Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [529,4,Mod(1,529)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(529, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("529.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 529 = 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 529.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(31.2120103930\) |
Analytic rank: | \(1\) |
Dimension: | \(25\) |
Twist minimal: | no (minimal twist has level 23) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.34818 | −4.97765 | 20.6030 | −16.6747 | 26.6214 | 7.69394 | −67.4034 | −2.22303 | 89.1791 | ||||||||||||||||||
1.2 | −5.07272 | −8.78974 | 17.7325 | 5.97134 | 44.5879 | 21.9327 | −49.3704 | 50.2595 | −30.2909 | ||||||||||||||||||
1.3 | −4.35590 | −1.21507 | 10.9738 | 6.90715 | 5.29273 | −2.81570 | −12.9537 | −25.5236 | −30.0868 | ||||||||||||||||||
1.4 | −3.85347 | −8.54515 | 6.84927 | 13.3372 | 32.9285 | −17.3261 | 4.43432 | 46.0195 | −51.3945 | ||||||||||||||||||
1.5 | −3.80933 | 7.34288 | 6.51100 | 5.81014 | −27.9715 | −15.8241 | 5.67208 | 26.9179 | −22.1327 | ||||||||||||||||||
1.6 | −3.66204 | 2.67124 | 5.41053 | 4.26056 | −9.78218 | 14.5832 | 9.48276 | −19.8645 | −15.6023 | ||||||||||||||||||
1.7 | −3.19041 | 1.55052 | 2.17871 | −19.2991 | −4.94680 | 19.8587 | 18.5723 | −24.5959 | 61.5722 | ||||||||||||||||||
1.8 | −2.46235 | 2.34669 | −1.93685 | 7.40267 | −5.77838 | −12.1855 | 24.4680 | −21.4930 | −18.2279 | ||||||||||||||||||
1.9 | −2.15026 | 9.55258 | −3.37638 | −17.5072 | −20.5405 | 3.15231 | 24.4622 | 64.2518 | 37.6451 | ||||||||||||||||||
1.10 | −1.48270 | −6.79236 | −5.80160 | −11.4888 | 10.0710 | −21.1377 | 20.4636 | 19.1361 | 17.0345 | ||||||||||||||||||
1.11 | −0.741592 | −1.75597 | −7.45004 | −4.00517 | 1.30221 | 2.72150 | 11.4576 | −23.9166 | 2.97020 | ||||||||||||||||||
1.12 | −0.525953 | 5.51332 | −7.72337 | 13.2745 | −2.89975 | −8.04220 | 8.26975 | 3.39674 | −6.98174 | ||||||||||||||||||
1.13 | −0.198677 | −8.81112 | −7.96053 | −10.0672 | 1.75056 | −25.3475 | 3.17098 | 50.6358 | 2.00012 | ||||||||||||||||||
1.14 | 0.929572 | 0.505183 | −7.13590 | 10.4946 | 0.469604 | 30.2596 | −14.0699 | −26.7448 | 9.75547 | ||||||||||||||||||
1.15 | 0.976043 | −6.99573 | −7.04734 | −1.89650 | −6.82813 | 11.4459 | −14.6869 | 21.9402 | −1.85107 | ||||||||||||||||||
1.16 | 1.17387 | 9.69393 | −6.62203 | −0.587346 | 11.3794 | −24.4606 | −17.1643 | 66.9723 | −0.689467 | ||||||||||||||||||
1.17 | 2.27917 | −5.45949 | −2.80539 | −0.946196 | −12.4431 | 13.4796 | −24.6273 | 2.80604 | −2.15654 | ||||||||||||||||||
1.18 | 2.45344 | 7.08198 | −1.98063 | −6.77342 | 17.3752 | 9.04270 | −24.4869 | 23.1545 | −16.6182 | ||||||||||||||||||
1.19 | 2.60332 | −3.42880 | −1.22274 | 15.6832 | −8.92624 | 5.94573 | −24.0097 | −15.2434 | 40.8282 | ||||||||||||||||||
1.20 | 3.60724 | 7.96546 | 5.01217 | −17.8878 | 28.7333 | −17.9996 | −10.7778 | 36.4486 | −64.5257 | ||||||||||||||||||
See all 25 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(23\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 529.4.a.m | 25 | |
23.b | odd | 2 | 1 | 529.4.a.n | 25 | ||
23.d | odd | 22 | 2 | 23.4.c.a | ✓ | 50 | |
69.g | even | 22 | 2 | 207.4.i.a | 50 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
23.4.c.a | ✓ | 50 | 23.d | odd | 22 | 2 | |
207.4.i.a | 50 | 69.g | even | 22 | 2 | ||
529.4.a.m | 25 | 1.a | even | 1 | 1 | trivial | |
529.4.a.n | 25 | 23.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(529))\):
\( T_{2}^{25} - 140 T_{2}^{23} - T_{2}^{22} + 8482 T_{2}^{21} + 88 T_{2}^{20} - 292209 T_{2}^{19} + \cdots + 1319713792 \)
|
\( T_{3}^{25} + T_{3}^{24} - 420 T_{3}^{23} - 525 T_{3}^{22} + 75139 T_{3}^{21} + 108861 T_{3}^{20} + \cdots - 628808799728627 \)
|
\( T_{5}^{25} + 51 T_{5}^{24} - 307 T_{5}^{23} - 52254 T_{5}^{22} - 329303 T_{5}^{21} + \cdots + 36\!\cdots\!71 \)
|