Properties

Label 532.2.l.b.501.9
Level $532$
Weight $2$
Character 532.501
Analytic conductor $4.248$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(429,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 501.9
Character \(\chi\) \(=\) 532.501
Dual form 532.2.l.b.429.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54342 q^{3} +(1.49792 - 2.59447i) q^{5} +(-2.55868 - 0.673181i) q^{7} -0.617840 q^{9} +(0.989466 - 1.71381i) q^{11} +(2.21473 - 3.83603i) q^{13} +(2.31193 - 4.00437i) q^{15} -5.18626 q^{17} +(4.31800 + 0.595698i) q^{19} +(-3.94913 - 1.03900i) q^{21} +8.30393 q^{23} +(-1.98753 - 3.44250i) q^{25} -5.58386 q^{27} +(-2.53342 + 4.38800i) q^{29} +(-0.243649 + 0.422013i) q^{31} +(1.52717 - 2.64513i) q^{33} +(-5.57924 + 5.63005i) q^{35} +(2.06507 + 3.57680i) q^{37} +(3.41827 - 5.92062i) q^{39} +(-3.74329 - 6.48356i) q^{41} +(4.69266 + 8.12792i) q^{43} +(-0.925475 + 1.60297i) q^{45} -1.94211 q^{47} +(6.09365 + 3.44491i) q^{49} -8.00460 q^{51} +(2.69978 + 4.67615i) q^{53} +(-2.96428 - 5.13429i) q^{55} +(6.66451 + 0.919414i) q^{57} +10.1794 q^{59} +8.78669 q^{61} +(1.58085 + 0.415918i) q^{63} +(-6.63498 - 11.4921i) q^{65} +(-1.17340 - 2.03239i) q^{67} +12.8165 q^{69} +(0.696823 + 1.20693i) q^{71} -6.19319 q^{73} +(-3.06760 - 5.31324i) q^{75} +(-3.68543 + 3.71898i) q^{77} +(4.89829 - 8.48408i) q^{79} -6.76475 q^{81} -6.01658 q^{83} +(-7.76860 + 13.4556i) q^{85} +(-3.91014 + 6.77256i) q^{87} -8.57570 q^{89} +(-8.24912 + 8.32423i) q^{91} +(-0.376055 + 0.651346i) q^{93} +(8.01354 - 10.3106i) q^{95} +(-3.34198 - 5.78849i) q^{97} +(-0.611332 + 1.05886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} - 6 q^{7} + 30 q^{9} + q^{11} - 7 q^{13} - 2 q^{15} - 6 q^{17} + 17 q^{19} - 18 q^{21} - 16 q^{23} - 8 q^{25} + 20 q^{27} - 22 q^{29} - 7 q^{31} + 7 q^{33} - 21 q^{35} + 9 q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.54342 0.891097 0.445548 0.895258i \(-0.353009\pi\)
0.445548 + 0.895258i \(0.353009\pi\)
\(4\) 0 0
\(5\) 1.49792 2.59447i 0.669890 1.16028i −0.308044 0.951372i \(-0.599675\pi\)
0.977934 0.208912i \(-0.0669921\pi\)
\(6\) 0 0
\(7\) −2.55868 0.673181i −0.967089 0.254439i
\(8\) 0 0
\(9\) −0.617840 −0.205947
\(10\) 0 0
\(11\) 0.989466 1.71381i 0.298335 0.516732i −0.677420 0.735597i \(-0.736902\pi\)
0.975755 + 0.218865i \(0.0702353\pi\)
\(12\) 0 0
\(13\) 2.21473 3.83603i 0.614256 1.06392i −0.376259 0.926515i \(-0.622790\pi\)
0.990515 0.137407i \(-0.0438770\pi\)
\(14\) 0 0
\(15\) 2.31193 4.00437i 0.596937 1.03392i
\(16\) 0 0
\(17\) −5.18626 −1.25785 −0.628927 0.777465i \(-0.716505\pi\)
−0.628927 + 0.777465i \(0.716505\pi\)
\(18\) 0 0
\(19\) 4.31800 + 0.595698i 0.990618 + 0.136662i
\(20\) 0 0
\(21\) −3.94913 1.03900i −0.861770 0.226729i
\(22\) 0 0
\(23\) 8.30393 1.73149 0.865744 0.500486i \(-0.166845\pi\)
0.865744 + 0.500486i \(0.166845\pi\)
\(24\) 0 0
\(25\) −1.98753 3.44250i −0.397506 0.688500i
\(26\) 0 0
\(27\) −5.58386 −1.07462
\(28\) 0 0
\(29\) −2.53342 + 4.38800i −0.470444 + 0.814832i −0.999429 0.0337990i \(-0.989239\pi\)
0.528985 + 0.848631i \(0.322573\pi\)
\(30\) 0 0
\(31\) −0.243649 + 0.422013i −0.0437607 + 0.0757958i −0.887076 0.461623i \(-0.847267\pi\)
0.843315 + 0.537419i \(0.180601\pi\)
\(32\) 0 0
\(33\) 1.52717 2.64513i 0.265846 0.460458i
\(34\) 0 0
\(35\) −5.57924 + 5.63005i −0.943064 + 0.951652i
\(36\) 0 0
\(37\) 2.06507 + 3.57680i 0.339495 + 0.588023i 0.984338 0.176293i \(-0.0564105\pi\)
−0.644843 + 0.764315i \(0.723077\pi\)
\(38\) 0 0
\(39\) 3.41827 5.92062i 0.547361 0.948057i
\(40\) 0 0
\(41\) −3.74329 6.48356i −0.584603 1.01256i −0.994925 0.100622i \(-0.967917\pi\)
0.410322 0.911941i \(-0.365416\pi\)
\(42\) 0 0
\(43\) 4.69266 + 8.12792i 0.715623 + 1.23950i 0.962719 + 0.270505i \(0.0871905\pi\)
−0.247095 + 0.968991i \(0.579476\pi\)
\(44\) 0 0
\(45\) −0.925475 + 1.60297i −0.137962 + 0.238957i
\(46\) 0 0
\(47\) −1.94211 −0.283286 −0.141643 0.989918i \(-0.545239\pi\)
−0.141643 + 0.989918i \(0.545239\pi\)
\(48\) 0 0
\(49\) 6.09365 + 3.44491i 0.870522 + 0.492129i
\(50\) 0 0
\(51\) −8.00460 −1.12087
\(52\) 0 0
\(53\) 2.69978 + 4.67615i 0.370843 + 0.642318i 0.989695 0.143189i \(-0.0457356\pi\)
−0.618853 + 0.785507i \(0.712402\pi\)
\(54\) 0 0
\(55\) −2.96428 5.13429i −0.399704 0.692307i
\(56\) 0 0
\(57\) 6.66451 + 0.919414i 0.882736 + 0.121779i
\(58\) 0 0
\(59\) 10.1794 1.32525 0.662625 0.748952i \(-0.269443\pi\)
0.662625 + 0.748952i \(0.269443\pi\)
\(60\) 0 0
\(61\) 8.78669 1.12502 0.562510 0.826790i \(-0.309836\pi\)
0.562510 + 0.826790i \(0.309836\pi\)
\(62\) 0 0
\(63\) 1.58085 + 0.415918i 0.199169 + 0.0524008i
\(64\) 0 0
\(65\) −6.63498 11.4921i −0.822968 1.42542i
\(66\) 0 0
\(67\) −1.17340 2.03239i −0.143354 0.248296i 0.785404 0.618984i \(-0.212455\pi\)
−0.928758 + 0.370688i \(0.879122\pi\)
\(68\) 0 0
\(69\) 12.8165 1.54292
\(70\) 0 0
\(71\) 0.696823 + 1.20693i 0.0826977 + 0.143237i 0.904408 0.426669i \(-0.140313\pi\)
−0.821710 + 0.569906i \(0.806980\pi\)
\(72\) 0 0
\(73\) −6.19319 −0.724858 −0.362429 0.932011i \(-0.618052\pi\)
−0.362429 + 0.932011i \(0.618052\pi\)
\(74\) 0 0
\(75\) −3.06760 5.31324i −0.354216 0.613520i
\(76\) 0 0
\(77\) −3.68543 + 3.71898i −0.419993 + 0.423818i
\(78\) 0 0
\(79\) 4.89829 8.48408i 0.551100 0.954534i −0.447095 0.894486i \(-0.647541\pi\)
0.998196 0.0600475i \(-0.0191252\pi\)
\(80\) 0 0
\(81\) −6.76475 −0.751639
\(82\) 0 0
\(83\) −6.01658 −0.660405 −0.330203 0.943910i \(-0.607117\pi\)
−0.330203 + 0.943910i \(0.607117\pi\)
\(84\) 0 0
\(85\) −7.76860 + 13.4556i −0.842623 + 1.45947i
\(86\) 0 0
\(87\) −3.91014 + 6.77256i −0.419211 + 0.726094i
\(88\) 0 0
\(89\) −8.57570 −0.909023 −0.454511 0.890741i \(-0.650186\pi\)
−0.454511 + 0.890741i \(0.650186\pi\)
\(90\) 0 0
\(91\) −8.24912 + 8.32423i −0.864743 + 0.872617i
\(92\) 0 0
\(93\) −0.376055 + 0.651346i −0.0389950 + 0.0675414i
\(94\) 0 0
\(95\) 8.01354 10.3106i 0.822172 1.05785i
\(96\) 0 0
\(97\) −3.34198 5.78849i −0.339327 0.587732i 0.644979 0.764200i \(-0.276866\pi\)
−0.984306 + 0.176468i \(0.943533\pi\)
\(98\) 0 0
\(99\) −0.611332 + 1.05886i −0.0614412 + 0.106419i
\(100\) 0 0
\(101\) 6.46677 + 11.2008i 0.643468 + 1.11452i 0.984653 + 0.174523i \(0.0558384\pi\)
−0.341185 + 0.939996i \(0.610828\pi\)
\(102\) 0 0
\(103\) 8.41439 + 14.5742i 0.829095 + 1.43603i 0.898749 + 0.438463i \(0.144477\pi\)
−0.0696549 + 0.997571i \(0.522190\pi\)
\(104\) 0 0
\(105\) −8.61114 + 8.68955i −0.840361 + 0.848014i
\(106\) 0 0
\(107\) 1.87075 + 3.24023i 0.180852 + 0.313245i 0.942171 0.335133i \(-0.108781\pi\)
−0.761319 + 0.648378i \(0.775448\pi\)
\(108\) 0 0
\(109\) −19.9517 −1.91103 −0.955514 0.294946i \(-0.904698\pi\)
−0.955514 + 0.294946i \(0.904698\pi\)
\(110\) 0 0
\(111\) 3.18728 + 5.52053i 0.302523 + 0.523985i
\(112\) 0 0
\(113\) −9.67021 −0.909697 −0.454849 0.890569i \(-0.650307\pi\)
−0.454849 + 0.890569i \(0.650307\pi\)
\(114\) 0 0
\(115\) 12.4386 21.5443i 1.15991 2.00902i
\(116\) 0 0
\(117\) −1.36835 + 2.37005i −0.126504 + 0.219111i
\(118\) 0 0
\(119\) 13.2700 + 3.49129i 1.21646 + 0.320046i
\(120\) 0 0
\(121\) 3.54191 + 6.13477i 0.321992 + 0.557707i
\(122\) 0 0
\(123\) −5.77748 10.0069i −0.520938 0.902291i
\(124\) 0 0
\(125\) 3.07057 0.274640
\(126\) 0 0
\(127\) −5.15835 + 8.93452i −0.457729 + 0.792810i −0.998841 0.0481406i \(-0.984670\pi\)
0.541111 + 0.840951i \(0.318004\pi\)
\(128\) 0 0
\(129\) 7.24276 + 12.5448i 0.637689 + 1.10451i
\(130\) 0 0
\(131\) 9.59993 16.6276i 0.838750 1.45276i −0.0521900 0.998637i \(-0.516620\pi\)
0.890940 0.454121i \(-0.150047\pi\)
\(132\) 0 0
\(133\) −10.6474 4.43100i −0.923243 0.384216i
\(134\) 0 0
\(135\) −8.36418 + 14.4872i −0.719874 + 1.24686i
\(136\) 0 0
\(137\) 0.495337 + 0.857950i 0.0423195 + 0.0732996i 0.886409 0.462902i \(-0.153192\pi\)
−0.844090 + 0.536202i \(0.819859\pi\)
\(138\) 0 0
\(139\) −9.62528 + 16.6715i −0.816406 + 1.41406i 0.0919085 + 0.995767i \(0.470703\pi\)
−0.908314 + 0.418289i \(0.862630\pi\)
\(140\) 0 0
\(141\) −2.99750 −0.252435
\(142\) 0 0
\(143\) −4.38280 7.59123i −0.366508 0.634811i
\(144\) 0 0
\(145\) 7.58971 + 13.1458i 0.630291 + 1.09170i
\(146\) 0 0
\(147\) 9.40510 + 5.31695i 0.775719 + 0.438535i
\(148\) 0 0
\(149\) 6.81409 11.8024i 0.558232 0.966887i −0.439412 0.898286i \(-0.644813\pi\)
0.997644 0.0686010i \(-0.0218535\pi\)
\(150\) 0 0
\(151\) −6.76136 + 11.7110i −0.550232 + 0.953030i 0.448026 + 0.894021i \(0.352127\pi\)
−0.998257 + 0.0590089i \(0.981206\pi\)
\(152\) 0 0
\(153\) 3.20428 0.259051
\(154\) 0 0
\(155\) 0.729935 + 1.26428i 0.0586298 + 0.101550i
\(156\) 0 0
\(157\) 5.72691 0.457057 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(158\) 0 0
\(159\) 4.16690 + 7.21728i 0.330457 + 0.572368i
\(160\) 0 0
\(161\) −21.2471 5.59005i −1.67450 0.440558i
\(162\) 0 0
\(163\) 3.97027 + 6.87670i 0.310975 + 0.538625i 0.978574 0.205897i \(-0.0660111\pi\)
−0.667599 + 0.744521i \(0.732678\pi\)
\(164\) 0 0
\(165\) −4.57515 7.92439i −0.356175 0.616913i
\(166\) 0 0
\(167\) 9.05651 15.6863i 0.700814 1.21385i −0.267367 0.963595i \(-0.586154\pi\)
0.968181 0.250251i \(-0.0805130\pi\)
\(168\) 0 0
\(169\) −3.31006 5.73319i −0.254620 0.441015i
\(170\) 0 0
\(171\) −2.66783 0.368046i −0.204014 0.0281452i
\(172\) 0 0
\(173\) −0.704646 + 1.22048i −0.0535732 + 0.0927916i −0.891568 0.452886i \(-0.850394\pi\)
0.837995 + 0.545678i \(0.183728\pi\)
\(174\) 0 0
\(175\) 2.76802 + 10.1462i 0.209242 + 0.766981i
\(176\) 0 0
\(177\) 15.7112 1.18093
\(178\) 0 0
\(179\) 9.37453 16.2372i 0.700685 1.21362i −0.267541 0.963547i \(-0.586211\pi\)
0.968226 0.250076i \(-0.0804557\pi\)
\(180\) 0 0
\(181\) −9.00801 + 15.6023i −0.669560 + 1.15971i 0.308468 + 0.951235i \(0.400184\pi\)
−0.978027 + 0.208477i \(0.933149\pi\)
\(182\) 0 0
\(183\) 13.5616 1.00250
\(184\) 0 0
\(185\) 12.3732 0.909698
\(186\) 0 0
\(187\) −5.13163 + 8.88825i −0.375262 + 0.649973i
\(188\) 0 0
\(189\) 14.2873 + 3.75895i 1.03925 + 0.273424i
\(190\) 0 0
\(191\) 0.0272510 + 0.0472001i 0.00197181 + 0.00341528i 0.867010 0.498291i \(-0.166039\pi\)
−0.865038 + 0.501707i \(0.832706\pi\)
\(192\) 0 0
\(193\) −20.6905 −1.48933 −0.744666 0.667437i \(-0.767391\pi\)
−0.744666 + 0.667437i \(0.767391\pi\)
\(194\) 0 0
\(195\) −10.2406 17.7372i −0.733344 1.27019i
\(196\) 0 0
\(197\) −19.8521 −1.41440 −0.707200 0.707013i \(-0.750042\pi\)
−0.707200 + 0.707013i \(0.750042\pi\)
\(198\) 0 0
\(199\) 3.45869 + 5.99062i 0.245180 + 0.424664i 0.962182 0.272407i \(-0.0878197\pi\)
−0.717002 + 0.697071i \(0.754486\pi\)
\(200\) 0 0
\(201\) −1.81106 3.13684i −0.127742 0.221256i
\(202\) 0 0
\(203\) 9.43611 9.52204i 0.662285 0.668316i
\(204\) 0 0
\(205\) −22.4286 −1.56648
\(206\) 0 0
\(207\) −5.13050 −0.356594
\(208\) 0 0
\(209\) 5.29343 6.81079i 0.366154 0.471113i
\(210\) 0 0
\(211\) 1.23851 + 2.14516i 0.0852624 + 0.147679i 0.905503 0.424340i \(-0.139494\pi\)
−0.820241 + 0.572019i \(0.806160\pi\)
\(212\) 0 0
\(213\) 1.07549 + 1.86281i 0.0736917 + 0.127638i
\(214\) 0 0
\(215\) 28.1169 1.91756
\(216\) 0 0
\(217\) 0.907511 0.915775i 0.0616059 0.0621669i
\(218\) 0 0
\(219\) −9.55872 −0.645918
\(220\) 0 0
\(221\) −11.4862 + 19.8946i −0.772643 + 1.33826i
\(222\) 0 0
\(223\) 1.60529 + 2.78044i 0.107498 + 0.186192i 0.914756 0.404007i \(-0.132383\pi\)
−0.807258 + 0.590199i \(0.799049\pi\)
\(224\) 0 0
\(225\) 1.22797 + 2.12691i 0.0818650 + 0.141794i
\(226\) 0 0
\(227\) −1.11222 + 1.92643i −0.0738209 + 0.127862i −0.900573 0.434705i \(-0.856853\pi\)
0.826752 + 0.562567i \(0.190186\pi\)
\(228\) 0 0
\(229\) −9.53678 16.5182i −0.630208 1.09155i −0.987509 0.157563i \(-0.949636\pi\)
0.357301 0.933989i \(-0.383697\pi\)
\(230\) 0 0
\(231\) −5.68818 + 5.73997i −0.374255 + 0.377663i
\(232\) 0 0
\(233\) 7.67183 13.2880i 0.502598 0.870526i −0.497397 0.867523i \(-0.665711\pi\)
0.999995 0.00300290i \(-0.000955854\pi\)
\(234\) 0 0
\(235\) −2.90913 + 5.03875i −0.189770 + 0.328692i
\(236\) 0 0
\(237\) 7.56014 13.0945i 0.491084 0.850582i
\(238\) 0 0
\(239\) −2.34933 −0.151966 −0.0759828 0.997109i \(-0.524209\pi\)
−0.0759828 + 0.997109i \(0.524209\pi\)
\(240\) 0 0
\(241\) −8.81904 15.2750i −0.568084 0.983951i −0.996755 0.0804901i \(-0.974351\pi\)
0.428671 0.903461i \(-0.358982\pi\)
\(242\) 0 0
\(243\) 6.31070 0.404832
\(244\) 0 0
\(245\) 18.0655 10.6496i 1.15416 0.680380i
\(246\) 0 0
\(247\) 11.8483 15.2447i 0.753891 0.969994i
\(248\) 0 0
\(249\) −9.28613 −0.588485
\(250\) 0 0
\(251\) 2.21775 3.84126i 0.139983 0.242458i −0.787507 0.616306i \(-0.788628\pi\)
0.927490 + 0.373848i \(0.121962\pi\)
\(252\) 0 0
\(253\) 8.21646 14.2313i 0.516564 0.894716i
\(254\) 0 0
\(255\) −11.9903 + 20.7677i −0.750859 + 1.30053i
\(256\) 0 0
\(257\) −6.22168 −0.388098 −0.194049 0.980992i \(-0.562162\pi\)
−0.194049 + 0.980992i \(0.562162\pi\)
\(258\) 0 0
\(259\) −2.87601 10.5420i −0.178706 0.655051i
\(260\) 0 0
\(261\) 1.56525 2.71109i 0.0968863 0.167812i
\(262\) 0 0
\(263\) −20.6266 −1.27189 −0.635946 0.771733i \(-0.719390\pi\)
−0.635946 + 0.771733i \(0.719390\pi\)
\(264\) 0 0
\(265\) 16.1762 0.993696
\(266\) 0 0
\(267\) −13.2360 −0.810027
\(268\) 0 0
\(269\) 17.7867 1.08447 0.542237 0.840226i \(-0.317578\pi\)
0.542237 + 0.840226i \(0.317578\pi\)
\(270\) 0 0
\(271\) 9.38120 16.2487i 0.569867 0.987039i −0.426711 0.904388i \(-0.640328\pi\)
0.996579 0.0826512i \(-0.0263387\pi\)
\(272\) 0 0
\(273\) −12.7319 + 12.8478i −0.770569 + 0.777586i
\(274\) 0 0
\(275\) −7.86637 −0.474360
\(276\) 0 0
\(277\) 10.3030 17.8453i 0.619048 1.07222i −0.370612 0.928788i \(-0.620852\pi\)
0.989660 0.143434i \(-0.0458145\pi\)
\(278\) 0 0
\(279\) 0.150536 0.260737i 0.00901238 0.0156099i
\(280\) 0 0
\(281\) 4.92982 8.53870i 0.294088 0.509376i −0.680684 0.732577i \(-0.738317\pi\)
0.974772 + 0.223201i \(0.0716507\pi\)
\(282\) 0 0
\(283\) −5.62800 −0.334550 −0.167275 0.985910i \(-0.553497\pi\)
−0.167275 + 0.985910i \(0.553497\pi\)
\(284\) 0 0
\(285\) 12.3683 15.9137i 0.732635 0.942646i
\(286\) 0 0
\(287\) 5.21325 + 19.1093i 0.307728 + 1.12798i
\(288\) 0 0
\(289\) 9.89731 0.582195
\(290\) 0 0
\(291\) −5.15810 8.93409i −0.302373 0.523726i
\(292\) 0 0
\(293\) 26.2347 1.53265 0.766324 0.642454i \(-0.222084\pi\)
0.766324 + 0.642454i \(0.222084\pi\)
\(294\) 0 0
\(295\) 15.2480 26.4103i 0.887771 1.53767i
\(296\) 0 0
\(297\) −5.52504 + 9.56966i −0.320596 + 0.555288i
\(298\) 0 0
\(299\) 18.3910 31.8541i 1.06358 1.84217i
\(300\) 0 0
\(301\) −6.53543 23.9557i −0.376696 1.38078i
\(302\) 0 0
\(303\) 9.98098 + 17.2876i 0.573392 + 0.993144i
\(304\) 0 0
\(305\) 13.1618 22.7968i 0.753640 1.30534i
\(306\) 0 0
\(307\) −5.10646 8.84465i −0.291441 0.504791i 0.682710 0.730690i \(-0.260801\pi\)
−0.974151 + 0.225899i \(0.927468\pi\)
\(308\) 0 0
\(309\) 12.9870 + 22.4941i 0.738803 + 1.27964i
\(310\) 0 0
\(311\) 8.29026 14.3592i 0.470098 0.814233i −0.529318 0.848424i \(-0.677552\pi\)
0.999415 + 0.0341907i \(0.0108854\pi\)
\(312\) 0 0
\(313\) 3.93352 0.222336 0.111168 0.993802i \(-0.464541\pi\)
0.111168 + 0.993802i \(0.464541\pi\)
\(314\) 0 0
\(315\) 3.44708 3.47847i 0.194221 0.195990i
\(316\) 0 0
\(317\) −11.6162 −0.652429 −0.326214 0.945296i \(-0.605773\pi\)
−0.326214 + 0.945296i \(0.605773\pi\)
\(318\) 0 0
\(319\) 5.01346 + 8.68357i 0.280700 + 0.486186i
\(320\) 0 0
\(321\) 2.88736 + 5.00106i 0.161157 + 0.279132i
\(322\) 0 0
\(323\) −22.3943 3.08944i −1.24605 0.171901i
\(324\) 0 0
\(325\) −17.6074 −0.976680
\(326\) 0 0
\(327\) −30.7940 −1.70291
\(328\) 0 0
\(329\) 4.96923 + 1.30739i 0.273963 + 0.0720789i
\(330\) 0 0
\(331\) 16.2515 + 28.1484i 0.893261 + 1.54717i 0.835942 + 0.548818i \(0.184922\pi\)
0.0573193 + 0.998356i \(0.481745\pi\)
\(332\) 0 0
\(333\) −1.27588 2.20989i −0.0699179 0.121101i
\(334\) 0 0
\(335\) −7.03064 −0.384125
\(336\) 0 0
\(337\) 11.0884 + 19.2057i 0.604025 + 1.04620i 0.992205 + 0.124618i \(0.0397705\pi\)
−0.388180 + 0.921584i \(0.626896\pi\)
\(338\) 0 0
\(339\) −14.9252 −0.810628
\(340\) 0 0
\(341\) 0.482166 + 0.835136i 0.0261107 + 0.0452251i
\(342\) 0 0
\(343\) −13.2726 12.9165i −0.716655 0.697427i
\(344\) 0 0
\(345\) 19.1981 33.2520i 1.03359 1.79023i
\(346\) 0 0
\(347\) −19.7530 −1.06040 −0.530199 0.847873i \(-0.677883\pi\)
−0.530199 + 0.847873i \(0.677883\pi\)
\(348\) 0 0
\(349\) 28.4738 1.52417 0.762084 0.647478i \(-0.224176\pi\)
0.762084 + 0.647478i \(0.224176\pi\)
\(350\) 0 0
\(351\) −12.3668 + 21.4198i −0.660088 + 1.14331i
\(352\) 0 0
\(353\) −7.92741 + 13.7307i −0.421934 + 0.730810i −0.996129 0.0879082i \(-0.971982\pi\)
0.574195 + 0.818719i \(0.305315\pi\)
\(354\) 0 0
\(355\) 4.17514 0.221594
\(356\) 0 0
\(357\) 20.4812 + 5.38855i 1.08398 + 0.285192i
\(358\) 0 0
\(359\) −13.4994 + 23.3816i −0.712470 + 1.23404i 0.251457 + 0.967869i \(0.419090\pi\)
−0.963927 + 0.266166i \(0.914243\pi\)
\(360\) 0 0
\(361\) 18.2903 + 5.14445i 0.962647 + 0.270760i
\(362\) 0 0
\(363\) 5.46668 + 9.46856i 0.286926 + 0.496971i
\(364\) 0 0
\(365\) −9.27690 + 16.0681i −0.485575 + 0.841041i
\(366\) 0 0
\(367\) 1.85091 + 3.20588i 0.0966169 + 0.167345i 0.910282 0.413988i \(-0.135864\pi\)
−0.813665 + 0.581334i \(0.802531\pi\)
\(368\) 0 0
\(369\) 2.31275 + 4.00581i 0.120397 + 0.208534i
\(370\) 0 0
\(371\) −3.75996 13.7822i −0.195207 0.715536i
\(372\) 0 0
\(373\) 12.5477 + 21.7333i 0.649697 + 1.12531i 0.983195 + 0.182557i \(0.0584375\pi\)
−0.333498 + 0.942751i \(0.608229\pi\)
\(374\) 0 0
\(375\) 4.73919 0.244731
\(376\) 0 0
\(377\) 11.2217 + 19.4365i 0.577945 + 1.00103i
\(378\) 0 0
\(379\) −5.87589 −0.301824 −0.150912 0.988547i \(-0.548221\pi\)
−0.150912 + 0.988547i \(0.548221\pi\)
\(380\) 0 0
\(381\) −7.96152 + 13.7898i −0.407881 + 0.706471i
\(382\) 0 0
\(383\) 9.86109 17.0799i 0.503878 0.872743i −0.496112 0.868259i \(-0.665239\pi\)
0.999990 0.00448393i \(-0.00142728\pi\)
\(384\) 0 0
\(385\) 4.12833 + 15.1325i 0.210399 + 0.771223i
\(386\) 0 0
\(387\) −2.89931 5.02175i −0.147380 0.255270i
\(388\) 0 0
\(389\) −13.8361 23.9649i −0.701519 1.21507i −0.967933 0.251208i \(-0.919172\pi\)
0.266414 0.963859i \(-0.414161\pi\)
\(390\) 0 0
\(391\) −43.0664 −2.17796
\(392\) 0 0
\(393\) 14.8168 25.6634i 0.747407 1.29455i
\(394\) 0 0
\(395\) −14.6745 25.4170i −0.738353 1.27887i
\(396\) 0 0
\(397\) 2.08694 3.61469i 0.104741 0.181416i −0.808891 0.587958i \(-0.799932\pi\)
0.913632 + 0.406542i \(0.133265\pi\)
\(398\) 0 0
\(399\) −16.4334 6.83891i −0.822699 0.342374i
\(400\) 0 0
\(401\) −9.53082 + 16.5079i −0.475947 + 0.824364i −0.999620 0.0275553i \(-0.991228\pi\)
0.523674 + 0.851919i \(0.324561\pi\)
\(402\) 0 0
\(403\) 1.07924 + 1.86929i 0.0537605 + 0.0931160i
\(404\) 0 0
\(405\) −10.1331 + 17.5510i −0.503516 + 0.872115i
\(406\) 0 0
\(407\) 8.17326 0.405133
\(408\) 0 0
\(409\) −4.34545 7.52654i −0.214869 0.372164i 0.738363 0.674403i \(-0.235599\pi\)
−0.953232 + 0.302240i \(0.902266\pi\)
\(410\) 0 0
\(411\) 0.764516 + 1.32418i 0.0377108 + 0.0653170i
\(412\) 0 0
\(413\) −26.0459 6.85260i −1.28163 0.337195i
\(414\) 0 0
\(415\) −9.01235 + 15.6098i −0.442399 + 0.766257i
\(416\) 0 0
\(417\) −14.8559 + 25.7312i −0.727496 + 1.26006i
\(418\) 0 0
\(419\) −2.18981 −0.106979 −0.0534895 0.998568i \(-0.517034\pi\)
−0.0534895 + 0.998568i \(0.517034\pi\)
\(420\) 0 0
\(421\) 4.50474 + 7.80244i 0.219548 + 0.380268i 0.954670 0.297667i \(-0.0962085\pi\)
−0.735122 + 0.677935i \(0.762875\pi\)
\(422\) 0 0
\(423\) 1.19991 0.0583418
\(424\) 0 0
\(425\) 10.3078 + 17.8537i 0.500004 + 0.866032i
\(426\) 0 0
\(427\) −22.4823 5.91504i −1.08799 0.286249i
\(428\) 0 0
\(429\) −6.76452 11.7165i −0.326594 0.565678i
\(430\) 0 0
\(431\) 9.65403 + 16.7213i 0.465018 + 0.805435i 0.999202 0.0399331i \(-0.0127145\pi\)
−0.534184 + 0.845368i \(0.679381\pi\)
\(432\) 0 0
\(433\) −6.33241 + 10.9681i −0.304316 + 0.527091i −0.977109 0.212740i \(-0.931761\pi\)
0.672793 + 0.739831i \(0.265095\pi\)
\(434\) 0 0
\(435\) 11.7141 + 20.2895i 0.561650 + 0.972807i
\(436\) 0 0
\(437\) 35.8564 + 4.94663i 1.71524 + 0.236629i
\(438\) 0 0
\(439\) −17.2578 + 29.8914i −0.823671 + 1.42664i 0.0792591 + 0.996854i \(0.474745\pi\)
−0.902930 + 0.429787i \(0.858589\pi\)
\(440\) 0 0
\(441\) −3.76490 2.12840i −0.179281 0.101352i
\(442\) 0 0
\(443\) −9.53039 −0.452803 −0.226401 0.974034i \(-0.572696\pi\)
−0.226401 + 0.974034i \(0.572696\pi\)
\(444\) 0 0
\(445\) −12.8457 + 22.2494i −0.608945 + 1.05472i
\(446\) 0 0
\(447\) 10.5170 18.2160i 0.497439 0.861590i
\(448\) 0 0
\(449\) −1.22390 −0.0577596 −0.0288798 0.999583i \(-0.509194\pi\)
−0.0288798 + 0.999583i \(0.509194\pi\)
\(450\) 0 0
\(451\) −14.8154 −0.697631
\(452\) 0 0
\(453\) −10.4357 + 18.0751i −0.490310 + 0.849242i
\(454\) 0 0
\(455\) 9.24048 + 33.8712i 0.433201 + 1.58790i
\(456\) 0 0
\(457\) −18.5292 32.0935i −0.866759 1.50127i −0.865290 0.501271i \(-0.832866\pi\)
−0.00146815 0.999999i \(-0.500467\pi\)
\(458\) 0 0
\(459\) 28.9594 1.35171
\(460\) 0 0
\(461\) −12.1309 21.0113i −0.564992 0.978596i −0.997050 0.0767498i \(-0.975546\pi\)
0.432058 0.901846i \(-0.357788\pi\)
\(462\) 0 0
\(463\) 16.9873 0.789465 0.394732 0.918796i \(-0.370837\pi\)
0.394732 + 0.918796i \(0.370837\pi\)
\(464\) 0 0
\(465\) 1.12660 + 1.95133i 0.0522448 + 0.0904906i
\(466\) 0 0
\(467\) −15.8206 27.4020i −0.732088 1.26801i −0.955989 0.293402i \(-0.905212\pi\)
0.223901 0.974612i \(-0.428121\pi\)
\(468\) 0 0
\(469\) 1.63419 + 5.99014i 0.0754597 + 0.276599i
\(470\) 0 0
\(471\) 8.83905 0.407282
\(472\) 0 0
\(473\) 18.5729 0.853983
\(474\) 0 0
\(475\) −6.53146 16.0487i −0.299684 0.736364i
\(476\) 0 0
\(477\) −1.66803 2.88911i −0.0763738 0.132283i
\(478\) 0 0
\(479\) 12.2523 + 21.2216i 0.559821 + 0.969638i 0.997511 + 0.0705119i \(0.0224633\pi\)
−0.437690 + 0.899126i \(0.644203\pi\)
\(480\) 0 0
\(481\) 18.2943 0.834147
\(482\) 0 0
\(483\) −32.7933 8.62782i −1.49214 0.392579i
\(484\) 0 0
\(485\) −20.0241 −0.909247
\(486\) 0 0
\(487\) −3.34790 + 5.79874i −0.151708 + 0.262766i −0.931855 0.362830i \(-0.881811\pi\)
0.780147 + 0.625596i \(0.215144\pi\)
\(488\) 0 0
\(489\) 6.12781 + 10.6137i 0.277109 + 0.479967i
\(490\) 0 0
\(491\) −5.51655 9.55494i −0.248958 0.431208i 0.714279 0.699861i \(-0.246755\pi\)
−0.963237 + 0.268653i \(0.913422\pi\)
\(492\) 0 0
\(493\) 13.1390 22.7573i 0.591749 1.02494i
\(494\) 0 0
\(495\) 1.83145 + 3.17217i 0.0823177 + 0.142578i
\(496\) 0 0
\(497\) −0.970461 3.55724i −0.0435311 0.159564i
\(498\) 0 0
\(499\) 2.46798 4.27466i 0.110482 0.191360i −0.805483 0.592619i \(-0.798094\pi\)
0.915965 + 0.401259i \(0.131427\pi\)
\(500\) 0 0
\(501\) 13.9780 24.2107i 0.624493 1.08165i
\(502\) 0 0
\(503\) −9.25993 + 16.0387i −0.412880 + 0.715129i −0.995203 0.0978284i \(-0.968810\pi\)
0.582324 + 0.812957i \(0.302144\pi\)
\(504\) 0 0
\(505\) 38.7468 1.72421
\(506\) 0 0
\(507\) −5.10883 8.84875i −0.226891 0.392987i
\(508\) 0 0
\(509\) 2.86837 0.127138 0.0635691 0.997977i \(-0.479752\pi\)
0.0635691 + 0.997977i \(0.479752\pi\)
\(510\) 0 0
\(511\) 15.8464 + 4.16914i 0.701002 + 0.184432i
\(512\) 0 0
\(513\) −24.1111 3.32629i −1.06453 0.146859i
\(514\) 0 0
\(515\) 50.4163 2.22161
\(516\) 0 0
\(517\) −1.92165 + 3.32840i −0.0845142 + 0.146383i
\(518\) 0 0
\(519\) −1.08757 + 1.88372i −0.0477389 + 0.0826863i
\(520\) 0 0
\(521\) 19.3005 33.4294i 0.845569 1.46457i −0.0395568 0.999217i \(-0.512595\pi\)
0.885126 0.465351i \(-0.154072\pi\)
\(522\) 0 0
\(523\) −35.9212 −1.57072 −0.785362 0.619037i \(-0.787523\pi\)
−0.785362 + 0.619037i \(0.787523\pi\)
\(524\) 0 0
\(525\) 4.27222 + 15.6599i 0.186455 + 0.683455i
\(526\) 0 0
\(527\) 1.26363 2.18867i 0.0550446 0.0953400i
\(528\) 0 0
\(529\) 45.9552 1.99805
\(530\) 0 0
\(531\) −6.28926 −0.272931
\(532\) 0 0
\(533\) −33.1615 −1.43638
\(534\) 0 0
\(535\) 11.2089 0.484604
\(536\) 0 0
\(537\) 14.4689 25.0608i 0.624378 1.08146i
\(538\) 0 0
\(539\) 11.9334 7.03472i 0.514006 0.303007i
\(540\) 0 0
\(541\) 8.80044 0.378361 0.189180 0.981942i \(-0.439417\pi\)
0.189180 + 0.981942i \(0.439417\pi\)
\(542\) 0 0
\(543\) −13.9032 + 24.0810i −0.596643 + 1.03342i
\(544\) 0 0
\(545\) −29.8861 + 51.7642i −1.28018 + 2.21733i
\(546\) 0 0
\(547\) 0.491535 0.851364i 0.0210165 0.0364017i −0.855326 0.518090i \(-0.826643\pi\)
0.876342 + 0.481689i \(0.159976\pi\)
\(548\) 0 0
\(549\) −5.42877 −0.231694
\(550\) 0 0
\(551\) −13.5532 + 17.4383i −0.577387 + 0.742895i
\(552\) 0 0
\(553\) −18.2445 + 18.4106i −0.775833 + 0.782898i
\(554\) 0 0
\(555\) 19.0971 0.810629
\(556\) 0 0
\(557\) −2.07402 3.59232i −0.0878793 0.152211i 0.818735 0.574171i \(-0.194676\pi\)
−0.906614 + 0.421960i \(0.861342\pi\)
\(558\) 0 0
\(559\) 41.5719 1.75830
\(560\) 0 0
\(561\) −7.92029 + 13.7183i −0.334395 + 0.579189i
\(562\) 0 0
\(563\) −18.4667 + 31.9852i −0.778278 + 1.34802i 0.154655 + 0.987968i \(0.450573\pi\)
−0.932933 + 0.360049i \(0.882760\pi\)
\(564\) 0 0
\(565\) −14.4852 + 25.0891i −0.609397 + 1.05551i
\(566\) 0 0
\(567\) 17.3088 + 4.55391i 0.726902 + 0.191246i
\(568\) 0 0
\(569\) −6.56492 11.3708i −0.275216 0.476687i 0.694974 0.719035i \(-0.255416\pi\)
−0.970190 + 0.242348i \(0.922083\pi\)
\(570\) 0 0
\(571\) −4.29911 + 7.44627i −0.179912 + 0.311617i −0.941850 0.336033i \(-0.890915\pi\)
0.761938 + 0.647650i \(0.224248\pi\)
\(572\) 0 0
\(573\) 0.0420598 + 0.0728498i 0.00175708 + 0.00304334i
\(574\) 0 0
\(575\) −16.5043 28.5863i −0.688276 1.19213i
\(576\) 0 0
\(577\) −5.53040 + 9.57893i −0.230233 + 0.398776i −0.957877 0.287180i \(-0.907282\pi\)
0.727643 + 0.685956i \(0.240616\pi\)
\(578\) 0 0
\(579\) −31.9342 −1.32714
\(580\) 0 0
\(581\) 15.3945 + 4.05025i 0.638670 + 0.168033i
\(582\) 0 0
\(583\) 10.6853 0.442542
\(584\) 0 0
\(585\) 4.09935 + 7.10029i 0.169487 + 0.293561i
\(586\) 0 0
\(587\) 11.4545 + 19.8398i 0.472779 + 0.818878i 0.999515 0.0311516i \(-0.00991746\pi\)
−0.526735 + 0.850029i \(0.676584\pi\)
\(588\) 0 0
\(589\) −1.30347 + 1.67711i −0.0537086 + 0.0691042i
\(590\) 0 0
\(591\) −30.6402 −1.26037
\(592\) 0 0
\(593\) −21.7893 −0.894780 −0.447390 0.894339i \(-0.647646\pi\)
−0.447390 + 0.894339i \(0.647646\pi\)
\(594\) 0 0
\(595\) 28.9354 29.1989i 1.18624 1.19704i
\(596\) 0 0
\(597\) 5.33822 + 9.24607i 0.218479 + 0.378417i
\(598\) 0 0
\(599\) 8.05995 + 13.9602i 0.329321 + 0.570400i 0.982377 0.186909i \(-0.0598469\pi\)
−0.653056 + 0.757309i \(0.726514\pi\)
\(600\) 0 0
\(601\) −17.6762 −0.721028 −0.360514 0.932754i \(-0.617399\pi\)
−0.360514 + 0.932754i \(0.617399\pi\)
\(602\) 0 0
\(603\) 0.724974 + 1.25569i 0.0295232 + 0.0511357i
\(604\) 0 0
\(605\) 21.2220 0.862797
\(606\) 0 0
\(607\) −6.97347 12.0784i −0.283044 0.490247i 0.689089 0.724677i \(-0.258011\pi\)
−0.972133 + 0.234430i \(0.924678\pi\)
\(608\) 0 0
\(609\) 14.5639 14.6965i 0.590160 0.595534i
\(610\) 0 0
\(611\) −4.30125 + 7.44999i −0.174010 + 0.301394i
\(612\) 0 0
\(613\) 6.00636 0.242594 0.121297 0.992616i \(-0.461295\pi\)
0.121297 + 0.992616i \(0.461295\pi\)
\(614\) 0 0
\(615\) −34.6168 −1.39588
\(616\) 0 0
\(617\) 4.05115 7.01680i 0.163093 0.282486i −0.772883 0.634548i \(-0.781186\pi\)
0.935977 + 0.352062i \(0.114520\pi\)
\(618\) 0 0
\(619\) 0.396098 0.686062i 0.0159205 0.0275752i −0.857955 0.513724i \(-0.828265\pi\)
0.873876 + 0.486149i \(0.161599\pi\)
\(620\) 0 0
\(621\) −46.3680 −1.86068
\(622\) 0 0
\(623\) 21.9425 + 5.77300i 0.879106 + 0.231290i
\(624\) 0 0
\(625\) 14.5371 25.1790i 0.581484 1.00716i
\(626\) 0 0
\(627\) 8.17001 10.5119i 0.326279 0.419807i
\(628\) 0 0
\(629\) −10.7100 18.5502i −0.427035 0.739646i
\(630\) 0 0
\(631\) 3.27524 5.67288i 0.130385 0.225834i −0.793440 0.608649i \(-0.791712\pi\)
0.923825 + 0.382815i \(0.125045\pi\)
\(632\) 0 0
\(633\) 1.91154 + 3.31089i 0.0759770 + 0.131596i
\(634\) 0 0
\(635\) 15.4536 + 26.7664i 0.613257 + 1.06219i
\(636\) 0 0
\(637\) 26.7105 15.7459i 1.05831 0.623874i
\(638\) 0 0
\(639\) −0.430525 0.745692i −0.0170313 0.0294991i
\(640\) 0 0
\(641\) −37.1062 −1.46560 −0.732802 0.680441i \(-0.761788\pi\)
−0.732802 + 0.680441i \(0.761788\pi\)
\(642\) 0 0
\(643\) −18.0377 31.2422i −0.711337 1.23207i −0.964356 0.264610i \(-0.914757\pi\)
0.253019 0.967461i \(-0.418576\pi\)
\(644\) 0 0
\(645\) 43.3963 1.70873
\(646\) 0 0
\(647\) −3.12087 + 5.40550i −0.122694 + 0.212512i −0.920829 0.389966i \(-0.872487\pi\)
0.798135 + 0.602478i \(0.205820\pi\)
\(648\) 0 0
\(649\) 10.0722 17.4456i 0.395369 0.684798i
\(650\) 0 0
\(651\) 1.40068 1.41343i 0.0548968 0.0553967i
\(652\) 0 0
\(653\) −20.7080 35.8673i −0.810367 1.40360i −0.912608 0.408837i \(-0.865935\pi\)
0.102241 0.994760i \(-0.467399\pi\)
\(654\) 0 0
\(655\) −28.7599 49.8135i −1.12374 1.94638i
\(656\) 0 0
\(657\) 3.82640 0.149282
\(658\) 0 0
\(659\) 8.73980 15.1378i 0.340454 0.589684i −0.644063 0.764973i \(-0.722752\pi\)
0.984517 + 0.175288i \(0.0560858\pi\)
\(660\) 0 0
\(661\) −2.75055 4.76410i −0.106984 0.185302i 0.807563 0.589781i \(-0.200786\pi\)
−0.914547 + 0.404479i \(0.867453\pi\)
\(662\) 0 0
\(663\) −17.7280 + 30.7059i −0.688500 + 1.19252i
\(664\) 0 0
\(665\) −27.4450 + 20.9870i −1.06427 + 0.813842i
\(666\) 0 0
\(667\) −21.0373 + 36.4377i −0.814568 + 1.41087i
\(668\) 0 0
\(669\) 2.47764 + 4.29140i 0.0957911 + 0.165915i
\(670\) 0 0
\(671\) 8.69413 15.0587i 0.335633 0.581334i
\(672\) 0 0
\(673\) −51.5038 −1.98533 −0.992663 0.120912i \(-0.961418\pi\)
−0.992663 + 0.120912i \(0.961418\pi\)
\(674\) 0 0
\(675\) 11.0981 + 19.2224i 0.427165 + 0.739872i
\(676\) 0 0
\(677\) 18.1552 + 31.4458i 0.697762 + 1.20856i 0.969241 + 0.246114i \(0.0791539\pi\)
−0.271479 + 0.962444i \(0.587513\pi\)
\(678\) 0 0
\(679\) 4.65436 + 17.0606i 0.178618 + 0.654727i
\(680\) 0 0
\(681\) −1.71663 + 2.97330i −0.0657815 + 0.113937i
\(682\) 0 0
\(683\) −22.8728 + 39.6169i −0.875204 + 1.51590i −0.0186578 + 0.999826i \(0.505939\pi\)
−0.856546 + 0.516071i \(0.827394\pi\)
\(684\) 0 0
\(685\) 2.96790 0.113398
\(686\) 0 0
\(687\) −14.7193 25.4946i −0.561576 0.972678i
\(688\) 0 0
\(689\) 23.9171 0.911169
\(690\) 0 0
\(691\) 14.1093 + 24.4381i 0.536745 + 0.929669i 0.999077 + 0.0429622i \(0.0136795\pi\)
−0.462332 + 0.886707i \(0.652987\pi\)
\(692\) 0 0
\(693\) 2.27700 2.29774i 0.0864962 0.0872838i
\(694\) 0 0
\(695\) 28.8358 + 49.9451i 1.09380 + 1.89452i
\(696\) 0 0
\(697\) 19.4137 + 33.6255i 0.735345 + 1.27365i
\(698\) 0 0
\(699\) 11.8409 20.5090i 0.447864 0.775723i
\(700\) 0 0
\(701\) −16.5309 28.6324i −0.624365 1.08143i −0.988663 0.150150i \(-0.952024\pi\)
0.364298 0.931282i \(-0.381309\pi\)
\(702\) 0 0
\(703\) 6.78628 + 16.6748i 0.255949 + 0.628902i
\(704\) 0 0
\(705\) −4.49002 + 7.77694i −0.169104 + 0.292896i
\(706\) 0 0
\(707\) −9.00623 33.0125i −0.338714 1.24156i
\(708\) 0 0
\(709\) 2.46788 0.0926834 0.0463417 0.998926i \(-0.485244\pi\)
0.0463417 + 0.998926i \(0.485244\pi\)
\(710\) 0 0
\(711\) −3.02636 + 5.24181i −0.113497 + 0.196583i
\(712\) 0 0
\(713\) −2.02325 + 3.50437i −0.0757712 + 0.131240i
\(714\) 0 0
\(715\) −26.2603 −0.982081
\(716\) 0 0
\(717\) −3.62602 −0.135416
\(718\) 0 0
\(719\) −5.95021 + 10.3061i −0.221905 + 0.384351i −0.955387 0.295358i \(-0.904561\pi\)
0.733481 + 0.679710i \(0.237894\pi\)
\(720\) 0 0
\(721\) −11.7187 42.9550i −0.436426 1.59973i
\(722\) 0 0
\(723\) −13.6115 23.5758i −0.506218 0.876795i
\(724\) 0 0
\(725\) 20.1409 0.748016
\(726\) 0 0
\(727\) −11.4564 19.8431i −0.424896 0.735941i 0.571515 0.820592i \(-0.306356\pi\)
−0.996411 + 0.0846505i \(0.973023\pi\)
\(728\) 0 0
\(729\) 30.0344 1.11238
\(730\) 0 0
\(731\) −24.3373 42.1535i −0.900149 1.55910i
\(732\) 0 0
\(733\) 16.2940 + 28.2220i 0.601832 + 1.04240i 0.992544 + 0.121891i \(0.0388957\pi\)
−0.390711 + 0.920513i \(0.627771\pi\)
\(734\) 0 0
\(735\) 27.8828 16.4369i 1.02847 0.606284i
\(736\) 0 0
\(737\) −4.64416 −0.171070
\(738\) 0 0
\(739\) 46.7646 1.72026 0.860131 0.510073i \(-0.170381\pi\)
0.860131 + 0.510073i \(0.170381\pi\)
\(740\) 0 0
\(741\) 18.2870 23.5290i 0.671789 0.864359i
\(742\) 0 0
\(743\) −16.7168 28.9543i −0.613279 1.06223i −0.990684 0.136182i \(-0.956517\pi\)
0.377405 0.926048i \(-0.376817\pi\)
\(744\) 0 0
\(745\) −20.4139 35.3580i −0.747909 1.29542i
\(746\) 0 0
\(747\) 3.71728 0.136008
\(748\) 0 0
\(749\) −2.60538 9.55006i −0.0951985 0.348952i
\(750\) 0 0
\(751\) 3.68057 0.134306 0.0671530 0.997743i \(-0.478608\pi\)
0.0671530 + 0.997743i \(0.478608\pi\)
\(752\) 0 0
\(753\) 3.42293 5.92869i 0.124739 0.216054i
\(754\) 0 0
\(755\) 20.2560 + 35.0844i 0.737190 + 1.27685i
\(756\) 0 0
\(757\) 10.2828 + 17.8103i 0.373735 + 0.647328i 0.990137 0.140104i \(-0.0447437\pi\)
−0.616402 + 0.787432i \(0.711410\pi\)
\(758\) 0 0
\(759\) 12.6815 21.9650i 0.460309 0.797278i
\(760\) 0 0
\(761\) 10.3375 + 17.9051i 0.374735 + 0.649060i 0.990287 0.139036i \(-0.0444004\pi\)
−0.615553 + 0.788096i \(0.711067\pi\)
\(762\) 0 0
\(763\) 51.0500 + 13.4311i 1.84813 + 0.486239i
\(764\) 0 0
\(765\) 4.79976 8.31342i 0.173536 0.300572i
\(766\) 0 0
\(767\) 22.5447 39.0486i 0.814042 1.40996i
\(768\) 0 0
\(769\) −18.2913 + 31.6814i −0.659600 + 1.14246i 0.321120 + 0.947039i \(0.395941\pi\)
−0.980719 + 0.195422i \(0.937392\pi\)
\(770\) 0 0
\(771\) −9.60269 −0.345833
\(772\) 0 0
\(773\) −11.7243 20.3072i −0.421695 0.730398i 0.574410 0.818568i \(-0.305232\pi\)
−0.996105 + 0.0881698i \(0.971898\pi\)
\(774\) 0 0
\(775\) 1.93704 0.0695805
\(776\) 0 0
\(777\) −4.43890 16.2709i −0.159245 0.583714i
\(778\) 0 0
\(779\) −12.3013 30.2259i −0.440739 1.08296i
\(780\) 0 0
\(781\) 2.75793 0.0986866
\(782\) 0 0
\(783\) 14.1462 24.5020i 0.505546 0.875631i
\(784\) 0 0
\(785\) 8.57845 14.8583i 0.306178 0.530316i
\(786\) 0 0
\(787\) −16.5356 + 28.6405i −0.589431 + 1.02092i 0.404876 + 0.914371i \(0.367315\pi\)
−0.994307 + 0.106553i \(0.966019\pi\)
\(788\) 0 0
\(789\) −31.8356 −1.13338
\(790\) 0 0
\(791\) 24.7430 + 6.50981i 0.879758 + 0.231462i
\(792\) 0 0
\(793\) 19.4602 33.7060i 0.691050 1.19693i
\(794\) 0 0
\(795\) 24.9667 0.885479
\(796\) 0 0
\(797\) −7.89620 −0.279698 −0.139849 0.990173i \(-0.544662\pi\)
−0.139849 + 0.990173i \(0.544662\pi\)
\(798\) 0 0
\(799\) 10.0723 0.356332
\(800\) 0 0
\(801\) 5.29841 0.187210
\(802\) 0 0
\(803\) −6.12795 + 10.6139i −0.216251 + 0.374557i
\(804\) 0 0
\(805\) −46.3296 + 46.7515i −1.63291 + 1.64777i
\(806\) 0 0
\(807\) 27.4524 0.966370
\(808\) 0 0
\(809\) −17.3919 + 30.1237i −0.611468 + 1.05909i 0.379525 + 0.925182i \(0.376087\pi\)
−0.990993 + 0.133913i \(0.957246\pi\)
\(810\) 0 0
\(811\) −10.9021 + 18.8829i −0.382823 + 0.663069i −0.991465 0.130376i \(-0.958382\pi\)
0.608641 + 0.793445i \(0.291715\pi\)
\(812\) 0 0
\(813\) 14.4792 25.0787i 0.507807 0.879547i
\(814\) 0 0
\(815\) 23.7886 0.833277
\(816\) 0 0
\(817\) 15.4211 + 37.8918i 0.539517 + 1.32567i
\(818\) 0 0
\(819\) 5.09664 5.14305i 0.178091 0.179713i
\(820\) 0 0
\(821\) 27.2445 0.950840 0.475420 0.879759i \(-0.342296\pi\)
0.475420 + 0.879759i \(0.342296\pi\)
\(822\) 0 0
\(823\) 8.92582 + 15.4600i 0.311134 + 0.538901i 0.978608 0.205733i \(-0.0659577\pi\)
−0.667474 + 0.744633i \(0.732624\pi\)
\(824\) 0 0
\(825\) −12.1411 −0.422700
\(826\) 0 0
\(827\) 7.64224 13.2368i 0.265747 0.460287i −0.702012 0.712165i \(-0.747715\pi\)
0.967759 + 0.251878i \(0.0810482\pi\)
\(828\) 0 0
\(829\) 13.2246 22.9057i 0.459310 0.795549i −0.539614 0.841912i \(-0.681430\pi\)
0.998925 + 0.0463634i \(0.0147632\pi\)
\(830\) 0 0
\(831\) 15.9019 27.5429i 0.551631 0.955453i
\(832\) 0 0
\(833\) −31.6033 17.8662i −1.09499 0.619027i
\(834\) 0 0
\(835\) −27.1319 46.9938i −0.938937 1.62629i
\(836\) 0 0
\(837\) 1.36051 2.35646i 0.0470259 0.0814513i
\(838\) 0 0
\(839\) 11.0135 + 19.0760i 0.380230 + 0.658577i 0.991095 0.133157i \(-0.0425116\pi\)
−0.610865 + 0.791735i \(0.709178\pi\)
\(840\) 0 0
\(841\) 1.66361 + 2.88146i 0.0573658 + 0.0993605i
\(842\) 0 0
\(843\) 7.60880 13.1788i 0.262061 0.453903i
\(844\) 0 0
\(845\) −19.8328 −0.682269
\(846\) 0 0
\(847\) −4.93280 18.0813i −0.169493 0.621279i
\(848\) 0 0
\(849\) −8.68640 −0.298116
\(850\) 0 0
\(851\) 17.1482 + 29.7015i 0.587832 + 1.01815i
\(852\) 0 0
\(853\) −24.2446 41.9928i −0.830118 1.43781i −0.897944 0.440109i \(-0.854940\pi\)
0.0678269 0.997697i \(-0.478393\pi\)
\(854\) 0 0
\(855\) −4.95109 + 6.37032i −0.169324 + 0.217860i
\(856\) 0 0
\(857\) −31.3853 −1.07210 −0.536051 0.844186i \(-0.680084\pi\)
−0.536051 + 0.844186i \(0.680084\pi\)
\(858\) 0 0
\(859\) 9.73812 0.332260 0.166130 0.986104i \(-0.446873\pi\)
0.166130 + 0.986104i \(0.446873\pi\)
\(860\) 0 0
\(861\) 8.04626 + 29.4937i 0.274216 + 1.00514i
\(862\) 0 0
\(863\) 10.9453 + 18.9578i 0.372583 + 0.645332i 0.989962 0.141333i \(-0.0451389\pi\)
−0.617379 + 0.786666i \(0.711806\pi\)
\(864\) 0 0
\(865\) 2.11101 + 3.65637i 0.0717764 + 0.124320i
\(866\) 0 0
\(867\) 15.2758 0.518792
\(868\) 0 0
\(869\) −9.69338 16.7894i −0.328825 0.569542i
\(870\) 0 0
\(871\) −10.3951 −0.352223
\(872\) 0 0
\(873\) 2.06481 + 3.57636i 0.0698833 + 0.121041i
\(874\) 0 0
\(875\) −7.85659 2.06705i −0.265601 0.0698790i
\(876\) 0 0
\(877\) 3.34241 5.78923i 0.112865 0.195488i −0.804059 0.594549i \(-0.797330\pi\)
0.916924 + 0.399061i \(0.130664\pi\)
\(878\) 0 0
\(879\) 40.4913 1.36574
\(880\) 0 0
\(881\) 15.8968 0.535578 0.267789 0.963478i \(-0.413707\pi\)
0.267789 + 0.963478i \(0.413707\pi\)
\(882\) 0 0
\(883\) −14.9113 + 25.8271i −0.501804 + 0.869150i 0.498194 + 0.867066i \(0.333997\pi\)
−0.999998 + 0.00208421i \(0.999337\pi\)
\(884\) 0 0
\(885\) 23.5341 40.7623i 0.791090 1.37021i
\(886\) 0 0
\(887\) −31.2869 −1.05051 −0.525256 0.850944i \(-0.676031\pi\)
−0.525256 + 0.850944i \(0.676031\pi\)
\(888\) 0 0
\(889\) 19.2131 19.3880i 0.644386 0.650254i
\(890\) 0 0
\(891\) −6.69349 + 11.5935i −0.224241 + 0.388396i
\(892\) 0 0
\(893\) −8.38604 1.15691i −0.280628 0.0387145i
\(894\) 0 0
\(895\) −28.0846 48.6439i −0.938764 1.62599i
\(896\) 0 0
\(897\) 28.3851 49.1644i 0.947750 1.64155i
\(898\) 0 0
\(899\) −1.23453 2.13827i −0.0411739 0.0713153i
\(900\) 0 0
\(901\) −14.0017 24.2517i −0.466466 0.807942i
\(902\) 0 0
\(903\) −10.0869 36.9739i −0.335672 1.23041i
\(904\) 0 0
\(905\) 26.9865 + 46.7421i 0.897063 + 1.55376i
\(906\) 0 0
\(907\) −27.4907 −0.912813 −0.456406 0.889771i \(-0.650864\pi\)
−0.456406 + 0.889771i \(0.650864\pi\)
\(908\) 0 0
\(909\) −3.99543 6.92029i −0.132520 0.229532i
\(910\) 0 0
\(911\) 33.2850 1.10278 0.551391 0.834247i \(-0.314097\pi\)
0.551391 + 0.834247i \(0.314097\pi\)
\(912\) 0 0
\(913\) −5.95320 + 10.3112i −0.197022 + 0.341252i
\(914\) 0 0
\(915\) 20.3142 35.1852i 0.671566 1.16319i
\(916\) 0 0
\(917\) −35.7565 + 36.0821i −1.18078 + 1.19154i
\(918\) 0 0
\(919\) −15.4208 26.7096i −0.508686 0.881070i −0.999949 0.0100587i \(-0.996798\pi\)
0.491264 0.871011i \(-0.336535\pi\)
\(920\) 0 0
\(921\) −7.88144 13.6510i −0.259702 0.449817i
\(922\) 0 0
\(923\) 6.17310 0.203190
\(924\) 0 0
\(925\) 8.20876 14.2180i 0.269902 0.467485i
\(926\) 0 0
\(927\) −5.19875 9.00450i −0.170749 0.295746i
\(928\) 0 0
\(929\) 18.8730 32.6889i 0.619202 1.07249i −0.370430 0.928860i \(-0.620790\pi\)
0.989632 0.143629i \(-0.0458771\pi\)
\(930\) 0 0
\(931\) 24.2603 + 18.5051i 0.795099 + 0.606480i
\(932\) 0 0
\(933\) 12.7954 22.1623i 0.418902 0.725560i
\(934\) 0 0
\(935\) 15.3735 + 26.6278i 0.502769 + 0.870821i
\(936\) 0 0
\(937\) −5.88110 + 10.1864i −0.192127 + 0.332774i −0.945955 0.324298i \(-0.894872\pi\)
0.753828 + 0.657072i \(0.228205\pi\)
\(938\) 0 0
\(939\) 6.07109 0.198122
\(940\) 0 0
\(941\) −11.1677 19.3430i −0.364056 0.630563i 0.624569 0.780970i \(-0.285275\pi\)
−0.988624 + 0.150407i \(0.951942\pi\)
\(942\) 0 0
\(943\) −31.0840 53.8390i −1.01223 1.75324i
\(944\) 0 0
\(945\) 31.1537 31.4374i 1.01343 1.02266i
\(946\) 0 0
\(947\) −14.5346 + 25.1746i −0.472311 + 0.818066i −0.999498 0.0316832i \(-0.989913\pi\)
0.527187 + 0.849749i \(0.323247\pi\)
\(948\) 0 0
\(949\) −13.7162 + 23.7572i −0.445248 + 0.771192i
\(950\) 0 0
\(951\) −17.9287 −0.581377
\(952\) 0 0
\(953\) 1.92366 + 3.33187i 0.0623133 + 0.107930i 0.895499 0.445063i \(-0.146819\pi\)
−0.833186 + 0.552993i \(0.813486\pi\)
\(954\) 0 0
\(955\) 0.163279 0.00528359
\(956\) 0 0
\(957\) 7.73790 + 13.4024i 0.250131 + 0.433239i
\(958\) 0 0
\(959\) −0.689853 2.52867i −0.0222765 0.0816549i
\(960\) 0 0
\(961\) 15.3813 + 26.6411i 0.496170 + 0.859392i
\(962\) 0 0
\(963\) −1.15582 2.00195i −0.0372459 0.0645118i
\(964\) 0 0
\(965\) −30.9926 + 53.6808i −0.997689 + 1.72805i
\(966\) 0 0
\(967\) −26.5599 46.0031i −0.854109 1.47936i −0.877469 0.479633i \(-0.840770\pi\)
0.0233602 0.999727i \(-0.492564\pi\)
\(968\) 0 0
\(969\) −34.5639 4.76832i −1.11035 0.153181i
\(970\) 0 0
\(971\) −4.56618 + 7.90886i −0.146536 + 0.253807i −0.929945 0.367699i \(-0.880146\pi\)
0.783409 + 0.621506i \(0.213479\pi\)
\(972\) 0 0
\(973\) 35.8509 36.1774i 1.14933 1.15979i
\(974\) 0 0
\(975\) −27.1756 −0.870316
\(976\) 0 0
\(977\) −15.6610 + 27.1257i −0.501040 + 0.867828i 0.498959 + 0.866626i \(0.333716\pi\)
−0.999999 + 0.00120183i \(0.999617\pi\)
\(978\) 0 0
\(979\) −8.48537 + 14.6971i −0.271194 + 0.469721i
\(980\) 0 0
\(981\) 12.3270 0.393570
\(982\) 0 0
\(983\) −1.84399 −0.0588141 −0.0294071 0.999568i \(-0.509362\pi\)
−0.0294071 + 0.999568i \(0.509362\pi\)
\(984\) 0 0
\(985\) −29.7368 + 51.5056i −0.947493 + 1.64111i
\(986\) 0 0
\(987\) 7.66964 + 2.01786i 0.244127 + 0.0642293i
\(988\) 0 0
\(989\) 38.9675 + 67.4936i 1.23909 + 2.14617i
\(990\) 0 0
\(991\) −25.2241 −0.801269 −0.400635 0.916238i \(-0.631210\pi\)
−0.400635 + 0.916238i \(0.631210\pi\)
\(992\) 0 0
\(993\) 25.0829 + 43.4449i 0.795982 + 1.37868i
\(994\) 0 0
\(995\) 20.7233 0.656974
\(996\) 0 0
\(997\) 25.9690 + 44.9796i 0.822445 + 1.42452i 0.903856 + 0.427836i \(0.140724\pi\)
−0.0814108 + 0.996681i \(0.525943\pi\)
\(998\) 0 0
\(999\) −11.5311 19.9724i −0.364827 0.631898i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.l.b.501.9 yes 24
7.2 even 3 532.2.k.b.121.4 24
19.11 even 3 532.2.k.b.277.4 yes 24
133.30 even 3 inner 532.2.l.b.429.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.k.b.121.4 24 7.2 even 3
532.2.k.b.277.4 yes 24 19.11 even 3
532.2.l.b.429.9 yes 24 133.30 even 3 inner
532.2.l.b.501.9 yes 24 1.1 even 1 trivial