Properties

Label 5376.2.c.m.2689.1
Level $5376$
Weight $2$
Character 5376.2689
Analytic conductor $42.928$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5376,2,Mod(2689,5376)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5376, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5376.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5376 = 2^{8} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5376.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9275761266\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2689.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5376.2689
Dual form 5376.2.c.m.2689.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +2.00000i q^{5} -1.00000 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +2.00000i q^{5} -1.00000 q^{7} -1.00000 q^{9} -4.00000i q^{11} -6.00000i q^{13} +2.00000 q^{15} -2.00000 q^{17} -4.00000i q^{19} +1.00000i q^{21} -4.00000 q^{23} +1.00000 q^{25} +1.00000i q^{27} -2.00000i q^{29} -8.00000 q^{31} -4.00000 q^{33} -2.00000i q^{35} +10.0000i q^{37} -6.00000 q^{39} +2.00000 q^{41} +8.00000i q^{43} -2.00000i q^{45} +1.00000 q^{49} +2.00000i q^{51} +10.0000i q^{53} +8.00000 q^{55} -4.00000 q^{57} -12.0000i q^{59} +10.0000i q^{61} +1.00000 q^{63} +12.0000 q^{65} +8.00000i q^{67} +4.00000i q^{69} +12.0000 q^{71} -2.00000 q^{73} -1.00000i q^{75} +4.00000i q^{77} +1.00000 q^{81} -12.0000i q^{83} -4.00000i q^{85} -2.00000 q^{87} -6.00000 q^{89} +6.00000i q^{91} +8.00000i q^{93} +8.00000 q^{95} +2.00000 q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{7} - 2 q^{9} + 4 q^{15} - 4 q^{17} - 8 q^{23} + 2 q^{25} - 16 q^{31} - 8 q^{33} - 12 q^{39} + 4 q^{41} + 2 q^{49} + 16 q^{55} - 8 q^{57} + 2 q^{63} + 24 q^{65} + 24 q^{71} - 4 q^{73} + 2 q^{81} - 4 q^{87} - 12 q^{89} + 16 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times\).

\(n\) \(1793\) \(2815\) \(4609\) \(5125\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 4.00000i − 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) − 6.00000i − 1.66410i −0.554700 0.832050i \(-0.687167\pi\)
0.554700 0.832050i \(-0.312833\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) − 4.00000i − 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 1.00000i 0.218218i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) − 2.00000i − 0.338062i
\(36\) 0 0
\(37\) 10.0000i 1.64399i 0.569495 + 0.821995i \(0.307139\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) − 12.0000i − 1.56227i −0.624364 0.781133i \(-0.714642\pi\)
0.624364 0.781133i \(-0.285358\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) 4.00000i 0.481543i
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) − 1.00000i − 0.115470i
\(76\) 0 0
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) − 4.00000i − 0.433861i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 6.00000i 0.628971i
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) − 2.00000i − 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) − 8.00000i − 0.746004i
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) − 2.00000i − 0.180334i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 20.0000i 1.74741i 0.486458 + 0.873704i \(0.338289\pi\)
−0.486458 + 0.873704i \(0.661711\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 0 0
\(135\) −2.00000 −0.172133
\(136\) 0 0
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) 20.0000i 1.69638i 0.529694 + 0.848189i \(0.322307\pi\)
−0.529694 + 0.848189i \(0.677693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −24.0000 −2.00698
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) − 1.00000i − 0.0824786i
\(148\) 0 0
\(149\) − 6.00000i − 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) − 16.0000i − 1.28515i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) − 16.0000i − 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 0 0
\(165\) − 8.00000i − 0.622799i
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 20.0000i 1.49487i 0.664335 + 0.747435i \(0.268715\pi\)
−0.664335 + 0.747435i \(0.731285\pi\)
\(180\) 0 0
\(181\) − 2.00000i − 0.148659i −0.997234 0.0743294i \(-0.976318\pi\)
0.997234 0.0743294i \(-0.0236816\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) −20.0000 −1.47043
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) 0 0
\(189\) − 1.00000i − 0.0727393i
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) − 12.0000i − 0.859338i
\(196\) 0 0
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 2.00000i 0.140372i
\(204\) 0 0
\(205\) 4.00000i 0.279372i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 16.0000i 1.10149i 0.834675 + 0.550743i \(0.185655\pi\)
−0.834675 + 0.550743i \(0.814345\pi\)
\(212\) 0 0
\(213\) − 12.0000i − 0.822226i
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 12.0000i 0.807207i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) − 20.0000i − 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(228\) 0 0
\(229\) − 18.0000i − 1.18947i −0.803921 0.594737i \(-0.797256\pi\)
0.803921 0.594737i \(-0.202744\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 2.00000i 0.127775i
\(246\) 0 0
\(247\) −24.0000 −1.52708
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) − 4.00000i − 0.252478i −0.992000 0.126239i \(-0.959709\pi\)
0.992000 0.126239i \(-0.0402906\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) −4.00000 −0.250490
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) − 10.0000i − 0.621370i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −20.0000 −1.22859
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) − 2.00000i − 0.121942i −0.998140 0.0609711i \(-0.980580\pi\)
0.998140 0.0609711i \(-0.0194197\pi\)
\(270\) 0 0
\(271\) 32.0000 1.94386 0.971931 0.235267i \(-0.0755965\pi\)
0.971931 + 0.235267i \(0.0755965\pi\)
\(272\) 0 0
\(273\) 6.00000 0.363137
\(274\) 0 0
\(275\) − 4.00000i − 0.241209i
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) − 12.0000i − 0.713326i −0.934233 0.356663i \(-0.883914\pi\)
0.934233 0.356663i \(-0.116086\pi\)
\(284\) 0 0
\(285\) − 8.00000i − 0.473879i
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) − 2.00000i − 0.117242i
\(292\) 0 0
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) 4.00000 0.232104
\(298\) 0 0
\(299\) 24.0000i 1.38796i
\(300\) 0 0
\(301\) − 8.00000i − 0.461112i
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) − 4.00000i − 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) 8.00000i 0.455104i
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 2.00000i 0.112687i
\(316\) 0 0
\(317\) − 2.00000i − 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) − 6.00000i − 0.332820i
\(326\) 0 0
\(327\) −2.00000 −0.110600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 8.00000i − 0.439720i −0.975531 0.219860i \(-0.929440\pi\)
0.975531 0.219860i \(-0.0705600\pi\)
\(332\) 0 0
\(333\) − 10.0000i − 0.547997i
\(334\) 0 0
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 14.0000i 0.760376i
\(340\) 0 0
\(341\) 32.0000i 1.73290i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −8.00000 −0.430706
\(346\) 0 0
\(347\) − 28.0000i − 1.50312i −0.659665 0.751559i \(-0.729302\pi\)
0.659665 0.751559i \(-0.270698\pi\)
\(348\) 0 0
\(349\) 18.0000i 0.963518i 0.876304 + 0.481759i \(0.160002\pi\)
−0.876304 + 0.481759i \(0.839998\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 24.0000i 1.27379i
\(356\) 0 0
\(357\) − 2.00000i − 0.105851i
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 5.00000i 0.262432i
\(364\) 0 0
\(365\) − 4.00000i − 0.209370i
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) − 10.0000i − 0.519174i
\(372\) 0 0
\(373\) 34.0000i 1.76045i 0.474554 + 0.880227i \(0.342610\pi\)
−0.474554 + 0.880227i \(0.657390\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) − 8.00000i − 0.410932i −0.978664 0.205466i \(-0.934129\pi\)
0.978664 0.205466i \(-0.0658711\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) 8.00000 0.408781 0.204390 0.978889i \(-0.434479\pi\)
0.204390 + 0.978889i \(0.434479\pi\)
\(384\) 0 0
\(385\) −8.00000 −0.407718
\(386\) 0 0
\(387\) − 8.00000i − 0.406663i
\(388\) 0 0
\(389\) − 38.0000i − 1.92668i −0.268290 0.963338i \(-0.586458\pi\)
0.268290 0.963338i \(-0.413542\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 20.0000 1.00887
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 34.0000i 1.70641i 0.521575 + 0.853206i \(0.325345\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 48.0000i 2.39105i
\(404\) 0 0
\(405\) 2.00000i 0.0993808i
\(406\) 0 0
\(407\) 40.0000 1.98273
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 18.0000i 0.887875i
\(412\) 0 0
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) − 12.0000i − 0.586238i −0.956076 0.293119i \(-0.905307\pi\)
0.956076 0.293119i \(-0.0946933\pi\)
\(420\) 0 0
\(421\) 34.0000i 1.65706i 0.559946 + 0.828529i \(0.310822\pi\)
−0.559946 + 0.828529i \(0.689178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) − 10.0000i − 0.483934i
\(428\) 0 0
\(429\) 24.0000i 1.15873i
\(430\) 0 0
\(431\) −36.0000 −1.73406 −0.867029 0.498257i \(-0.833974\pi\)
−0.867029 + 0.498257i \(0.833974\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) − 4.00000i − 0.191785i
\(436\) 0 0
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 28.0000i 1.33032i 0.746701 + 0.665160i \(0.231637\pi\)
−0.746701 + 0.665160i \(0.768363\pi\)
\(444\) 0 0
\(445\) − 12.0000i − 0.568855i
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) − 8.00000i − 0.376705i
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 0 0
\(459\) − 2.00000i − 0.0933520i
\(460\) 0 0
\(461\) − 26.0000i − 1.21094i −0.795868 0.605470i \(-0.792985\pi\)
0.795868 0.605470i \(-0.207015\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) −16.0000 −0.741982
\(466\) 0 0
\(467\) − 36.0000i − 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) − 8.00000i − 0.369406i
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 32.0000 1.47136
\(474\) 0 0
\(475\) − 4.00000i − 0.183533i
\(476\) 0 0
\(477\) − 10.0000i − 0.457869i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 60.0000 2.73576
\(482\) 0 0
\(483\) − 4.00000i − 0.182006i
\(484\) 0 0
\(485\) 4.00000i 0.181631i
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) − 36.0000i − 1.62466i −0.583200 0.812329i \(-0.698200\pi\)
0.583200 0.812329i \(-0.301800\pi\)
\(492\) 0 0
\(493\) 4.00000i 0.180151i
\(494\) 0 0
\(495\) −8.00000 −0.359573
\(496\) 0 0
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) 16.0000i 0.716258i 0.933672 + 0.358129i \(0.116585\pi\)
−0.933672 + 0.358129i \(0.883415\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) 23.0000i 1.02147i
\(508\) 0 0
\(509\) − 18.0000i − 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 2.00000 0.0884748
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) − 16.0000i − 0.705044i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 28.0000i 1.22435i 0.790721 + 0.612177i \(0.209706\pi\)
−0.790721 + 0.612177i \(0.790294\pi\)
\(524\) 0 0
\(525\) 1.00000i 0.0436436i
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) − 12.0000i − 0.519778i
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) 0 0
\(537\) 20.0000 0.863064
\(538\) 0 0
\(539\) − 4.00000i − 0.172292i
\(540\) 0 0
\(541\) − 26.0000i − 1.11783i −0.829226 0.558914i \(-0.811218\pi\)
0.829226 0.558914i \(-0.188782\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 32.0000i 1.36822i 0.729378 + 0.684111i \(0.239809\pi\)
−0.729378 + 0.684111i \(0.760191\pi\)
\(548\) 0 0
\(549\) − 10.0000i − 0.426790i
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 20.0000i 0.848953i
\(556\) 0 0
\(557\) 30.0000i 1.27114i 0.772043 + 0.635570i \(0.219235\pi\)
−0.772043 + 0.635570i \(0.780765\pi\)
\(558\) 0 0
\(559\) 48.0000 2.03018
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 20.0000i 0.842900i 0.906852 + 0.421450i \(0.138479\pi\)
−0.906852 + 0.421450i \(0.861521\pi\)
\(564\) 0 0
\(565\) − 28.0000i − 1.17797i
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 14.0000i 0.581820i
\(580\) 0 0
\(581\) 12.0000i 0.497844i
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) 32.0000i 1.31854i
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 4.00000i 0.163984i
\(596\) 0 0
\(597\) − 16.0000i − 0.654836i
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) − 8.00000i − 0.325785i
\(604\) 0 0
\(605\) − 10.0000i − 0.406558i
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) 2.00000 0.0810441
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0000i 0.403896i 0.979396 + 0.201948i \(0.0647272\pi\)
−0.979396 + 0.201948i \(0.935273\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) − 20.0000i − 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) − 4.00000i − 0.160514i
\(622\) 0 0
\(623\) 6.00000 0.240385
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 16.0000i 0.638978i
\(628\) 0 0
\(629\) − 20.0000i − 0.797452i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 16.0000 0.635943
\(634\) 0 0
\(635\) − 16.0000i − 0.634941i
\(636\) 0 0
\(637\) − 6.00000i − 0.237729i
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 26.0000 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 16.0000i 0.629999i
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) −48.0000 −1.88416
\(650\) 0 0
\(651\) − 8.00000i − 0.313545i
\(652\) 0 0
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) −40.0000 −1.56293
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) − 44.0000i − 1.71400i −0.515319 0.856998i \(-0.672327\pi\)
0.515319 0.856998i \(-0.327673\pi\)
\(660\) 0 0
\(661\) − 18.0000i − 0.700119i −0.936727 0.350059i \(-0.886161\pi\)
0.936727 0.350059i \(-0.113839\pi\)
\(662\) 0 0
\(663\) 12.0000 0.466041
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) − 8.00000i − 0.309298i
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 50.0000 1.92736 0.963679 0.267063i \(-0.0860531\pi\)
0.963679 + 0.267063i \(0.0860531\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) 28.0000i 1.07139i 0.844411 + 0.535695i \(0.179950\pi\)
−0.844411 + 0.535695i \(0.820050\pi\)
\(684\) 0 0
\(685\) − 36.0000i − 1.37549i
\(686\) 0 0
\(687\) −18.0000 −0.686743
\(688\) 0 0
\(689\) 60.0000 2.28582
\(690\) 0 0
\(691\) − 12.0000i − 0.456502i −0.973602 0.228251i \(-0.926699\pi\)
0.973602 0.228251i \(-0.0733006\pi\)
\(692\) 0 0
\(693\) − 4.00000i − 0.151947i
\(694\) 0 0
\(695\) −40.0000 −1.51729
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) − 14.0000i − 0.529529i
\(700\) 0 0
\(701\) 30.0000i 1.13308i 0.824033 + 0.566542i \(0.191719\pi\)
−0.824033 + 0.566542i \(0.808281\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 10.0000i − 0.376089i
\(708\) 0 0
\(709\) − 38.0000i − 1.42712i −0.700594 0.713560i \(-0.747082\pi\)
0.700594 0.713560i \(-0.252918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) − 48.0000i − 1.79510i
\(716\) 0 0
\(717\) 12.0000i 0.448148i
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 30.0000i 1.11571i
\(724\) 0 0
\(725\) − 2.00000i − 0.0742781i
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 16.0000i − 0.591781i
\(732\) 0 0
\(733\) − 14.0000i − 0.517102i −0.965998 0.258551i \(-0.916755\pi\)
0.965998 0.258551i \(-0.0832450\pi\)
\(734\) 0 0
\(735\) 2.00000 0.0737711
\(736\) 0 0
\(737\) 32.0000 1.17874
\(738\) 0 0
\(739\) − 32.0000i − 1.17714i −0.808447 0.588570i \(-0.799691\pi\)
0.808447 0.588570i \(-0.200309\pi\)
\(740\) 0 0
\(741\) 24.0000i 0.881662i
\(742\) 0 0
\(743\) −28.0000 −1.02722 −0.513610 0.858024i \(-0.671692\pi\)
−0.513610 + 0.858024i \(0.671692\pi\)
\(744\) 0 0
\(745\) 12.0000 0.439646
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 12.0000i 0.438470i
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) −4.00000 −0.145768
\(754\) 0 0
\(755\) − 32.0000i − 1.16460i
\(756\) 0 0
\(757\) 26.0000i 0.944986i 0.881334 + 0.472493i \(0.156646\pi\)
−0.881334 + 0.472493i \(0.843354\pi\)
\(758\) 0 0
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 2.00000i 0.0724049i
\(764\) 0 0
\(765\) 4.00000i 0.144620i
\(766\) 0 0
\(767\) −72.0000 −2.59977
\(768\) 0 0
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 18.0000i 0.648254i
\(772\) 0 0
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) −10.0000 −0.358748
\(778\) 0 0
\(779\) − 8.00000i − 0.286630i
\(780\) 0 0
\(781\) − 48.0000i − 1.71758i
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 12.0000i 0.427211i
\(790\) 0 0
\(791\) 14.0000 0.497783
\(792\) 0 0
\(793\) 60.0000 2.13066
\(794\) 0 0
\(795\) 20.0000i 0.709327i
\(796\) 0 0
\(797\) − 42.0000i − 1.48772i −0.668338 0.743858i \(-0.732994\pi\)
0.668338 0.743858i \(-0.267006\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 8.00000i 0.282314i
\(804\) 0 0
\(805\) 8.00000i 0.281963i
\(806\) 0 0
\(807\) −2.00000 −0.0704033
\(808\) 0 0
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) − 4.00000i − 0.140459i −0.997531 0.0702295i \(-0.977627\pi\)
0.997531 0.0702295i \(-0.0223732\pi\)
\(812\) 0 0
\(813\) − 32.0000i − 1.12229i
\(814\) 0 0
\(815\) 32.0000 1.12091
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) − 6.00000i − 0.209657i
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 4.00000i 0.139094i 0.997579 + 0.0695468i \(0.0221553\pi\)
−0.997579 + 0.0695468i \(0.977845\pi\)
\(828\) 0 0
\(829\) − 14.0000i − 0.486240i −0.969996 0.243120i \(-0.921829\pi\)
0.969996 0.243120i \(-0.0781709\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 8.00000i − 0.276520i
\(838\) 0 0
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) − 30.0000i − 1.03325i
\(844\) 0 0
\(845\) − 46.0000i − 1.58245i
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) − 40.0000i − 1.37118i
\(852\) 0 0
\(853\) − 42.0000i − 1.43805i −0.694983 0.719026i \(-0.744588\pi\)
0.694983 0.719026i \(-0.255412\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) 12.0000i 0.409435i 0.978821 + 0.204717i \(0.0656275\pi\)
−0.978821 + 0.204717i \(0.934372\pi\)
\(860\) 0 0
\(861\) 2.00000i 0.0681598i
\(862\) 0 0
\(863\) −52.0000 −1.77010 −0.885050 0.465495i \(-0.845876\pi\)
−0.885050 + 0.465495i \(0.845876\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 48.0000 1.62642
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) − 12.0000i − 0.405674i
\(876\) 0 0
\(877\) 14.0000i 0.472746i 0.971662 + 0.236373i \(0.0759588\pi\)
−0.971662 + 0.236373i \(0.924041\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) − 16.0000i − 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) 0 0
\(885\) − 24.0000i − 0.806751i
\(886\) 0 0
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) − 4.00000i − 0.134005i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −40.0000 −1.33705
\(896\) 0 0
\(897\) 24.0000 0.801337
\(898\) 0 0
\(899\) 16.0000i 0.533630i
\(900\) 0 0
\(901\) − 20.0000i − 0.666297i
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) 4.00000 0.132964
\(906\) 0 0
\(907\) 48.0000i 1.59381i 0.604102 + 0.796907i \(0.293532\pi\)
−0.604102 + 0.796907i \(0.706468\pi\)
\(908\) 0 0
\(909\) − 10.0000i − 0.331679i
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) −48.0000 −1.58857
\(914\) 0 0
\(915\) 20.0000i 0.661180i
\(916\) 0 0
\(917\) − 20.0000i − 0.660458i
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) − 72.0000i − 2.36991i
\(924\) 0 0
\(925\) 10.0000i 0.328798i
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 22.0000 0.721797 0.360898 0.932605i \(-0.382470\pi\)
0.360898 + 0.932605i \(0.382470\pi\)
\(930\) 0 0
\(931\) − 4.00000i − 0.131095i
\(932\) 0 0
\(933\) − 8.00000i − 0.261908i
\(934\) 0 0
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) − 14.0000i − 0.456873i
\(940\) 0 0
\(941\) 6.00000i 0.195594i 0.995206 + 0.0977972i \(0.0311797\pi\)
−0.995206 + 0.0977972i \(0.968820\pi\)
\(942\) 0 0
\(943\) −8.00000 −0.260516
\(944\) 0 0
\(945\) 2.00000 0.0650600
\(946\) 0 0
\(947\) − 44.0000i − 1.42981i −0.699223 0.714904i \(-0.746470\pi\)
0.699223 0.714904i \(-0.253530\pi\)
\(948\) 0 0
\(949\) 12.0000i 0.389536i
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) − 24.0000i − 0.776622i
\(956\) 0 0
\(957\) 8.00000i 0.258603i
\(958\) 0 0
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) − 28.0000i − 0.901352i
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 0 0
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) 28.0000i 0.898563i 0.893390 + 0.449281i \(0.148320\pi\)
−0.893390 + 0.449281i \(0.851680\pi\)
\(972\) 0 0
\(973\) − 20.0000i − 0.641171i
\(974\) 0 0
\(975\) −6.00000 −0.192154
\(976\) 0 0
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 24.0000i 0.767043i
\(980\) 0 0
\(981\) 2.00000i 0.0638551i
\(982\) 0 0
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 32.0000i − 1.01754i
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) −8.00000 −0.253872
\(994\) 0 0
\(995\) 32.0000i 1.01447i
\(996\) 0 0
\(997\) 62.0000i 1.96356i 0.190022 + 0.981780i \(0.439144\pi\)
−0.190022 + 0.981780i \(0.560856\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5376.2.c.m.2689.1 2
4.3 odd 2 5376.2.c.s.2689.2 2
8.3 odd 2 5376.2.c.s.2689.1 2
8.5 even 2 inner 5376.2.c.m.2689.2 2
16.3 odd 4 1344.2.a.h.1.1 1
16.5 even 4 672.2.a.b.1.1 1
16.11 odd 4 672.2.a.f.1.1 yes 1
16.13 even 4 1344.2.a.r.1.1 1
48.5 odd 4 2016.2.a.l.1.1 1
48.11 even 4 2016.2.a.k.1.1 1
48.29 odd 4 4032.2.a.n.1.1 1
48.35 even 4 4032.2.a.f.1.1 1
112.13 odd 4 9408.2.a.g.1.1 1
112.27 even 4 4704.2.a.m.1.1 1
112.69 odd 4 4704.2.a.be.1.1 1
112.83 even 4 9408.2.a.cb.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.a.b.1.1 1 16.5 even 4
672.2.a.f.1.1 yes 1 16.11 odd 4
1344.2.a.h.1.1 1 16.3 odd 4
1344.2.a.r.1.1 1 16.13 even 4
2016.2.a.k.1.1 1 48.11 even 4
2016.2.a.l.1.1 1 48.5 odd 4
4032.2.a.f.1.1 1 48.35 even 4
4032.2.a.n.1.1 1 48.29 odd 4
4704.2.a.m.1.1 1 112.27 even 4
4704.2.a.be.1.1 1 112.69 odd 4
5376.2.c.m.2689.1 2 1.1 even 1 trivial
5376.2.c.m.2689.2 2 8.5 even 2 inner
5376.2.c.s.2689.1 2 8.3 odd 2
5376.2.c.s.2689.2 2 4.3 odd 2
9408.2.a.g.1.1 1 112.13 odd 4
9408.2.a.cb.1.1 1 112.83 even 4