Properties

Label 532.2.l.b.429.9
Level $532$
Weight $2$
Character 532.429
Analytic conductor $4.248$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(429,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 429.9
Character \(\chi\) \(=\) 532.429
Dual form 532.2.l.b.501.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54342 q^{3} +(1.49792 + 2.59447i) q^{5} +(-2.55868 + 0.673181i) q^{7} -0.617840 q^{9} +(0.989466 + 1.71381i) q^{11} +(2.21473 + 3.83603i) q^{13} +(2.31193 + 4.00437i) q^{15} -5.18626 q^{17} +(4.31800 - 0.595698i) q^{19} +(-3.94913 + 1.03900i) q^{21} +8.30393 q^{23} +(-1.98753 + 3.44250i) q^{25} -5.58386 q^{27} +(-2.53342 - 4.38800i) q^{29} +(-0.243649 - 0.422013i) q^{31} +(1.52717 + 2.64513i) q^{33} +(-5.57924 - 5.63005i) q^{35} +(2.06507 - 3.57680i) q^{37} +(3.41827 + 5.92062i) q^{39} +(-3.74329 + 6.48356i) q^{41} +(4.69266 - 8.12792i) q^{43} +(-0.925475 - 1.60297i) q^{45} -1.94211 q^{47} +(6.09365 - 3.44491i) q^{49} -8.00460 q^{51} +(2.69978 - 4.67615i) q^{53} +(-2.96428 + 5.13429i) q^{55} +(6.66451 - 0.919414i) q^{57} +10.1794 q^{59} +8.78669 q^{61} +(1.58085 - 0.415918i) q^{63} +(-6.63498 + 11.4921i) q^{65} +(-1.17340 + 2.03239i) q^{67} +12.8165 q^{69} +(0.696823 - 1.20693i) q^{71} -6.19319 q^{73} +(-3.06760 + 5.31324i) q^{75} +(-3.68543 - 3.71898i) q^{77} +(4.89829 + 8.48408i) q^{79} -6.76475 q^{81} -6.01658 q^{83} +(-7.76860 - 13.4556i) q^{85} +(-3.91014 - 6.77256i) q^{87} -8.57570 q^{89} +(-8.24912 - 8.32423i) q^{91} +(-0.376055 - 0.651346i) q^{93} +(8.01354 + 10.3106i) q^{95} +(-3.34198 + 5.78849i) q^{97} +(-0.611332 - 1.05886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} - 6 q^{7} + 30 q^{9} + q^{11} - 7 q^{13} - 2 q^{15} - 6 q^{17} + 17 q^{19} - 18 q^{21} - 16 q^{23} - 8 q^{25} + 20 q^{27} - 22 q^{29} - 7 q^{31} + 7 q^{33} - 21 q^{35} + 9 q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.54342 0.891097 0.445548 0.895258i \(-0.353009\pi\)
0.445548 + 0.895258i \(0.353009\pi\)
\(4\) 0 0
\(5\) 1.49792 + 2.59447i 0.669890 + 1.16028i 0.977934 + 0.208912i \(0.0669921\pi\)
−0.308044 + 0.951372i \(0.599675\pi\)
\(6\) 0 0
\(7\) −2.55868 + 0.673181i −0.967089 + 0.254439i
\(8\) 0 0
\(9\) −0.617840 −0.205947
\(10\) 0 0
\(11\) 0.989466 + 1.71381i 0.298335 + 0.516732i 0.975755 0.218865i \(-0.0702353\pi\)
−0.677420 + 0.735597i \(0.736902\pi\)
\(12\) 0 0
\(13\) 2.21473 + 3.83603i 0.614256 + 1.06392i 0.990515 + 0.137407i \(0.0438770\pi\)
−0.376259 + 0.926515i \(0.622790\pi\)
\(14\) 0 0
\(15\) 2.31193 + 4.00437i 0.596937 + 1.03392i
\(16\) 0 0
\(17\) −5.18626 −1.25785 −0.628927 0.777465i \(-0.716505\pi\)
−0.628927 + 0.777465i \(0.716505\pi\)
\(18\) 0 0
\(19\) 4.31800 0.595698i 0.990618 0.136662i
\(20\) 0 0
\(21\) −3.94913 + 1.03900i −0.861770 + 0.226729i
\(22\) 0 0
\(23\) 8.30393 1.73149 0.865744 0.500486i \(-0.166845\pi\)
0.865744 + 0.500486i \(0.166845\pi\)
\(24\) 0 0
\(25\) −1.98753 + 3.44250i −0.397506 + 0.688500i
\(26\) 0 0
\(27\) −5.58386 −1.07462
\(28\) 0 0
\(29\) −2.53342 4.38800i −0.470444 0.814832i 0.528985 0.848631i \(-0.322573\pi\)
−0.999429 + 0.0337990i \(0.989239\pi\)
\(30\) 0 0
\(31\) −0.243649 0.422013i −0.0437607 0.0757958i 0.843315 0.537419i \(-0.180601\pi\)
−0.887076 + 0.461623i \(0.847267\pi\)
\(32\) 0 0
\(33\) 1.52717 + 2.64513i 0.265846 + 0.460458i
\(34\) 0 0
\(35\) −5.57924 5.63005i −0.943064 0.951652i
\(36\) 0 0
\(37\) 2.06507 3.57680i 0.339495 0.588023i −0.644843 0.764315i \(-0.723077\pi\)
0.984338 + 0.176293i \(0.0564105\pi\)
\(38\) 0 0
\(39\) 3.41827 + 5.92062i 0.547361 + 0.948057i
\(40\) 0 0
\(41\) −3.74329 + 6.48356i −0.584603 + 1.01256i 0.410322 + 0.911941i \(0.365416\pi\)
−0.994925 + 0.100622i \(0.967917\pi\)
\(42\) 0 0
\(43\) 4.69266 8.12792i 0.715623 1.23950i −0.247095 0.968991i \(-0.579476\pi\)
0.962719 0.270505i \(-0.0871905\pi\)
\(44\) 0 0
\(45\) −0.925475 1.60297i −0.137962 0.238957i
\(46\) 0 0
\(47\) −1.94211 −0.283286 −0.141643 0.989918i \(-0.545239\pi\)
−0.141643 + 0.989918i \(0.545239\pi\)
\(48\) 0 0
\(49\) 6.09365 3.44491i 0.870522 0.492129i
\(50\) 0 0
\(51\) −8.00460 −1.12087
\(52\) 0 0
\(53\) 2.69978 4.67615i 0.370843 0.642318i −0.618853 0.785507i \(-0.712402\pi\)
0.989695 + 0.143189i \(0.0457356\pi\)
\(54\) 0 0
\(55\) −2.96428 + 5.13429i −0.399704 + 0.692307i
\(56\) 0 0
\(57\) 6.66451 0.919414i 0.882736 0.121779i
\(58\) 0 0
\(59\) 10.1794 1.32525 0.662625 0.748952i \(-0.269443\pi\)
0.662625 + 0.748952i \(0.269443\pi\)
\(60\) 0 0
\(61\) 8.78669 1.12502 0.562510 0.826790i \(-0.309836\pi\)
0.562510 + 0.826790i \(0.309836\pi\)
\(62\) 0 0
\(63\) 1.58085 0.415918i 0.199169 0.0524008i
\(64\) 0 0
\(65\) −6.63498 + 11.4921i −0.822968 + 1.42542i
\(66\) 0 0
\(67\) −1.17340 + 2.03239i −0.143354 + 0.248296i −0.928758 0.370688i \(-0.879122\pi\)
0.785404 + 0.618984i \(0.212455\pi\)
\(68\) 0 0
\(69\) 12.8165 1.54292
\(70\) 0 0
\(71\) 0.696823 1.20693i 0.0826977 0.143237i −0.821710 0.569906i \(-0.806980\pi\)
0.904408 + 0.426669i \(0.140313\pi\)
\(72\) 0 0
\(73\) −6.19319 −0.724858 −0.362429 0.932011i \(-0.618052\pi\)
−0.362429 + 0.932011i \(0.618052\pi\)
\(74\) 0 0
\(75\) −3.06760 + 5.31324i −0.354216 + 0.613520i
\(76\) 0 0
\(77\) −3.68543 3.71898i −0.419993 0.423818i
\(78\) 0 0
\(79\) 4.89829 + 8.48408i 0.551100 + 0.954534i 0.998196 + 0.0600475i \(0.0191252\pi\)
−0.447095 + 0.894486i \(0.647541\pi\)
\(80\) 0 0
\(81\) −6.76475 −0.751639
\(82\) 0 0
\(83\) −6.01658 −0.660405 −0.330203 0.943910i \(-0.607117\pi\)
−0.330203 + 0.943910i \(0.607117\pi\)
\(84\) 0 0
\(85\) −7.76860 13.4556i −0.842623 1.45947i
\(86\) 0 0
\(87\) −3.91014 6.77256i −0.419211 0.726094i
\(88\) 0 0
\(89\) −8.57570 −0.909023 −0.454511 0.890741i \(-0.650186\pi\)
−0.454511 + 0.890741i \(0.650186\pi\)
\(90\) 0 0
\(91\) −8.24912 8.32423i −0.864743 0.872617i
\(92\) 0 0
\(93\) −0.376055 0.651346i −0.0389950 0.0675414i
\(94\) 0 0
\(95\) 8.01354 + 10.3106i 0.822172 + 1.05785i
\(96\) 0 0
\(97\) −3.34198 + 5.78849i −0.339327 + 0.587732i −0.984306 0.176468i \(-0.943533\pi\)
0.644979 + 0.764200i \(0.276866\pi\)
\(98\) 0 0
\(99\) −0.611332 1.05886i −0.0614412 0.106419i
\(100\) 0 0
\(101\) 6.46677 11.2008i 0.643468 1.11452i −0.341185 0.939996i \(-0.610828\pi\)
0.984653 0.174523i \(-0.0558384\pi\)
\(102\) 0 0
\(103\) 8.41439 14.5742i 0.829095 1.43603i −0.0696549 0.997571i \(-0.522190\pi\)
0.898749 0.438463i \(-0.144477\pi\)
\(104\) 0 0
\(105\) −8.61114 8.68955i −0.840361 0.848014i
\(106\) 0 0
\(107\) 1.87075 3.24023i 0.180852 0.313245i −0.761319 0.648378i \(-0.775448\pi\)
0.942171 + 0.335133i \(0.108781\pi\)
\(108\) 0 0
\(109\) −19.9517 −1.91103 −0.955514 0.294946i \(-0.904698\pi\)
−0.955514 + 0.294946i \(0.904698\pi\)
\(110\) 0 0
\(111\) 3.18728 5.52053i 0.302523 0.523985i
\(112\) 0 0
\(113\) −9.67021 −0.909697 −0.454849 0.890569i \(-0.650307\pi\)
−0.454849 + 0.890569i \(0.650307\pi\)
\(114\) 0 0
\(115\) 12.4386 + 21.5443i 1.15991 + 2.00902i
\(116\) 0 0
\(117\) −1.36835 2.37005i −0.126504 0.219111i
\(118\) 0 0
\(119\) 13.2700 3.49129i 1.21646 0.320046i
\(120\) 0 0
\(121\) 3.54191 6.13477i 0.321992 0.557707i
\(122\) 0 0
\(123\) −5.77748 + 10.0069i −0.520938 + 0.902291i
\(124\) 0 0
\(125\) 3.07057 0.274640
\(126\) 0 0
\(127\) −5.15835 8.93452i −0.457729 0.792810i 0.541111 0.840951i \(-0.318004\pi\)
−0.998841 + 0.0481406i \(0.984670\pi\)
\(128\) 0 0
\(129\) 7.24276 12.5448i 0.637689 1.10451i
\(130\) 0 0
\(131\) 9.59993 + 16.6276i 0.838750 + 1.45276i 0.890940 + 0.454121i \(0.150047\pi\)
−0.0521900 + 0.998637i \(0.516620\pi\)
\(132\) 0 0
\(133\) −10.6474 + 4.43100i −0.923243 + 0.384216i
\(134\) 0 0
\(135\) −8.36418 14.4872i −0.719874 1.24686i
\(136\) 0 0
\(137\) 0.495337 0.857950i 0.0423195 0.0732996i −0.844090 0.536202i \(-0.819859\pi\)
0.886409 + 0.462902i \(0.153192\pi\)
\(138\) 0 0
\(139\) −9.62528 16.6715i −0.816406 1.41406i −0.908314 0.418289i \(-0.862630\pi\)
0.0919085 0.995767i \(-0.470703\pi\)
\(140\) 0 0
\(141\) −2.99750 −0.252435
\(142\) 0 0
\(143\) −4.38280 + 7.59123i −0.366508 + 0.634811i
\(144\) 0 0
\(145\) 7.58971 13.1458i 0.630291 1.09170i
\(146\) 0 0
\(147\) 9.40510 5.31695i 0.775719 0.438535i
\(148\) 0 0
\(149\) 6.81409 + 11.8024i 0.558232 + 0.966887i 0.997644 + 0.0686010i \(0.0218535\pi\)
−0.439412 + 0.898286i \(0.644813\pi\)
\(150\) 0 0
\(151\) −6.76136 11.7110i −0.550232 0.953030i −0.998257 0.0590089i \(-0.981206\pi\)
0.448026 0.894021i \(-0.352127\pi\)
\(152\) 0 0
\(153\) 3.20428 0.259051
\(154\) 0 0
\(155\) 0.729935 1.26428i 0.0586298 0.101550i
\(156\) 0 0
\(157\) 5.72691 0.457057 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(158\) 0 0
\(159\) 4.16690 7.21728i 0.330457 0.572368i
\(160\) 0 0
\(161\) −21.2471 + 5.59005i −1.67450 + 0.440558i
\(162\) 0 0
\(163\) 3.97027 6.87670i 0.310975 0.538625i −0.667599 0.744521i \(-0.732678\pi\)
0.978574 + 0.205897i \(0.0660111\pi\)
\(164\) 0 0
\(165\) −4.57515 + 7.92439i −0.356175 + 0.616913i
\(166\) 0 0
\(167\) 9.05651 + 15.6863i 0.700814 + 1.21385i 0.968181 + 0.250251i \(0.0805130\pi\)
−0.267367 + 0.963595i \(0.586154\pi\)
\(168\) 0 0
\(169\) −3.31006 + 5.73319i −0.254620 + 0.441015i
\(170\) 0 0
\(171\) −2.66783 + 0.368046i −0.204014 + 0.0281452i
\(172\) 0 0
\(173\) −0.704646 1.22048i −0.0535732 0.0927916i 0.837995 0.545678i \(-0.183728\pi\)
−0.891568 + 0.452886i \(0.850394\pi\)
\(174\) 0 0
\(175\) 2.76802 10.1462i 0.209242 0.766981i
\(176\) 0 0
\(177\) 15.7112 1.18093
\(178\) 0 0
\(179\) 9.37453 + 16.2372i 0.700685 + 1.21362i 0.968226 + 0.250076i \(0.0804557\pi\)
−0.267541 + 0.963547i \(0.586211\pi\)
\(180\) 0 0
\(181\) −9.00801 15.6023i −0.669560 1.15971i −0.978027 0.208477i \(-0.933149\pi\)
0.308468 0.951235i \(-0.400184\pi\)
\(182\) 0 0
\(183\) 13.5616 1.00250
\(184\) 0 0
\(185\) 12.3732 0.909698
\(186\) 0 0
\(187\) −5.13163 8.88825i −0.375262 0.649973i
\(188\) 0 0
\(189\) 14.2873 3.75895i 1.03925 0.273424i
\(190\) 0 0
\(191\) 0.0272510 0.0472001i 0.00197181 0.00341528i −0.865038 0.501707i \(-0.832706\pi\)
0.867010 + 0.498291i \(0.166039\pi\)
\(192\) 0 0
\(193\) −20.6905 −1.48933 −0.744666 0.667437i \(-0.767391\pi\)
−0.744666 + 0.667437i \(0.767391\pi\)
\(194\) 0 0
\(195\) −10.2406 + 17.7372i −0.733344 + 1.27019i
\(196\) 0 0
\(197\) −19.8521 −1.41440 −0.707200 0.707013i \(-0.750042\pi\)
−0.707200 + 0.707013i \(0.750042\pi\)
\(198\) 0 0
\(199\) 3.45869 5.99062i 0.245180 0.424664i −0.717002 0.697071i \(-0.754486\pi\)
0.962182 + 0.272407i \(0.0878197\pi\)
\(200\) 0 0
\(201\) −1.81106 + 3.13684i −0.127742 + 0.221256i
\(202\) 0 0
\(203\) 9.43611 + 9.52204i 0.662285 + 0.668316i
\(204\) 0 0
\(205\) −22.4286 −1.56648
\(206\) 0 0
\(207\) −5.13050 −0.356594
\(208\) 0 0
\(209\) 5.29343 + 6.81079i 0.366154 + 0.471113i
\(210\) 0 0
\(211\) 1.23851 2.14516i 0.0852624 0.147679i −0.820241 0.572019i \(-0.806160\pi\)
0.905503 + 0.424340i \(0.139494\pi\)
\(212\) 0 0
\(213\) 1.07549 1.86281i 0.0736917 0.127638i
\(214\) 0 0
\(215\) 28.1169 1.91756
\(216\) 0 0
\(217\) 0.907511 + 0.915775i 0.0616059 + 0.0621669i
\(218\) 0 0
\(219\) −9.55872 −0.645918
\(220\) 0 0
\(221\) −11.4862 19.8946i −0.772643 1.33826i
\(222\) 0 0
\(223\) 1.60529 2.78044i 0.107498 0.186192i −0.807258 0.590199i \(-0.799049\pi\)
0.914756 + 0.404007i \(0.132383\pi\)
\(224\) 0 0
\(225\) 1.22797 2.12691i 0.0818650 0.141794i
\(226\) 0 0
\(227\) −1.11222 1.92643i −0.0738209 0.127862i 0.826752 0.562567i \(-0.190186\pi\)
−0.900573 + 0.434705i \(0.856853\pi\)
\(228\) 0 0
\(229\) −9.53678 + 16.5182i −0.630208 + 1.09155i 0.357301 + 0.933989i \(0.383697\pi\)
−0.987509 + 0.157563i \(0.949636\pi\)
\(230\) 0 0
\(231\) −5.68818 5.73997i −0.374255 0.377663i
\(232\) 0 0
\(233\) 7.67183 + 13.2880i 0.502598 + 0.870526i 0.999995 + 0.00300290i \(0.000955854\pi\)
−0.497397 + 0.867523i \(0.665711\pi\)
\(234\) 0 0
\(235\) −2.90913 5.03875i −0.189770 0.328692i
\(236\) 0 0
\(237\) 7.56014 + 13.0945i 0.491084 + 0.850582i
\(238\) 0 0
\(239\) −2.34933 −0.151966 −0.0759828 0.997109i \(-0.524209\pi\)
−0.0759828 + 0.997109i \(0.524209\pi\)
\(240\) 0 0
\(241\) −8.81904 + 15.2750i −0.568084 + 0.983951i 0.428671 + 0.903461i \(0.358982\pi\)
−0.996755 + 0.0804901i \(0.974351\pi\)
\(242\) 0 0
\(243\) 6.31070 0.404832
\(244\) 0 0
\(245\) 18.0655 + 10.6496i 1.15416 + 0.680380i
\(246\) 0 0
\(247\) 11.8483 + 15.2447i 0.753891 + 0.969994i
\(248\) 0 0
\(249\) −9.28613 −0.588485
\(250\) 0 0
\(251\) 2.21775 + 3.84126i 0.139983 + 0.242458i 0.927490 0.373848i \(-0.121962\pi\)
−0.787507 + 0.616306i \(0.788628\pi\)
\(252\) 0 0
\(253\) 8.21646 + 14.2313i 0.516564 + 0.894716i
\(254\) 0 0
\(255\) −11.9903 20.7677i −0.750859 1.30053i
\(256\) 0 0
\(257\) −6.22168 −0.388098 −0.194049 0.980992i \(-0.562162\pi\)
−0.194049 + 0.980992i \(0.562162\pi\)
\(258\) 0 0
\(259\) −2.87601 + 10.5420i −0.178706 + 0.655051i
\(260\) 0 0
\(261\) 1.56525 + 2.71109i 0.0968863 + 0.167812i
\(262\) 0 0
\(263\) −20.6266 −1.27189 −0.635946 0.771733i \(-0.719390\pi\)
−0.635946 + 0.771733i \(0.719390\pi\)
\(264\) 0 0
\(265\) 16.1762 0.993696
\(266\) 0 0
\(267\) −13.2360 −0.810027
\(268\) 0 0
\(269\) 17.7867 1.08447 0.542237 0.840226i \(-0.317578\pi\)
0.542237 + 0.840226i \(0.317578\pi\)
\(270\) 0 0
\(271\) 9.38120 + 16.2487i 0.569867 + 0.987039i 0.996579 + 0.0826512i \(0.0263387\pi\)
−0.426711 + 0.904388i \(0.640328\pi\)
\(272\) 0 0
\(273\) −12.7319 12.8478i −0.770569 0.777586i
\(274\) 0 0
\(275\) −7.86637 −0.474360
\(276\) 0 0
\(277\) 10.3030 + 17.8453i 0.619048 + 1.07222i 0.989660 + 0.143434i \(0.0458145\pi\)
−0.370612 + 0.928788i \(0.620852\pi\)
\(278\) 0 0
\(279\) 0.150536 + 0.260737i 0.00901238 + 0.0156099i
\(280\) 0 0
\(281\) 4.92982 + 8.53870i 0.294088 + 0.509376i 0.974772 0.223201i \(-0.0716507\pi\)
−0.680684 + 0.732577i \(0.738317\pi\)
\(282\) 0 0
\(283\) −5.62800 −0.334550 −0.167275 0.985910i \(-0.553497\pi\)
−0.167275 + 0.985910i \(0.553497\pi\)
\(284\) 0 0
\(285\) 12.3683 + 15.9137i 0.732635 + 0.942646i
\(286\) 0 0
\(287\) 5.21325 19.1093i 0.307728 1.12798i
\(288\) 0 0
\(289\) 9.89731 0.582195
\(290\) 0 0
\(291\) −5.15810 + 8.93409i −0.302373 + 0.523726i
\(292\) 0 0
\(293\) 26.2347 1.53265 0.766324 0.642454i \(-0.222084\pi\)
0.766324 + 0.642454i \(0.222084\pi\)
\(294\) 0 0
\(295\) 15.2480 + 26.4103i 0.887771 + 1.53767i
\(296\) 0 0
\(297\) −5.52504 9.56966i −0.320596 0.555288i
\(298\) 0 0
\(299\) 18.3910 + 31.8541i 1.06358 + 1.84217i
\(300\) 0 0
\(301\) −6.53543 + 23.9557i −0.376696 + 1.38078i
\(302\) 0 0
\(303\) 9.98098 17.2876i 0.573392 0.993144i
\(304\) 0 0
\(305\) 13.1618 + 22.7968i 0.753640 + 1.30534i
\(306\) 0 0
\(307\) −5.10646 + 8.84465i −0.291441 + 0.504791i −0.974151 0.225899i \(-0.927468\pi\)
0.682710 + 0.730690i \(0.260801\pi\)
\(308\) 0 0
\(309\) 12.9870 22.4941i 0.738803 1.27964i
\(310\) 0 0
\(311\) 8.29026 + 14.3592i 0.470098 + 0.814233i 0.999415 0.0341907i \(-0.0108854\pi\)
−0.529318 + 0.848424i \(0.677552\pi\)
\(312\) 0 0
\(313\) 3.93352 0.222336 0.111168 0.993802i \(-0.464541\pi\)
0.111168 + 0.993802i \(0.464541\pi\)
\(314\) 0 0
\(315\) 3.44708 + 3.47847i 0.194221 + 0.195990i
\(316\) 0 0
\(317\) −11.6162 −0.652429 −0.326214 0.945296i \(-0.605773\pi\)
−0.326214 + 0.945296i \(0.605773\pi\)
\(318\) 0 0
\(319\) 5.01346 8.68357i 0.280700 0.486186i
\(320\) 0 0
\(321\) 2.88736 5.00106i 0.161157 0.279132i
\(322\) 0 0
\(323\) −22.3943 + 3.08944i −1.24605 + 0.171901i
\(324\) 0 0
\(325\) −17.6074 −0.976680
\(326\) 0 0
\(327\) −30.7940 −1.70291
\(328\) 0 0
\(329\) 4.96923 1.30739i 0.273963 0.0720789i
\(330\) 0 0
\(331\) 16.2515 28.1484i 0.893261 1.54717i 0.0573193 0.998356i \(-0.481745\pi\)
0.835942 0.548818i \(-0.184922\pi\)
\(332\) 0 0
\(333\) −1.27588 + 2.20989i −0.0699179 + 0.121101i
\(334\) 0 0
\(335\) −7.03064 −0.384125
\(336\) 0 0
\(337\) 11.0884 19.2057i 0.604025 1.04620i −0.388180 0.921584i \(-0.626896\pi\)
0.992205 0.124618i \(-0.0397705\pi\)
\(338\) 0 0
\(339\) −14.9252 −0.810628
\(340\) 0 0
\(341\) 0.482166 0.835136i 0.0261107 0.0452251i
\(342\) 0 0
\(343\) −13.2726 + 12.9165i −0.716655 + 0.697427i
\(344\) 0 0
\(345\) 19.1981 + 33.2520i 1.03359 + 1.79023i
\(346\) 0 0
\(347\) −19.7530 −1.06040 −0.530199 0.847873i \(-0.677883\pi\)
−0.530199 + 0.847873i \(0.677883\pi\)
\(348\) 0 0
\(349\) 28.4738 1.52417 0.762084 0.647478i \(-0.224176\pi\)
0.762084 + 0.647478i \(0.224176\pi\)
\(350\) 0 0
\(351\) −12.3668 21.4198i −0.660088 1.14331i
\(352\) 0 0
\(353\) −7.92741 13.7307i −0.421934 0.730810i 0.574195 0.818719i \(-0.305315\pi\)
−0.996129 + 0.0879082i \(0.971982\pi\)
\(354\) 0 0
\(355\) 4.17514 0.221594
\(356\) 0 0
\(357\) 20.4812 5.38855i 1.08398 0.285192i
\(358\) 0 0
\(359\) −13.4994 23.3816i −0.712470 1.23404i −0.963927 0.266166i \(-0.914243\pi\)
0.251457 0.967869i \(-0.419090\pi\)
\(360\) 0 0
\(361\) 18.2903 5.14445i 0.962647 0.270760i
\(362\) 0 0
\(363\) 5.46668 9.46856i 0.286926 0.496971i
\(364\) 0 0
\(365\) −9.27690 16.0681i −0.485575 0.841041i
\(366\) 0 0
\(367\) 1.85091 3.20588i 0.0966169 0.167345i −0.813665 0.581334i \(-0.802531\pi\)
0.910282 + 0.413988i \(0.135864\pi\)
\(368\) 0 0
\(369\) 2.31275 4.00581i 0.120397 0.208534i
\(370\) 0 0
\(371\) −3.75996 + 13.7822i −0.195207 + 0.715536i
\(372\) 0 0
\(373\) 12.5477 21.7333i 0.649697 1.12531i −0.333498 0.942751i \(-0.608229\pi\)
0.983195 0.182557i \(-0.0584375\pi\)
\(374\) 0 0
\(375\) 4.73919 0.244731
\(376\) 0 0
\(377\) 11.2217 19.4365i 0.577945 1.00103i
\(378\) 0 0
\(379\) −5.87589 −0.301824 −0.150912 0.988547i \(-0.548221\pi\)
−0.150912 + 0.988547i \(0.548221\pi\)
\(380\) 0 0
\(381\) −7.96152 13.7898i −0.407881 0.706471i
\(382\) 0 0
\(383\) 9.86109 + 17.0799i 0.503878 + 0.872743i 0.999990 + 0.00448393i \(0.00142728\pi\)
−0.496112 + 0.868259i \(0.665239\pi\)
\(384\) 0 0
\(385\) 4.12833 15.1325i 0.210399 0.771223i
\(386\) 0 0
\(387\) −2.89931 + 5.02175i −0.147380 + 0.255270i
\(388\) 0 0
\(389\) −13.8361 + 23.9649i −0.701519 + 1.21507i 0.266414 + 0.963859i \(0.414161\pi\)
−0.967933 + 0.251208i \(0.919172\pi\)
\(390\) 0 0
\(391\) −43.0664 −2.17796
\(392\) 0 0
\(393\) 14.8168 + 25.6634i 0.747407 + 1.29455i
\(394\) 0 0
\(395\) −14.6745 + 25.4170i −0.738353 + 1.27887i
\(396\) 0 0
\(397\) 2.08694 + 3.61469i 0.104741 + 0.181416i 0.913632 0.406542i \(-0.133265\pi\)
−0.808891 + 0.587958i \(0.799932\pi\)
\(398\) 0 0
\(399\) −16.4334 + 6.83891i −0.822699 + 0.342374i
\(400\) 0 0
\(401\) −9.53082 16.5079i −0.475947 0.824364i 0.523674 0.851919i \(-0.324561\pi\)
−0.999620 + 0.0275553i \(0.991228\pi\)
\(402\) 0 0
\(403\) 1.07924 1.86929i 0.0537605 0.0931160i
\(404\) 0 0
\(405\) −10.1331 17.5510i −0.503516 0.872115i
\(406\) 0 0
\(407\) 8.17326 0.405133
\(408\) 0 0
\(409\) −4.34545 + 7.52654i −0.214869 + 0.372164i −0.953232 0.302240i \(-0.902266\pi\)
0.738363 + 0.674403i \(0.235599\pi\)
\(410\) 0 0
\(411\) 0.764516 1.32418i 0.0377108 0.0653170i
\(412\) 0 0
\(413\) −26.0459 + 6.85260i −1.28163 + 0.337195i
\(414\) 0 0
\(415\) −9.01235 15.6098i −0.442399 0.766257i
\(416\) 0 0
\(417\) −14.8559 25.7312i −0.727496 1.26006i
\(418\) 0 0
\(419\) −2.18981 −0.106979 −0.0534895 0.998568i \(-0.517034\pi\)
−0.0534895 + 0.998568i \(0.517034\pi\)
\(420\) 0 0
\(421\) 4.50474 7.80244i 0.219548 0.380268i −0.735122 0.677935i \(-0.762875\pi\)
0.954670 + 0.297667i \(0.0962085\pi\)
\(422\) 0 0
\(423\) 1.19991 0.0583418
\(424\) 0 0
\(425\) 10.3078 17.8537i 0.500004 0.866032i
\(426\) 0 0
\(427\) −22.4823 + 5.91504i −1.08799 + 0.286249i
\(428\) 0 0
\(429\) −6.76452 + 11.7165i −0.326594 + 0.565678i
\(430\) 0 0
\(431\) 9.65403 16.7213i 0.465018 0.805435i −0.534184 0.845368i \(-0.679381\pi\)
0.999202 + 0.0399331i \(0.0127145\pi\)
\(432\) 0 0
\(433\) −6.33241 10.9681i −0.304316 0.527091i 0.672793 0.739831i \(-0.265095\pi\)
−0.977109 + 0.212740i \(0.931761\pi\)
\(434\) 0 0
\(435\) 11.7141 20.2895i 0.561650 0.972807i
\(436\) 0 0
\(437\) 35.8564 4.94663i 1.71524 0.236629i
\(438\) 0 0
\(439\) −17.2578 29.8914i −0.823671 1.42664i −0.902930 0.429787i \(-0.858589\pi\)
0.0792591 0.996854i \(-0.474745\pi\)
\(440\) 0 0
\(441\) −3.76490 + 2.12840i −0.179281 + 0.101352i
\(442\) 0 0
\(443\) −9.53039 −0.452803 −0.226401 0.974034i \(-0.572696\pi\)
−0.226401 + 0.974034i \(0.572696\pi\)
\(444\) 0 0
\(445\) −12.8457 22.2494i −0.608945 1.05472i
\(446\) 0 0
\(447\) 10.5170 + 18.2160i 0.497439 + 0.861590i
\(448\) 0 0
\(449\) −1.22390 −0.0577596 −0.0288798 0.999583i \(-0.509194\pi\)
−0.0288798 + 0.999583i \(0.509194\pi\)
\(450\) 0 0
\(451\) −14.8154 −0.697631
\(452\) 0 0
\(453\) −10.4357 18.0751i −0.490310 0.849242i
\(454\) 0 0
\(455\) 9.24048 33.8712i 0.433201 1.58790i
\(456\) 0 0
\(457\) −18.5292 + 32.0935i −0.866759 + 1.50127i −0.00146815 + 0.999999i \(0.500467\pi\)
−0.865290 + 0.501271i \(0.832866\pi\)
\(458\) 0 0
\(459\) 28.9594 1.35171
\(460\) 0 0
\(461\) −12.1309 + 21.0113i −0.564992 + 0.978596i 0.432058 + 0.901846i \(0.357788\pi\)
−0.997050 + 0.0767498i \(0.975546\pi\)
\(462\) 0 0
\(463\) 16.9873 0.789465 0.394732 0.918796i \(-0.370837\pi\)
0.394732 + 0.918796i \(0.370837\pi\)
\(464\) 0 0
\(465\) 1.12660 1.95133i 0.0522448 0.0904906i
\(466\) 0 0
\(467\) −15.8206 + 27.4020i −0.732088 + 1.26801i 0.223901 + 0.974612i \(0.428121\pi\)
−0.955989 + 0.293402i \(0.905212\pi\)
\(468\) 0 0
\(469\) 1.63419 5.99014i 0.0754597 0.276599i
\(470\) 0 0
\(471\) 8.83905 0.407282
\(472\) 0 0
\(473\) 18.5729 0.853983
\(474\) 0 0
\(475\) −6.53146 + 16.0487i −0.299684 + 0.736364i
\(476\) 0 0
\(477\) −1.66803 + 2.88911i −0.0763738 + 0.132283i
\(478\) 0 0
\(479\) 12.2523 21.2216i 0.559821 0.969638i −0.437690 0.899126i \(-0.644203\pi\)
0.997511 0.0705119i \(-0.0224633\pi\)
\(480\) 0 0
\(481\) 18.2943 0.834147
\(482\) 0 0
\(483\) −32.7933 + 8.62782i −1.49214 + 0.392579i
\(484\) 0 0
\(485\) −20.0241 −0.909247
\(486\) 0 0
\(487\) −3.34790 5.79874i −0.151708 0.262766i 0.780147 0.625596i \(-0.215144\pi\)
−0.931855 + 0.362830i \(0.881811\pi\)
\(488\) 0 0
\(489\) 6.12781 10.6137i 0.277109 0.479967i
\(490\) 0 0
\(491\) −5.51655 + 9.55494i −0.248958 + 0.431208i −0.963237 0.268653i \(-0.913422\pi\)
0.714279 + 0.699861i \(0.246755\pi\)
\(492\) 0 0
\(493\) 13.1390 + 22.7573i 0.591749 + 1.02494i
\(494\) 0 0
\(495\) 1.83145 3.17217i 0.0823177 0.142578i
\(496\) 0 0
\(497\) −0.970461 + 3.55724i −0.0435311 + 0.159564i
\(498\) 0 0
\(499\) 2.46798 + 4.27466i 0.110482 + 0.191360i 0.915965 0.401259i \(-0.131427\pi\)
−0.805483 + 0.592619i \(0.798094\pi\)
\(500\) 0 0
\(501\) 13.9780 + 24.2107i 0.624493 + 1.08165i
\(502\) 0 0
\(503\) −9.25993 16.0387i −0.412880 0.715129i 0.582324 0.812957i \(-0.302144\pi\)
−0.995203 + 0.0978284i \(0.968810\pi\)
\(504\) 0 0
\(505\) 38.7468 1.72421
\(506\) 0 0
\(507\) −5.10883 + 8.84875i −0.226891 + 0.392987i
\(508\) 0 0
\(509\) 2.86837 0.127138 0.0635691 0.997977i \(-0.479752\pi\)
0.0635691 + 0.997977i \(0.479752\pi\)
\(510\) 0 0
\(511\) 15.8464 4.16914i 0.701002 0.184432i
\(512\) 0 0
\(513\) −24.1111 + 3.32629i −1.06453 + 0.146859i
\(514\) 0 0
\(515\) 50.4163 2.22161
\(516\) 0 0
\(517\) −1.92165 3.32840i −0.0845142 0.146383i
\(518\) 0 0
\(519\) −1.08757 1.88372i −0.0477389 0.0826863i
\(520\) 0 0
\(521\) 19.3005 + 33.4294i 0.845569 + 1.46457i 0.885126 + 0.465351i \(0.154072\pi\)
−0.0395568 + 0.999217i \(0.512595\pi\)
\(522\) 0 0
\(523\) −35.9212 −1.57072 −0.785362 0.619037i \(-0.787523\pi\)
−0.785362 + 0.619037i \(0.787523\pi\)
\(524\) 0 0
\(525\) 4.27222 15.6599i 0.186455 0.683455i
\(526\) 0 0
\(527\) 1.26363 + 2.18867i 0.0550446 + 0.0953400i
\(528\) 0 0
\(529\) 45.9552 1.99805
\(530\) 0 0
\(531\) −6.28926 −0.272931
\(532\) 0 0
\(533\) −33.1615 −1.43638
\(534\) 0 0
\(535\) 11.2089 0.484604
\(536\) 0 0
\(537\) 14.4689 + 25.0608i 0.624378 + 1.08146i
\(538\) 0 0
\(539\) 11.9334 + 7.03472i 0.514006 + 0.303007i
\(540\) 0 0
\(541\) 8.80044 0.378361 0.189180 0.981942i \(-0.439417\pi\)
0.189180 + 0.981942i \(0.439417\pi\)
\(542\) 0 0
\(543\) −13.9032 24.0810i −0.596643 1.03342i
\(544\) 0 0
\(545\) −29.8861 51.7642i −1.28018 2.21733i
\(546\) 0 0
\(547\) 0.491535 + 0.851364i 0.0210165 + 0.0364017i 0.876342 0.481689i \(-0.159976\pi\)
−0.855326 + 0.518090i \(0.826643\pi\)
\(548\) 0 0
\(549\) −5.42877 −0.231694
\(550\) 0 0
\(551\) −13.5532 17.4383i −0.577387 0.742895i
\(552\) 0 0
\(553\) −18.2445 18.4106i −0.775833 0.782898i
\(554\) 0 0
\(555\) 19.0971 0.810629
\(556\) 0 0
\(557\) −2.07402 + 3.59232i −0.0878793 + 0.152211i −0.906614 0.421960i \(-0.861342\pi\)
0.818735 + 0.574171i \(0.194676\pi\)
\(558\) 0 0
\(559\) 41.5719 1.75830
\(560\) 0 0
\(561\) −7.92029 13.7183i −0.334395 0.579189i
\(562\) 0 0
\(563\) −18.4667 31.9852i −0.778278 1.34802i −0.932933 0.360049i \(-0.882760\pi\)
0.154655 0.987968i \(-0.450573\pi\)
\(564\) 0 0
\(565\) −14.4852 25.0891i −0.609397 1.05551i
\(566\) 0 0
\(567\) 17.3088 4.55391i 0.726902 0.191246i
\(568\) 0 0
\(569\) −6.56492 + 11.3708i −0.275216 + 0.476687i −0.970190 0.242348i \(-0.922083\pi\)
0.694974 + 0.719035i \(0.255416\pi\)
\(570\) 0 0
\(571\) −4.29911 7.44627i −0.179912 0.311617i 0.761938 0.647650i \(-0.224248\pi\)
−0.941850 + 0.336033i \(0.890915\pi\)
\(572\) 0 0
\(573\) 0.0420598 0.0728498i 0.00175708 0.00304334i
\(574\) 0 0
\(575\) −16.5043 + 28.5863i −0.688276 + 1.19213i
\(576\) 0 0
\(577\) −5.53040 9.57893i −0.230233 0.398776i 0.727643 0.685956i \(-0.240616\pi\)
−0.957877 + 0.287180i \(0.907282\pi\)
\(578\) 0 0
\(579\) −31.9342 −1.32714
\(580\) 0 0
\(581\) 15.3945 4.05025i 0.638670 0.168033i
\(582\) 0 0
\(583\) 10.6853 0.442542
\(584\) 0 0
\(585\) 4.09935 7.10029i 0.169487 0.293561i
\(586\) 0 0
\(587\) 11.4545 19.8398i 0.472779 0.818878i −0.526735 0.850029i \(-0.676584\pi\)
0.999515 + 0.0311516i \(0.00991746\pi\)
\(588\) 0 0
\(589\) −1.30347 1.67711i −0.0537086 0.0691042i
\(590\) 0 0
\(591\) −30.6402 −1.26037
\(592\) 0 0
\(593\) −21.7893 −0.894780 −0.447390 0.894339i \(-0.647646\pi\)
−0.447390 + 0.894339i \(0.647646\pi\)
\(594\) 0 0
\(595\) 28.9354 + 29.1989i 1.18624 + 1.19704i
\(596\) 0 0
\(597\) 5.33822 9.24607i 0.218479 0.378417i
\(598\) 0 0
\(599\) 8.05995 13.9602i 0.329321 0.570400i −0.653056 0.757309i \(-0.726514\pi\)
0.982377 + 0.186909i \(0.0598469\pi\)
\(600\) 0 0
\(601\) −17.6762 −0.721028 −0.360514 0.932754i \(-0.617399\pi\)
−0.360514 + 0.932754i \(0.617399\pi\)
\(602\) 0 0
\(603\) 0.724974 1.25569i 0.0295232 0.0511357i
\(604\) 0 0
\(605\) 21.2220 0.862797
\(606\) 0 0
\(607\) −6.97347 + 12.0784i −0.283044 + 0.490247i −0.972133 0.234430i \(-0.924678\pi\)
0.689089 + 0.724677i \(0.258011\pi\)
\(608\) 0 0
\(609\) 14.5639 + 14.6965i 0.590160 + 0.595534i
\(610\) 0 0
\(611\) −4.30125 7.44999i −0.174010 0.301394i
\(612\) 0 0
\(613\) 6.00636 0.242594 0.121297 0.992616i \(-0.461295\pi\)
0.121297 + 0.992616i \(0.461295\pi\)
\(614\) 0 0
\(615\) −34.6168 −1.39588
\(616\) 0 0
\(617\) 4.05115 + 7.01680i 0.163093 + 0.282486i 0.935977 0.352062i \(-0.114520\pi\)
−0.772883 + 0.634548i \(0.781186\pi\)
\(618\) 0 0
\(619\) 0.396098 + 0.686062i 0.0159205 + 0.0275752i 0.873876 0.486149i \(-0.161599\pi\)
−0.857955 + 0.513724i \(0.828265\pi\)
\(620\) 0 0
\(621\) −46.3680 −1.86068
\(622\) 0 0
\(623\) 21.9425 5.77300i 0.879106 0.231290i
\(624\) 0 0
\(625\) 14.5371 + 25.1790i 0.581484 + 1.00716i
\(626\) 0 0
\(627\) 8.17001 + 10.5119i 0.326279 + 0.419807i
\(628\) 0 0
\(629\) −10.7100 + 18.5502i −0.427035 + 0.739646i
\(630\) 0 0
\(631\) 3.27524 + 5.67288i 0.130385 + 0.225834i 0.923825 0.382815i \(-0.125045\pi\)
−0.793440 + 0.608649i \(0.791712\pi\)
\(632\) 0 0
\(633\) 1.91154 3.31089i 0.0759770 0.131596i
\(634\) 0 0
\(635\) 15.4536 26.7664i 0.613257 1.06219i
\(636\) 0 0
\(637\) 26.7105 + 15.7459i 1.05831 + 0.623874i
\(638\) 0 0
\(639\) −0.430525 + 0.745692i −0.0170313 + 0.0294991i
\(640\) 0 0
\(641\) −37.1062 −1.46560 −0.732802 0.680441i \(-0.761788\pi\)
−0.732802 + 0.680441i \(0.761788\pi\)
\(642\) 0 0
\(643\) −18.0377 + 31.2422i −0.711337 + 1.23207i 0.253019 + 0.967461i \(0.418576\pi\)
−0.964356 + 0.264610i \(0.914757\pi\)
\(644\) 0 0
\(645\) 43.3963 1.70873
\(646\) 0 0
\(647\) −3.12087 5.40550i −0.122694 0.212512i 0.798135 0.602478i \(-0.205820\pi\)
−0.920829 + 0.389966i \(0.872487\pi\)
\(648\) 0 0
\(649\) 10.0722 + 17.4456i 0.395369 + 0.684798i
\(650\) 0 0
\(651\) 1.40068 + 1.41343i 0.0548968 + 0.0553967i
\(652\) 0 0
\(653\) −20.7080 + 35.8673i −0.810367 + 1.40360i 0.102241 + 0.994760i \(0.467399\pi\)
−0.912608 + 0.408837i \(0.865935\pi\)
\(654\) 0 0
\(655\) −28.7599 + 49.8135i −1.12374 + 1.94638i
\(656\) 0 0
\(657\) 3.82640 0.149282
\(658\) 0 0
\(659\) 8.73980 + 15.1378i 0.340454 + 0.589684i 0.984517 0.175288i \(-0.0560858\pi\)
−0.644063 + 0.764973i \(0.722752\pi\)
\(660\) 0 0
\(661\) −2.75055 + 4.76410i −0.106984 + 0.185302i −0.914547 0.404479i \(-0.867453\pi\)
0.807563 + 0.589781i \(0.200786\pi\)
\(662\) 0 0
\(663\) −17.7280 30.7059i −0.688500 1.19252i
\(664\) 0 0
\(665\) −27.4450 20.9870i −1.06427 0.813842i
\(666\) 0 0
\(667\) −21.0373 36.4377i −0.814568 1.41087i
\(668\) 0 0
\(669\) 2.47764 4.29140i 0.0957911 0.165915i
\(670\) 0 0
\(671\) 8.69413 + 15.0587i 0.335633 + 0.581334i
\(672\) 0 0
\(673\) −51.5038 −1.98533 −0.992663 0.120912i \(-0.961418\pi\)
−0.992663 + 0.120912i \(0.961418\pi\)
\(674\) 0 0
\(675\) 11.0981 19.2224i 0.427165 0.739872i
\(676\) 0 0
\(677\) 18.1552 31.4458i 0.697762 1.20856i −0.271479 0.962444i \(-0.587513\pi\)
0.969241 0.246114i \(-0.0791539\pi\)
\(678\) 0 0
\(679\) 4.65436 17.0606i 0.178618 0.654727i
\(680\) 0 0
\(681\) −1.71663 2.97330i −0.0657815 0.113937i
\(682\) 0 0
\(683\) −22.8728 39.6169i −0.875204 1.51590i −0.856546 0.516071i \(-0.827394\pi\)
−0.0186578 0.999826i \(-0.505939\pi\)
\(684\) 0 0
\(685\) 2.96790 0.113398
\(686\) 0 0
\(687\) −14.7193 + 25.4946i −0.561576 + 0.972678i
\(688\) 0 0
\(689\) 23.9171 0.911169
\(690\) 0 0
\(691\) 14.1093 24.4381i 0.536745 0.929669i −0.462332 0.886707i \(-0.652987\pi\)
0.999077 0.0429622i \(-0.0136795\pi\)
\(692\) 0 0
\(693\) 2.27700 + 2.29774i 0.0864962 + 0.0872838i
\(694\) 0 0
\(695\) 28.8358 49.9451i 1.09380 1.89452i
\(696\) 0 0
\(697\) 19.4137 33.6255i 0.735345 1.27365i
\(698\) 0 0
\(699\) 11.8409 + 20.5090i 0.447864 + 0.775723i
\(700\) 0 0
\(701\) −16.5309 + 28.6324i −0.624365 + 1.08143i 0.364298 + 0.931282i \(0.381309\pi\)
−0.988663 + 0.150150i \(0.952024\pi\)
\(702\) 0 0
\(703\) 6.78628 16.6748i 0.255949 0.628902i
\(704\) 0 0
\(705\) −4.49002 7.77694i −0.169104 0.292896i
\(706\) 0 0
\(707\) −9.00623 + 33.0125i −0.338714 + 1.24156i
\(708\) 0 0
\(709\) 2.46788 0.0926834 0.0463417 0.998926i \(-0.485244\pi\)
0.0463417 + 0.998926i \(0.485244\pi\)
\(710\) 0 0
\(711\) −3.02636 5.24181i −0.113497 0.196583i
\(712\) 0 0
\(713\) −2.02325 3.50437i −0.0757712 0.131240i
\(714\) 0 0
\(715\) −26.2603 −0.982081
\(716\) 0 0
\(717\) −3.62602 −0.135416
\(718\) 0 0
\(719\) −5.95021 10.3061i −0.221905 0.384351i 0.733481 0.679710i \(-0.237894\pi\)
−0.955387 + 0.295358i \(0.904561\pi\)
\(720\) 0 0
\(721\) −11.7187 + 42.9550i −0.436426 + 1.59973i
\(722\) 0 0
\(723\) −13.6115 + 23.5758i −0.506218 + 0.876795i
\(724\) 0 0
\(725\) 20.1409 0.748016
\(726\) 0 0
\(727\) −11.4564 + 19.8431i −0.424896 + 0.735941i −0.996411 0.0846505i \(-0.973023\pi\)
0.571515 + 0.820592i \(0.306356\pi\)
\(728\) 0 0
\(729\) 30.0344 1.11238
\(730\) 0 0
\(731\) −24.3373 + 42.1535i −0.900149 + 1.55910i
\(732\) 0 0
\(733\) 16.2940 28.2220i 0.601832 1.04240i −0.390711 0.920513i \(-0.627771\pi\)
0.992544 0.121891i \(-0.0388957\pi\)
\(734\) 0 0
\(735\) 27.8828 + 16.4369i 1.02847 + 0.606284i
\(736\) 0 0
\(737\) −4.64416 −0.171070
\(738\) 0 0
\(739\) 46.7646 1.72026 0.860131 0.510073i \(-0.170381\pi\)
0.860131 + 0.510073i \(0.170381\pi\)
\(740\) 0 0
\(741\) 18.2870 + 23.5290i 0.671789 + 0.864359i
\(742\) 0 0
\(743\) −16.7168 + 28.9543i −0.613279 + 1.06223i 0.377405 + 0.926048i \(0.376817\pi\)
−0.990684 + 0.136182i \(0.956517\pi\)
\(744\) 0 0
\(745\) −20.4139 + 35.3580i −0.747909 + 1.29542i
\(746\) 0 0
\(747\) 3.71728 0.136008
\(748\) 0 0
\(749\) −2.60538 + 9.55006i −0.0951985 + 0.348952i
\(750\) 0 0
\(751\) 3.68057 0.134306 0.0671530 0.997743i \(-0.478608\pi\)
0.0671530 + 0.997743i \(0.478608\pi\)
\(752\) 0 0
\(753\) 3.42293 + 5.92869i 0.124739 + 0.216054i
\(754\) 0 0
\(755\) 20.2560 35.0844i 0.737190 1.27685i
\(756\) 0 0
\(757\) 10.2828 17.8103i 0.373735 0.647328i −0.616402 0.787432i \(-0.711410\pi\)
0.990137 + 0.140104i \(0.0447437\pi\)
\(758\) 0 0
\(759\) 12.6815 + 21.9650i 0.460309 + 0.797278i
\(760\) 0 0
\(761\) 10.3375 17.9051i 0.374735 0.649060i −0.615553 0.788096i \(-0.711067\pi\)
0.990287 + 0.139036i \(0.0444004\pi\)
\(762\) 0 0
\(763\) 51.0500 13.4311i 1.84813 0.486239i
\(764\) 0 0
\(765\) 4.79976 + 8.31342i 0.173536 + 0.300572i
\(766\) 0 0
\(767\) 22.5447 + 39.0486i 0.814042 + 1.40996i
\(768\) 0 0
\(769\) −18.2913 31.6814i −0.659600 1.14246i −0.980719 0.195422i \(-0.937392\pi\)
0.321120 0.947039i \(-0.395941\pi\)
\(770\) 0 0
\(771\) −9.60269 −0.345833
\(772\) 0 0
\(773\) −11.7243 + 20.3072i −0.421695 + 0.730398i −0.996105 0.0881698i \(-0.971898\pi\)
0.574410 + 0.818568i \(0.305232\pi\)
\(774\) 0 0
\(775\) 1.93704 0.0695805
\(776\) 0 0
\(777\) −4.43890 + 16.2709i −0.159245 + 0.583714i
\(778\) 0 0
\(779\) −12.3013 + 30.2259i −0.440739 + 1.08296i
\(780\) 0 0
\(781\) 2.75793 0.0986866
\(782\) 0 0
\(783\) 14.1462 + 24.5020i 0.505546 + 0.875631i
\(784\) 0 0
\(785\) 8.57845 + 14.8583i 0.306178 + 0.530316i
\(786\) 0 0
\(787\) −16.5356 28.6405i −0.589431 1.02092i −0.994307 0.106553i \(-0.966019\pi\)
0.404876 0.914371i \(-0.367315\pi\)
\(788\) 0 0
\(789\) −31.8356 −1.13338
\(790\) 0 0
\(791\) 24.7430 6.50981i 0.879758 0.231462i
\(792\) 0 0
\(793\) 19.4602 + 33.7060i 0.691050 + 1.19693i
\(794\) 0 0
\(795\) 24.9667 0.885479
\(796\) 0 0
\(797\) −7.89620 −0.279698 −0.139849 0.990173i \(-0.544662\pi\)
−0.139849 + 0.990173i \(0.544662\pi\)
\(798\) 0 0
\(799\) 10.0723 0.356332
\(800\) 0 0
\(801\) 5.29841 0.187210
\(802\) 0 0
\(803\) −6.12795 10.6139i −0.216251 0.374557i
\(804\) 0 0
\(805\) −46.3296 46.7515i −1.63291 1.64777i
\(806\) 0 0
\(807\) 27.4524 0.966370
\(808\) 0 0
\(809\) −17.3919 30.1237i −0.611468 1.05909i −0.990993 0.133913i \(-0.957246\pi\)
0.379525 0.925182i \(-0.376087\pi\)
\(810\) 0 0
\(811\) −10.9021 18.8829i −0.382823 0.663069i 0.608641 0.793445i \(-0.291715\pi\)
−0.991465 + 0.130376i \(0.958382\pi\)
\(812\) 0 0
\(813\) 14.4792 + 25.0787i 0.507807 + 0.879547i
\(814\) 0 0
\(815\) 23.7886 0.833277
\(816\) 0 0
\(817\) 15.4211 37.8918i 0.539517 1.32567i
\(818\) 0 0
\(819\) 5.09664 + 5.14305i 0.178091 + 0.179713i
\(820\) 0 0
\(821\) 27.2445 0.950840 0.475420 0.879759i \(-0.342296\pi\)
0.475420 + 0.879759i \(0.342296\pi\)
\(822\) 0 0
\(823\) 8.92582 15.4600i 0.311134 0.538901i −0.667474 0.744633i \(-0.732624\pi\)
0.978608 + 0.205733i \(0.0659577\pi\)
\(824\) 0 0
\(825\) −12.1411 −0.422700
\(826\) 0 0
\(827\) 7.64224 + 13.2368i 0.265747 + 0.460287i 0.967759 0.251878i \(-0.0810482\pi\)
−0.702012 + 0.712165i \(0.747715\pi\)
\(828\) 0 0
\(829\) 13.2246 + 22.9057i 0.459310 + 0.795549i 0.998925 0.0463634i \(-0.0147632\pi\)
−0.539614 + 0.841912i \(0.681430\pi\)
\(830\) 0 0
\(831\) 15.9019 + 27.5429i 0.551631 + 0.955453i
\(832\) 0 0
\(833\) −31.6033 + 17.8662i −1.09499 + 0.619027i
\(834\) 0 0
\(835\) −27.1319 + 46.9938i −0.938937 + 1.62629i
\(836\) 0 0
\(837\) 1.36051 + 2.35646i 0.0470259 + 0.0814513i
\(838\) 0 0
\(839\) 11.0135 19.0760i 0.380230 0.658577i −0.610865 0.791735i \(-0.709178\pi\)
0.991095 + 0.133157i \(0.0425116\pi\)
\(840\) 0 0
\(841\) 1.66361 2.88146i 0.0573658 0.0993605i
\(842\) 0 0
\(843\) 7.60880 + 13.1788i 0.262061 + 0.453903i
\(844\) 0 0
\(845\) −19.8328 −0.682269
\(846\) 0 0
\(847\) −4.93280 + 18.0813i −0.169493 + 0.621279i
\(848\) 0 0
\(849\) −8.68640 −0.298116
\(850\) 0 0
\(851\) 17.1482 29.7015i 0.587832 1.01815i
\(852\) 0 0
\(853\) −24.2446 + 41.9928i −0.830118 + 1.43781i 0.0678269 + 0.997697i \(0.478393\pi\)
−0.897944 + 0.440109i \(0.854940\pi\)
\(854\) 0 0
\(855\) −4.95109 6.37032i −0.169324 0.217860i
\(856\) 0 0
\(857\) −31.3853 −1.07210 −0.536051 0.844186i \(-0.680084\pi\)
−0.536051 + 0.844186i \(0.680084\pi\)
\(858\) 0 0
\(859\) 9.73812 0.332260 0.166130 0.986104i \(-0.446873\pi\)
0.166130 + 0.986104i \(0.446873\pi\)
\(860\) 0 0
\(861\) 8.04626 29.4937i 0.274216 1.00514i
\(862\) 0 0
\(863\) 10.9453 18.9578i 0.372583 0.645332i −0.617379 0.786666i \(-0.711806\pi\)
0.989962 + 0.141333i \(0.0451389\pi\)
\(864\) 0 0
\(865\) 2.11101 3.65637i 0.0717764 0.124320i
\(866\) 0 0
\(867\) 15.2758 0.518792
\(868\) 0 0
\(869\) −9.69338 + 16.7894i −0.328825 + 0.569542i
\(870\) 0 0
\(871\) −10.3951 −0.352223
\(872\) 0 0
\(873\) 2.06481 3.57636i 0.0698833 0.121041i
\(874\) 0 0
\(875\) −7.85659 + 2.06705i −0.265601 + 0.0698790i
\(876\) 0 0
\(877\) 3.34241 + 5.78923i 0.112865 + 0.195488i 0.916924 0.399061i \(-0.130664\pi\)
−0.804059 + 0.594549i \(0.797330\pi\)
\(878\) 0 0
\(879\) 40.4913 1.36574
\(880\) 0 0
\(881\) 15.8968 0.535578 0.267789 0.963478i \(-0.413707\pi\)
0.267789 + 0.963478i \(0.413707\pi\)
\(882\) 0 0
\(883\) −14.9113 25.8271i −0.501804 0.869150i −0.999998 0.00208421i \(-0.999337\pi\)
0.498194 0.867066i \(-0.333997\pi\)
\(884\) 0 0
\(885\) 23.5341 + 40.7623i 0.791090 + 1.37021i
\(886\) 0 0
\(887\) −31.2869 −1.05051 −0.525256 0.850944i \(-0.676031\pi\)
−0.525256 + 0.850944i \(0.676031\pi\)
\(888\) 0 0
\(889\) 19.2131 + 19.3880i 0.644386 + 0.650254i
\(890\) 0 0
\(891\) −6.69349 11.5935i −0.224241 0.388396i
\(892\) 0 0
\(893\) −8.38604 + 1.15691i −0.280628 + 0.0387145i
\(894\) 0 0
\(895\) −28.0846 + 48.6439i −0.938764 + 1.62599i
\(896\) 0 0
\(897\) 28.3851 + 49.1644i 0.947750 + 1.64155i
\(898\) 0 0
\(899\) −1.23453 + 2.13827i −0.0411739 + 0.0713153i
\(900\) 0 0
\(901\) −14.0017 + 24.2517i −0.466466 + 0.807942i
\(902\) 0 0
\(903\) −10.0869 + 36.9739i −0.335672 + 1.23041i
\(904\) 0 0
\(905\) 26.9865 46.7421i 0.897063 1.55376i
\(906\) 0 0
\(907\) −27.4907 −0.912813 −0.456406 0.889771i \(-0.650864\pi\)
−0.456406 + 0.889771i \(0.650864\pi\)
\(908\) 0 0
\(909\) −3.99543 + 6.92029i −0.132520 + 0.229532i
\(910\) 0 0
\(911\) 33.2850 1.10278 0.551391 0.834247i \(-0.314097\pi\)
0.551391 + 0.834247i \(0.314097\pi\)
\(912\) 0 0
\(913\) −5.95320 10.3112i −0.197022 0.341252i
\(914\) 0 0
\(915\) 20.3142 + 35.1852i 0.671566 + 1.16319i
\(916\) 0 0
\(917\) −35.7565 36.0821i −1.18078 1.19154i
\(918\) 0 0
\(919\) −15.4208 + 26.7096i −0.508686 + 0.881070i 0.491264 + 0.871011i \(0.336535\pi\)
−0.999949 + 0.0100587i \(0.996798\pi\)
\(920\) 0 0
\(921\) −7.88144 + 13.6510i −0.259702 + 0.449817i
\(922\) 0 0
\(923\) 6.17310 0.203190
\(924\) 0 0
\(925\) 8.20876 + 14.2180i 0.269902 + 0.467485i
\(926\) 0 0
\(927\) −5.19875 + 9.00450i −0.170749 + 0.295746i
\(928\) 0 0
\(929\) 18.8730 + 32.6889i 0.619202 + 1.07249i 0.989632 + 0.143629i \(0.0458771\pi\)
−0.370430 + 0.928860i \(0.620790\pi\)
\(930\) 0 0
\(931\) 24.2603 18.5051i 0.795099 0.606480i
\(932\) 0 0
\(933\) 12.7954 + 22.1623i 0.418902 + 0.725560i
\(934\) 0 0
\(935\) 15.3735 26.6278i 0.502769 0.870821i
\(936\) 0 0
\(937\) −5.88110 10.1864i −0.192127 0.332774i 0.753828 0.657072i \(-0.228205\pi\)
−0.945955 + 0.324298i \(0.894872\pi\)
\(938\) 0 0
\(939\) 6.07109 0.198122
\(940\) 0 0
\(941\) −11.1677 + 19.3430i −0.364056 + 0.630563i −0.988624 0.150407i \(-0.951942\pi\)
0.624569 + 0.780970i \(0.285275\pi\)
\(942\) 0 0
\(943\) −31.0840 + 53.8390i −1.01223 + 1.75324i
\(944\) 0 0
\(945\) 31.1537 + 31.4374i 1.01343 + 1.02266i
\(946\) 0 0
\(947\) −14.5346 25.1746i −0.472311 0.818066i 0.527187 0.849749i \(-0.323247\pi\)
−0.999498 + 0.0316832i \(0.989913\pi\)
\(948\) 0 0
\(949\) −13.7162 23.7572i −0.445248 0.771192i
\(950\) 0 0
\(951\) −17.9287 −0.581377
\(952\) 0 0
\(953\) 1.92366 3.33187i 0.0623133 0.107930i −0.833186 0.552993i \(-0.813486\pi\)
0.895499 + 0.445063i \(0.146819\pi\)
\(954\) 0 0
\(955\) 0.163279 0.00528359
\(956\) 0 0
\(957\) 7.73790 13.4024i 0.250131 0.433239i
\(958\) 0 0
\(959\) −0.689853 + 2.52867i −0.0222765 + 0.0816549i
\(960\) 0 0
\(961\) 15.3813 26.6411i 0.496170 0.859392i
\(962\) 0 0
\(963\) −1.15582 + 2.00195i −0.0372459 + 0.0645118i
\(964\) 0 0
\(965\) −30.9926 53.6808i −0.997689 1.72805i
\(966\) 0 0
\(967\) −26.5599 + 46.0031i −0.854109 + 1.47936i 0.0233602 + 0.999727i \(0.492564\pi\)
−0.877469 + 0.479633i \(0.840770\pi\)
\(968\) 0 0
\(969\) −34.5639 + 4.76832i −1.11035 + 0.153181i
\(970\) 0 0
\(971\) −4.56618 7.90886i −0.146536 0.253807i 0.783409 0.621506i \(-0.213479\pi\)
−0.929945 + 0.367699i \(0.880146\pi\)
\(972\) 0 0
\(973\) 35.8509 + 36.1774i 1.14933 + 1.15979i
\(974\) 0 0
\(975\) −27.1756 −0.870316
\(976\) 0 0
\(977\) −15.6610 27.1257i −0.501040 0.867828i −0.999999 0.00120183i \(-0.999617\pi\)
0.498959 0.866626i \(-0.333716\pi\)
\(978\) 0 0
\(979\) −8.48537 14.6971i −0.271194 0.469721i
\(980\) 0 0
\(981\) 12.3270 0.393570
\(982\) 0 0
\(983\) −1.84399 −0.0588141 −0.0294071 0.999568i \(-0.509362\pi\)
−0.0294071 + 0.999568i \(0.509362\pi\)
\(984\) 0 0
\(985\) −29.7368 51.5056i −0.947493 1.64111i
\(986\) 0 0
\(987\) 7.66964 2.01786i 0.244127 0.0642293i
\(988\) 0 0
\(989\) 38.9675 67.4936i 1.23909 2.14617i
\(990\) 0 0
\(991\) −25.2241 −0.801269 −0.400635 0.916238i \(-0.631210\pi\)
−0.400635 + 0.916238i \(0.631210\pi\)
\(992\) 0 0
\(993\) 25.0829 43.4449i 0.795982 1.37868i
\(994\) 0 0
\(995\) 20.7233 0.656974
\(996\) 0 0
\(997\) 25.9690 44.9796i 0.822445 1.42452i −0.0814108 0.996681i \(-0.525943\pi\)
0.903856 0.427836i \(-0.140724\pi\)
\(998\) 0 0
\(999\) −11.5311 + 19.9724i −0.364827 + 0.631898i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.l.b.429.9 yes 24
7.4 even 3 532.2.k.b.277.4 yes 24
19.7 even 3 532.2.k.b.121.4 24
133.102 even 3 inner 532.2.l.b.501.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.k.b.121.4 24 19.7 even 3
532.2.k.b.277.4 yes 24 7.4 even 3
532.2.l.b.429.9 yes 24 1.1 even 1 trivial
532.2.l.b.501.9 yes 24 133.102 even 3 inner