Properties

Label 5355.2.a.bx.1.6
Level $5355$
Weight $2$
Character 5355.1
Self dual yes
Analytic conductor $42.760$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5355,2,Mod(1,5355)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5355, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5355.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5355 = 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5355.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.7598902824\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 12x^{5} + 8x^{4} + 43x^{3} - 15x^{2} - 44x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.69076\) of defining polynomial
Character \(\chi\) \(=\) 5355.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.69076 q^{2} +0.858669 q^{4} -1.00000 q^{5} +1.00000 q^{7} -1.92972 q^{8} +O(q^{10})\) \(q+1.69076 q^{2} +0.858669 q^{4} -1.00000 q^{5} +1.00000 q^{7} -1.92972 q^{8} -1.69076 q^{10} +1.62048 q^{11} -5.42161 q^{13} +1.69076 q^{14} -4.98003 q^{16} -1.00000 q^{17} -1.08805 q^{19} -0.858669 q^{20} +2.73984 q^{22} +4.50807 q^{23} +1.00000 q^{25} -9.16665 q^{26} +0.858669 q^{28} +7.85204 q^{29} +6.05090 q^{31} -4.56060 q^{32} -1.69076 q^{34} -1.00000 q^{35} -4.04447 q^{37} -1.83964 q^{38} +1.92972 q^{40} +10.3292 q^{41} +1.76010 q^{43} +1.39145 q^{44} +7.62207 q^{46} -5.77515 q^{47} +1.00000 q^{49} +1.69076 q^{50} -4.65537 q^{52} +6.01240 q^{53} -1.62048 q^{55} -1.92972 q^{56} +13.2759 q^{58} +0.989598 q^{59} +14.1177 q^{61} +10.2306 q^{62} +2.24918 q^{64} +5.42161 q^{65} +7.38152 q^{67} -0.858669 q^{68} -1.69076 q^{70} +1.62048 q^{71} -12.8299 q^{73} -6.83823 q^{74} -0.934278 q^{76} +1.62048 q^{77} +15.0920 q^{79} +4.98003 q^{80} +17.4642 q^{82} -17.1699 q^{83} +1.00000 q^{85} +2.97591 q^{86} -3.12706 q^{88} +0.0644430 q^{89} -5.42161 q^{91} +3.87094 q^{92} -9.76439 q^{94} +1.08805 q^{95} +18.7340 q^{97} +1.69076 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 11 q^{4} - 7 q^{5} + 7 q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - q^{2} + 11 q^{4} - 7 q^{5} + 7 q^{7} - 9 q^{8} + q^{10} - 6 q^{11} + 16 q^{13} - q^{14} + 11 q^{16} - 7 q^{17} + 6 q^{19} - 11 q^{20} - 6 q^{22} - 14 q^{23} + 7 q^{25} - 16 q^{26} + 11 q^{28} - 12 q^{29} + 12 q^{31} - 29 q^{32} + q^{34} - 7 q^{35} + 4 q^{37} + 30 q^{38} + 9 q^{40} + 36 q^{41} + 6 q^{43} + 18 q^{44} + 14 q^{46} + 8 q^{47} + 7 q^{49} - q^{50} + 44 q^{52} + 18 q^{53} + 6 q^{55} - 9 q^{56} + 48 q^{58} - 12 q^{59} + 38 q^{61} + 24 q^{62} + 31 q^{64} - 16 q^{65} + 26 q^{67} - 11 q^{68} + q^{70} - 6 q^{71} - 8 q^{73} - 22 q^{74} - 30 q^{76} - 6 q^{77} + 6 q^{79} - 11 q^{80} - 18 q^{82} + 7 q^{85} + 78 q^{86} - 102 q^{88} + 14 q^{89} + 16 q^{91} - 10 q^{92} - 14 q^{94} - 6 q^{95} + 20 q^{97} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.69076 1.19555 0.597774 0.801665i \(-0.296052\pi\)
0.597774 + 0.801665i \(0.296052\pi\)
\(3\) 0 0
\(4\) 0.858669 0.429335
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.92972 −0.682258
\(9\) 0 0
\(10\) −1.69076 −0.534665
\(11\) 1.62048 0.488592 0.244296 0.969701i \(-0.421443\pi\)
0.244296 + 0.969701i \(0.421443\pi\)
\(12\) 0 0
\(13\) −5.42161 −1.50369 −0.751843 0.659343i \(-0.770835\pi\)
−0.751843 + 0.659343i \(0.770835\pi\)
\(14\) 1.69076 0.451875
\(15\) 0 0
\(16\) −4.98003 −1.24501
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −1.08805 −0.249617 −0.124808 0.992181i \(-0.539832\pi\)
−0.124808 + 0.992181i \(0.539832\pi\)
\(20\) −0.858669 −0.192004
\(21\) 0 0
\(22\) 2.73984 0.584135
\(23\) 4.50807 0.939998 0.469999 0.882667i \(-0.344254\pi\)
0.469999 + 0.882667i \(0.344254\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −9.16665 −1.79773
\(27\) 0 0
\(28\) 0.858669 0.162273
\(29\) 7.85204 1.45809 0.729043 0.684468i \(-0.239965\pi\)
0.729043 + 0.684468i \(0.239965\pi\)
\(30\) 0 0
\(31\) 6.05090 1.08677 0.543387 0.839482i \(-0.317142\pi\)
0.543387 + 0.839482i \(0.317142\pi\)
\(32\) −4.56060 −0.806207
\(33\) 0 0
\(34\) −1.69076 −0.289963
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −4.04447 −0.664907 −0.332453 0.943120i \(-0.607876\pi\)
−0.332453 + 0.943120i \(0.607876\pi\)
\(38\) −1.83964 −0.298429
\(39\) 0 0
\(40\) 1.92972 0.305115
\(41\) 10.3292 1.61315 0.806574 0.591133i \(-0.201319\pi\)
0.806574 + 0.591133i \(0.201319\pi\)
\(42\) 0 0
\(43\) 1.76010 0.268413 0.134206 0.990953i \(-0.457151\pi\)
0.134206 + 0.990953i \(0.457151\pi\)
\(44\) 1.39145 0.209769
\(45\) 0 0
\(46\) 7.62207 1.12381
\(47\) −5.77515 −0.842392 −0.421196 0.906970i \(-0.638390\pi\)
−0.421196 + 0.906970i \(0.638390\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 1.69076 0.239110
\(51\) 0 0
\(52\) −4.65537 −0.645584
\(53\) 6.01240 0.825866 0.412933 0.910761i \(-0.364504\pi\)
0.412933 + 0.910761i \(0.364504\pi\)
\(54\) 0 0
\(55\) −1.62048 −0.218505
\(56\) −1.92972 −0.257869
\(57\) 0 0
\(58\) 13.2759 1.74321
\(59\) 0.989598 0.128835 0.0644173 0.997923i \(-0.479481\pi\)
0.0644173 + 0.997923i \(0.479481\pi\)
\(60\) 0 0
\(61\) 14.1177 1.80759 0.903796 0.427963i \(-0.140769\pi\)
0.903796 + 0.427963i \(0.140769\pi\)
\(62\) 10.2306 1.29929
\(63\) 0 0
\(64\) 2.24918 0.281147
\(65\) 5.42161 0.672468
\(66\) 0 0
\(67\) 7.38152 0.901796 0.450898 0.892575i \(-0.351104\pi\)
0.450898 + 0.892575i \(0.351104\pi\)
\(68\) −0.858669 −0.104129
\(69\) 0 0
\(70\) −1.69076 −0.202084
\(71\) 1.62048 0.192315 0.0961576 0.995366i \(-0.469345\pi\)
0.0961576 + 0.995366i \(0.469345\pi\)
\(72\) 0 0
\(73\) −12.8299 −1.50162 −0.750812 0.660516i \(-0.770338\pi\)
−0.750812 + 0.660516i \(0.770338\pi\)
\(74\) −6.83823 −0.794928
\(75\) 0 0
\(76\) −0.934278 −0.107169
\(77\) 1.62048 0.184670
\(78\) 0 0
\(79\) 15.0920 1.69799 0.848994 0.528403i \(-0.177209\pi\)
0.848994 + 0.528403i \(0.177209\pi\)
\(80\) 4.98003 0.556784
\(81\) 0 0
\(82\) 17.4642 1.92860
\(83\) −17.1699 −1.88464 −0.942319 0.334715i \(-0.891360\pi\)
−0.942319 + 0.334715i \(0.891360\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 2.97591 0.320900
\(87\) 0 0
\(88\) −3.12706 −0.333346
\(89\) 0.0644430 0.00683095 0.00341547 0.999994i \(-0.498913\pi\)
0.00341547 + 0.999994i \(0.498913\pi\)
\(90\) 0 0
\(91\) −5.42161 −0.568340
\(92\) 3.87094 0.403574
\(93\) 0 0
\(94\) −9.76439 −1.00712
\(95\) 1.08805 0.111632
\(96\) 0 0
\(97\) 18.7340 1.90215 0.951073 0.308966i \(-0.0999829\pi\)
0.951073 + 0.308966i \(0.0999829\pi\)
\(98\) 1.69076 0.170793
\(99\) 0 0
\(100\) 0.858669 0.0858669
\(101\) −14.2006 −1.41301 −0.706506 0.707707i \(-0.749730\pi\)
−0.706506 + 0.707707i \(0.749730\pi\)
\(102\) 0 0
\(103\) 12.1990 1.20200 0.601002 0.799248i \(-0.294768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(104\) 10.4622 1.02590
\(105\) 0 0
\(106\) 10.1655 0.987363
\(107\) 6.41027 0.619704 0.309852 0.950785i \(-0.399720\pi\)
0.309852 + 0.950785i \(0.399720\pi\)
\(108\) 0 0
\(109\) 7.62142 0.730000 0.365000 0.931008i \(-0.381069\pi\)
0.365000 + 0.931008i \(0.381069\pi\)
\(110\) −2.73984 −0.261233
\(111\) 0 0
\(112\) −4.98003 −0.470568
\(113\) −12.9277 −1.21613 −0.608067 0.793885i \(-0.708055\pi\)
−0.608067 + 0.793885i \(0.708055\pi\)
\(114\) 0 0
\(115\) −4.50807 −0.420380
\(116\) 6.74230 0.626007
\(117\) 0 0
\(118\) 1.67317 0.154028
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −8.37406 −0.761278
\(122\) 23.8697 2.16106
\(123\) 0 0
\(124\) 5.19572 0.466589
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 5.76199 0.511294 0.255647 0.966770i \(-0.417712\pi\)
0.255647 + 0.966770i \(0.417712\pi\)
\(128\) 12.9240 1.14233
\(129\) 0 0
\(130\) 9.16665 0.803968
\(131\) 7.55680 0.660240 0.330120 0.943939i \(-0.392911\pi\)
0.330120 + 0.943939i \(0.392911\pi\)
\(132\) 0 0
\(133\) −1.08805 −0.0943462
\(134\) 12.4804 1.07814
\(135\) 0 0
\(136\) 1.92972 0.165472
\(137\) 6.01240 0.513674 0.256837 0.966455i \(-0.417320\pi\)
0.256837 + 0.966455i \(0.417320\pi\)
\(138\) 0 0
\(139\) 22.3544 1.89608 0.948040 0.318152i \(-0.103062\pi\)
0.948040 + 0.318152i \(0.103062\pi\)
\(140\) −0.858669 −0.0725708
\(141\) 0 0
\(142\) 2.73984 0.229922
\(143\) −8.78560 −0.734689
\(144\) 0 0
\(145\) −7.85204 −0.652076
\(146\) −21.6923 −1.79526
\(147\) 0 0
\(148\) −3.47286 −0.285467
\(149\) 14.3995 1.17965 0.589825 0.807531i \(-0.299197\pi\)
0.589825 + 0.807531i \(0.299197\pi\)
\(150\) 0 0
\(151\) −18.9649 −1.54334 −0.771669 0.636024i \(-0.780578\pi\)
−0.771669 + 0.636024i \(0.780578\pi\)
\(152\) 2.09964 0.170303
\(153\) 0 0
\(154\) 2.73984 0.220782
\(155\) −6.05090 −0.486020
\(156\) 0 0
\(157\) −1.55792 −0.124335 −0.0621677 0.998066i \(-0.519801\pi\)
−0.0621677 + 0.998066i \(0.519801\pi\)
\(158\) 25.5170 2.03003
\(159\) 0 0
\(160\) 4.56060 0.360547
\(161\) 4.50807 0.355286
\(162\) 0 0
\(163\) 6.23327 0.488227 0.244114 0.969747i \(-0.421503\pi\)
0.244114 + 0.969747i \(0.421503\pi\)
\(164\) 8.86935 0.692580
\(165\) 0 0
\(166\) −29.0301 −2.25318
\(167\) 0.835822 0.0646779 0.0323389 0.999477i \(-0.489704\pi\)
0.0323389 + 0.999477i \(0.489704\pi\)
\(168\) 0 0
\(169\) 16.3939 1.26107
\(170\) 1.69076 0.129675
\(171\) 0 0
\(172\) 1.51134 0.115239
\(173\) −15.9504 −1.21268 −0.606341 0.795204i \(-0.707364\pi\)
−0.606341 + 0.795204i \(0.707364\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) −8.07001 −0.608300
\(177\) 0 0
\(178\) 0.108958 0.00816673
\(179\) −4.33756 −0.324204 −0.162102 0.986774i \(-0.551827\pi\)
−0.162102 + 0.986774i \(0.551827\pi\)
\(180\) 0 0
\(181\) −16.3155 −1.21272 −0.606359 0.795191i \(-0.707371\pi\)
−0.606359 + 0.795191i \(0.707371\pi\)
\(182\) −9.16665 −0.679477
\(183\) 0 0
\(184\) −8.69930 −0.641321
\(185\) 4.04447 0.297355
\(186\) 0 0
\(187\) −1.62048 −0.118501
\(188\) −4.95894 −0.361668
\(189\) 0 0
\(190\) 1.83964 0.133461
\(191\) 8.75689 0.633626 0.316813 0.948488i \(-0.397387\pi\)
0.316813 + 0.948488i \(0.397387\pi\)
\(192\) 0 0
\(193\) −6.37282 −0.458726 −0.229363 0.973341i \(-0.573664\pi\)
−0.229363 + 0.973341i \(0.573664\pi\)
\(194\) 31.6746 2.27411
\(195\) 0 0
\(196\) 0.858669 0.0613335
\(197\) −0.0133415 −0.000950539 0 −0.000475270 1.00000i \(-0.500151\pi\)
−0.000475270 1.00000i \(0.500151\pi\)
\(198\) 0 0
\(199\) −0.544175 −0.0385756 −0.0192878 0.999814i \(-0.506140\pi\)
−0.0192878 + 0.999814i \(0.506140\pi\)
\(200\) −1.92972 −0.136452
\(201\) 0 0
\(202\) −24.0098 −1.68932
\(203\) 7.85204 0.551105
\(204\) 0 0
\(205\) −10.3292 −0.721422
\(206\) 20.6256 1.43705
\(207\) 0 0
\(208\) 26.9998 1.87210
\(209\) −1.76317 −0.121961
\(210\) 0 0
\(211\) 10.8648 0.747962 0.373981 0.927436i \(-0.377993\pi\)
0.373981 + 0.927436i \(0.377993\pi\)
\(212\) 5.16266 0.354573
\(213\) 0 0
\(214\) 10.8382 0.740886
\(215\) −1.76010 −0.120038
\(216\) 0 0
\(217\) 6.05090 0.410762
\(218\) 12.8860 0.872749
\(219\) 0 0
\(220\) −1.39145 −0.0938118
\(221\) 5.42161 0.364697
\(222\) 0 0
\(223\) −23.9501 −1.60382 −0.801908 0.597447i \(-0.796182\pi\)
−0.801908 + 0.597447i \(0.796182\pi\)
\(224\) −4.56060 −0.304718
\(225\) 0 0
\(226\) −21.8576 −1.45395
\(227\) 10.4716 0.695026 0.347513 0.937675i \(-0.387026\pi\)
0.347513 + 0.937675i \(0.387026\pi\)
\(228\) 0 0
\(229\) −1.92134 −0.126966 −0.0634828 0.997983i \(-0.520221\pi\)
−0.0634828 + 0.997983i \(0.520221\pi\)
\(230\) −7.62207 −0.502584
\(231\) 0 0
\(232\) −15.1522 −0.994791
\(233\) −13.7057 −0.897893 −0.448946 0.893559i \(-0.648201\pi\)
−0.448946 + 0.893559i \(0.648201\pi\)
\(234\) 0 0
\(235\) 5.77515 0.376729
\(236\) 0.849737 0.0553132
\(237\) 0 0
\(238\) −1.69076 −0.109596
\(239\) −25.5474 −1.65253 −0.826263 0.563285i \(-0.809537\pi\)
−0.826263 + 0.563285i \(0.809537\pi\)
\(240\) 0 0
\(241\) 3.07052 0.197789 0.0988947 0.995098i \(-0.468469\pi\)
0.0988947 + 0.995098i \(0.468469\pi\)
\(242\) −14.1585 −0.910144
\(243\) 0 0
\(244\) 12.1225 0.776062
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 5.89901 0.375345
\(248\) −11.6765 −0.741460
\(249\) 0 0
\(250\) −1.69076 −0.106933
\(251\) 25.1731 1.58891 0.794456 0.607321i \(-0.207756\pi\)
0.794456 + 0.607321i \(0.207756\pi\)
\(252\) 0 0
\(253\) 7.30523 0.459276
\(254\) 9.74214 0.611276
\(255\) 0 0
\(256\) 17.3530 1.08457
\(257\) −24.8856 −1.55232 −0.776162 0.630534i \(-0.782836\pi\)
−0.776162 + 0.630534i \(0.782836\pi\)
\(258\) 0 0
\(259\) −4.04447 −0.251311
\(260\) 4.65537 0.288714
\(261\) 0 0
\(262\) 12.7767 0.789349
\(263\) 12.3378 0.760783 0.380391 0.924826i \(-0.375789\pi\)
0.380391 + 0.924826i \(0.375789\pi\)
\(264\) 0 0
\(265\) −6.01240 −0.369339
\(266\) −1.83964 −0.112795
\(267\) 0 0
\(268\) 6.33828 0.387172
\(269\) 29.0307 1.77003 0.885016 0.465562i \(-0.154148\pi\)
0.885016 + 0.465562i \(0.154148\pi\)
\(270\) 0 0
\(271\) −14.0488 −0.853404 −0.426702 0.904392i \(-0.640325\pi\)
−0.426702 + 0.904392i \(0.640325\pi\)
\(272\) 4.98003 0.301958
\(273\) 0 0
\(274\) 10.1655 0.614122
\(275\) 1.62048 0.0977184
\(276\) 0 0
\(277\) 25.2678 1.51820 0.759098 0.650977i \(-0.225640\pi\)
0.759098 + 0.650977i \(0.225640\pi\)
\(278\) 37.7960 2.26685
\(279\) 0 0
\(280\) 1.92972 0.115323
\(281\) 4.21308 0.251331 0.125666 0.992073i \(-0.459893\pi\)
0.125666 + 0.992073i \(0.459893\pi\)
\(282\) 0 0
\(283\) 28.0669 1.66841 0.834203 0.551458i \(-0.185928\pi\)
0.834203 + 0.551458i \(0.185928\pi\)
\(284\) 1.39145 0.0825676
\(285\) 0 0
\(286\) −14.8543 −0.878355
\(287\) 10.3292 0.609713
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −13.2759 −0.779588
\(291\) 0 0
\(292\) −11.0166 −0.644699
\(293\) −32.0355 −1.87153 −0.935766 0.352620i \(-0.885291\pi\)
−0.935766 + 0.352620i \(0.885291\pi\)
\(294\) 0 0
\(295\) −0.989598 −0.0576166
\(296\) 7.80468 0.453638
\(297\) 0 0
\(298\) 24.3460 1.41033
\(299\) −24.4410 −1.41346
\(300\) 0 0
\(301\) 1.76010 0.101451
\(302\) −32.0650 −1.84514
\(303\) 0 0
\(304\) 5.41854 0.310774
\(305\) −14.1177 −0.808380
\(306\) 0 0
\(307\) 12.2257 0.697757 0.348879 0.937168i \(-0.386563\pi\)
0.348879 + 0.937168i \(0.386563\pi\)
\(308\) 1.39145 0.0792854
\(309\) 0 0
\(310\) −10.2306 −0.581060
\(311\) 2.44908 0.138875 0.0694373 0.997586i \(-0.477880\pi\)
0.0694373 + 0.997586i \(0.477880\pi\)
\(312\) 0 0
\(313\) −13.1392 −0.742673 −0.371337 0.928498i \(-0.621100\pi\)
−0.371337 + 0.928498i \(0.621100\pi\)
\(314\) −2.63407 −0.148649
\(315\) 0 0
\(316\) 12.9591 0.729005
\(317\) −32.9715 −1.85186 −0.925932 0.377691i \(-0.876718\pi\)
−0.925932 + 0.377691i \(0.876718\pi\)
\(318\) 0 0
\(319\) 12.7240 0.712409
\(320\) −2.24918 −0.125733
\(321\) 0 0
\(322\) 7.62207 0.424761
\(323\) 1.08805 0.0605409
\(324\) 0 0
\(325\) −5.42161 −0.300737
\(326\) 10.5390 0.583699
\(327\) 0 0
\(328\) −19.9324 −1.10058
\(329\) −5.77515 −0.318394
\(330\) 0 0
\(331\) 32.0116 1.75952 0.879760 0.475419i \(-0.157703\pi\)
0.879760 + 0.475419i \(0.157703\pi\)
\(332\) −14.7432 −0.809141
\(333\) 0 0
\(334\) 1.41317 0.0773255
\(335\) −7.38152 −0.403296
\(336\) 0 0
\(337\) 10.4908 0.571472 0.285736 0.958308i \(-0.407762\pi\)
0.285736 + 0.958308i \(0.407762\pi\)
\(338\) 27.7181 1.50767
\(339\) 0 0
\(340\) 0.858669 0.0465679
\(341\) 9.80534 0.530989
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −3.39650 −0.183127
\(345\) 0 0
\(346\) −26.9682 −1.44982
\(347\) 6.74160 0.361908 0.180954 0.983492i \(-0.442081\pi\)
0.180954 + 0.983492i \(0.442081\pi\)
\(348\) 0 0
\(349\) 24.3133 1.30146 0.650732 0.759308i \(-0.274462\pi\)
0.650732 + 0.759308i \(0.274462\pi\)
\(350\) 1.69076 0.0903749
\(351\) 0 0
\(352\) −7.39034 −0.393906
\(353\) 26.6521 1.41855 0.709274 0.704933i \(-0.249023\pi\)
0.709274 + 0.704933i \(0.249023\pi\)
\(354\) 0 0
\(355\) −1.62048 −0.0860060
\(356\) 0.0553353 0.00293276
\(357\) 0 0
\(358\) −7.33377 −0.387602
\(359\) 18.5859 0.980924 0.490462 0.871463i \(-0.336828\pi\)
0.490462 + 0.871463i \(0.336828\pi\)
\(360\) 0 0
\(361\) −17.8161 −0.937692
\(362\) −27.5855 −1.44986
\(363\) 0 0
\(364\) −4.65537 −0.244008
\(365\) 12.8299 0.671547
\(366\) 0 0
\(367\) −0.705542 −0.0368290 −0.0184145 0.999830i \(-0.505862\pi\)
−0.0184145 + 0.999830i \(0.505862\pi\)
\(368\) −22.4503 −1.17030
\(369\) 0 0
\(370\) 6.83823 0.355502
\(371\) 6.01240 0.312148
\(372\) 0 0
\(373\) 35.0193 1.81323 0.906616 0.421956i \(-0.138656\pi\)
0.906616 + 0.421956i \(0.138656\pi\)
\(374\) −2.73984 −0.141674
\(375\) 0 0
\(376\) 11.1444 0.574728
\(377\) −42.5707 −2.19250
\(378\) 0 0
\(379\) 32.2155 1.65480 0.827399 0.561615i \(-0.189820\pi\)
0.827399 + 0.561615i \(0.189820\pi\)
\(380\) 0.934278 0.0479275
\(381\) 0 0
\(382\) 14.8058 0.757531
\(383\) −1.17052 −0.0598110 −0.0299055 0.999553i \(-0.509521\pi\)
−0.0299055 + 0.999553i \(0.509521\pi\)
\(384\) 0 0
\(385\) −1.62048 −0.0825871
\(386\) −10.7749 −0.548429
\(387\) 0 0
\(388\) 16.0863 0.816657
\(389\) −21.4561 −1.08787 −0.543935 0.839128i \(-0.683066\pi\)
−0.543935 + 0.839128i \(0.683066\pi\)
\(390\) 0 0
\(391\) −4.50807 −0.227983
\(392\) −1.92972 −0.0974654
\(393\) 0 0
\(394\) −0.0225572 −0.00113642
\(395\) −15.0920 −0.759363
\(396\) 0 0
\(397\) −4.74095 −0.237941 −0.118971 0.992898i \(-0.537959\pi\)
−0.118971 + 0.992898i \(0.537959\pi\)
\(398\) −0.920070 −0.0461189
\(399\) 0 0
\(400\) −4.98003 −0.249001
\(401\) −23.0659 −1.15186 −0.575928 0.817500i \(-0.695359\pi\)
−0.575928 + 0.817500i \(0.695359\pi\)
\(402\) 0 0
\(403\) −32.8056 −1.63417
\(404\) −12.1936 −0.606655
\(405\) 0 0
\(406\) 13.2759 0.658872
\(407\) −6.55397 −0.324868
\(408\) 0 0
\(409\) −15.0193 −0.742658 −0.371329 0.928501i \(-0.621098\pi\)
−0.371329 + 0.928501i \(0.621098\pi\)
\(410\) −17.4642 −0.862494
\(411\) 0 0
\(412\) 10.4749 0.516062
\(413\) 0.989598 0.0486949
\(414\) 0 0
\(415\) 17.1699 0.842836
\(416\) 24.7258 1.21228
\(417\) 0 0
\(418\) −2.98109 −0.145810
\(419\) 39.8046 1.94458 0.972291 0.233776i \(-0.0751081\pi\)
0.972291 + 0.233776i \(0.0751081\pi\)
\(420\) 0 0
\(421\) −10.1319 −0.493799 −0.246900 0.969041i \(-0.579412\pi\)
−0.246900 + 0.969041i \(0.579412\pi\)
\(422\) 18.3697 0.894224
\(423\) 0 0
\(424\) −11.6022 −0.563454
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 14.1177 0.683206
\(428\) 5.50430 0.266060
\(429\) 0 0
\(430\) −2.97591 −0.143511
\(431\) 0.281719 0.0135699 0.00678496 0.999977i \(-0.497840\pi\)
0.00678496 + 0.999977i \(0.497840\pi\)
\(432\) 0 0
\(433\) 8.21174 0.394631 0.197316 0.980340i \(-0.436778\pi\)
0.197316 + 0.980340i \(0.436778\pi\)
\(434\) 10.2306 0.491085
\(435\) 0 0
\(436\) 6.54428 0.313414
\(437\) −4.90503 −0.234639
\(438\) 0 0
\(439\) −8.22156 −0.392394 −0.196197 0.980565i \(-0.562859\pi\)
−0.196197 + 0.980565i \(0.562859\pi\)
\(440\) 3.12706 0.149077
\(441\) 0 0
\(442\) 9.16665 0.436013
\(443\) 26.1735 1.24354 0.621770 0.783200i \(-0.286414\pi\)
0.621770 + 0.783200i \(0.286414\pi\)
\(444\) 0 0
\(445\) −0.0644430 −0.00305489
\(446\) −40.4939 −1.91744
\(447\) 0 0
\(448\) 2.24918 0.106264
\(449\) 5.35784 0.252852 0.126426 0.991976i \(-0.459649\pi\)
0.126426 + 0.991976i \(0.459649\pi\)
\(450\) 0 0
\(451\) 16.7382 0.788171
\(452\) −11.1006 −0.522129
\(453\) 0 0
\(454\) 17.7050 0.830937
\(455\) 5.42161 0.254169
\(456\) 0 0
\(457\) 17.9996 0.841986 0.420993 0.907064i \(-0.361682\pi\)
0.420993 + 0.907064i \(0.361682\pi\)
\(458\) −3.24852 −0.151794
\(459\) 0 0
\(460\) −3.87094 −0.180484
\(461\) −2.87946 −0.134110 −0.0670549 0.997749i \(-0.521360\pi\)
−0.0670549 + 0.997749i \(0.521360\pi\)
\(462\) 0 0
\(463\) −6.67598 −0.310259 −0.155129 0.987894i \(-0.549579\pi\)
−0.155129 + 0.987894i \(0.549579\pi\)
\(464\) −39.1033 −1.81533
\(465\) 0 0
\(466\) −23.1731 −1.07347
\(467\) 11.7976 0.545927 0.272963 0.962024i \(-0.411996\pi\)
0.272963 + 0.962024i \(0.411996\pi\)
\(468\) 0 0
\(469\) 7.38152 0.340847
\(470\) 9.76439 0.450398
\(471\) 0 0
\(472\) −1.90964 −0.0878984
\(473\) 2.85220 0.131144
\(474\) 0 0
\(475\) −1.08805 −0.0499233
\(476\) −0.858669 −0.0393570
\(477\) 0 0
\(478\) −43.1946 −1.97567
\(479\) −6.16642 −0.281751 −0.140875 0.990027i \(-0.544992\pi\)
−0.140875 + 0.990027i \(0.544992\pi\)
\(480\) 0 0
\(481\) 21.9275 0.999810
\(482\) 5.19151 0.236467
\(483\) 0 0
\(484\) −7.19054 −0.326843
\(485\) −18.7340 −0.850666
\(486\) 0 0
\(487\) 8.83593 0.400394 0.200197 0.979756i \(-0.435842\pi\)
0.200197 + 0.979756i \(0.435842\pi\)
\(488\) −27.2432 −1.23324
\(489\) 0 0
\(490\) −1.69076 −0.0763807
\(491\) −41.2335 −1.86084 −0.930420 0.366494i \(-0.880558\pi\)
−0.930420 + 0.366494i \(0.880558\pi\)
\(492\) 0 0
\(493\) −7.85204 −0.353638
\(494\) 9.97380 0.448743
\(495\) 0 0
\(496\) −30.1336 −1.35304
\(497\) 1.62048 0.0726883
\(498\) 0 0
\(499\) −24.2674 −1.08636 −0.543180 0.839616i \(-0.682780\pi\)
−0.543180 + 0.839616i \(0.682780\pi\)
\(500\) −0.858669 −0.0384009
\(501\) 0 0
\(502\) 42.5617 1.89962
\(503\) −6.76304 −0.301549 −0.150775 0.988568i \(-0.548177\pi\)
−0.150775 + 0.988568i \(0.548177\pi\)
\(504\) 0 0
\(505\) 14.2006 0.631918
\(506\) 12.3514 0.549086
\(507\) 0 0
\(508\) 4.94764 0.219516
\(509\) −34.9069 −1.54722 −0.773611 0.633661i \(-0.781551\pi\)
−0.773611 + 0.633661i \(0.781551\pi\)
\(510\) 0 0
\(511\) −12.8299 −0.567561
\(512\) 3.49181 0.154318
\(513\) 0 0
\(514\) −42.0756 −1.85588
\(515\) −12.1990 −0.537553
\(516\) 0 0
\(517\) −9.35849 −0.411586
\(518\) −6.83823 −0.300454
\(519\) 0 0
\(520\) −10.4622 −0.458797
\(521\) −11.8554 −0.519394 −0.259697 0.965690i \(-0.583623\pi\)
−0.259697 + 0.965690i \(0.583623\pi\)
\(522\) 0 0
\(523\) −20.8484 −0.911638 −0.455819 0.890072i \(-0.650654\pi\)
−0.455819 + 0.890072i \(0.650654\pi\)
\(524\) 6.48879 0.283464
\(525\) 0 0
\(526\) 20.8603 0.909552
\(527\) −6.05090 −0.263581
\(528\) 0 0
\(529\) −2.67727 −0.116403
\(530\) −10.1655 −0.441562
\(531\) 0 0
\(532\) −0.934278 −0.0405061
\(533\) −56.0009 −2.42567
\(534\) 0 0
\(535\) −6.41027 −0.277140
\(536\) −14.2442 −0.615257
\(537\) 0 0
\(538\) 49.0839 2.11616
\(539\) 1.62048 0.0697989
\(540\) 0 0
\(541\) −25.6969 −1.10479 −0.552397 0.833581i \(-0.686287\pi\)
−0.552397 + 0.833581i \(0.686287\pi\)
\(542\) −23.7532 −1.02029
\(543\) 0 0
\(544\) 4.56060 0.195534
\(545\) −7.62142 −0.326466
\(546\) 0 0
\(547\) 13.0776 0.559158 0.279579 0.960123i \(-0.409805\pi\)
0.279579 + 0.960123i \(0.409805\pi\)
\(548\) 5.16266 0.220538
\(549\) 0 0
\(550\) 2.73984 0.116827
\(551\) −8.54344 −0.363963
\(552\) 0 0
\(553\) 15.0920 0.641779
\(554\) 42.7218 1.81508
\(555\) 0 0
\(556\) 19.1951 0.814052
\(557\) 25.5840 1.08403 0.542015 0.840369i \(-0.317661\pi\)
0.542015 + 0.840369i \(0.317661\pi\)
\(558\) 0 0
\(559\) −9.54259 −0.403608
\(560\) 4.98003 0.210444
\(561\) 0 0
\(562\) 7.12331 0.300479
\(563\) 9.60151 0.404655 0.202328 0.979318i \(-0.435149\pi\)
0.202328 + 0.979318i \(0.435149\pi\)
\(564\) 0 0
\(565\) 12.9277 0.543872
\(566\) 47.4544 1.99466
\(567\) 0 0
\(568\) −3.12706 −0.131209
\(569\) −10.8330 −0.454142 −0.227071 0.973878i \(-0.572915\pi\)
−0.227071 + 0.973878i \(0.572915\pi\)
\(570\) 0 0
\(571\) −31.9564 −1.33734 −0.668668 0.743561i \(-0.733135\pi\)
−0.668668 + 0.743561i \(0.733135\pi\)
\(572\) −7.54392 −0.315427
\(573\) 0 0
\(574\) 17.4642 0.728941
\(575\) 4.50807 0.188000
\(576\) 0 0
\(577\) 11.7556 0.489394 0.244697 0.969600i \(-0.421312\pi\)
0.244697 + 0.969600i \(0.421312\pi\)
\(578\) 1.69076 0.0703263
\(579\) 0 0
\(580\) −6.74230 −0.279959
\(581\) −17.1699 −0.712327
\(582\) 0 0
\(583\) 9.74295 0.403512
\(584\) 24.7580 1.02450
\(585\) 0 0
\(586\) −54.1643 −2.23751
\(587\) −33.5758 −1.38582 −0.692912 0.721023i \(-0.743672\pi\)
−0.692912 + 0.721023i \(0.743672\pi\)
\(588\) 0 0
\(589\) −6.58370 −0.271277
\(590\) −1.67317 −0.0688834
\(591\) 0 0
\(592\) 20.1416 0.827813
\(593\) −10.6476 −0.437245 −0.218623 0.975809i \(-0.570156\pi\)
−0.218623 + 0.975809i \(0.570156\pi\)
\(594\) 0 0
\(595\) 1.00000 0.0409960
\(596\) 12.3644 0.506465
\(597\) 0 0
\(598\) −41.3239 −1.68986
\(599\) 21.5281 0.879613 0.439807 0.898093i \(-0.355047\pi\)
0.439807 + 0.898093i \(0.355047\pi\)
\(600\) 0 0
\(601\) −10.9790 −0.447841 −0.223921 0.974607i \(-0.571886\pi\)
−0.223921 + 0.974607i \(0.571886\pi\)
\(602\) 2.97591 0.121289
\(603\) 0 0
\(604\) −16.2845 −0.662609
\(605\) 8.37406 0.340454
\(606\) 0 0
\(607\) 25.9087 1.05160 0.525800 0.850608i \(-0.323766\pi\)
0.525800 + 0.850608i \(0.323766\pi\)
\(608\) 4.96217 0.201243
\(609\) 0 0
\(610\) −23.8697 −0.966457
\(611\) 31.3106 1.26669
\(612\) 0 0
\(613\) 42.8240 1.72964 0.864822 0.502079i \(-0.167431\pi\)
0.864822 + 0.502079i \(0.167431\pi\)
\(614\) 20.6707 0.834202
\(615\) 0 0
\(616\) −3.12706 −0.125993
\(617\) −10.5080 −0.423036 −0.211518 0.977374i \(-0.567841\pi\)
−0.211518 + 0.977374i \(0.567841\pi\)
\(618\) 0 0
\(619\) −22.5767 −0.907436 −0.453718 0.891145i \(-0.649903\pi\)
−0.453718 + 0.891145i \(0.649903\pi\)
\(620\) −5.19572 −0.208665
\(621\) 0 0
\(622\) 4.14081 0.166031
\(623\) 0.0644430 0.00258186
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −22.2153 −0.887901
\(627\) 0 0
\(628\) −1.33774 −0.0533815
\(629\) 4.04447 0.161264
\(630\) 0 0
\(631\) 2.78794 0.110986 0.0554930 0.998459i \(-0.482327\pi\)
0.0554930 + 0.998459i \(0.482327\pi\)
\(632\) −29.1234 −1.15847
\(633\) 0 0
\(634\) −55.7469 −2.21399
\(635\) −5.76199 −0.228657
\(636\) 0 0
\(637\) −5.42161 −0.214812
\(638\) 21.5133 0.851720
\(639\) 0 0
\(640\) −12.9240 −0.510866
\(641\) 41.2155 1.62792 0.813958 0.580924i \(-0.197309\pi\)
0.813958 + 0.580924i \(0.197309\pi\)
\(642\) 0 0
\(643\) 47.7104 1.88151 0.940757 0.339080i \(-0.110116\pi\)
0.940757 + 0.339080i \(0.110116\pi\)
\(644\) 3.87094 0.152537
\(645\) 0 0
\(646\) 1.83964 0.0723796
\(647\) −24.6250 −0.968107 −0.484053 0.875038i \(-0.660836\pi\)
−0.484053 + 0.875038i \(0.660836\pi\)
\(648\) 0 0
\(649\) 1.60362 0.0629476
\(650\) −9.16665 −0.359546
\(651\) 0 0
\(652\) 5.35231 0.209613
\(653\) 22.4576 0.878832 0.439416 0.898284i \(-0.355185\pi\)
0.439416 + 0.898284i \(0.355185\pi\)
\(654\) 0 0
\(655\) −7.55680 −0.295268
\(656\) −51.4396 −2.00838
\(657\) 0 0
\(658\) −9.76439 −0.380656
\(659\) −47.5036 −1.85048 −0.925240 0.379383i \(-0.876136\pi\)
−0.925240 + 0.379383i \(0.876136\pi\)
\(660\) 0 0
\(661\) −4.57327 −0.177880 −0.0889398 0.996037i \(-0.528348\pi\)
−0.0889398 + 0.996037i \(0.528348\pi\)
\(662\) 54.1240 2.10359
\(663\) 0 0
\(664\) 33.1330 1.28581
\(665\) 1.08805 0.0421929
\(666\) 0 0
\(667\) 35.3976 1.37060
\(668\) 0.717695 0.0277684
\(669\) 0 0
\(670\) −12.4804 −0.482159
\(671\) 22.8775 0.883175
\(672\) 0 0
\(673\) −20.6892 −0.797511 −0.398755 0.917057i \(-0.630558\pi\)
−0.398755 + 0.917057i \(0.630558\pi\)
\(674\) 17.7375 0.683222
\(675\) 0 0
\(676\) 14.0769 0.541421
\(677\) −50.0899 −1.92511 −0.962556 0.271083i \(-0.912618\pi\)
−0.962556 + 0.271083i \(0.912618\pi\)
\(678\) 0 0
\(679\) 18.7340 0.718944
\(680\) −1.92972 −0.0740012
\(681\) 0 0
\(682\) 16.5785 0.634823
\(683\) −20.7030 −0.792177 −0.396088 0.918212i \(-0.629633\pi\)
−0.396088 + 0.918212i \(0.629633\pi\)
\(684\) 0 0
\(685\) −6.01240 −0.229722
\(686\) 1.69076 0.0645535
\(687\) 0 0
\(688\) −8.76535 −0.334176
\(689\) −32.5969 −1.24184
\(690\) 0 0
\(691\) −50.6828 −1.92806 −0.964032 0.265786i \(-0.914368\pi\)
−0.964032 + 0.265786i \(0.914368\pi\)
\(692\) −13.6961 −0.520647
\(693\) 0 0
\(694\) 11.3984 0.432678
\(695\) −22.3544 −0.847952
\(696\) 0 0
\(697\) −10.3292 −0.391246
\(698\) 41.1080 1.55596
\(699\) 0 0
\(700\) 0.858669 0.0324546
\(701\) 10.3674 0.391573 0.195786 0.980647i \(-0.437274\pi\)
0.195786 + 0.980647i \(0.437274\pi\)
\(702\) 0 0
\(703\) 4.40060 0.165972
\(704\) 3.64474 0.137366
\(705\) 0 0
\(706\) 45.0623 1.69594
\(707\) −14.2006 −0.534069
\(708\) 0 0
\(709\) 36.3595 1.36551 0.682754 0.730648i \(-0.260782\pi\)
0.682754 + 0.730648i \(0.260782\pi\)
\(710\) −2.73984 −0.102824
\(711\) 0 0
\(712\) −0.124357 −0.00466047
\(713\) 27.2779 1.02157
\(714\) 0 0
\(715\) 8.78560 0.328563
\(716\) −3.72453 −0.139192
\(717\) 0 0
\(718\) 31.4242 1.17274
\(719\) −40.4560 −1.50875 −0.754377 0.656441i \(-0.772061\pi\)
−0.754377 + 0.656441i \(0.772061\pi\)
\(720\) 0 0
\(721\) 12.1990 0.454315
\(722\) −30.1228 −1.12106
\(723\) 0 0
\(724\) −14.0096 −0.520662
\(725\) 7.85204 0.291617
\(726\) 0 0
\(727\) 12.4785 0.462800 0.231400 0.972859i \(-0.425669\pi\)
0.231400 + 0.972859i \(0.425669\pi\)
\(728\) 10.4622 0.387754
\(729\) 0 0
\(730\) 21.6923 0.802866
\(731\) −1.76010 −0.0650997
\(732\) 0 0
\(733\) −6.21268 −0.229471 −0.114735 0.993396i \(-0.536602\pi\)
−0.114735 + 0.993396i \(0.536602\pi\)
\(734\) −1.19290 −0.0440308
\(735\) 0 0
\(736\) −20.5595 −0.757833
\(737\) 11.9616 0.440610
\(738\) 0 0
\(739\) −26.0604 −0.958646 −0.479323 0.877639i \(-0.659118\pi\)
−0.479323 + 0.877639i \(0.659118\pi\)
\(740\) 3.47286 0.127665
\(741\) 0 0
\(742\) 10.1655 0.373188
\(743\) 17.5058 0.642225 0.321113 0.947041i \(-0.395943\pi\)
0.321113 + 0.947041i \(0.395943\pi\)
\(744\) 0 0
\(745\) −14.3995 −0.527556
\(746\) 59.2093 2.16781
\(747\) 0 0
\(748\) −1.39145 −0.0508766
\(749\) 6.41027 0.234226
\(750\) 0 0
\(751\) −51.3508 −1.87382 −0.936909 0.349574i \(-0.886326\pi\)
−0.936909 + 0.349574i \(0.886326\pi\)
\(752\) 28.7604 1.04878
\(753\) 0 0
\(754\) −71.9769 −2.62124
\(755\) 18.9649 0.690202
\(756\) 0 0
\(757\) 21.2497 0.772334 0.386167 0.922429i \(-0.373799\pi\)
0.386167 + 0.922429i \(0.373799\pi\)
\(758\) 54.4686 1.97839
\(759\) 0 0
\(760\) −2.09964 −0.0761618
\(761\) −19.6504 −0.712326 −0.356163 0.934424i \(-0.615915\pi\)
−0.356163 + 0.934424i \(0.615915\pi\)
\(762\) 0 0
\(763\) 7.62142 0.275914
\(764\) 7.51927 0.272038
\(765\) 0 0
\(766\) −1.97907 −0.0715069
\(767\) −5.36522 −0.193727
\(768\) 0 0
\(769\) −37.2847 −1.34452 −0.672261 0.740314i \(-0.734677\pi\)
−0.672261 + 0.740314i \(0.734677\pi\)
\(770\) −2.73984 −0.0987369
\(771\) 0 0
\(772\) −5.47215 −0.196947
\(773\) −47.9916 −1.72614 −0.863069 0.505086i \(-0.831461\pi\)
−0.863069 + 0.505086i \(0.831461\pi\)
\(774\) 0 0
\(775\) 6.05090 0.217355
\(776\) −36.1512 −1.29775
\(777\) 0 0
\(778\) −36.2772 −1.30060
\(779\) −11.2387 −0.402669
\(780\) 0 0
\(781\) 2.62594 0.0939636
\(782\) −7.62207 −0.272565
\(783\) 0 0
\(784\) −4.98003 −0.177858
\(785\) 1.55792 0.0556045
\(786\) 0 0
\(787\) −44.6932 −1.59314 −0.796570 0.604546i \(-0.793354\pi\)
−0.796570 + 0.604546i \(0.793354\pi\)
\(788\) −0.0114559 −0.000408099 0
\(789\) 0 0
\(790\) −25.5170 −0.907855
\(791\) −12.9277 −0.459656
\(792\) 0 0
\(793\) −76.5410 −2.71805
\(794\) −8.01581 −0.284470
\(795\) 0 0
\(796\) −0.467266 −0.0165618
\(797\) 18.0210 0.638335 0.319168 0.947698i \(-0.396597\pi\)
0.319168 + 0.947698i \(0.396597\pi\)
\(798\) 0 0
\(799\) 5.77515 0.204310
\(800\) −4.56060 −0.161241
\(801\) 0 0
\(802\) −38.9989 −1.37710
\(803\) −20.7905 −0.733682
\(804\) 0 0
\(805\) −4.50807 −0.158889
\(806\) −55.4665 −1.95372
\(807\) 0 0
\(808\) 27.4031 0.964039
\(809\) 38.0397 1.33740 0.668702 0.743531i \(-0.266850\pi\)
0.668702 + 0.743531i \(0.266850\pi\)
\(810\) 0 0
\(811\) 6.64290 0.233264 0.116632 0.993175i \(-0.462790\pi\)
0.116632 + 0.993175i \(0.462790\pi\)
\(812\) 6.74230 0.236608
\(813\) 0 0
\(814\) −11.0812 −0.388395
\(815\) −6.23327 −0.218342
\(816\) 0 0
\(817\) −1.91508 −0.0670003
\(818\) −25.3941 −0.887884
\(819\) 0 0
\(820\) −8.86935 −0.309731
\(821\) 17.2460 0.601888 0.300944 0.953642i \(-0.402698\pi\)
0.300944 + 0.953642i \(0.402698\pi\)
\(822\) 0 0
\(823\) 9.45086 0.329436 0.164718 0.986341i \(-0.447329\pi\)
0.164718 + 0.986341i \(0.447329\pi\)
\(824\) −23.5406 −0.820077
\(825\) 0 0
\(826\) 1.67317 0.0582171
\(827\) 6.38677 0.222090 0.111045 0.993815i \(-0.464580\pi\)
0.111045 + 0.993815i \(0.464580\pi\)
\(828\) 0 0
\(829\) 43.9066 1.52494 0.762470 0.647024i \(-0.223987\pi\)
0.762470 + 0.647024i \(0.223987\pi\)
\(830\) 29.0301 1.00765
\(831\) 0 0
\(832\) −12.1942 −0.422757
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −0.835822 −0.0289248
\(836\) −1.51398 −0.0523619
\(837\) 0 0
\(838\) 67.3000 2.32484
\(839\) −33.6367 −1.16127 −0.580634 0.814165i \(-0.697195\pi\)
−0.580634 + 0.814165i \(0.697195\pi\)
\(840\) 0 0
\(841\) 32.6545 1.12602
\(842\) −17.1306 −0.590361
\(843\) 0 0
\(844\) 9.32925 0.321126
\(845\) −16.3939 −0.563967
\(846\) 0 0
\(847\) −8.37406 −0.287736
\(848\) −29.9419 −1.02821
\(849\) 0 0
\(850\) −1.69076 −0.0579926
\(851\) −18.2328 −0.625011
\(852\) 0 0
\(853\) 23.8336 0.816045 0.408023 0.912972i \(-0.366218\pi\)
0.408023 + 0.912972i \(0.366218\pi\)
\(854\) 23.8697 0.816805
\(855\) 0 0
\(856\) −12.3700 −0.422798
\(857\) −41.7174 −1.42504 −0.712520 0.701652i \(-0.752446\pi\)
−0.712520 + 0.701652i \(0.752446\pi\)
\(858\) 0 0
\(859\) −9.06004 −0.309125 −0.154562 0.987983i \(-0.549397\pi\)
−0.154562 + 0.987983i \(0.549397\pi\)
\(860\) −1.51134 −0.0515364
\(861\) 0 0
\(862\) 0.476319 0.0162235
\(863\) 10.7594 0.366253 0.183126 0.983089i \(-0.441378\pi\)
0.183126 + 0.983089i \(0.441378\pi\)
\(864\) 0 0
\(865\) 15.9504 0.542328
\(866\) 13.8841 0.471800
\(867\) 0 0
\(868\) 5.19572 0.176354
\(869\) 24.4563 0.829623
\(870\) 0 0
\(871\) −40.0198 −1.35602
\(872\) −14.7072 −0.498048
\(873\) 0 0
\(874\) −8.29322 −0.280522
\(875\) −1.00000 −0.0338062
\(876\) 0 0
\(877\) 33.3120 1.12487 0.562434 0.826842i \(-0.309865\pi\)
0.562434 + 0.826842i \(0.309865\pi\)
\(878\) −13.9007 −0.469126
\(879\) 0 0
\(880\) 8.07001 0.272040
\(881\) 45.0324 1.51718 0.758591 0.651568i \(-0.225888\pi\)
0.758591 + 0.651568i \(0.225888\pi\)
\(882\) 0 0
\(883\) 16.2185 0.545795 0.272897 0.962043i \(-0.412018\pi\)
0.272897 + 0.962043i \(0.412018\pi\)
\(884\) 4.65537 0.156577
\(885\) 0 0
\(886\) 44.2531 1.48671
\(887\) 10.6266 0.356806 0.178403 0.983958i \(-0.442907\pi\)
0.178403 + 0.983958i \(0.442907\pi\)
\(888\) 0 0
\(889\) 5.76199 0.193251
\(890\) −0.108958 −0.00365227
\(891\) 0 0
\(892\) −20.5652 −0.688574
\(893\) 6.28367 0.210275
\(894\) 0 0
\(895\) 4.33756 0.144989
\(896\) 12.9240 0.431761
\(897\) 0 0
\(898\) 9.05881 0.302297
\(899\) 47.5119 1.58461
\(900\) 0 0
\(901\) −6.01240 −0.200302
\(902\) 28.3003 0.942296
\(903\) 0 0
\(904\) 24.9468 0.829717
\(905\) 16.3155 0.542344
\(906\) 0 0
\(907\) 22.4341 0.744912 0.372456 0.928050i \(-0.378516\pi\)
0.372456 + 0.928050i \(0.378516\pi\)
\(908\) 8.99167 0.298399
\(909\) 0 0
\(910\) 9.16665 0.303871
\(911\) −21.3389 −0.706990 −0.353495 0.935436i \(-0.615007\pi\)
−0.353495 + 0.935436i \(0.615007\pi\)
\(912\) 0 0
\(913\) −27.8234 −0.920819
\(914\) 30.4330 1.00663
\(915\) 0 0
\(916\) −1.64979 −0.0545107
\(917\) 7.55680 0.249547
\(918\) 0 0
\(919\) 29.9266 0.987187 0.493594 0.869693i \(-0.335683\pi\)
0.493594 + 0.869693i \(0.335683\pi\)
\(920\) 8.69930 0.286808
\(921\) 0 0
\(922\) −4.86848 −0.160335
\(923\) −8.78560 −0.289181
\(924\) 0 0
\(925\) −4.04447 −0.132981
\(926\) −11.2875 −0.370929
\(927\) 0 0
\(928\) −35.8100 −1.17552
\(929\) −10.8491 −0.355948 −0.177974 0.984035i \(-0.556954\pi\)
−0.177974 + 0.984035i \(0.556954\pi\)
\(930\) 0 0
\(931\) −1.08805 −0.0356595
\(932\) −11.7687 −0.385496
\(933\) 0 0
\(934\) 19.9469 0.652681
\(935\) 1.62048 0.0529952
\(936\) 0 0
\(937\) −23.9251 −0.781600 −0.390800 0.920476i \(-0.627802\pi\)
−0.390800 + 0.920476i \(0.627802\pi\)
\(938\) 12.4804 0.407499
\(939\) 0 0
\(940\) 4.95894 0.161743
\(941\) 13.9999 0.456383 0.228192 0.973616i \(-0.426719\pi\)
0.228192 + 0.973616i \(0.426719\pi\)
\(942\) 0 0
\(943\) 46.5647 1.51636
\(944\) −4.92822 −0.160400
\(945\) 0 0
\(946\) 4.82239 0.156789
\(947\) −48.4210 −1.57347 −0.786735 0.617291i \(-0.788230\pi\)
−0.786735 + 0.617291i \(0.788230\pi\)
\(948\) 0 0
\(949\) 69.5587 2.25797
\(950\) −1.83964 −0.0596857
\(951\) 0 0
\(952\) 1.92972 0.0625425
\(953\) −14.3412 −0.464557 −0.232279 0.972649i \(-0.574618\pi\)
−0.232279 + 0.972649i \(0.574618\pi\)
\(954\) 0 0
\(955\) −8.75689 −0.283366
\(956\) −21.9368 −0.709487
\(957\) 0 0
\(958\) −10.4259 −0.336847
\(959\) 6.01240 0.194150
\(960\) 0 0
\(961\) 5.61337 0.181077
\(962\) 37.0742 1.19532
\(963\) 0 0
\(964\) 2.63656 0.0849178
\(965\) 6.37282 0.205148
\(966\) 0 0
\(967\) 9.86697 0.317300 0.158650 0.987335i \(-0.449286\pi\)
0.158650 + 0.987335i \(0.449286\pi\)
\(968\) 16.1596 0.519388
\(969\) 0 0
\(970\) −31.6746 −1.01701
\(971\) −12.2328 −0.392568 −0.196284 0.980547i \(-0.562888\pi\)
−0.196284 + 0.980547i \(0.562888\pi\)
\(972\) 0 0
\(973\) 22.3544 0.716651
\(974\) 14.9394 0.478690
\(975\) 0 0
\(976\) −70.3067 −2.25046
\(977\) 32.7565 1.04797 0.523986 0.851727i \(-0.324444\pi\)
0.523986 + 0.851727i \(0.324444\pi\)
\(978\) 0 0
\(979\) 0.104428 0.00333755
\(980\) −0.858669 −0.0274292
\(981\) 0 0
\(982\) −69.7159 −2.22472
\(983\) 2.76609 0.0882247 0.0441124 0.999027i \(-0.485954\pi\)
0.0441124 + 0.999027i \(0.485954\pi\)
\(984\) 0 0
\(985\) 0.0133415 0.000425094 0
\(986\) −13.2759 −0.422791
\(987\) 0 0
\(988\) 5.06530 0.161149
\(989\) 7.93466 0.252308
\(990\) 0 0
\(991\) −13.1787 −0.418634 −0.209317 0.977848i \(-0.567124\pi\)
−0.209317 + 0.977848i \(0.567124\pi\)
\(992\) −27.5957 −0.876164
\(993\) 0 0
\(994\) 2.73984 0.0869023
\(995\) 0.544175 0.0172515
\(996\) 0 0
\(997\) −32.6091 −1.03274 −0.516370 0.856366i \(-0.672717\pi\)
−0.516370 + 0.856366i \(0.672717\pi\)
\(998\) −41.0304 −1.29880
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5355.2.a.bx.1.6 7
3.2 odd 2 5355.2.a.by.1.2 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5355.2.a.bx.1.6 7 1.1 even 1 trivial
5355.2.a.by.1.2 yes 7 3.2 odd 2