Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [207,4,Mod(55,207)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("207.55");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.2133953712\) |
Analytic rank: | \(0\) |
Dimension: | \(50\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{11})\) |
Twist minimal: | no (minimal twist has level 23) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
55.1 | −3.51370 | + | 1.03172i | 0 | 4.55162 | − | 2.92515i | −0.606340 | − | 4.21719i | 0 | −6.05808 | + | 13.2653i | 6.20988 | − | 7.16659i | 0 | 6.48144 | + | 14.1924i | ||||||
55.2 | −1.42264 | + | 0.417725i | 0 | −4.88062 | + | 3.13658i | 1.63503 | + | 11.3719i | 0 | 8.78092 | − | 19.2275i | 13.4008 | − | 15.4654i | 0 | −7.07638 | − | 15.4951i | ||||||
55.3 | 1.12632 | − | 0.330717i | 0 | −5.57081 | + | 3.58014i | 0.0835881 | + | 0.581368i | 0 | 10.1613 | − | 22.2502i | −11.2403 | + | 12.9719i | 0 | 0.286415 | + | 0.627161i | ||||||
55.4 | 2.49786 | − | 0.733439i | 0 | −1.02864 | + | 0.661064i | −2.23195 | − | 15.5235i | 0 | −2.46994 | + | 5.40842i | −15.7230 | + | 18.1453i | 0 | −16.9607 | − | 37.1386i | ||||||
55.5 | 4.76776 | − | 1.39994i | 0 | 14.0417 | − | 9.02406i | 2.93015 | + | 20.3796i | 0 | −4.70707 | + | 10.3070i | 28.2822 | − | 32.6393i | 0 | 42.5006 | + | 93.0633i | ||||||
64.1 | −3.51370 | − | 1.03172i | 0 | 4.55162 | + | 2.92515i | −0.606340 | + | 4.21719i | 0 | −6.05808 | − | 13.2653i | 6.20988 | + | 7.16659i | 0 | 6.48144 | − | 14.1924i | ||||||
64.2 | −1.42264 | − | 0.417725i | 0 | −4.88062 | − | 3.13658i | 1.63503 | − | 11.3719i | 0 | 8.78092 | + | 19.2275i | 13.4008 | + | 15.4654i | 0 | −7.07638 | + | 15.4951i | ||||||
64.3 | 1.12632 | + | 0.330717i | 0 | −5.57081 | − | 3.58014i | 0.0835881 | − | 0.581368i | 0 | 10.1613 | + | 22.2502i | −11.2403 | − | 12.9719i | 0 | 0.286415 | − | 0.627161i | ||||||
64.4 | 2.49786 | + | 0.733439i | 0 | −1.02864 | − | 0.661064i | −2.23195 | + | 15.5235i | 0 | −2.46994 | − | 5.40842i | −15.7230 | − | 18.1453i | 0 | −16.9607 | + | 37.1386i | ||||||
64.5 | 4.76776 | + | 1.39994i | 0 | 14.0417 | + | 9.02406i | 2.93015 | − | 20.3796i | 0 | −4.70707 | − | 10.3070i | 28.2822 | + | 32.6393i | 0 | 42.5006 | − | 93.0633i | ||||||
73.1 | −1.61009 | − | 3.52560i | 0 | −4.59861 | + | 5.30707i | 10.7624 | + | 6.91659i | 0 | −0.249078 | − | 1.73238i | −3.63606 | − | 1.06764i | 0 | 7.05669 | − | 49.0804i | ||||||
73.2 | −1.49850 | − | 3.28126i | 0 | −3.28227 | + | 3.78794i | −15.0482 | − | 9.67090i | 0 | −2.56161 | − | 17.8164i | −10.3412 | − | 3.03646i | 0 | −9.18297 | + | 63.8690i | ||||||
73.3 | 0.308069 | + | 0.674576i | 0 | 4.87874 | − | 5.63037i | −3.36936 | − | 2.16536i | 0 | 0.387311 | + | 2.69380i | 10.9935 | + | 3.22799i | 0 | 0.422704 | − | 2.93997i | ||||||
73.4 | 1.58245 | + | 3.46509i | 0 | −4.26380 | + | 4.92069i | 4.88780 | + | 3.14120i | 0 | −2.25200 | − | 15.6630i | 5.44232 | + | 1.59801i | 0 | −3.14982 | + | 21.9075i | ||||||
73.5 | 2.10729 | + | 4.61431i | 0 | −11.6123 | + | 13.4013i | 5.02341 | + | 3.22835i | 0 | 3.12135 | + | 21.7095i | −47.3705 | − | 13.9092i | 0 | −4.31085 | + | 29.9826i | ||||||
82.1 | −3.50231 | − | 4.04189i | 0 | −2.93212 | + | 20.3933i | −6.92690 | + | 15.1678i | 0 | 7.38228 | + | 2.16763i | 56.7033 | − | 36.4410i | 0 | 85.5667 | − | 25.1246i | ||||||
82.2 | −1.61249 | − | 1.86092i | 0 | 0.275643 | − | 1.91714i | 3.07518 | − | 6.73370i | 0 | −11.6919 | − | 3.43306i | −20.5838 | + | 13.2284i | 0 | −17.4896 | + | 5.13540i | ||||||
82.3 | 0.639172 | + | 0.737644i | 0 | 1.00294 | − | 6.97561i | −0.787834 | + | 1.72512i | 0 | 10.9823 | + | 3.22469i | 12.3554 | − | 7.94031i | 0 | −1.77608 | + | 0.521505i | ||||||
82.4 | 1.60666 | + | 1.85419i | 0 | 0.281873 | − | 1.96047i | −2.81378 | + | 6.16132i | 0 | 8.67641 | + | 2.54762i | 20.5997 | − | 13.2386i | 0 | −15.9450 | + | 4.68188i | ||||||
82.5 | 3.54027 | + | 4.08569i | 0 | −3.02082 | + | 21.0103i | −1.32774 | + | 2.90735i | 0 | −29.0289 | − | 8.52364i | −60.1524 | + | 38.6576i | 0 | −16.5791 | + | 4.86806i | ||||||
See all 50 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 207.4.i.a | 50 | |
3.b | odd | 2 | 1 | 23.4.c.a | ✓ | 50 | |
23.c | even | 11 | 1 | inner | 207.4.i.a | 50 | |
69.g | even | 22 | 1 | 529.4.a.m | 25 | ||
69.h | odd | 22 | 1 | 23.4.c.a | ✓ | 50 | |
69.h | odd | 22 | 1 | 529.4.a.n | 25 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
23.4.c.a | ✓ | 50 | 3.b | odd | 2 | 1 | |
23.4.c.a | ✓ | 50 | 69.h | odd | 22 | 1 | |
207.4.i.a | 50 | 1.a | even | 1 | 1 | trivial | |
207.4.i.a | 50 | 23.c | even | 11 | 1 | inner | |
529.4.a.m | 25 | 69.g | even | 22 | 1 | ||
529.4.a.n | 25 | 69.h | odd | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{50} - 11 T_{2}^{49} + 94 T_{2}^{48} - 581 T_{2}^{47} + 3806 T_{2}^{46} - 23017 T_{2}^{45} + \cdots + 17\!\cdots\!64 \)
acting on \(S_{4}^{\mathrm{new}}(207, [\chi])\).