
−0.315638 + 0.948880i \(0.602218\pi\)
\(18\) 11.8892 0.155684
\(19\) −57.7509 −0.697314 −0.348657 0.937250i \(-0.613362\pi\)
−0.348657 + 0.937250i \(0.613362\pi\)
\(20\) −343.549 −3.84099
\(21\) −38.2977 −0.397964
\(22\) 99.7120 0.966304
\(23\) 0 0
\(24\) 335.510 2.85357
\(25\) 153.044 1.22435
\(26\) −158.146 −1.19288
\(27\) 145.462 1.03682
\(28\) 158.519 1.06990
\(29\) −130.893 −0.838146 −0.419073 0.907952i \(-0.637645\pi\)
−0.419073 + 0.907952i \(0.637645\pi\)
\(30\) −443.902 −2.70150
\(31\) 152.368 0.882775 0.441388 0.897316i \(-0.354486\pi\)
0.441388 + 0.897316i \(0.354486\pi\)
\(32\) −507.204 −2.80193
\(33\) 92.8038 0.489547
\(34\) 236.646 1.19366
\(35\) −128.294 −0.619589
\(36\) −45.8012 −0.212043
\(37\) 85.8578 0.381485 0.190742 0.981640i \(-0.438910\pi\)
0.190742 + 0.981640i \(0.438910\pi\)
\(38\) 308.862 1.31853
\(39\) −147.189 −0.604337
\(40\) 1123.93 4.44271
\(41\) 334.244 1.27317 0.636587 0.771205i \(-0.280345\pi\)
0.636587 + 0.771205i \(0.280345\pi\)
\(42\) 204.823 0.752498
\(43\) 199.918 0.709003 0.354502 0.935055i \(-0.384651\pi\)
0.354502 + 0.935055i \(0.384651\pi\)
\(44\) −384.125 −1.31612
\(45\) 37.0683 0.122796
\(46\) 0 0
\(47\) 126.827 0.393610 0.196805 0.980443i \(-0.436943\pi\)
0.196805 + 0.980443i \(0.436943\pi\)
\(48\) −973.932 −2.92865
\(49\) −283.803 −0.827415
\(50\) −818.507 −2.31509
\(51\) 220.250 0.604730
\(52\) 609.233 1.62472
\(53\) 759.122 1.96742 0.983711 0.179755i \(-0.0575306\pi\)
0.983711 + 0.179755i \(0.0575306\pi\)
\(54\) −777.957 −1.96049
\(55\) 310.884 0.762174
\(56\) −518.598 −1.23751
\(57\) 287.464 0.667991
\(58\) 700.040 1.58482
\(59\) 741.673 1.63657 0.818284 0.574814i \(-0.194926\pi\)
0.818284 + 0.574814i \(0.194926\pi\)
\(60\) 1710.06 3.67947
\(61\) 262.966 0.551956 0.275978 0.961164i \(-0.410998\pi\)
0.275978 + 0.961164i \(0.410998\pi\)
\(62\) −814.890 −1.66921
\(63\) −17.1039 −0.0342045
\(64\) 1147.33 2.24088
\(65\) −493.070 −0.940889
\(66\) −496.331 −0.925669
\(67\) 102.208 0.186369 0.0931847 0.995649i \(-0.470295\pi\)
0.0931847 + 0.995649i \(0.470295\pi\)
\(68\) −911.641 −1.62578
\(69\) 0 0
\(70\) 686.139 1.17156
\(71\) 275.514 0.460528 0.230264 0.973128i \(-0.426041\pi\)
0.230264 + 0.973128i \(0.426041\pi\)
\(72\) 149.840 0.245261
\(73\) −610.501 −0.978819 −0.489410 0.872054i \(-0.662788\pi\)
−0.489410 + 0.872054i \(0.662788\pi\)
\(74\) −459.183 −0.721338
\(75\) −761.799 −1.17287
\(76\) −1189.84 −1.79585
\(77\) −143.447 −0.212302
\(78\) 787.194 1.14272
\(79\) −994.915 −1.41692 −0.708460 0.705751i \(-0.750610\pi\)
−0.708460 + 0.705751i \(0.750610\pi\)
\(80\) −3262.58 −4.55960
\(81\) −664.036 −0.910887
\(82\) −1787.60 −2.40741
\(83\) −370.778 −0.490340 −0.245170 0.969480i \(-0.578844\pi\)
−0.245170 + 0.969480i \(0.578844\pi\)
\(84\) −789.050 −1.02491
\(85\) 737.818 0.941501
\(86\) −1069.20 −1.34063
\(87\) 651.540 0.802901
\(88\) 1256.68 1.52230
\(89\) −748.991 −0.892055 −0.446028 0.895019i \(-0.647162\pi\)
−0.446028 + 0.895019i \(0.647162\pi\)
\(90\) −198.248 −0.232191
\(91\) 227.510 0.262083
\(92\) 0 0
\(93\) −758.432 −0.845653
\(94\) −678.295 −0.744264
\(95\) 962.976 1.03999
\(96\) 2524.68 2.68411
\(97\) 370.644 0.387971 0.193985 0.981004i \(-0.437859\pi\)
0.193985 + 0.981004i \(0.437859\pi\)
\(98\) 1517.83 1.56453
\(99\) 41.4464 0.0420760
\(100\) 3153.17 3.15317
\(101\) −593.204 −0.584416 −0.292208 0.956355i \(-0.594390\pi\)
−0.292208 + 0.956355i \(0.594390\pi\)
\(102\) −1177.94 −1.14346
\(103\) 1122.77 1.07408 0.537038 0.843558i \(-0.319543\pi\)
0.537038 + 0.843558i \(0.319543\pi\)
\(104\) −1993.12 −1.87925
\(105\) 638.601 0.593534
\(106\) −4059.92 −3.72014
\(107\) −1063.85 −0.961177 −0.480588 0.876946i \(-0.659577\pi\)
−0.480588 + 0.876946i \(0.659577\pi\)
\(108\) 2996.96 2.67021
\(109\) −1264.21 −1.11092 −0.555458 0.831545i \(-0.687457\pi\)
−0.555458 + 0.831545i \(0.687457\pi\)
\(110\) −1662.66 −1.44117
\(111\) −427.370 −0.365443
\(112\) 1505.41 1.27007
\(113\) 750.868 0.625095 0.312547 0.949902i \(-0.398818\pi\)
0.312547 + 0.949902i \(0.398818\pi\)
\(114\) −1537.41 −1.26308
\(115\) 0 0
\(116\) −2696.80 −2.15855
\(117\) −65.7351 −0.0519420
\(118\) −3966.60 −3.09453
\(119\) −340.441 −0.262253
\(120\) −5594.52 −4.25589
\(121\) −983.397 −0.738841
\(122\) −1406.39 −1.04368
\(123\) −1663.75 −1.21964
\(124\) 3139.24 2.27348
\(125\) −467.623 −0.334604
\(126\) 91.4746 0.0646763
\(127\) 353.105 0.246716 0.123358 0.992362i \(-0.460634\pi\)
0.123358 + 0.992362i \(0.460634\pi\)
\(128\) −2078.50 −1.43528
\(129\) −995.119 −0.679189
\(130\) 2637.03 1.77910
\(131\) 838.237 0.559062 0.279531 0.960137i \(-0.409821\pi\)
0.279531 + 0.960137i \(0.409821\pi\)
\(132\) 1912.04 1.26077
\(133\) −444.332 −0.289688
\(134\) −546.629 −0.352400
\(135\) −2425.53 −1.54634
\(136\) 2982.46 1.88047
\(137\) −1875.91 −1.16985 −0.584926 0.811087i \(-0.698876\pi\)
−0.584926 + 0.811087i \(0.698876\pi\)
\(138\) 0 0
\(139\) −1414.19 −0.862950 −0.431475 0.902125i \(-0.642007\pi\)
−0.431475 + 0.902125i \(0.642007\pi\)
\(140\) −2643.24 −1.59568
\(141\) −631.301 −0.377058
\(142\) −1473.50 −0.870797
\(143\) −551.307 −0.322396
\(144\) −434.961 −0.251714
\(145\) 2182.60 1.25003
\(146\) 3265.07 1.85082
\(147\) 1412.67 0.792621
\(148\) 1768.93 0.982469
\(149\) −2605.92 −1.43279 −0.716395 0.697695i \(-0.754209\pi\)
−0.716395 + 0.697695i \(0.754209\pi\)
\(150\) 4074.24 2.21773
\(151\) 948.694 0.511282 0.255641 0.966772i \(-0.417713\pi\)
0.255641 + 0.966772i \(0.417713\pi\)
\(152\) 3892.61 2.07718
\(153\) 98.3644 0.0519758
\(154\) 767.179 0.401435
\(155\) −2540.68 −1.31659
\(156\) −3032.55 −1.55640
\(157\) 2023.07 1.02840 0.514199 0.857671i \(-0.328089\pi\)
0.514199 + 0.857671i \(0.328089\pi\)
\(158\) 5320.99 2.67921
\(159\) −3778.64 −1.88469
\(160\) 8457.46 4.17888
\(161\) 0 0
\(162\) 3551.39 1.72237
\(163\) 278.635 0.133892 0.0669460 0.997757i \(-0.478674\pi\)
0.0669460 + 0.997757i \(0.478674\pi\)
\(164\) 6886.45 3.27891
\(165\) −1547.47 −0.730124
\(166\) 1982.99 0.927168
\(167\) −643.623 −0.298234 −0.149117 0.988820i \(-0.547643\pi\)
−0.149117 + 0.988820i \(0.547643\pi\)
\(168\) 2581.40 1.18547
\(169\) −1322.61 −0.602009
\(170\) −3945.98 −1.78025
\(171\) 128.382 0.0574130
\(172\) 4118.91 1.82595
\(173\) 2041.44 0.897155 0.448577 0.893744i \(-0.351931\pi\)
0.448577 + 0.893744i \(0.351931\pi\)
\(174\) −3484.55 −1.51818
\(175\) 1177.51 0.508637
\(176\) −3647.93 −1.56235
\(177\) −3691.78 −1.56775
\(178\) 4005.74 1.68676
\(179\) 4024.47 1.68046 0.840231 0.542228i \(-0.182419\pi\)
0.840231 + 0.542228i \(0.182419\pi\)
\(180\) 763.719 0.316246
\(181\) −3924.12 −1.61148 −0.805738 0.592272i \(-0.798231\pi\)
−0.805738 + 0.592272i \(0.798231\pi\)
\(182\) −1216.77 −0.495564
\(183\) −1308.95 −0.528745
\(184\) 0 0
\(185\) −1431.65 −0.568957
\(186\) 4056.23 1.59902
\(187\) 824.962 0.322605
\(188\) 2613.03 1.01370
\(189\) 1119.18 0.430730
\(190\) −5150.17 −1.96649
\(191\) −4468.66 −1.69288 −0.846442 0.532481i \(-0.821260\pi\)
−0.846442 + 0.532481i \(0.821260\pi\)
\(192\) −5711.01 −2.14665
\(193\) 3009.79 1.12254 0.561268 0.827634i \(-0.310314\pi\)
0.561268 + 0.827634i \(0.310314\pi\)
\(194\) −1982.27 −0.733602
\(195\) 2454.33 0.901323
\(196\) −5847.21 −2.13091
\(197\) 4993.28 1.80587 0.902935 0.429776i \(-0.141408\pi\)
0.902935 + 0.429776i \(0.141408\pi\)
\(198\) −221.663 −0.0795601
\(199\) −1501.04 −0.534702 −0.267351 0.963599i \(-0.586148\pi\)
−0.267351 + 0.963599i \(0.586148\pi\)
\(200\) −10315.7 −3.64714
\(201\) −508.758 −0.178532
\(202\) 3172.56 1.10505
\(203\) −1007.08 −0.348194
\(204\) 4537.83 1.55741
\(205\) −5573.40 −1.89885
\(206\) −6004.78 −2.03094
\(207\) 0 0
\(208\) 5785.71 1.92869
\(209\) 1076.71 0.356353
\(210\) −3415.36 −1.12229
\(211\) 456.647 0.148990 0.0744950 0.997221i \(-0.476266\pi\)
0.0744950 + 0.997221i \(0.476266\pi\)
\(212\) 15640.2 5.06686
\(213\) −1371.41 −0.441162
\(214\) 5689.64 1.81746
\(215\) −3333.56 −1.05743
\(216\) −9804.63 −3.08852
\(217\) 1172.31 0.366735
\(218\) 6761.25 2.10060
\(219\) 3038.86 0.937658
\(220\) 6405.16 1.96289
\(221\) −1308.41 −0.398250
\(222\) 2285.65 0.691004
\(223\) 497.395 0.149363 0.0746817 0.997207i \(-0.476206\pi\)
0.0746817 + 0.997207i \(0.476206\pi\)
\(224\) −3902.40 −1.16402
\(225\) −340.222 −0.100806
\(226\) −4015.78 −1.18197
\(227\) −3287.13 −0.961122 −0.480561 0.876961i \(-0.659567\pi\)
−0.480561 + 0.876961i \(0.659567\pi\)
\(228\) 5922.62 1.72033
\(229\) 3859.28 1.11366 0.556830 0.830626i \(-0.312017\pi\)
0.556830 + 0.830626i \(0.312017\pi\)
\(230\) 0 0
\(231\) 714.027 0.203375
\(232\) 8822.64 2.49670
\(233\) 738.467 0.207633 0.103817 0.994596i \(-0.466894\pi\)
0.103817 + 0.994596i \(0.466894\pi\)
\(234\) 351.563 0.0982154
\(235\) −2114.80 −0.587040
\(236\) 15280.7 4.21479
\(237\) 4952.34 1.35734
\(238\) 1820.74 0.495886
\(239\) 1851.62 0.501136 0.250568 0.968099i \(-0.419383\pi\)
0.250568 + 0.968099i \(0.419383\pi\)
\(240\) 16240.0 4.36786
\(241\) −3417.63 −0.913482 −0.456741 0.889600i \(-0.650983\pi\)
−0.456741 + 0.889600i \(0.650983\pi\)
\(242\) 5259.39 1.39705
\(243\) −622.134 −0.164238
\(244\) 5417.89 1.42150
\(245\) 4732.32 1.23403
\(246\) 8898.03 2.30617
\(247\) −1707.70 −0.439911
\(248\) −10270.1 −2.62964
\(249\) 1845.60 0.469720
\(250\) 2500.93 0.632692
\(251\) 5508.42 1.38521 0.692607 0.721315i \(-0.256462\pi\)
0.692607 + 0.721315i \(0.256462\pi\)
\(252\) −352.392 −0.0880897
\(253\) 0 0
\(254\) −1888.47 −0.466508
\(255\) −3672.60 −0.901910
\(256\) 1937.56 0.473038
\(257\) −6346.62 −1.54043 −0.770217 0.637782i \(-0.779852\pi\)
−0.770217 + 0.637782i \(0.779852\pi\)
\(258\) 5322.08 1.28426
\(259\) 660.585 0.158482
\(260\) −10158.7 −2.42315
\(261\) 290.980 0.0690084
\(262\) −4483.04 −1.05711
\(263\) 789.729 0.185159 0.0925794 0.995705i \(-0.470489\pi\)
0.0925794 + 0.995705i \(0.470489\pi\)
\(264\) −6255.29 −1.45828
\(265\) −12658.1 −2.93427
\(266\) 2376.37 0.547761
\(267\) 3728.22 0.854543
\(268\) 2105.81 0.479972
\(269\) 2117.33 0.479909 0.239955 0.970784i \(-0.422867\pi\)
0.239955 + 0.970784i \(0.422867\pi\)
\(270\) 12972.2 2.92393
\(271\) −2544.85 −0.570438 −0.285219 0.958462i \(-0.592066\pi\)
−0.285219 + 0.958462i \(0.592066\pi\)
\(272\) −8657.59 −1.92994
\(273\) −1132.47 −0.251062
\(274\) 10032.7 2.21203
\(275\) −2853.37 −0.625689
\(276\) 0 0
\(277\) 6965.82 1.51096 0.755479 0.655172i \(-0.227404\pi\)
0.755479 + 0.655172i \(0.227404\pi\)
\(278\) 7563.35 1.63172
\(279\) −338.718 −0.0726829
\(280\) 8647.44 1.84565
\(281\) −6549.77 −1.39049 −0.695243 0.718775i \(-0.744703\pi\)
−0.695243 + 0.718775i \(0.744703\pi\)
\(282\) 3376.32 0.712967
\(283\) −2573.93 −0.540651 −0.270325 0.962769i \(-0.587131\pi\)
−0.270325 + 0.962769i \(0.587131\pi\)
\(284\) 5676.42 1.18603
\(285\) −4793.35 −0.996259
\(286\) 2948.49 0.609608
\(287\) 2571.66 0.528920
\(288\) 1127.53 0.230696
\(289\) −2955.12 −0.601491
\(290\) −11672.9 −2.36365
\(291\) −1844.93 −0.371656
\(292\) −12578.2 −2.52083
\(293\) −4751.08 −0.947308 −0.473654 0.880711i \(-0.657065\pi\)
−0.473654 + 0.880711i \(0.657065\pi\)
\(294\) −7555.23 −1.49874
\(295\) −12367.1 −2.44082
\(296\) −5787.11 −1.13638
\(297\) −2712.01 −0.529854
\(298\) 13937.0 2.70922
\(299\) 0 0
\(300\) −15695.4 −3.02058
\(301\) 1538.15 0.294544
\(302\) −5073.79 −0.966768
\(303\) 2952.76 0.559841
\(304\) −11299.6 −2.13183
\(305\) −4384.86 −0.823201
\(306\) −526.071 −0.0982793
\(307\) −5666.81 −1.05349 −0.526745 0.850023i \(-0.676588\pi\)
−0.526745 + 0.850023i \(0.676588\pi\)
\(308\) −2955.44 −0.546759
\(309\) −5588.76 −1.02891
\(310\) 13588.0 2.48951
\(311\) −3426.13 −0.624689 −0.312344 0.949969i \(-0.601114\pi\)
−0.312344 + 0.949969i \(0.601114\pi\)
\(312\) 9921.05 1.80022
\(313\) −6836.57 −1.23459 −0.617294 0.786733i \(-0.711771\pi\)
−0.617294 + 0.786733i \(0.711771\pi\)
\(314\) −10819.7 −1.94456
\(315\) 285.201 0.0510135
\(316\) −20498.3 −3.64911
\(317\) 1273.47 0.225631 0.112815 0.993616i \(-0.464013\pi\)
0.112815 + 0.993616i \(0.464013\pi\)
\(318\) 20208.9 3.56370
\(319\) 2440.38 0.428324
\(320\) −19131.4 −3.34211
\(321\) 5295.45 0.920758
\(322\) 0 0
\(323\) 2555.35 0.440197
\(324\) −13681.2 −2.34588
\(325\) 4525.51 0.772401
\(326\) −1490.19 −0.253172
\(327\) 6292.82 1.06420
\(328\) −22529.2 −3.79258
\(329\) 975.802 0.163519
\(330\) 8276.15 1.38057
\(331\) 4370.21 0.725706 0.362853 0.931846i \(-0.381803\pi\)
0.362853 + 0.931846i \(0.381803\pi\)
\(332\) −7639.17 −1.26281
\(333\) −190.865 −0.0314094
\(334\) 3442.21 0.563921
\(335\) −1704.29 −0.277956
\(336\) −7493.38 −1.21666
\(337\) 5637.57 0.911269 0.455635 0.890167i \(-0.349412\pi\)
0.455635 + 0.890167i \(0.349412\pi\)
\(338\) 7073.58 1.13832
\(339\) −3737.56 −0.598809
\(340\) 15201.3 2.42472
\(341\) −2840.76 −0.451131
\(342\) −686.611 −0.108560
\(343\) −4822.59 −0.759170
\(344\) −13475.1 −2.11201
\(345\) 0 0
\(346\) −10918.0 −1.69640
\(347\) −3968.72 −0.613982 −0.306991 0.951712i \(-0.599322\pi\)
−0.306991 + 0.951712i \(0.599322\pi\)
\(348\) 13423.7 2.06778
\(349\) 222.016 0.0340523 0.0170262 0.999855i \(-0.494580\pi\)
0.0170262 + 0.999855i \(0.494580\pi\)
\(350\) −6297.55 −0.961766
\(351\) 4301.31 0.654094
\(352\) 9456.37 1.43189
\(353\) 2223.61 0.335272 0.167636 0.985849i \(-0.446387\pi\)
0.167636 + 0.985849i \(0.446387\pi\)
\(354\) 19744.3 2.96440
\(355\) −4594.10 −0.686843
\(356\) −15431.5 −2.29738
\(357\) 1694.59 0.251225
\(358\) −21523.6 −3.17753
\(359\) 4487.81 0.659770 0.329885 0.944021i \(-0.392990\pi\)
0.329885 + 0.944021i \(0.392990\pi\)
\(360\) −2498.53 −0.365789
\(361\) −3523.83 −0.513753
\(362\) 20986.9 3.04709
\(363\) 4895.01 0.707772
\(364\) 4687.40 0.674963
\(365\) 10179.9 1.45984
\(366\) 7000.50 0.999787
\(367\) 3655.81 0.519978 0.259989 0.965612i \(-0.416281\pi\)
0.259989 + 0.965612i \(0.416281\pi\)
\(368\) 0 0
\(369\) −743.035 −0.104826
\(370\) 7656.72 1.07582
\(371\) 5840.64 0.817334
\(372\) −15626.0 −2.17788
\(373\) −4245.19 −0.589297 −0.294649 0.955606i \(-0.595203\pi\)
−0.294649 + 0.955606i \(0.595203\pi\)
\(374\) −4412.05 −0.610004
\(375\) 2327.66 0.320533
\(376\) −8548.59 −1.17250
\(377\) −3870.51 −0.528757
\(378\) −5985.56 −0.814454
\(379\) −7047.58 −0.955171 −0.477586 0.878585i \(-0.658488\pi\)
−0.477586 + 0.878585i \(0.658488\pi\)
\(380\) 19840.2 2.67838
\(381\) −1757.63 −0.236342
\(382\) 23899.2 3.20102
\(383\) −9245.97 −1.23354 −0.616771 0.787142i \(-0.711560\pi\)
−0.616771 + 0.787142i \(0.711560\pi\)
\(384\) 10346.1 1.37492
\(385\) 2391.92 0.316633
\(386\) −16096.9 −2.12257
\(387\) −444.423 −0.0583754
\(388\) 7636.39 0.999173
\(389\) 4195.74 0.546870 0.273435 0.961891i \(-0.411840\pi\)
0.273435 + 0.961891i \(0.411840\pi\)
\(390\) −13126.2 −1.70428
\(391\) 0 0
\(392\) 19129.3 2.46473
\(393\) −4172.45 −0.535552
\(394\) −26705.0 −3.41466
\(395\) 16589.9 2.11323
\(396\) 853.923 0.108362
\(397\) 7766.52 0.981840 0.490920 0.871205i \(-0.336661\pi\)
0.490920 + 0.871205i \(0.336661\pi\)
\(398\) 8027.82 1.01105
\(399\) 2211.73 0.277506
\(400\) 29944.8 3.74309
\(401\) 15563.0 1.93811 0.969054 0.246849i \(-0.0793953\pi\)
0.969054 + 0.246849i \(0.0793953\pi\)
\(402\) 2720.93 0.337581
\(403\) 4505.52 0.556912
\(404\) −12221.8 −1.50509
\(405\) 11072.6 1.35852
\(406\) 5386.07 0.658389
\(407\) −1600.74 −0.194953
\(408\) −14845.6 −1.80139
\(409\) 568.129 0.0686851 0.0343425 0.999410i \(-0.489066\pi\)
0.0343425 + 0.999410i \(0.489066\pi\)
\(410\) 29807.6 3.59047
\(411\) 9337.61 1.12066
\(412\) 23132.5 2.76616
\(413\) 5706.39 0.679886
\(414\) 0 0
\(415\) 6182.60 0.731306
\(416\) −14998.0 −1.76764
\(417\) 7039.34 0.826662
\(418\) −5758.46 −0.673817
\(419\) −13017.7 −1.51779 −0.758896 0.651212i \(-0.774261\pi\)
−0.758896 + 0.651212i \(0.774261\pi\)
\(420\) 13157.1 1.52858
\(421\) 8342.69 0.965791 0.482895 0.875678i \(-0.339585\pi\)
0.482895 + 0.875678i \(0.339585\pi\)
\(422\) −2442.23 −0.281720
\(423\) −281.941 −0.0324077
\(424\) −51167.4 −5.86063
\(425\) −6771.87 −0.772904
\(426\) 7334.55 0.834179
\(427\) 2023.24 0.229301
\(428\) −21918.5 −2.47540
\(429\) 2744.21 0.308838
\(430\) 17828.5 1.99945
\(431\) 4666.29 0.521502 0.260751 0.965406i \(-0.416030\pi\)
0.260751 + 0.965406i \(0.416030\pi\)
\(432\) 28461.3 3.16977
\(433\) 735.157 0.0815922 0.0407961 0.999167i \(-0.487011\pi\)
0.0407961 + 0.999167i \(0.487011\pi\)
\(434\) −6269.72 −0.693447
\(435\) −10864.2 −1.19747
\(436\) −26046.7 −2.86103
\(437\) 0 0
\(438\) −16252.4 −1.77299
\(439\) 4550.38 0.494710 0.247355 0.968925i \(-0.420439\pi\)
0.247355 + 0.968925i \(0.420439\pi\)
\(440\) −20954.6 −2.27039
\(441\) 630.904 0.0681248
\(442\) 6997.62 0.753038
\(443\) −6681.96 −0.716635 −0.358318 0.933600i \(-0.616649\pi\)
−0.358318 + 0.933600i \(0.616649\pi\)
\(444\) −8805.13 −0.941155
\(445\) 12489.2 1.33043
\(446\) −2660.16 −0.282427
\(447\) 12971.4 1.37254
\(448\) 8827.51 0.930938
\(449\) 13.1976 0.00138715 0.000693576 1.00000i \(-0.499779\pi\)
0.000693576 1.00000i \(0.499779\pi\)
\(450\) 1819.57 0.190612
\(451\) −6231.68 −0.650640
\(452\) 15470.2 1.60986
\(453\) −4722.27 −0.489782
\(454\) 17580.2 1.81735
\(455\) −3793.65 −0.390877
\(456\) −19376.0 −1.98984
\(457\) 4649.93 0.475962 0.237981 0.971270i \(-0.423514\pi\)
0.237981 + 0.971270i \(0.423514\pi\)
\(458\) −20640.1 −2.10578
\(459\) −6436.38 −0.654520
\(460\) 0 0
\(461\) −7703.46 −0.778277 −0.389139 0.921179i \(-0.627227\pi\)
−0.389139 + 0.921179i \(0.627227\pi\)
\(462\) −3818.75 −0.384554
\(463\) 3025.26 0.303662 0.151831 0.988406i \(-0.451483\pi\)
0.151831 + 0.988406i \(0.451483\pi\)
\(464\) −25610.7 −2.56239
\(465\) 12646.6 1.26123
\(466\) −3949.46 −0.392607
\(467\) −18570.7 −1.84015 −0.920075 0.391743i \(-0.871872\pi\)
−0.920075 + 0.391743i \(0.871872\pi\)
\(468\) −1354.34 −0.133770
\(469\) 786.386 0.0774242
\(470\) 11310.3 1.11001
\(471\) −10070.1 −0.985152
\(472\) −49991.2 −4.87507
\(473\) −3727.28 −0.362327
\(474\) −26486.0 −2.56654
\(475\) −8838.42 −0.853757
\(476\) −7014.12 −0.675402
\(477\) −1687.55 −0.161987
\(478\) −9902.80 −0.947581
\(479\) 12817.1 1.22261 0.611304 0.791396i \(-0.290645\pi\)
0.611304 + 0.791396i \(0.290645\pi\)
\(480\) −42098.2 −4.00315
\(481\) 2538.82 0.240666
\(482\) 18278.1 1.72727
\(483\) 0 0
\(484\) −20261.0 −1.90280
\(485\) −6180.36 −0.578630
\(486\) 3327.29 0.310553
\(487\) 19367.1 1.80206 0.901032 0.433753i \(-0.142811\pi\)
0.901032 + 0.433753i \(0.142811\pi\)
\(488\) −17724.8 −1.64419
\(489\) −1386.95 −0.128262
\(490\) −25309.3 −2.33338
\(491\) −4004.55 −0.368071 −0.184036 0.982920i \(-0.558916\pi\)
−0.184036 + 0.982920i \(0.558916\pi\)
\(492\) −34278.3 −3.14103
\(493\) 5791.74 0.529101
\(494\) 9133.07 0.831814
\(495\) −691.105 −0.0627532
\(496\) 29812.4 2.69883
\(497\) 2119.79 0.191319
\(498\) −9870.63 −0.888179
\(499\) 1554.44 0.139452 0.0697258 0.997566i \(-0.477788\pi\)
0.0697258 + 0.997566i \(0.477788\pi\)
\(500\) −9634.46 −0.861733
\(501\) 3203.73 0.285693
\(502\) −29460.1 −2.61926
\(503\) −15826.7 −1.40294 −0.701468 0.712701i \(-0.747472\pi\)
−0.701468 + 0.712701i \(0.747472\pi\)
\(504\) 1152.86 0.101890
\(505\) 9891.47 0.871613
\(506\) 0 0
\(507\) 6583.50 0.576694
\(508\) 7275.03 0.635388
\(509\) 5819.10 0.506733 0.253366 0.967370i \(-0.418462\pi\)
0.253366 + 0.967370i \(0.418462\pi\)
\(510\) 19641.7 1.70539
\(511\) −4697.16 −0.406635
\(512\) 6265.60 0.540826
\(513\) −8400.56 −0.722989
\(514\) 33942.9 2.91276
\(515\) −18721.8 −1.60191
\(516\) −20502.5 −1.74917
\(517\) −2364.58 −0.201149
\(518\) −3532.93 −0.299668
\(519\) −10161.6 −0.859428
\(520\) 33234.6 2.80276
\(521\) −597.668 −0.0502578 −0.0251289 0.999684i \(-0.508000\pi\)
−0.0251289 + 0.999684i \(0.508000\pi\)
\(522\) −1556.21 −0.130486
\(523\) 4621.46 0.386391 0.193195 0.981160i \(-0.438115\pi\)
0.193195 + 0.981160i \(0.438115\pi\)
\(524\) 17270.2 1.43980
\(525\) −5861.24 −0.487248
\(526\) −4223.61 −0.350111
\(527\) −6741.95 −0.557275
\(528\) 18158.1 1.49665
\(529\) 0 0
\(530\) 67697.8 5.54831
\(531\) −1648.76 −0.134746
\(532\) −9154.59 −0.746056
\(533\) 9883.61 0.803202
\(534\) −19939.2 −1.61583
\(535\) 17739.3 1.43352
\(536\) −6889.20 −0.555164
\(537\) −20032.4 −1.60980
\(538\) −11323.8 −0.907445
\(539\) 5291.26 0.422840
\(540\) −49973.2 −3.98242
\(541\) −2051.95 −0.163068 −0.0815342 0.996671i \(-0.525982\pi\)
−0.0815342 + 0.996671i \(0.525982\pi\)
\(542\) 13610.3 1.07862
\(543\) 19532.9 1.54371
\(544\) 22442.7 1.76879
\(545\) 21080.3 1.65685
\(546\) 6056.63 0.474725
\(547\) −14848.8 −1.16067 −0.580336 0.814377i \(-0.697079\pi\)
−0.580336 + 0.814377i \(0.697079\pi\)
\(548\) −38649.4 −3.01281
\(549\) −584.581 −0.0454450
\(550\) 15260.3 1.18310
\(551\) 7559.19 0.584451
\(552\) 0 0
\(553\) −7654.82 −0.588637
\(554\) −37254.5 −2.85702
\(555\) 7126.25 0.545031
\(556\) −29136.6 −2.22243
\(557\) 3987.17 0.303307 0.151653 0.988434i \(-0.451540\pi\)
0.151653 + 0.988434i \(0.451540\pi\)
\(558\) 1811.53 0.137434
\(559\) 5911.57 0.447286
\(560\) −25102.1 −1.89421
\(561\) −4106.37 −0.309039
\(562\) 35029.3 2.62922
\(563\) 1529.20 0.114473 0.0572365 0.998361i \(-0.481771\pi\)
0.0572365 + 0.998361i \(0.481771\pi\)
\(564\) −13006.7 −0.971068
\(565\) −12520.5 −0.932283
\(566\) 13765.8 1.02230
\(567\) −5109.06 −0.378413
\(568\) −18570.6 −1.37184
\(569\) −1502.71 −0.110715 −0.0553575 0.998467i \(-0.517630\pi\)
−0.0553575 + 0.998467i \(0.517630\pi\)
\(570\) 25635.7 1.88379
\(571\) 18439.0 1.35140 0.675698 0.737179i \(-0.263842\pi\)
0.675698 + 0.737179i \(0.263842\pi\)
\(572\) −11358.6 −0.830292
\(573\) 22243.4 1.62170
\(574\) −13753.7 −1.00012
\(575\) 0 0
\(576\) −2550.55 −0.184502
\(577\) 7047.28 0.508462 0.254231 0.967144i \(-0.418178\pi\)
0.254231 + 0.967144i \(0.418178\pi\)
\(578\) 15804.5 1.13734
\(579\) −14981.7 −1.07533
\(580\) 44968.1 3.21931
\(581\) −2852.75 −0.203704
\(582\) 9867.04 0.702753
\(583\) −14153.1 −1.00543
\(584\) 41149.9 2.91574
\(585\) 1096.11 0.0774676
\(586\) 25409.7 1.79123
\(587\) 443.692 0.0311978 0.0155989 0.999878i \(-0.495035\pi\)
0.0155989 + 0.999878i \(0.495035\pi\)
\(588\) 29105.4 2.04130
\(589\) −8799.37 −0.615571
\(590\) 66141.7 4.61527
\(591\) −24854.8 −1.72993
\(592\) 16799.0 1.16628
\(593\) −3597.92 −0.249155 −0.124577 0.992210i \(-0.539757\pi\)
−0.124577 + 0.992210i \(0.539757\pi\)
\(594\) 14504.3 1.00188
\(595\) 5676.73 0.391131
\(596\) −53690.0 −3.68998
\(597\) 7471.63 0.512217
\(598\) 0 0
\(599\) −18693.3 −1.27510 −0.637552 0.770407i \(-0.720053\pi\)
−0.637552 + 0.770407i \(0.720053\pi\)
\(600\) 51347.8 3.49378
\(601\) −1362.47 −0.0924732 −0.0462366 0.998931i \(-0.514723\pi\)
−0.0462366 + 0.998931i \(0.514723\pi\)
\(602\) −8226.33 −0.556944
\(603\) −227.213 −0.0153446
\(604\) 19546.0 1.31675
\(605\) 16397.8 1.10193
\(606\) −15791.9 −1.05858
\(607\) −24186.6 −1.61730 −0.808652 0.588288i \(-0.799802\pi\)
−0.808652 + 0.588288i \(0.799802\pi\)
\(608\) 29291.5 1.95383
\(609\) 5012.91 0.333552
\(610\) 23451.0 1.55656
\(611\) 3750.29 0.248315
\(612\) 2026.61 0.133857
\(613\) −4575.06 −0.301444 −0.150722 0.988576i \(-0.548160\pi\)
−0.150722 + 0.988576i \(0.548160\pi\)
\(614\) 30307.1 1.99201
\(615\) 27742.4 1.81900
\(616\) 9668.79 0.632413
\(617\) 513.945 0.0335343 0.0167671 0.999859i \(-0.494663\pi\)
0.0167671 + 0.999859i \(0.494663\pi\)
\(618\) 29889.7 1.94553
\(619\) 21594.8 1.40221 0.701105 0.713058i \(-0.252690\pi\)
0.701105 + 0.713058i \(0.252690\pi\)
\(620\) −52345.7 −3.39073
\(621\) 0 0
\(622\) 18323.6 1.18120
\(623\) −5762.70 −0.370590
\(624\) −28799.2 −1.84758
\(625\) −11333.0 −0.725315
\(626\) 36563.2 2.33444
\(627\) −5359.50 −0.341368
\(628\) 41681.4 2.64852
\(629\) −3799.03 −0.240822
\(630\) −1525.31 −0.0964599
\(631\) −28382.2 −1.79062 −0.895309 0.445446i \(-0.853045\pi\)
−0.895309 + 0.445446i \(0.853045\pi\)
\(632\) 67060.7 4.22077
\(633\) −2273.03 −0.142725
\(634\) −6810.73 −0.426638
\(635\) −5887.90 −0.367959
\(636\) −77851.5 −4.85379
\(637\) −8392.07 −0.521987
\(638\) −13051.6 −0.809904
\(639\) −612.476 −0.0379173
\(640\) 34658.3 2.14061
\(641\) 4764.70 0.293595 0.146798 0.989167i \(-0.453103\pi\)
0.146798 + 0.989167i \(0.453103\pi\)
\(642\) −28321.0 −1.74103
\(643\) 19.9338 0.00122257 0.000611284 1.00000i \(-0.499805\pi\)
0.000611284 1.00000i \(0.499805\pi\)
\(644\) 0 0
\(645\) 16593.3 1.01296
\(646\) −13666.5 −0.832355
\(647\) −25204.3 −1.53151 −0.765753 0.643134i \(-0.777634\pi\)
−0.765753 + 0.643134i \(0.777634\pi\)
\(648\) 44758.3 2.71338
\(649\) −13827.8 −0.836347
\(650\) −24203.3 −1.46051
\(651\) −5835.34 −0.351313
\(652\) 5740.73 0.344823
\(653\) 27495.2 1.64773 0.823866 0.566785i \(-0.191813\pi\)
0.823866 + 0.566785i \(0.191813\pi\)
\(654\) −33655.1 −2.01226
\(655\) −13977.3 −0.833799
\(656\) 65398.6 3.89236
\(657\) 1357.16 0.0805906
\(658\) −5218.77 −0.309193
\(659\) −18633.5 −1.10146 −0.550728 0.834685i \(-0.685650\pi\)
−0.550728 + 0.834685i \(0.685650\pi\)
\(660\) −31882.6 −1.88035
\(661\) 3032.20 0.178425 0.0892123 0.996013i \(-0.471565\pi\)
0.0892123 + 0.996013i \(0.471565\pi\)
\(662\) −23372.7 −1.37221
\(663\) 6512.81 0.381503
\(664\) 24991.7 1.46064
\(665\) 7409.08 0.432048
\(666\) 1020.78 0.0593910
\(667\) 0 0
\(668\) −13260.6 −0.768066
\(669\) −2475.86 −0.143083
\(670\) 9114.85 0.525578
\(671\) −4902.76 −0.282070
\(672\) 19424.8 1.11507
\(673\) 6139.01 0.351622 0.175811 0.984424i \(-0.443745\pi\)
0.175811 + 0.984424i \(0.443745\pi\)
\(674\) −30150.7 −1.72309
\(675\) 22262.1 1.26943
\(676\) −27249.9 −1.55040
\(677\) −7923.34 −0.449806 −0.224903 0.974381i \(-0.572206\pi\)
−0.224903 + 0.974381i \(0.572206\pi\)
\(678\) 19989.1 1.13227
\(679\) 2851.71 0.161176
\(680\) −49731.4 −2.80458
\(681\) 16362.2 0.920705
\(682\) 15192.9 0.853029
\(683\) −2879.93 −0.161343 −0.0806716 0.996741i \(-0.525706\pi\)
−0.0806716 + 0.996741i \(0.525706\pi\)
\(684\) 2645.06 0.147860
\(685\) 31280.1 1.74475
\(686\) 25792.1 1.43549
\(687\) −19210.1 −1.06683
\(688\) 39116.1 2.16757
\(689\) 22447.3 1.24118
\(690\) 0 0
\(691\) 3629.33 0.199807 0.0999033 0.994997i \(-0.468147\pi\)
0.0999033 + 0.994997i \(0.468147\pi\)
\(692\) 42059.9 2.31051
\(693\) 318.886 0.0174798
\(694\) 21225.4 1.16096
\(695\) 23581.1 1.28703
\(696\) −43916.0 −2.39171
\(697\) −14789.6 −0.803724
\(698\) −1187.38 −0.0643885
\(699\) −3675.83 −0.198902
\(700\) 24260.3 1.30993
\(701\) 29193.0 1.57290 0.786452 0.617651i \(-0.211916\pi\)
0.786452 + 0.617651i \(0.211916\pi\)
\(702\) −23004.2 −1.23681
\(703\) −4958.37 −0.266015
\(704\) −21391.0 −1.14517
\(705\) 10526.7 0.562354
\(706\) −11892.3 −0.633954
\(707\) −4564.08 −0.242786
\(708\) −76062.0 −4.03755
\(709\) 2328.75 0.123354 0.0616771 0.998096i \(-0.480355\pi\)
0.0616771 + 0.998096i \(0.480355\pi\)
\(710\) 24570.1 1.29873
\(711\) 2211.73 0.116661
\(712\) 50484.6 2.65729
\(713\) 0 0
\(714\) −9062.99 −0.475034
\(715\) 9192.85 0.480829
\(716\) 82916.3 4.32783
\(717\) −9216.71 −0.480062
\(718\) −24001.6 −1.24754
\(719\) −6248.25 −0.324089 −0.162045 0.986783i \(-0.551809\pi\)
−0.162045 + 0.986783i \(0.551809\pi\)
\(720\) 7252.82 0.375412
\(721\) 8638.53 0.446208
\(722\) 18846.1 0.971440
\(723\) 17011.8 0.875068
\(724\) −80848.8 −4.15017
\(725\) −20032.4 −1.02619
\(726\) −26179.4 −1.33830
\(727\) −25579.0 −1.30491 −0.652457 0.757826i \(-0.726262\pi\)
−0.652457 + 0.757826i \(0.726262\pi\)
\(728\) −15335.0 −0.780702
\(729\) 21025.7 1.06822
\(730\) −54443.9 −2.76036
\(731\) −8845.93 −0.447577
\(732\) −26968.4 −1.36172
\(733\) 19555.6 0.985407 0.492704 0.870197i \(-0.336009\pi\)
0.492704 + 0.870197i \(0.336009\pi\)
\(734\) −19552.0 −0.983210
\(735\) −23555.8 −1.18214
\(736\) 0 0
\(737\) −1905.58 −0.0952417
\(738\) 3973.89 0.198213
\(739\) 1767.88 0.0880005 0.0440002 0.999032i \(-0.485990\pi\)
0.0440002 + 0.999032i \(0.485990\pi\)
\(740\) −29496.3 −1.46528
\(741\) 8500.30 0.421412
\(742\) −31236.8 −1.54547
\(743\) 24114.0 1.19065 0.595327 0.803483i \(-0.297022\pi\)
0.595327 + 0.803483i \(0.297022\pi\)
\(744\) 51120.9 2.51906
\(745\) 43452.9 2.13690
\(746\) 22704.1 1.11428
\(747\) 824.252 0.0403719
\(748\) 16996.7 0.830832
\(749\) −8185.17 −0.399305
\(750\) −12448.8 −0.606086
\(751\) 8161.37 0.396555 0.198277 0.980146i \(-0.436465\pi\)
0.198277 + 0.980146i \(0.436465\pi\)
\(752\) 24815.2 1.20335
\(753\) −27419.0 −1.32696
\(754\) 20700.2 0.999811
\(755\) −15819.1 −0.762540
\(756\) 23058.4 1.10930
\(757\) −22301.0 −1.07073 −0.535365 0.844621i \(-0.679826\pi\)
−0.535365 + 0.844621i \(0.679826\pi\)
\(758\) 37691.7 1.80610
\(759\) 0 0
\(760\) −64907.8 −3.09797
\(761\) 15601.5 0.743174 0.371587 0.928398i \(-0.378814\pi\)
0.371587 + 0.928398i \(0.378814\pi\)
\(762\) 9400.13 0.446891
\(763\) −9726.80 −0.461512
\(764\) −92068.0 −4.35982
\(765\) −1640.19 −0.0775180
\(766\) 49449.1 2.33247
\(767\) 21931.3 1.03245
\(768\) −9644.50 −0.453146
\(769\) −18247.5 −0.855686 −0.427843 0.903853i \(-0.640726\pi\)
−0.427843 + 0.903853i \(0.640726\pi\)
\(770\) −12792.4 −0.598711
\(771\) 31591.2 1.47566
\(772\) 62010.9 2.89096
\(773\) 15455.8 0.719154 0.359577 0.933115i \(-0.382921\pi\)
0.359577 + 0.933115i \(0.382921\pi\)
\(774\) 2376.86 0.110380
\(775\) 23318.9 1.08083
\(776\) −24982.7 −1.15570
\(777\) −3288.16 −0.151817
\(778\) −22439.6 −1.03406
\(779\) −19302.9 −0.887802
\(780\) 50566.6 2.32125
\(781\) −5136.71 −0.235347
\(782\) 0 0
\(783\) −19040.0 −0.869007
\(784\) −55529.3 −2.52958
\(785\) −33734.0 −1.53378
\(786\) 22315.0 1.01266
\(787\) −41756.5 −1.89131 −0.945653 0.325178i \(-0.894576\pi\)
−0.945653 + 0.325178i \(0.894576\pi\)
\(788\) 102877. 4.65081
\(789\) −3930.99 −0.177373
\(790\) −88725.6 −3.99584
\(791\) 5777.14 0.259686
\(792\) −2793.63 −0.125338
\(793\) 7775.90 0.348210
\(794\) −41536.7 −1.85653
\(795\) 63007.5 2.81088
\(796\) −30925.9 −1.37706
\(797\) 35471.1 1.57647 0.788237 0.615372i \(-0.210994\pi\)
0.788237 + 0.615372i \(0.210994\pi\)
\(798\) −11828.7 −0.524727
\(799\) −5611.84 −0.248476
\(800\) −77624.6 −3.43055
\(801\) 1665.03 0.0734469
\(802\) −83234.0 −3.66471
\(803\) 11382.3 0.500213
\(804\) −10482.0 −0.459789
\(805\) 0 0
\(806\) −24096.3 −1.05305
\(807\) −10539.3 −0.459728
\(808\) 39984.0 1.74088
\(809\) 38812.7 1.68675 0.843375 0.537325i \(-0.180565\pi\)
0.843375 + 0.537325i \(0.180565\pi\)
\(810\) −59218.1 −2.56878
\(811\) −22669.5 −0.981546 −0.490773 0.871287i \(-0.663286\pi\)
−0.490773 + 0.871287i \(0.663286\pi\)
\(812\) −20749.0 −0.896733
\(813\) 12667.4 0.546450
\(814\) 8561.06 0.368630
\(815\) −4646.14 −0.199690
\(816\) 43094.4 1.84878
\(817\) −11545.4 −0.494398
\(818\) −3038.46 −0.129874
\(819\) −505.762 −0.0215785
\(820\) −114829. −4.89025
\(821\) −20935.8 −0.889967 −0.444984 0.895539i \(-0.646791\pi\)
−0.444984 + 0.895539i \(0.646791\pi\)
\(822\) −49939.2 −2.11902
\(823\) −14199.6 −0.601417 −0.300708 0.953716i \(-0.597223\pi\)
−0.300708 + 0.953716i \(0.597223\pi\)
\(824\) −75678.6 −3.19950
\(825\) 14203.1 0.599378
\(826\) −30518.8 −1.28557
\(827\) −44936.9 −1.88949 −0.944746 0.327803i \(-0.893692\pi\)
−0.944746 + 0.327803i \(0.893692\pi\)
\(828\) 0 0
\(829\) −9240.93 −0.387154 −0.193577 0.981085i \(-0.562009\pi\)
−0.193577 + 0.981085i \(0.562009\pi\)
\(830\) −33065.7 −1.38280
\(831\) −34673.4 −1.44742
\(832\) 33926.6 1.41370
\(833\) 12557.7 0.522327
\(834\) −37647.7 −1.56311
\(835\) 10732.2 0.444794
\(836\) 22183.6 0.917745
\(837\) 22163.7 0.915280
\(838\) 69620.9 2.86994
\(839\) −32694.8 −1.34535 −0.672675 0.739938i \(-0.734855\pi\)
−0.672675 + 0.739938i \(0.734855\pi\)
\(840\) −43043.9 −1.76804
\(841\) −7255.99 −0.297511
\(842\) −44618.2 −1.82618
\(843\) 32602.4 1.33201
\(844\) 9408.32 0.383706
\(845\) 22054.1 0.897852
\(846\) 1507.87 0.0612786
\(847\) −7566.20 −0.306940
\(848\) 148531. 6.01482
\(849\) 12812.1 0.517915
\(850\) 36217.2 1.46146
\(851\) 0 0
\(852\) −28255.2 −1.13616
\(853\) 43809.9 1.75853 0.879263 0.476337i \(-0.158036\pi\)
0.879263 + 0.476337i \(0.158036\pi\)
\(854\) −10820.7 −0.433578
\(855\) −2140.73 −0.0856272
\(856\) 71706.8 2.86319
\(857\) 4605.22 0.183561 0.0917803 0.995779i \(-0.470744\pi\)
0.0917803 + 0.995779i \(0.470744\pi\)
\(858\) −14676.5 −0.583973
\(859\) −16963.5 −0.673792 −0.336896 0.941542i \(-0.609377\pi\)
−0.336896 + 0.941542i \(0.609377\pi\)
\(860\) −68681.4 −2.72327
\(861\) −12800.8 −0.506678
\(862\) −24956.2 −0.986091
\(863\) −9074.76 −0.357947 −0.178974 0.983854i \(-0.557278\pi\)
−0.178974 + 0.983854i \(0.557278\pi\)
\(864\) −73778.9 −2.90510
\(865\) −34040.3 −1.33804
\(866\) −3931.76 −0.154280
\(867\) 14709.6 0.576197
\(868\) 24153.1 0.944482
\(869\) 18549.3 0.724099
\(870\) 58103.7 2.26425
\(871\) 3022.31 0.117574
\(872\) 85212.4 3.30924
\(873\) −823.953 −0.0319434
\(874\) 0 0
\(875\) −3597.87 −0.139006
\(876\) 62609.8 2.41483
\(877\) 16087.6 0.619429 0.309715 0.950830i \(-0.399766\pi\)
0.309715 + 0.950830i \(0.399766\pi\)
\(878\) −24336.3 −0.935432
\(879\) 23649.2 0.907472
\(880\) 60827.9 2.33012
\(881\) −11415.0 −0.436528 −0.218264 0.975890i \(-0.570039\pi\)
−0.218264 + 0.975890i \(0.570039\pi\)
\(882\) −3374.19 −0.128815
\(883\) −37562.2 −1.43156 −0.715781 0.698324i \(-0.753929\pi\)
−0.715781 + 0.698324i \(0.753929\pi\)
\(884\) −26957.3 −1.02565
\(885\) 61559.2 2.33818
\(886\) 35736.3 1.35506
\(887\) −30871.9 −1.16863 −0.584316 0.811526i \(-0.698637\pi\)
−0.584316 + 0.811526i \(0.698637\pi\)
\(888\) 28806.2 1.08859
\(889\) 2716.77 0.102494
\(890\) −66794.4 −2.51568
\(891\) 12380.4 0.465497
\(892\) 10247.9 0.384668
\(893\) −7324.39 −0.274470
\(894\) −69373.2 −2.59529
\(895\) −67106.6 −2.50629
\(896\) −15991.9 −0.596263
\(897\) 0 0
\(898\) −70.5829 −0.00262292
\(899\) −19943.9 −0.739895
\(900\) −7009.60 −0.259615
\(901\) −33589.5 −1.24199
\(902\) 33328.2 1.23027
\(903\) −7656.39 −0.282158
\(904\) −50611.0 −1.86206
\(905\) 65433.3 2.40340
\(906\) 25255.5 0.926114
\(907\) 15486.0 0.566928 0.283464 0.958983i \(-0.408516\pi\)
0.283464 + 0.958983i \(0.408516\pi\)
\(908\) −67724.9 −2.47525
\(909\) 1318.71 0.0481176
\(910\) 20289.1 0.739097
\(911\) −7113.72 −0.258713 −0.129357 0.991598i \(-0.541291\pi\)
−0.129357 + 0.991598i \(0.541291\pi\)
\(912\) 56245.4 2.04219
\(913\) 6912.83 0.250582
\(914\) −24868.7 −0.899981
\(915\) 21826.3 0.788584
\(916\) 79512.8 2.86810
\(917\) 6449.35 0.232253
\(918\) 34422.9 1.23761
\(919\) −28732.6 −1.03134 −0.515669 0.856788i \(-0.672457\pi\)
−0.515669 + 0.856788i \(0.672457\pi\)
\(920\) 0 0
\(921\) 28207.4 1.00919
\(922\) 41199.5 1.47162
\(923\) 8146.95 0.290531
\(924\) 14711.1 0.523767
\(925\) 13140.0 0.467072
\(926\) −16179.6 −0.574185
\(927\) −2495.96 −0.0884336
\(928\) 66389.6 2.34843
\(929\) 11558.1 0.408192 0.204096 0.978951i \(-0.434575\pi\)
0.204096 + 0.978951i \(0.434575\pi\)
\(930\) −67636.3 −2.38482
\(931\) 16389.9 0.576968
\(932\) 15214.7 0.534735
\(933\) 17054.1 0.598420
\(934\) 99319.5 3.47948
\(935\) −13756.0 −0.481142
\(936\) 4430.77 0.154727
\(937\) −9644.45 −0.336255 −0.168127 0.985765i \(-0.553772\pi\)
−0.168127 + 0.985765i \(0.553772\pi\)
\(938\) −4205.74 −0.146399
\(939\) 34030.0 1.18267
\(940\) −43571.3 −1.51185
\(941\) 14437.1 0.500143 0.250072 0.968227i \(-0.419546\pi\)
0.250072 + 0.968227i \(0.419546\pi\)
\(942\) 53856.8 1.86279
\(943\) 0 0
\(944\) 145117. 5.00333
\(945\) −18661.9 −0.642403
\(946\) 19934.2 0.685113
\(947\) −44849.3 −1.53897 −0.769486 0.638664i \(-0.779487\pi\)
−0.769486 + 0.638664i \(0.779487\pi\)
\(948\) 102033. 3.49566
\(949\) −18052.5 −0.617503
\(950\) 47269.5 1.61434
\(951\) −6338.86 −0.216143
\(952\) 22946.9 0.781210
\(953\) −56306.6 −1.91390 −0.956952 0.290247i \(-0.906263\pi\)
−0.956952 + 0.290247i \(0.906263\pi\)
\(954\) 9025.33 0.306296
\(955\) 74513.3 2.52481
\(956\) 38149.0 1.29061
\(957\) −12147.4 −0.410312
\(958\) −68548.3 −2.31179
\(959\) −14433.1 −0.485996
\(960\) 95229.1 3.20157
\(961\) −6575.10 −0.220708
\(962\) −13578.1 −0.455067
\(963\) 2364.96 0.0791380
\(964\) −70413.6 −2.35256
\(965\) −50187.2 −1.67418
\(966\) 0 0
\(967\) 30681.6 1.02033 0.510163 0.860078i \(-0.329585\pi\)
0.510163 + 0.860078i \(0.329585\pi\)
\(968\) 66284.3 2.20089
\(969\) −12719.7 −0.421686
\(970\) 33053.7 1.09411
\(971\) 32313.5 1.06796 0.533980 0.845497i \(-0.320696\pi\)
0.533980 + 0.845497i \(0.320696\pi\)
\(972\) −12817.9 −0.422976
\(973\) −10880.7 −0.358499
\(974\) −103579. −3.40746
\(975\) −22526.4 −0.739921
\(976\) 51452.2 1.68744
\(977\) 34011.4 1.11374 0.556868 0.830601i \(-0.312003\pi\)
0.556868 + 0.830601i \(0.312003\pi\)
\(978\) 7417.65 0.242526
\(979\) 13964.3 0.455873
\(980\) 97500.2 3.17809
\(981\) 2810.39 0.0914667
\(982\) 21417.1 0.695974
\(983\) −19406.4 −0.629673 −0.314836 0.949146i \(-0.601950\pi\)
−0.314836 + 0.949146i \(0.601950\pi\)
\(984\) 112142. 3.63310
\(985\) −83261.2 −2.69332
\(986\) −30975.3 −1.00046
\(987\) −4857.20 −0.156643
\(988\) −35183.7 −1.13294
\(989\) 0 0
\(990\) 3696.15 0.118658
\(991\) −15089.6 −0.483689 −0.241844 0.970315i \(-0.577752\pi\)
−0.241844 + 0.970315i \(0.577752\pi\)
\(992\) −77281.5 −2.47348
\(993\) −21753.4 −0.695189
\(994\) −11337.0 −0.361759
\(995\) 25029.3 0.797469
\(996\) 38025.1 1.20971
\(997\) −53588.1 −1.70226 −0.851130 0.524955i \(-0.824082\pi\)
−0.851130 + 0.524955i \(0.824082\pi\)
\(998\) −8313.44 −0.263685
\(999\) 12489.0 0.395532
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.1 25
23.17 odd 22 23.4.c.a.13.5 50
23.19 odd 22 23.4.c.a.16.5 yes 50
23.22 odd 2 529.4.a.n.1.1 25
69.17 even 22 207.4.i.a.82.1 50
69.65 even 22 207.4.i.a.154.1 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.13.5 50 23.17 odd 22
23.4.c.a.16.5 yes 50 23.19 odd 22
207.4.i.a.82.1 50 69.17 even 22
207.4.i.a.154.1 50 69.65 even 22
529.4.a.m.1.1 25 1.1 even 1 trivial
529.4.a.n.1.1 25 23.22 odd 2