Properties

Label 207.4.i.a
Level 207207
Weight 44
Character orbit 207.i
Analytic conductor 12.21312.213
Analytic rank 00
Dimension 5050
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,4,Mod(55,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 10])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.55"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 207=3223 207 = 3^{2} \cdot 23
Weight: k k == 4 4
Character orbit: [χ][\chi] == 207.i (of order 1111, degree 1010, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [50,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.213395371212.2133953712
Analytic rank: 00
Dimension: 5050
Relative dimension: 55 over Q(ζ11)\Q(\zeta_{11})
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: SU(2)[C11]\mathrm{SU}(2)[C_{11}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 50q+11q227q4+19q519q728q8+47q10+53q1165q13117q14499q16+117q17+73q19529q20+310q22542q23+246q25324q26++5687q98+O(q100) 50 q + 11 q^{2} - 27 q^{4} + 19 q^{5} - 19 q^{7} - 28 q^{8} + 47 q^{10} + 53 q^{11} - 65 q^{13} - 117 q^{14} - 499 q^{16} + 117 q^{17} + 73 q^{19} - 529 q^{20} + 310 q^{22} - 542 q^{23} + 246 q^{25} - 324 q^{26}+ \cdots + 5687 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
55.1 −3.51370 + 1.03172i 0 4.55162 2.92515i −0.606340 4.21719i 0 −6.05808 + 13.2653i 6.20988 7.16659i 0 6.48144 + 14.1924i
55.2 −1.42264 + 0.417725i 0 −4.88062 + 3.13658i 1.63503 + 11.3719i 0 8.78092 19.2275i 13.4008 15.4654i 0 −7.07638 15.4951i
55.3 1.12632 0.330717i 0 −5.57081 + 3.58014i 0.0835881 + 0.581368i 0 10.1613 22.2502i −11.2403 + 12.9719i 0 0.286415 + 0.627161i
55.4 2.49786 0.733439i 0 −1.02864 + 0.661064i −2.23195 15.5235i 0 −2.46994 + 5.40842i −15.7230 + 18.1453i 0 −16.9607 37.1386i
55.5 4.76776 1.39994i 0 14.0417 9.02406i 2.93015 + 20.3796i 0 −4.70707 + 10.3070i 28.2822 32.6393i 0 42.5006 + 93.0633i
64.1 −3.51370 1.03172i 0 4.55162 + 2.92515i −0.606340 + 4.21719i 0 −6.05808 13.2653i 6.20988 + 7.16659i 0 6.48144 14.1924i
64.2 −1.42264 0.417725i 0 −4.88062 3.13658i 1.63503 11.3719i 0 8.78092 + 19.2275i 13.4008 + 15.4654i 0 −7.07638 + 15.4951i
64.3 1.12632 + 0.330717i 0 −5.57081 3.58014i 0.0835881 0.581368i 0 10.1613 + 22.2502i −11.2403 12.9719i 0 0.286415 0.627161i
64.4 2.49786 + 0.733439i 0 −1.02864 0.661064i −2.23195 + 15.5235i 0 −2.46994 5.40842i −15.7230 18.1453i 0 −16.9607 + 37.1386i
64.5 4.76776 + 1.39994i 0 14.0417 + 9.02406i 2.93015 20.3796i 0 −4.70707 10.3070i 28.2822 + 32.6393i 0 42.5006 93.0633i
73.1 −1.61009 3.52560i 0 −4.59861 + 5.30707i 10.7624 + 6.91659i 0 −0.249078 1.73238i −3.63606 1.06764i 0 7.05669 49.0804i
73.2 −1.49850 3.28126i 0 −3.28227 + 3.78794i −15.0482 9.67090i 0 −2.56161 17.8164i −10.3412 3.03646i 0 −9.18297 + 63.8690i
73.3 0.308069 + 0.674576i 0 4.87874 5.63037i −3.36936 2.16536i 0 0.387311 + 2.69380i 10.9935 + 3.22799i 0 0.422704 2.93997i
73.4 1.58245 + 3.46509i 0 −4.26380 + 4.92069i 4.88780 + 3.14120i 0 −2.25200 15.6630i 5.44232 + 1.59801i 0 −3.14982 + 21.9075i
73.5 2.10729 + 4.61431i 0 −11.6123 + 13.4013i 5.02341 + 3.22835i 0 3.12135 + 21.7095i −47.3705 13.9092i 0 −4.31085 + 29.9826i
82.1 −3.50231 4.04189i 0 −2.93212 + 20.3933i −6.92690 + 15.1678i 0 7.38228 + 2.16763i 56.7033 36.4410i 0 85.5667 25.1246i
82.2 −1.61249 1.86092i 0 0.275643 1.91714i 3.07518 6.73370i 0 −11.6919 3.43306i −20.5838 + 13.2284i 0 −17.4896 + 5.13540i
82.3 0.639172 + 0.737644i 0 1.00294 6.97561i −0.787834 + 1.72512i 0 10.9823 + 3.22469i 12.3554 7.94031i 0 −1.77608 + 0.521505i
82.4 1.60666 + 1.85419i 0 0.281873 1.96047i −2.81378 + 6.16132i 0 8.67641 + 2.54762i 20.5997 13.2386i 0 −15.9450 + 4.68188i
82.5 3.54027 + 4.08569i 0 −3.02082 + 21.0103i −1.32774 + 2.90735i 0 −29.0289 8.52364i −60.1524 + 38.6576i 0 −16.5791 + 4.86806i
See all 50 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.c even 11 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 207.4.i.a 50
3.b odd 2 1 23.4.c.a 50
23.c even 11 1 inner 207.4.i.a 50
69.g even 22 1 529.4.a.m 25
69.h odd 22 1 23.4.c.a 50
69.h odd 22 1 529.4.a.n 25
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
23.4.c.a 50 3.b odd 2 1
23.4.c.a 50 69.h odd 22 1
207.4.i.a 50 1.a even 1 1 trivial
207.4.i.a 50 23.c even 11 1 inner
529.4.a.m 25 69.g even 22 1
529.4.a.n 25 69.h odd 22 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T25011T249+94T248581T247+3806T24623017T245++17 ⁣ ⁣64 T_{2}^{50} - 11 T_{2}^{49} + 94 T_{2}^{48} - 581 T_{2}^{47} + 3806 T_{2}^{46} - 23017 T_{2}^{45} + \cdots + 17\!\cdots\!64 acting on S4new(207,[χ])S_{4}^{\mathrm{new}}(207, [\chi]). Copy content Toggle raw display