gp: [N,k,chi] = [207,4,Mod(55,207)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("207.55");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [50,11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 50 − 11 T 2 49 + 94 T 2 48 − 581 T 2 47 + 3806 T 2 46 − 23017 T 2 45 + ⋯ + 17 ⋯ 64 T_{2}^{50} - 11 T_{2}^{49} + 94 T_{2}^{48} - 581 T_{2}^{47} + 3806 T_{2}^{46} - 23017 T_{2}^{45} + \cdots + 17\!\cdots\!64 T 2 5 0 − 1 1 T 2 4 9 + 9 4 T 2 4 8 − 5 8 1 T 2 4 7 + 3 8 0 6 T 2 4 6 − 2 3 0 1 7 T 2 4 5 + ⋯ + 1 7 ⋯ 6 4
T2^50 - 11*T2^49 + 94*T2^48 - 581*T2^47 + 3806*T2^46 - 23017*T2^45 + 130259*T2^44 - 656371*T2^43 + 3073589*T2^42 - 13366559*T2^41 + 57667422*T2^40 - 232148211*T2^39 + 1046554598*T2^38 - 4063676003*T2^37 + 16421760446*T2^36 - 55181511163*T2^35 + 184072971750*T2^34 - 474424715099*T2^33 + 1468202094350*T2^32 - 3548718614251*T2^31 + 19155222438734*T2^30 - 95548878765755*T2^29 + 486280719055461*T2^28 - 1939248540301248*T2^27 + 6999956531960496*T2^26 - 22667447295774566*T2^25 + 68552377981037168*T2^24 - 157337216193998682*T2^23 + 344471663216562395*T2^22 - 974281885336342056*T2^21 + 2536440535560257889*T2^20 - 4582793415141253908*T2^19 + 8104732631803219000*T2^18 - 17637435922198550840*T2^17 + 36865799498222428800*T2^16 - 57915321502010122304*T2^15 + 137757171704403983360*T2^14 - 168908163564989400064*T2^13 - 94123474248610963968*T2^12 + 541711379044501411840*T2^11 - 594663149784192971776*T2^10 - 216149256530530349056*T2^9 + 1613649234858148388864*T2^8 - 2671637035586974965760*T2^7 + 2743279386235319861248*T2^6 - 1923784320567307599872*T2^5 + 954403441307719172096*T2^4 - 313516820676991778816*T2^3 + 65417347960585846784*T2^2 - 8932572288304807936*T2 + 1741644492795019264
acting on S 4 n e w ( 207 , [ χ ] ) S_{4}^{\mathrm{new}}(207, [\chi]) S 4 n e w ( 2 0 7 , [ χ ] ) .