Properties

Label 529.4.a.m.1.16
Level $529$
Weight $4$
Character 529.1
Self dual yes
Analytic conductor $31.212$
Analytic rank $1$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,4,Mod(1,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 529.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.2120103930\)
Analytic rank: \(1\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 529.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17387 q^{2} +9.69393 q^{3} -6.62203 q^{4} -0.587346 q^{5} +11.3794 q^{6} -24.4606 q^{7} -17.1643 q^{8} +66.9723 q^{9} -0.689467 q^{10} -30.6659 q^{11} -64.1935 q^{12} -27.6225 q^{13} -28.7136 q^{14} -5.69369 q^{15} +32.8276 q^{16} +30.7916 q^{17} +78.6166 q^{18} -92.5849 q^{19} +3.88942 q^{20} -237.120 q^{21} -35.9977 q^{22} -166.390 q^{24} -124.655 q^{25} -32.4252 q^{26} +387.488 q^{27} +161.979 q^{28} -73.6185 q^{29} -6.68364 q^{30} -105.303 q^{31} +175.850 q^{32} -297.273 q^{33} +36.1452 q^{34} +14.3669 q^{35} -443.493 q^{36} -89.7975 q^{37} -108.682 q^{38} -267.771 q^{39} +10.0814 q^{40} -88.7884 q^{41} -278.347 q^{42} -365.622 q^{43} +203.070 q^{44} -39.3359 q^{45} +181.434 q^{47} +318.228 q^{48} +255.323 q^{49} -146.329 q^{50} +298.491 q^{51} +182.917 q^{52} -612.828 q^{53} +454.860 q^{54} +18.0115 q^{55} +419.851 q^{56} -897.511 q^{57} -86.4184 q^{58} +78.0294 q^{59} +37.7038 q^{60} -111.873 q^{61} -123.612 q^{62} -1638.18 q^{63} -56.1959 q^{64} +16.2240 q^{65} -348.959 q^{66} +408.709 q^{67} -203.903 q^{68} +16.8648 q^{70} +449.763 q^{71} -1149.53 q^{72} -93.4293 q^{73} -105.410 q^{74} -1208.40 q^{75} +613.100 q^{76} +750.107 q^{77} -314.328 q^{78} +277.946 q^{79} -19.2812 q^{80} +1948.03 q^{81} -104.226 q^{82} +1111.38 q^{83} +1570.21 q^{84} -18.0853 q^{85} -429.192 q^{86} -713.652 q^{87} +526.360 q^{88} +1272.90 q^{89} -46.1752 q^{90} +675.665 q^{91} -1020.80 q^{93} +212.979 q^{94} +54.3794 q^{95} +1704.68 q^{96} +1087.37 q^{97} +299.716 q^{98} -2053.76 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q - q^{3} + 80 q^{4} - 51 q^{5} + 86 q^{6} - 73 q^{7} + 3 q^{8} + 166 q^{9} - 139 q^{10} - 221 q^{11} - 191 q^{12} - 27 q^{13} - 372 q^{14} - 310 q^{15} + 152 q^{16} - 365 q^{17} - 538 q^{18} - 405 q^{19}+ \cdots - 7317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17387 0.415025 0.207513 0.978232i \(-0.433463\pi\)
0.207513 + 0.978232i \(0.433463\pi\)
\(3\) 9.69393 1.86560 0.932799 0.360398i \(-0.117359\pi\)
0.932799 + 0.360398i \(0.117359\pi\)
\(4\) −6.62203 −0.827754
\(5\) −0.587346 −0.0525338 −0.0262669 0.999655i \(-0.508362\pi\)
−0.0262669 + 0.999655i \(0.508362\pi\)
\(6\) 11.3794 0.774270
\(7\) −24.4606 −1.32075 −0.660375 0.750936i \(-0.729603\pi\)
−0.660375 + 0.750936i \(0.729603\pi\)
\(8\) −17.1643 −0.758564
\(9\) 66.9723 2.48045
\(10\) −0.689467 −0.0218029
\(11\) −30.6659 −0.840556 −0.420278 0.907396i \(-0.638067\pi\)
−0.420278 + 0.907396i \(0.638067\pi\)
\(12\) −64.1935 −1.54426
\(13\) −27.6225 −0.589317 −0.294658 0.955603i \(-0.595206\pi\)
−0.294658 + 0.955603i \(0.595206\pi\)
\(14\) −28.7136 −0.548145
\(15\) −5.69369 −0.0980070
\(16\) 32.8276 0.512931
\(17\) 30.7916 0.439297 0.219648 0.975579i \(-0.429509\pi\)
0.219648 + 0.975579i \(0.429509\pi\)
\(18\) 78.6166 1.02945
\(19\) −92.5849 −1.11792 −0.558959 0.829196i \(-0.688799\pi\)
−0.558959 + 0.829196i \(0.688799\pi\)
\(20\) 3.88942 0.0434851
\(21\) −237.120 −2.46399
\(22\) −35.9977 −0.348852
\(23\) 0 0
\(24\) −166.390 −1.41518
\(25\) −124.655 −0.997240
\(26\) −32.4252 −0.244581
\(27\) 387.488 2.76193
\(28\) 161.979 1.09326
\(29\) −73.6185 −0.471400 −0.235700 0.971826i \(-0.575738\pi\)
−0.235700 + 0.971826i \(0.575738\pi\)
\(30\) −6.68364 −0.0406754
\(31\) −105.303 −0.610095 −0.305048 0.952337i \(-0.598672\pi\)
−0.305048 + 0.952337i \(0.598672\pi\)
\(32\) 175.850 0.971443
\(33\) −297.273 −1.56814
\(34\) 36.1452 0.182319
\(35\) 14.3669 0.0693841
\(36\) −443.493 −2.05321
\(37\) −89.7975 −0.398989 −0.199495 0.979899i \(-0.563930\pi\)
−0.199495 + 0.979899i \(0.563930\pi\)
\(38\) −108.682 −0.463964
\(39\) −267.771 −1.09943
\(40\) 10.0814 0.0398503
\(41\) −88.7884 −0.338205 −0.169103 0.985598i \(-0.554087\pi\)
−0.169103 + 0.985598i \(0.554087\pi\)
\(42\) −278.347 −1.02262
\(43\) −365.622 −1.29667 −0.648334 0.761356i \(-0.724534\pi\)
−0.648334 + 0.761356i \(0.724534\pi\)
\(44\) 203.070 0.695773
\(45\) −39.3359 −0.130308
\(46\) 0 0
\(47\) 181.434 0.563082 0.281541 0.959549i \(-0.409154\pi\)
0.281541 + 0.959549i \(0.409154\pi\)
\(48\) 318.228 0.956923
\(49\) 255.323 0.744382
\(50\) −146.329 −0.413880
\(51\) 298.491 0.819551
\(52\) 182.917 0.487809
\(53\) −612.828 −1.58827 −0.794136 0.607740i \(-0.792076\pi\)
−0.794136 + 0.607740i \(0.792076\pi\)
\(54\) 454.860 1.14627
\(55\) 18.0115 0.0441576
\(56\) 419.851 1.00187
\(57\) −897.511 −2.08558
\(58\) −86.4184 −0.195643
\(59\) 78.0294 0.172179 0.0860895 0.996287i \(-0.472563\pi\)
0.0860895 + 0.996287i \(0.472563\pi\)
\(60\) 37.7038 0.0811257
\(61\) −111.873 −0.234818 −0.117409 0.993084i \(-0.537459\pi\)
−0.117409 + 0.993084i \(0.537459\pi\)
\(62\) −123.612 −0.253205
\(63\) −1638.18 −3.27606
\(64\) −56.1959 −0.109758
\(65\) 16.2240 0.0309591
\(66\) −348.959 −0.650817
\(67\) 408.709 0.745249 0.372625 0.927982i \(-0.378458\pi\)
0.372625 + 0.927982i \(0.378458\pi\)
\(68\) −203.903 −0.363630
\(69\) 0 0
\(70\) 16.8648 0.0287961
\(71\) 449.763 0.751790 0.375895 0.926662i \(-0.377335\pi\)
0.375895 + 0.926662i \(0.377335\pi\)
\(72\) −1149.53 −1.88158
\(73\) −93.4293 −0.149796 −0.0748978 0.997191i \(-0.523863\pi\)
−0.0748978 + 0.997191i \(0.523863\pi\)
\(74\) −105.410 −0.165591
\(75\) −1208.40 −1.86045
\(76\) 613.100 0.925361
\(77\) 750.107 1.11016
\(78\) −314.328 −0.456290
\(79\) 277.946 0.395840 0.197920 0.980218i \(-0.436581\pi\)
0.197920 + 0.980218i \(0.436581\pi\)
\(80\) −19.2812 −0.0269462
\(81\) 1948.03 2.67220
\(82\) −104.226 −0.140364
\(83\) 1111.38 1.46976 0.734878 0.678199i \(-0.237239\pi\)
0.734878 + 0.678199i \(0.237239\pi\)
\(84\) 1570.21 2.03958
\(85\) −18.0853 −0.0230779
\(86\) −429.192 −0.538150
\(87\) −713.652 −0.879443
\(88\) 526.360 0.637615
\(89\) 1272.90 1.51604 0.758018 0.652234i \(-0.226168\pi\)
0.758018 + 0.652234i \(0.226168\pi\)
\(90\) −46.1752 −0.0540810
\(91\) 675.665 0.778340
\(92\) 0 0
\(93\) −1020.80 −1.13819
\(94\) 212.979 0.233693
\(95\) 54.3794 0.0587285
\(96\) 1704.68 1.81232
\(97\) 1087.37 1.13821 0.569103 0.822266i \(-0.307290\pi\)
0.569103 + 0.822266i \(0.307290\pi\)
\(98\) 299.716 0.308937
\(99\) −2053.76 −2.08496
\(100\) 825.470 0.825470
\(101\) 108.276 0.106672 0.0533359 0.998577i \(-0.483015\pi\)
0.0533359 + 0.998577i \(0.483015\pi\)
\(102\) 350.389 0.340134
\(103\) −11.9771 −0.0114577 −0.00572883 0.999984i \(-0.501824\pi\)
−0.00572883 + 0.999984i \(0.501824\pi\)
\(104\) 474.123 0.447034
\(105\) 139.271 0.129443
\(106\) −719.379 −0.659173
\(107\) −1502.16 −1.35719 −0.678596 0.734511i \(-0.737411\pi\)
−0.678596 + 0.734511i \(0.737411\pi\)
\(108\) −2565.96 −2.28620
\(109\) −194.232 −0.170679 −0.0853395 0.996352i \(-0.527197\pi\)
−0.0853395 + 0.996352i \(0.527197\pi\)
\(110\) 21.1431 0.0183265
\(111\) −870.490 −0.744354
\(112\) −802.984 −0.677454
\(113\) 1733.24 1.44292 0.721459 0.692457i \(-0.243472\pi\)
0.721459 + 0.692457i \(0.243472\pi\)
\(114\) −1053.56 −0.865570
\(115\) 0 0
\(116\) 487.504 0.390204
\(117\) −1849.94 −1.46177
\(118\) 91.5963 0.0714586
\(119\) −753.181 −0.580202
\(120\) 97.7285 0.0743446
\(121\) −390.604 −0.293466
\(122\) −131.324 −0.0974554
\(123\) −860.708 −0.630955
\(124\) 697.319 0.505009
\(125\) 146.634 0.104923
\(126\) −1923.01 −1.35965
\(127\) −2396.97 −1.67477 −0.837387 0.546611i \(-0.815918\pi\)
−0.837387 + 0.546611i \(0.815918\pi\)
\(128\) −1472.77 −1.01700
\(129\) −3544.31 −2.41906
\(130\) 19.0448 0.0128488
\(131\) 1316.52 0.878051 0.439026 0.898475i \(-0.355324\pi\)
0.439026 + 0.898475i \(0.355324\pi\)
\(132\) 1968.55 1.29803
\(133\) 2264.69 1.47649
\(134\) 479.770 0.309297
\(135\) −227.590 −0.145095
\(136\) −528.517 −0.333235
\(137\) 769.357 0.479785 0.239893 0.970799i \(-0.422888\pi\)
0.239893 + 0.970799i \(0.422888\pi\)
\(138\) 0 0
\(139\) −1772.15 −1.08138 −0.540691 0.841221i \(-0.681837\pi\)
−0.540691 + 0.841221i \(0.681837\pi\)
\(140\) −95.1378 −0.0574330
\(141\) 1758.81 1.05048
\(142\) 527.963 0.312012
\(143\) 847.070 0.495353
\(144\) 2198.54 1.27230
\(145\) 43.2395 0.0247645
\(146\) −109.674 −0.0621689
\(147\) 2475.08 1.38872
\(148\) 594.642 0.330265
\(149\) 1494.51 0.821712 0.410856 0.911700i \(-0.365230\pi\)
0.410856 + 0.911700i \(0.365230\pi\)
\(150\) −1418.50 −0.772133
\(151\) −528.951 −0.285069 −0.142535 0.989790i \(-0.545525\pi\)
−0.142535 + 0.989790i \(0.545525\pi\)
\(152\) 1589.16 0.848012
\(153\) 2062.18 1.08966
\(154\) 880.527 0.460746
\(155\) 61.8492 0.0320506
\(156\) 1773.19 0.910056
\(157\) −3442.60 −1.74999 −0.874997 0.484128i \(-0.839137\pi\)
−0.874997 + 0.484128i \(0.839137\pi\)
\(158\) 326.272 0.164284
\(159\) −5940.71 −2.96308
\(160\) −103.285 −0.0510336
\(161\) 0 0
\(162\) 2286.73 1.10903
\(163\) 377.403 0.181353 0.0906764 0.995880i \(-0.471097\pi\)
0.0906764 + 0.995880i \(0.471097\pi\)
\(164\) 587.959 0.279951
\(165\) 174.602 0.0823803
\(166\) 1304.61 0.609986
\(167\) −2896.03 −1.34192 −0.670962 0.741491i \(-0.734119\pi\)
−0.670962 + 0.741491i \(0.734119\pi\)
\(168\) 4070.00 1.86909
\(169\) −1434.00 −0.652706
\(170\) −21.2298 −0.00957793
\(171\) −6200.62 −2.77294
\(172\) 2421.16 1.07332
\(173\) 1608.15 0.706736 0.353368 0.935484i \(-0.385036\pi\)
0.353368 + 0.935484i \(0.385036\pi\)
\(174\) −837.734 −0.364991
\(175\) 3049.14 1.31711
\(176\) −1006.69 −0.431147
\(177\) 756.412 0.321217
\(178\) 1494.22 0.629193
\(179\) −1416.60 −0.591519 −0.295760 0.955262i \(-0.595573\pi\)
−0.295760 + 0.955262i \(0.595573\pi\)
\(180\) 260.484 0.107863
\(181\) 1568.05 0.643937 0.321968 0.946750i \(-0.395656\pi\)
0.321968 + 0.946750i \(0.395656\pi\)
\(182\) 793.142 0.323031
\(183\) −1084.49 −0.438076
\(184\) 0 0
\(185\) 52.7422 0.0209604
\(186\) −1198.28 −0.472378
\(187\) −944.250 −0.369253
\(188\) −1201.46 −0.466093
\(189\) −9478.21 −3.64782
\(190\) 63.8342 0.0243738
\(191\) 384.504 0.145663 0.0728317 0.997344i \(-0.476796\pi\)
0.0728317 + 0.997344i \(0.476796\pi\)
\(192\) −544.759 −0.204764
\(193\) −809.826 −0.302034 −0.151017 0.988531i \(-0.548255\pi\)
−0.151017 + 0.988531i \(0.548255\pi\)
\(194\) 1276.43 0.472384
\(195\) 157.274 0.0577571
\(196\) −1690.76 −0.616165
\(197\) 3503.08 1.26692 0.633462 0.773774i \(-0.281633\pi\)
0.633462 + 0.773774i \(0.281633\pi\)
\(198\) −2410.85 −0.865311
\(199\) −2373.06 −0.845337 −0.422669 0.906284i \(-0.638907\pi\)
−0.422669 + 0.906284i \(0.638907\pi\)
\(200\) 2139.62 0.756470
\(201\) 3961.99 1.39034
\(202\) 127.102 0.0442714
\(203\) 1800.76 0.622602
\(204\) −1976.62 −0.678387
\(205\) 52.1495 0.0177672
\(206\) −14.0596 −0.00475522
\(207\) 0 0
\(208\) −906.781 −0.302279
\(209\) 2839.20 0.939672
\(210\) 163.486 0.0537220
\(211\) −3176.30 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(212\) 4058.17 1.31470
\(213\) 4359.97 1.40254
\(214\) −1763.34 −0.563269
\(215\) 214.746 0.0681190
\(216\) −6650.98 −2.09510
\(217\) 2575.77 0.805783
\(218\) −228.002 −0.0708361
\(219\) −905.697 −0.279458
\(220\) −119.273 −0.0365516
\(221\) −850.541 −0.258885
\(222\) −1021.84 −0.308926
\(223\) 1100.91 0.330595 0.165297 0.986244i \(-0.447142\pi\)
0.165297 + 0.986244i \(0.447142\pi\)
\(224\) −4301.40 −1.28303
\(225\) −8348.43 −2.47361
\(226\) 2034.60 0.598847
\(227\) −1829.06 −0.534796 −0.267398 0.963586i \(-0.586164\pi\)
−0.267398 + 0.963586i \(0.586164\pi\)
\(228\) 5943.35 1.72635
\(229\) −4501.68 −1.29904 −0.649518 0.760346i \(-0.725029\pi\)
−0.649518 + 0.760346i \(0.725029\pi\)
\(230\) 0 0
\(231\) 7271.49 2.07112
\(232\) 1263.61 0.357587
\(233\) 1505.51 0.423302 0.211651 0.977345i \(-0.432116\pi\)
0.211651 + 0.977345i \(0.432116\pi\)
\(234\) −2171.59 −0.606672
\(235\) −106.564 −0.0295808
\(236\) −516.713 −0.142522
\(237\) 2694.39 0.738479
\(238\) −884.136 −0.240798
\(239\) −3920.29 −1.06101 −0.530507 0.847680i \(-0.677999\pi\)
−0.530507 + 0.847680i \(0.677999\pi\)
\(240\) −186.910 −0.0502708
\(241\) 1729.81 0.462352 0.231176 0.972912i \(-0.425743\pi\)
0.231176 + 0.972912i \(0.425743\pi\)
\(242\) −458.517 −0.121796
\(243\) 8421.91 2.22332
\(244\) 740.828 0.194372
\(245\) −149.963 −0.0391052
\(246\) −1010.36 −0.261862
\(247\) 2557.43 0.658807
\(248\) 1807.45 0.462796
\(249\) 10773.6 2.74197
\(250\) 172.129 0.0435455
\(251\) 4882.48 1.22781 0.613903 0.789381i \(-0.289599\pi\)
0.613903 + 0.789381i \(0.289599\pi\)
\(252\) 10848.1 2.71177
\(253\) 0 0
\(254\) −2813.72 −0.695073
\(255\) −175.318 −0.0430542
\(256\) −1279.27 −0.312321
\(257\) −2123.46 −0.515399 −0.257699 0.966225i \(-0.582964\pi\)
−0.257699 + 0.966225i \(0.582964\pi\)
\(258\) −4160.55 −1.00397
\(259\) 2196.50 0.526966
\(260\) −107.436 −0.0256265
\(261\) −4930.40 −1.16929
\(262\) 1545.42 0.364413
\(263\) 7204.31 1.68911 0.844556 0.535467i \(-0.179864\pi\)
0.844556 + 0.535467i \(0.179864\pi\)
\(264\) 5102.49 1.18953
\(265\) 359.942 0.0834380
\(266\) 2658.44 0.612781
\(267\) 12339.4 2.82831
\(268\) −2706.48 −0.616883
\(269\) 4241.43 0.961355 0.480678 0.876897i \(-0.340391\pi\)
0.480678 + 0.876897i \(0.340391\pi\)
\(270\) −267.160 −0.0602180
\(271\) 138.821 0.0311172 0.0155586 0.999879i \(-0.495047\pi\)
0.0155586 + 0.999879i \(0.495047\pi\)
\(272\) 1010.81 0.225329
\(273\) 6549.85 1.45207
\(274\) 903.124 0.199123
\(275\) 3822.66 0.838236
\(276\) 0 0
\(277\) −4921.98 −1.06763 −0.533815 0.845601i \(-0.679242\pi\)
−0.533815 + 0.845601i \(0.679242\pi\)
\(278\) −2080.27 −0.448801
\(279\) −7052.37 −1.51331
\(280\) −246.598 −0.0526323
\(281\) 283.484 0.0601824 0.0300912 0.999547i \(-0.490420\pi\)
0.0300912 + 0.999547i \(0.490420\pi\)
\(282\) 2064.61 0.435977
\(283\) 4333.16 0.910176 0.455088 0.890446i \(-0.349608\pi\)
0.455088 + 0.890446i \(0.349608\pi\)
\(284\) −2978.35 −0.622297
\(285\) 527.150 0.109564
\(286\) 994.348 0.205584
\(287\) 2171.82 0.446685
\(288\) 11777.1 2.40962
\(289\) −3964.88 −0.807018
\(290\) 50.7575 0.0102779
\(291\) 10540.9 2.12344
\(292\) 618.692 0.123994
\(293\) −3837.64 −0.765179 −0.382590 0.923918i \(-0.624968\pi\)
−0.382590 + 0.923918i \(0.624968\pi\)
\(294\) 2905.42 0.576353
\(295\) −45.8303 −0.00904523
\(296\) 1541.31 0.302659
\(297\) −11882.7 −2.32156
\(298\) 1754.36 0.341031
\(299\) 0 0
\(300\) 8002.04 1.53999
\(301\) 8943.34 1.71258
\(302\) −620.919 −0.118311
\(303\) 1049.62 0.199006
\(304\) −3039.34 −0.573414
\(305\) 65.7083 0.0123359
\(306\) 2420.73 0.452235
\(307\) 8844.24 1.64419 0.822097 0.569348i \(-0.192804\pi\)
0.822097 + 0.569348i \(0.192804\pi\)
\(308\) −4967.23 −0.918943
\(309\) −116.105 −0.0213754
\(310\) 72.6028 0.0133018
\(311\) −9833.47 −1.79294 −0.896471 0.443102i \(-0.853878\pi\)
−0.896471 + 0.443102i \(0.853878\pi\)
\(312\) 4596.11 0.833986
\(313\) −3496.59 −0.631434 −0.315717 0.948853i \(-0.602245\pi\)
−0.315717 + 0.948853i \(0.602245\pi\)
\(314\) −4041.16 −0.726292
\(315\) 962.181 0.172104
\(316\) −1840.57 −0.327659
\(317\) 2612.24 0.462833 0.231417 0.972855i \(-0.425664\pi\)
0.231417 + 0.972855i \(0.425664\pi\)
\(318\) −6973.61 −1.22975
\(319\) 2257.58 0.396238
\(320\) 33.0064 0.00576599
\(321\) −14561.9 −2.53198
\(322\) 0 0
\(323\) −2850.83 −0.491098
\(324\) −12899.9 −2.21192
\(325\) 3443.29 0.587690
\(326\) 443.022 0.0752660
\(327\) −1882.87 −0.318418
\(328\) 1523.99 0.256550
\(329\) −4437.99 −0.743691
\(330\) 204.960 0.0341899
\(331\) 11428.7 1.89783 0.948913 0.315538i \(-0.102185\pi\)
0.948913 + 0.315538i \(0.102185\pi\)
\(332\) −7359.59 −1.21660
\(333\) −6013.94 −0.989675
\(334\) −3399.56 −0.556933
\(335\) −240.053 −0.0391508
\(336\) −7784.07 −1.26386
\(337\) −4033.06 −0.651913 −0.325957 0.945385i \(-0.605686\pi\)
−0.325957 + 0.945385i \(0.605686\pi\)
\(338\) −1683.32 −0.270889
\(339\) 16801.9 2.69190
\(340\) 119.761 0.0191029
\(341\) 3229.20 0.512819
\(342\) −7278.71 −1.15084
\(343\) 2144.63 0.337607
\(344\) 6275.65 0.983606
\(345\) 0 0
\(346\) 1887.75 0.293313
\(347\) −3932.24 −0.608339 −0.304169 0.952618i \(-0.598379\pi\)
−0.304169 + 0.952618i \(0.598379\pi\)
\(348\) 4725.83 0.727963
\(349\) −3467.83 −0.531887 −0.265943 0.963989i \(-0.585683\pi\)
−0.265943 + 0.963989i \(0.585683\pi\)
\(350\) 3579.29 0.546632
\(351\) −10703.4 −1.62765
\(352\) −5392.60 −0.816552
\(353\) −9825.60 −1.48148 −0.740742 0.671789i \(-0.765526\pi\)
−0.740742 + 0.671789i \(0.765526\pi\)
\(354\) 887.928 0.133313
\(355\) −264.167 −0.0394944
\(356\) −8429.19 −1.25490
\(357\) −7301.28 −1.08242
\(358\) −1662.91 −0.245495
\(359\) −11970.2 −1.75979 −0.879893 0.475171i \(-0.842386\pi\)
−0.879893 + 0.475171i \(0.842386\pi\)
\(360\) 675.175 0.0988468
\(361\) 1712.96 0.249739
\(362\) 1840.69 0.267250
\(363\) −3786.49 −0.547490
\(364\) −4474.28 −0.644274
\(365\) 54.8753 0.00786933
\(366\) −1273.05 −0.181813
\(367\) −9653.91 −1.37311 −0.686553 0.727080i \(-0.740877\pi\)
−0.686553 + 0.727080i \(0.740877\pi\)
\(368\) 0 0
\(369\) −5946.36 −0.838902
\(370\) 61.9124 0.00869911
\(371\) 14990.2 2.09771
\(372\) 6759.76 0.942143
\(373\) −137.458 −0.0190812 −0.00954059 0.999954i \(-0.503037\pi\)
−0.00954059 + 0.999954i \(0.503037\pi\)
\(374\) −1108.43 −0.153249
\(375\) 1421.46 0.195743
\(376\) −3114.19 −0.427134
\(377\) 2033.53 0.277804
\(378\) −11126.2 −1.51394
\(379\) 7890.04 1.06935 0.534676 0.845057i \(-0.320434\pi\)
0.534676 + 0.845057i \(0.320434\pi\)
\(380\) −360.102 −0.0486127
\(381\) −23236.0 −3.12445
\(382\) 451.357 0.0604540
\(383\) −1807.71 −0.241174 −0.120587 0.992703i \(-0.538478\pi\)
−0.120587 + 0.992703i \(0.538478\pi\)
\(384\) −14276.9 −1.89730
\(385\) −440.572 −0.0583212
\(386\) −950.629 −0.125352
\(387\) −24486.5 −3.21633
\(388\) −7200.62 −0.942155
\(389\) −2162.74 −0.281891 −0.140945 0.990017i \(-0.545014\pi\)
−0.140945 + 0.990017i \(0.545014\pi\)
\(390\) 184.619 0.0239707
\(391\) 0 0
\(392\) −4382.45 −0.564662
\(393\) 12762.2 1.63809
\(394\) 4112.15 0.525805
\(395\) −163.251 −0.0207950
\(396\) 13600.1 1.72583
\(397\) 6355.14 0.803414 0.401707 0.915768i \(-0.368417\pi\)
0.401707 + 0.915768i \(0.368417\pi\)
\(398\) −2785.67 −0.350836
\(399\) 21953.7 2.75454
\(400\) −4092.12 −0.511515
\(401\) −9645.56 −1.20119 −0.600594 0.799554i \(-0.705069\pi\)
−0.600594 + 0.799554i \(0.705069\pi\)
\(402\) 4650.86 0.577024
\(403\) 2908.73 0.359539
\(404\) −717.006 −0.0882980
\(405\) −1144.17 −0.140381
\(406\) 2113.85 0.258396
\(407\) 2753.72 0.335373
\(408\) −5123.40 −0.621682
\(409\) 11477.1 1.38754 0.693772 0.720194i \(-0.255947\pi\)
0.693772 + 0.720194i \(0.255947\pi\)
\(410\) 61.2166 0.00737384
\(411\) 7458.09 0.895086
\(412\) 79.3128 0.00948413
\(413\) −1908.65 −0.227406
\(414\) 0 0
\(415\) −652.764 −0.0772119
\(416\) −4857.42 −0.572488
\(417\) −17179.1 −2.01742
\(418\) 3332.84 0.389987
\(419\) 3855.90 0.449577 0.224789 0.974408i \(-0.427831\pi\)
0.224789 + 0.974408i \(0.427831\pi\)
\(420\) −922.259 −0.107147
\(421\) 4672.08 0.540862 0.270431 0.962739i \(-0.412834\pi\)
0.270431 + 0.962739i \(0.412834\pi\)
\(422\) −3728.56 −0.430103
\(423\) 12151.0 1.39670
\(424\) 10518.8 1.20481
\(425\) −3838.32 −0.438085
\(426\) 5118.03 0.582088
\(427\) 2736.49 0.310136
\(428\) 9947.38 1.12342
\(429\) 8211.43 0.924130
\(430\) 252.084 0.0282711
\(431\) −4050.67 −0.452700 −0.226350 0.974046i \(-0.572679\pi\)
−0.226350 + 0.974046i \(0.572679\pi\)
\(432\) 12720.3 1.41668
\(433\) 5685.17 0.630974 0.315487 0.948930i \(-0.397832\pi\)
0.315487 + 0.948930i \(0.397832\pi\)
\(434\) 3023.62 0.334420
\(435\) 419.161 0.0462005
\(436\) 1286.21 0.141280
\(437\) 0 0
\(438\) −1063.17 −0.115982
\(439\) −13746.7 −1.49452 −0.747262 0.664530i \(-0.768632\pi\)
−0.747262 + 0.664530i \(0.768632\pi\)
\(440\) −309.155 −0.0334964
\(441\) 17099.6 1.84641
\(442\) −998.423 −0.107444
\(443\) −15256.9 −1.63629 −0.818146 0.575011i \(-0.804998\pi\)
−0.818146 + 0.575011i \(0.804998\pi\)
\(444\) 5764.41 0.616142
\(445\) −747.633 −0.0796431
\(446\) 1292.33 0.137205
\(447\) 14487.7 1.53298
\(448\) 1374.59 0.144962
\(449\) 15743.1 1.65471 0.827355 0.561680i \(-0.189845\pi\)
0.827355 + 0.561680i \(0.189845\pi\)
\(450\) −9799.96 −1.02661
\(451\) 2722.77 0.284280
\(452\) −11477.6 −1.19438
\(453\) −5127.62 −0.531824
\(454\) −2147.07 −0.221954
\(455\) −396.849 −0.0408892
\(456\) 15405.2 1.58205
\(457\) −10842.0 −1.10978 −0.554888 0.831925i \(-0.687239\pi\)
−0.554888 + 0.831925i \(0.687239\pi\)
\(458\) −5284.38 −0.539133
\(459\) 11931.4 1.21331
\(460\) 0 0
\(461\) 7583.77 0.766185 0.383093 0.923710i \(-0.374859\pi\)
0.383093 + 0.923710i \(0.374859\pi\)
\(462\) 8535.77 0.859567
\(463\) −19753.0 −1.98272 −0.991360 0.131172i \(-0.958126\pi\)
−0.991360 + 0.131172i \(0.958126\pi\)
\(464\) −2416.72 −0.241796
\(465\) 599.562 0.0597936
\(466\) 1767.27 0.175681
\(467\) −12056.0 −1.19462 −0.597308 0.802012i \(-0.703763\pi\)
−0.597308 + 0.802012i \(0.703763\pi\)
\(468\) 12250.4 1.20999
\(469\) −9997.27 −0.984288
\(470\) −125.093 −0.0122768
\(471\) −33372.3 −3.26479
\(472\) −1339.32 −0.130609
\(473\) 11212.1 1.08992
\(474\) 3162.86 0.306487
\(475\) 11541.2 1.11483
\(476\) 4987.59 0.480264
\(477\) −41042.5 −3.93963
\(478\) −4601.90 −0.440348
\(479\) −18771.9 −1.79063 −0.895315 0.445434i \(-0.853049\pi\)
−0.895315 + 0.445434i \(0.853049\pi\)
\(480\) −1001.24 −0.0952082
\(481\) 2480.43 0.235131
\(482\) 2030.57 0.191888
\(483\) 0 0
\(484\) 2586.59 0.242918
\(485\) −638.664 −0.0597943
\(486\) 9886.21 0.922732
\(487\) −7040.17 −0.655073 −0.327536 0.944839i \(-0.606218\pi\)
−0.327536 + 0.944839i \(0.606218\pi\)
\(488\) 1920.23 0.178124
\(489\) 3658.52 0.338331
\(490\) −176.037 −0.0162297
\(491\) 4346.65 0.399514 0.199757 0.979845i \(-0.435985\pi\)
0.199757 + 0.979845i \(0.435985\pi\)
\(492\) 5699.64 0.522275
\(493\) −2266.83 −0.207085
\(494\) 3002.09 0.273422
\(495\) 1206.27 0.109531
\(496\) −3456.84 −0.312937
\(497\) −11001.5 −0.992927
\(498\) 12646.8 1.13799
\(499\) −16754.5 −1.50307 −0.751537 0.659691i \(-0.770687\pi\)
−0.751537 + 0.659691i \(0.770687\pi\)
\(500\) −971.014 −0.0868502
\(501\) −28073.9 −2.50349
\(502\) 5731.39 0.509571
\(503\) 3703.57 0.328298 0.164149 0.986436i \(-0.447512\pi\)
0.164149 + 0.986436i \(0.447512\pi\)
\(504\) 28118.4 2.48510
\(505\) −63.5954 −0.00560387
\(506\) 0 0
\(507\) −13901.0 −1.21769
\(508\) 15872.8 1.38630
\(509\) 6453.52 0.561979 0.280990 0.959711i \(-0.409337\pi\)
0.280990 + 0.959711i \(0.409337\pi\)
\(510\) −205.800 −0.0178686
\(511\) 2285.34 0.197843
\(512\) 10280.4 0.887374
\(513\) −35875.6 −3.08761
\(514\) −2492.66 −0.213904
\(515\) 7.03471 0.000601915 0
\(516\) 23470.5 2.00239
\(517\) −5563.83 −0.473301
\(518\) 2578.41 0.218704
\(519\) 15589.3 1.31848
\(520\) −278.474 −0.0234844
\(521\) −2429.94 −0.204333 −0.102167 0.994767i \(-0.532577\pi\)
−0.102167 + 0.994767i \(0.532577\pi\)
\(522\) −5787.64 −0.485283
\(523\) 2969.98 0.248314 0.124157 0.992263i \(-0.460377\pi\)
0.124157 + 0.992263i \(0.460377\pi\)
\(524\) −8718.02 −0.726810
\(525\) 29558.2 2.45719
\(526\) 8456.91 0.701024
\(527\) −3242.44 −0.268013
\(528\) −9758.75 −0.804347
\(529\) 0 0
\(530\) 422.525 0.0346289
\(531\) 5225.81 0.427082
\(532\) −14996.8 −1.22217
\(533\) 2452.56 0.199310
\(534\) 14484.8 1.17382
\(535\) 882.290 0.0712985
\(536\) −7015.21 −0.565319
\(537\) −13732.5 −1.10354
\(538\) 4978.88 0.398987
\(539\) −7829.71 −0.625695
\(540\) 1507.11 0.120103
\(541\) 8519.05 0.677011 0.338505 0.940964i \(-0.390079\pi\)
0.338505 + 0.940964i \(0.390079\pi\)
\(542\) 162.957 0.0129144
\(543\) 15200.6 1.20133
\(544\) 5414.69 0.426752
\(545\) 114.081 0.00896642
\(546\) 7688.66 0.602645
\(547\) −3650.33 −0.285333 −0.142666 0.989771i \(-0.545568\pi\)
−0.142666 + 0.989771i \(0.545568\pi\)
\(548\) −5094.71 −0.397144
\(549\) −7492.40 −0.582455
\(550\) 4487.30 0.347889
\(551\) 6815.96 0.526987
\(552\) 0 0
\(553\) −6798.74 −0.522807
\(554\) −5777.76 −0.443093
\(555\) 511.279 0.0391038
\(556\) 11735.3 0.895118
\(557\) −22573.5 −1.71718 −0.858590 0.512663i \(-0.828659\pi\)
−0.858590 + 0.512663i \(0.828659\pi\)
\(558\) −8278.55 −0.628063
\(559\) 10099.4 0.764148
\(560\) 471.629 0.0355892
\(561\) −9153.49 −0.688878
\(562\) 332.773 0.0249772
\(563\) 12613.2 0.944195 0.472098 0.881546i \(-0.343497\pi\)
0.472098 + 0.881546i \(0.343497\pi\)
\(564\) −11646.9 −0.869542
\(565\) −1018.01 −0.0758020
\(566\) 5086.56 0.377746
\(567\) −47650.1 −3.52931
\(568\) −7719.89 −0.570280
\(569\) −9750.27 −0.718370 −0.359185 0.933266i \(-0.616945\pi\)
−0.359185 + 0.933266i \(0.616945\pi\)
\(570\) 618.804 0.0454717
\(571\) −1830.62 −0.134167 −0.0670833 0.997747i \(-0.521369\pi\)
−0.0670833 + 0.997747i \(0.521369\pi\)
\(572\) −5609.32 −0.410031
\(573\) 3727.35 0.271749
\(574\) 2549.43 0.185385
\(575\) 0 0
\(576\) −3763.57 −0.272249
\(577\) 1268.49 0.0915216 0.0457608 0.998952i \(-0.485429\pi\)
0.0457608 + 0.998952i \(0.485429\pi\)
\(578\) −4654.25 −0.334933
\(579\) −7850.40 −0.563474
\(580\) −286.334 −0.0204989
\(581\) −27185.1 −1.94118
\(582\) 12373.7 0.881279
\(583\) 18792.9 1.33503
\(584\) 1603.65 0.113629
\(585\) 1086.56 0.0767925
\(586\) −4504.89 −0.317569
\(587\) 21071.6 1.48163 0.740815 0.671709i \(-0.234440\pi\)
0.740815 + 0.671709i \(0.234440\pi\)
\(588\) −16390.1 −1.14952
\(589\) 9749.45 0.682036
\(590\) −53.7987 −0.00375400
\(591\) 33958.6 2.36357
\(592\) −2947.83 −0.204654
\(593\) 16139.6 1.11766 0.558832 0.829281i \(-0.311250\pi\)
0.558832 + 0.829281i \(0.311250\pi\)
\(594\) −13948.7 −0.963504
\(595\) 442.378 0.0304802
\(596\) −9896.70 −0.680175
\(597\) −23004.3 −1.57706
\(598\) 0 0
\(599\) 16255.0 1.10878 0.554392 0.832256i \(-0.312951\pi\)
0.554392 + 0.832256i \(0.312951\pi\)
\(600\) 20741.3 1.41127
\(601\) 3605.45 0.244708 0.122354 0.992487i \(-0.460956\pi\)
0.122354 + 0.992487i \(0.460956\pi\)
\(602\) 10498.3 0.710762
\(603\) 27372.1 1.84856
\(604\) 3502.73 0.235967
\(605\) 229.420 0.0154169
\(606\) 1232.11 0.0825927
\(607\) −16980.6 −1.13546 −0.567729 0.823216i \(-0.692178\pi\)
−0.567729 + 0.823216i \(0.692178\pi\)
\(608\) −16281.1 −1.08599
\(609\) 17456.4 1.16153
\(610\) 77.1329 0.00511970
\(611\) −5011.66 −0.331833
\(612\) −13655.8 −0.901967
\(613\) 14497.7 0.955232 0.477616 0.878569i \(-0.341501\pi\)
0.477616 + 0.878569i \(0.341501\pi\)
\(614\) 10382.0 0.682382
\(615\) 505.534 0.0331465
\(616\) −12875.1 −0.842131
\(617\) −7868.94 −0.513439 −0.256719 0.966486i \(-0.582642\pi\)
−0.256719 + 0.966486i \(0.582642\pi\)
\(618\) −136.292 −0.00887133
\(619\) −18273.6 −1.18655 −0.593277 0.804998i \(-0.702166\pi\)
−0.593277 + 0.804998i \(0.702166\pi\)
\(620\) −409.567 −0.0265300
\(621\) 0 0
\(622\) −11543.2 −0.744116
\(623\) −31136.0 −2.00230
\(624\) −8790.27 −0.563930
\(625\) 15495.8 0.991728
\(626\) −4104.53 −0.262061
\(627\) 27523.0 1.75305
\(628\) 22797.0 1.44857
\(629\) −2765.00 −0.175275
\(630\) 1129.47 0.0714275
\(631\) 1634.71 0.103133 0.0515663 0.998670i \(-0.483579\pi\)
0.0515663 + 0.998670i \(0.483579\pi\)
\(632\) −4770.76 −0.300270
\(633\) −30790.8 −1.93337
\(634\) 3066.43 0.192087
\(635\) 1407.85 0.0879823
\(636\) 39339.6 2.45270
\(637\) −7052.67 −0.438677
\(638\) 2650.10 0.164449
\(639\) 30121.7 1.86478
\(640\) 865.024 0.0534267
\(641\) 19755.3 1.21730 0.608649 0.793440i \(-0.291712\pi\)
0.608649 + 0.793440i \(0.291712\pi\)
\(642\) −17093.7 −1.05083
\(643\) 24024.7 1.47347 0.736734 0.676183i \(-0.236367\pi\)
0.736734 + 0.676183i \(0.236367\pi\)
\(644\) 0 0
\(645\) 2081.74 0.127083
\(646\) −3346.50 −0.203818
\(647\) 14166.4 0.860800 0.430400 0.902638i \(-0.358372\pi\)
0.430400 + 0.902638i \(0.358372\pi\)
\(648\) −33436.7 −2.02703
\(649\) −2392.84 −0.144726
\(650\) 4041.97 0.243906
\(651\) 24969.4 1.50327
\(652\) −2499.18 −0.150116
\(653\) 11598.1 0.695052 0.347526 0.937670i \(-0.387022\pi\)
0.347526 + 0.937670i \(0.387022\pi\)
\(654\) −2210.24 −0.132152
\(655\) −773.252 −0.0461274
\(656\) −2914.71 −0.173476
\(657\) −6257.17 −0.371561
\(658\) −5209.61 −0.308650
\(659\) −30479.8 −1.80171 −0.900853 0.434125i \(-0.857058\pi\)
−0.900853 + 0.434125i \(0.857058\pi\)
\(660\) −1156.22 −0.0681906
\(661\) 27809.9 1.63643 0.818216 0.574912i \(-0.194964\pi\)
0.818216 + 0.574912i \(0.194964\pi\)
\(662\) 13415.8 0.787646
\(663\) −8245.08 −0.482975
\(664\) −19076.1 −1.11490
\(665\) −1330.15 −0.0775657
\(666\) −7059.57 −0.410740
\(667\) 0 0
\(668\) 19177.6 1.11078
\(669\) 10672.2 0.616756
\(670\) −281.791 −0.0162486
\(671\) 3430.69 0.197378
\(672\) −41697.5 −2.39363
\(673\) 1539.86 0.0881978 0.0440989 0.999027i \(-0.485958\pi\)
0.0440989 + 0.999027i \(0.485958\pi\)
\(674\) −4734.28 −0.270560
\(675\) −48302.4 −2.75431
\(676\) 9495.96 0.540280
\(677\) −33929.3 −1.92616 −0.963078 0.269223i \(-0.913233\pi\)
−0.963078 + 0.269223i \(0.913233\pi\)
\(678\) 19723.2 1.11721
\(679\) −26597.9 −1.50329
\(680\) 310.422 0.0175061
\(681\) −17730.7 −0.997714
\(682\) 3790.66 0.212833
\(683\) −10808.3 −0.605518 −0.302759 0.953067i \(-0.597908\pi\)
−0.302759 + 0.953067i \(0.597908\pi\)
\(684\) 41060.7 2.29531
\(685\) −451.879 −0.0252050
\(686\) 2517.52 0.140116
\(687\) −43639.0 −2.42348
\(688\) −12002.5 −0.665102
\(689\) 16927.9 0.935995
\(690\) 0 0
\(691\) 28965.6 1.59465 0.797325 0.603551i \(-0.206248\pi\)
0.797325 + 0.603551i \(0.206248\pi\)
\(692\) −10649.2 −0.585003
\(693\) 50236.4 2.75371
\(694\) −4615.93 −0.252476
\(695\) 1040.87 0.0568091
\(696\) 12249.4 0.667114
\(697\) −2733.93 −0.148573
\(698\) −4070.77 −0.220746
\(699\) 14594.3 0.789712
\(700\) −20191.5 −1.09024
\(701\) −30041.4 −1.61861 −0.809307 0.587385i \(-0.800157\pi\)
−0.809307 + 0.587385i \(0.800157\pi\)
\(702\) −12564.4 −0.675516
\(703\) 8313.89 0.446037
\(704\) 1723.30 0.0922574
\(705\) −1033.03 −0.0551859
\(706\) −11534.0 −0.614853
\(707\) −2648.50 −0.140887
\(708\) −5008.98 −0.265889
\(709\) −14593.2 −0.773005 −0.386502 0.922288i \(-0.626317\pi\)
−0.386502 + 0.922288i \(0.626317\pi\)
\(710\) −310.097 −0.0163912
\(711\) 18614.7 0.981864
\(712\) −21848.5 −1.15001
\(713\) 0 0
\(714\) −8570.75 −0.449233
\(715\) −497.523 −0.0260228
\(716\) 9380.80 0.489633
\(717\) −38003.0 −1.97943
\(718\) −14051.5 −0.730356
\(719\) −3122.74 −0.161973 −0.0809865 0.996715i \(-0.525807\pi\)
−0.0809865 + 0.996715i \(0.525807\pi\)
\(720\) −1291.30 −0.0668389
\(721\) 292.968 0.0151327
\(722\) 2010.79 0.103648
\(723\) 16768.6 0.862562
\(724\) −10383.7 −0.533021
\(725\) 9176.91 0.470099
\(726\) −4444.84 −0.227222
\(727\) −14918.8 −0.761083 −0.380542 0.924764i \(-0.624262\pi\)
−0.380542 + 0.924764i \(0.624262\pi\)
\(728\) −11597.3 −0.590421
\(729\) 29044.5 1.47561
\(730\) 64.4164 0.00326597
\(731\) −11258.1 −0.569623
\(732\) 7181.54 0.362619
\(733\) 26710.9 1.34596 0.672979 0.739661i \(-0.265014\pi\)
0.672979 + 0.739661i \(0.265014\pi\)
\(734\) −11332.4 −0.569873
\(735\) −1453.73 −0.0729547
\(736\) 0 0
\(737\) −12533.4 −0.626423
\(738\) −6980.24 −0.348166
\(739\) −2964.37 −0.147559 −0.0737795 0.997275i \(-0.523506\pi\)
−0.0737795 + 0.997275i \(0.523506\pi\)
\(740\) −349.260 −0.0173501
\(741\) 24791.5 1.22907
\(742\) 17596.5 0.870603
\(743\) −26986.8 −1.33250 −0.666251 0.745727i \(-0.732102\pi\)
−0.666251 + 0.745727i \(0.732102\pi\)
\(744\) 17521.3 0.863391
\(745\) −877.795 −0.0431677
\(746\) −161.357 −0.00791917
\(747\) 74431.6 3.64566
\(748\) 6252.85 0.305651
\(749\) 36743.9 1.79251
\(750\) 1668.61 0.0812385
\(751\) 14830.2 0.720590 0.360295 0.932838i \(-0.382676\pi\)
0.360295 + 0.932838i \(0.382676\pi\)
\(752\) 5956.03 0.288822
\(753\) 47330.4 2.29059
\(754\) 2387.10 0.115296
\(755\) 310.677 0.0149758
\(756\) 62765.0 3.01950
\(757\) 9664.66 0.464026 0.232013 0.972713i \(-0.425469\pi\)
0.232013 + 0.972713i \(0.425469\pi\)
\(758\) 9261.87 0.443808
\(759\) 0 0
\(760\) −933.386 −0.0445493
\(761\) −36725.0 −1.74938 −0.874692 0.484679i \(-0.838937\pi\)
−0.874692 + 0.484679i \(0.838937\pi\)
\(762\) −27276.0 −1.29673
\(763\) 4751.03 0.225424
\(764\) −2546.20 −0.120574
\(765\) −1211.21 −0.0572438
\(766\) −2122.01 −0.100093
\(767\) −2155.37 −0.101468
\(768\) −12401.1 −0.582665
\(769\) 18130.2 0.850185 0.425093 0.905150i \(-0.360242\pi\)
0.425093 + 0.905150i \(0.360242\pi\)
\(770\) −517.174 −0.0242048
\(771\) −20584.6 −0.961527
\(772\) 5362.70 0.250010
\(773\) −11953.0 −0.556172 −0.278086 0.960556i \(-0.589700\pi\)
−0.278086 + 0.960556i \(0.589700\pi\)
\(774\) −28743.9 −1.33486
\(775\) 13126.5 0.608411
\(776\) −18664.0 −0.863402
\(777\) 21292.8 0.983106
\(778\) −2538.78 −0.116992
\(779\) 8220.46 0.378085
\(780\) −1041.48 −0.0478087
\(781\) −13792.4 −0.631921
\(782\) 0 0
\(783\) −28526.3 −1.30198
\(784\) 8381.64 0.381817
\(785\) 2022.00 0.0919339
\(786\) 14981.2 0.679849
\(787\) −40503.7 −1.83456 −0.917281 0.398240i \(-0.869621\pi\)
−0.917281 + 0.398240i \(0.869621\pi\)
\(788\) −23197.5 −1.04870
\(789\) 69838.0 3.15120
\(790\) −191.635 −0.00863045
\(791\) −42396.2 −1.90573
\(792\) 35251.5 1.58158
\(793\) 3090.22 0.138382
\(794\) 7460.10 0.333437
\(795\) 3489.25 0.155662
\(796\) 15714.5 0.699731
\(797\) 12298.0 0.546572 0.273286 0.961933i \(-0.411889\pi\)
0.273286 + 0.961933i \(0.411889\pi\)
\(798\) 25770.8 1.14320
\(799\) 5586.63 0.247360
\(800\) −21920.6 −0.968762
\(801\) 85249.0 3.76046
\(802\) −11322.6 −0.498523
\(803\) 2865.09 0.125911
\(804\) −26236.4 −1.15086
\(805\) 0 0
\(806\) 3414.47 0.149218
\(807\) 41116.1 1.79350
\(808\) −1858.48 −0.0809173
\(809\) −16905.2 −0.734680 −0.367340 0.930087i \(-0.619731\pi\)
−0.367340 + 0.930087i \(0.619731\pi\)
\(810\) −1343.10 −0.0582616
\(811\) −16394.6 −0.709856 −0.354928 0.934894i \(-0.615495\pi\)
−0.354928 + 0.934894i \(0.615495\pi\)
\(812\) −11924.7 −0.515362
\(813\) 1345.72 0.0580522
\(814\) 3232.50 0.139188
\(815\) −221.666 −0.00952716
\(816\) 9798.74 0.420373
\(817\) 33851.0 1.44957
\(818\) 13472.6 0.575866
\(819\) 45250.8 1.93064
\(820\) −345.336 −0.0147069
\(821\) −12507.3 −0.531678 −0.265839 0.964017i \(-0.585649\pi\)
−0.265839 + 0.964017i \(0.585649\pi\)
\(822\) 8754.82 0.371483
\(823\) −21644.9 −0.916762 −0.458381 0.888756i \(-0.651570\pi\)
−0.458381 + 0.888756i \(0.651570\pi\)
\(824\) 205.579 0.00869137
\(825\) 37056.6 1.56381
\(826\) −2240.50 −0.0943791
\(827\) 27944.8 1.17501 0.587506 0.809220i \(-0.300110\pi\)
0.587506 + 0.809220i \(0.300110\pi\)
\(828\) 0 0
\(829\) 25947.0 1.08706 0.543532 0.839389i \(-0.317087\pi\)
0.543532 + 0.839389i \(0.317087\pi\)
\(830\) −766.259 −0.0320449
\(831\) −47713.4 −1.99177
\(832\) 1552.27 0.0646820
\(833\) 7861.79 0.327005
\(834\) −20166.0 −0.837281
\(835\) 1700.97 0.0704964
\(836\) −18801.3 −0.777817
\(837\) −40803.6 −1.68504
\(838\) 4526.32 0.186586
\(839\) −1120.66 −0.0461139 −0.0230569 0.999734i \(-0.507340\pi\)
−0.0230569 + 0.999734i \(0.507340\pi\)
\(840\) −2390.50 −0.0981906
\(841\) −18969.3 −0.777782
\(842\) 5484.40 0.224472
\(843\) 2748.08 0.112276
\(844\) 21033.6 0.857826
\(845\) 842.251 0.0342891
\(846\) 14263.7 0.579665
\(847\) 9554.42 0.387596
\(848\) −20117.7 −0.814674
\(849\) 42005.4 1.69802
\(850\) −4505.68 −0.181816
\(851\) 0 0
\(852\) −28871.9 −1.16096
\(853\) −18601.6 −0.746667 −0.373333 0.927697i \(-0.621785\pi\)
−0.373333 + 0.927697i \(0.621785\pi\)
\(854\) 3212.28 0.128714
\(855\) 3641.91 0.145673
\(856\) 25783.6 1.02952
\(857\) 28344.3 1.12978 0.564892 0.825165i \(-0.308918\pi\)
0.564892 + 0.825165i \(0.308918\pi\)
\(858\) 9639.14 0.383537
\(859\) −107.391 −0.00426559 −0.00213280 0.999998i \(-0.500679\pi\)
−0.00213280 + 0.999998i \(0.500679\pi\)
\(860\) −1422.06 −0.0563858
\(861\) 21053.5 0.833334
\(862\) −4754.95 −0.187882
\(863\) 35907.9 1.41636 0.708180 0.706032i \(-0.249517\pi\)
0.708180 + 0.706032i \(0.249517\pi\)
\(864\) 68139.8 2.68306
\(865\) −944.539 −0.0371275
\(866\) 6673.64 0.261870
\(867\) −38435.3 −1.50557
\(868\) −17056.9 −0.666991
\(869\) −8523.47 −0.332726
\(870\) 492.040 0.0191744
\(871\) −11289.6 −0.439188
\(872\) 3333.86 0.129471
\(873\) 72823.8 2.82327
\(874\) 0 0
\(875\) −3586.76 −0.138577
\(876\) 5997.56 0.231323
\(877\) −8234.30 −0.317050 −0.158525 0.987355i \(-0.550674\pi\)
−0.158525 + 0.987355i \(0.550674\pi\)
\(878\) −16136.9 −0.620265
\(879\) −37201.8 −1.42752
\(880\) 591.273 0.0226498
\(881\) −16025.9 −0.612854 −0.306427 0.951894i \(-0.599134\pi\)
−0.306427 + 0.951894i \(0.599134\pi\)
\(882\) 20072.6 0.766305
\(883\) 29326.1 1.11767 0.558834 0.829279i \(-0.311249\pi\)
0.558834 + 0.829279i \(0.311249\pi\)
\(884\) 5632.31 0.214293
\(885\) −444.275 −0.0168748
\(886\) −17909.6 −0.679102
\(887\) 39253.1 1.48590 0.742948 0.669349i \(-0.233427\pi\)
0.742948 + 0.669349i \(0.233427\pi\)
\(888\) 14941.4 0.564640
\(889\) 58631.3 2.21196
\(890\) −877.623 −0.0330539
\(891\) −59738.1 −2.24613
\(892\) −7290.28 −0.273651
\(893\) −16798.0 −0.629479
\(894\) 17006.6 0.636227
\(895\) 832.037 0.0310748
\(896\) 36024.8 1.34320
\(897\) 0 0
\(898\) 18480.4 0.686746
\(899\) 7752.23 0.287599
\(900\) 55283.6 2.04754
\(901\) −18869.9 −0.697723
\(902\) 3196.18 0.117983
\(903\) 86696.1 3.19498
\(904\) −29750.0 −1.09455
\(905\) −920.990 −0.0338285
\(906\) −6019.15 −0.220720
\(907\) −18835.3 −0.689542 −0.344771 0.938687i \(-0.612043\pi\)
−0.344771 + 0.938687i \(0.612043\pi\)
\(908\) 12112.1 0.442680
\(909\) 7251.47 0.264594
\(910\) −465.849 −0.0169700
\(911\) −27434.4 −0.997742 −0.498871 0.866676i \(-0.666252\pi\)
−0.498871 + 0.866676i \(0.666252\pi\)
\(912\) −29463.1 −1.06976
\(913\) −34081.4 −1.23541
\(914\) −12727.1 −0.460585
\(915\) 636.972 0.0230138
\(916\) 29810.3 1.07528
\(917\) −32202.9 −1.15969
\(918\) 14005.9 0.503553
\(919\) −35828.5 −1.28604 −0.643022 0.765848i \(-0.722319\pi\)
−0.643022 + 0.765848i \(0.722319\pi\)
\(920\) 0 0
\(921\) 85735.4 3.06740
\(922\) 8902.35 0.317986
\(923\) −12423.6 −0.443042
\(924\) −48152.0 −1.71438
\(925\) 11193.7 0.397888
\(926\) −23187.4 −0.822878
\(927\) −802.134 −0.0284202
\(928\) −12945.8 −0.457939
\(929\) −17665.4 −0.623880 −0.311940 0.950102i \(-0.600979\pi\)
−0.311940 + 0.950102i \(0.600979\pi\)
\(930\) 703.807 0.0248158
\(931\) −23639.1 −0.832158
\(932\) −9969.56 −0.350390
\(933\) −95325.0 −3.34491
\(934\) −14152.2 −0.495796
\(935\) 554.602 0.0193983
\(936\) 31753.1 1.10885
\(937\) 21572.6 0.752132 0.376066 0.926593i \(-0.377277\pi\)
0.376066 + 0.926593i \(0.377277\pi\)
\(938\) −11735.5 −0.408504
\(939\) −33895.7 −1.17800
\(940\) 705.673 0.0244857
\(941\) 37167.1 1.28758 0.643791 0.765202i \(-0.277361\pi\)
0.643791 + 0.765202i \(0.277361\pi\)
\(942\) −39174.7 −1.35497
\(943\) 0 0
\(944\) 2561.52 0.0883160
\(945\) 5566.99 0.191634
\(946\) 13161.5 0.452345
\(947\) −10055.1 −0.345035 −0.172517 0.985006i \(-0.555190\pi\)
−0.172517 + 0.985006i \(0.555190\pi\)
\(948\) −17842.3 −0.611279
\(949\) 2580.76 0.0882770
\(950\) 13547.8 0.462683
\(951\) 25322.9 0.863460
\(952\) 12927.9 0.440120
\(953\) −1049.91 −0.0356873 −0.0178436 0.999841i \(-0.505680\pi\)
−0.0178436 + 0.999841i \(0.505680\pi\)
\(954\) −48178.5 −1.63505
\(955\) −225.837 −0.00765226
\(956\) 25960.3 0.878259
\(957\) 21884.8 0.739221
\(958\) −22035.8 −0.743156
\(959\) −18819.0 −0.633677
\(960\) 319.962 0.0107570
\(961\) −18702.3 −0.627784
\(962\) 2911.70 0.0975853
\(963\) −100603. −3.36645
\(964\) −11454.9 −0.382714
\(965\) 475.648 0.0158670
\(966\) 0 0
\(967\) −24917.6 −0.828640 −0.414320 0.910131i \(-0.635980\pi\)
−0.414320 + 0.910131i \(0.635980\pi\)
\(968\) 6704.46 0.222613
\(969\) −27635.8 −0.916191
\(970\) −749.708 −0.0248162
\(971\) −21004.4 −0.694195 −0.347098 0.937829i \(-0.612833\pi\)
−0.347098 + 0.937829i \(0.612833\pi\)
\(972\) −55770.1 −1.84036
\(973\) 43348.0 1.42824
\(974\) −8264.23 −0.271872
\(975\) 33379.0 1.09639
\(976\) −3672.53 −0.120445
\(977\) −18007.4 −0.589669 −0.294835 0.955548i \(-0.595265\pi\)
−0.294835 + 0.955548i \(0.595265\pi\)
\(978\) 4294.62 0.140416
\(979\) −39034.6 −1.27431
\(980\) 993.060 0.0323695
\(981\) −13008.1 −0.423361
\(982\) 5102.39 0.165808
\(983\) −17906.3 −0.581000 −0.290500 0.956875i \(-0.593822\pi\)
−0.290500 + 0.956875i \(0.593822\pi\)
\(984\) 14773.5 0.478620
\(985\) −2057.52 −0.0665563
\(986\) −2660.96 −0.0859454
\(987\) −43021.5 −1.38743
\(988\) −16935.4 −0.545330
\(989\) 0 0
\(990\) 1416.00 0.0454581
\(991\) 13666.0 0.438056 0.219028 0.975719i \(-0.429711\pi\)
0.219028 + 0.975719i \(0.429711\pi\)
\(992\) −18517.5 −0.592673
\(993\) 110789. 3.54058
\(994\) −12914.3 −0.412089
\(995\) 1393.81 0.0444088
\(996\) −71343.4 −2.26968
\(997\) 38464.7 1.22185 0.610927 0.791687i \(-0.290797\pi\)
0.610927 + 0.791687i \(0.290797\pi\)
\(998\) −19667.6 −0.623813
\(999\) −34795.5 −1.10198
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.4.a.m.1.16 25
23.15 odd 22 23.4.c.a.18.3 yes 50
23.20 odd 22 23.4.c.a.9.3 50
23.22 odd 2 529.4.a.n.1.16 25
69.20 even 22 207.4.i.a.55.3 50
69.38 even 22 207.4.i.a.64.3 50
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.c.a.9.3 50 23.20 odd 22
23.4.c.a.18.3 yes 50 23.15 odd 22
207.4.i.a.55.3 50 69.20 even 22
207.4.i.a.64.3 50 69.38 even 22
529.4.a.m.1.16 25 1.1 even 1 trivial
529.4.a.n.1.16 25 23.22 odd 2