Properties

Label 5376.2.c.m.2689.2
Level 53765376
Weight 22
Character 5376.2689
Analytic conductor 42.92842.928
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5376,2,Mod(2689,5376)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5376, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5376.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5376=2837 5376 = 2^{8} \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5376.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 42.927576126642.9275761266
Analytic rank: 11
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 672)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2689.2
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 5376.2689
Dual form 5376.2.c.m.2689.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq32.00000iq51.00000q71.00000q9+4.00000iq11+6.00000iq13+2.00000q152.00000q17+4.00000iq191.00000iq214.00000q23+1.00000q251.00000iq27+2.00000iq298.00000q314.00000q33+2.00000iq3510.0000iq376.00000q39+2.00000q418.00000iq43+2.00000iq45+1.00000q492.00000iq5110.0000iq53+8.00000q554.00000q57+12.0000iq5910.0000iq61+1.00000q63+12.0000q658.00000iq674.00000iq69+12.0000q712.00000q73+1.00000iq754.00000iq77+1.00000q81+12.0000iq83+4.00000iq852.00000q876.00000q896.00000iq918.00000iq93+8.00000q95+2.00000q974.00000iq99+O(q100)q+1.00000i q^{3} -2.00000i q^{5} -1.00000 q^{7} -1.00000 q^{9} +4.00000i q^{11} +6.00000i q^{13} +2.00000 q^{15} -2.00000 q^{17} +4.00000i q^{19} -1.00000i q^{21} -4.00000 q^{23} +1.00000 q^{25} -1.00000i q^{27} +2.00000i q^{29} -8.00000 q^{31} -4.00000 q^{33} +2.00000i q^{35} -10.0000i q^{37} -6.00000 q^{39} +2.00000 q^{41} -8.00000i q^{43} +2.00000i q^{45} +1.00000 q^{49} -2.00000i q^{51} -10.0000i q^{53} +8.00000 q^{55} -4.00000 q^{57} +12.0000i q^{59} -10.0000i q^{61} +1.00000 q^{63} +12.0000 q^{65} -8.00000i q^{67} -4.00000i q^{69} +12.0000 q^{71} -2.00000 q^{73} +1.00000i q^{75} -4.00000i q^{77} +1.00000 q^{81} +12.0000i q^{83} +4.00000i q^{85} -2.00000 q^{87} -6.00000 q^{89} -6.00000i q^{91} -8.00000i q^{93} +8.00000 q^{95} +2.00000 q^{97} -4.00000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q72q9+4q154q178q23+2q2516q318q3312q39+4q41+2q49+16q558q57+2q63+24q65+24q714q73+2q81++4q97+O(q100) 2 q - 2 q^{7} - 2 q^{9} + 4 q^{15} - 4 q^{17} - 8 q^{23} + 2 q^{25} - 16 q^{31} - 8 q^{33} - 12 q^{39} + 4 q^{41} + 2 q^{49} + 16 q^{55} - 8 q^{57} + 2 q^{63} + 24 q^{65} + 24 q^{71} - 4 q^{73} + 2 q^{81}+ \cdots + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5376Z)×\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times.

nn 17931793 28152815 46094609 51255125
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000i 0.577350i
44 0 0
55 − 2.00000i − 0.894427i −0.894427 0.447214i 0.852416π-0.852416\pi
0.894427 0.447214i 0.147584π-0.147584\pi
66 0 0
77 −1.00000 −0.377964
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 4.00000i 1.20605i 0.797724 + 0.603023i 0.206037π0.206037\pi
−0.797724 + 0.603023i 0.793963π0.793963\pi
1212 0 0
1313 6.00000i 1.66410i 0.554700 + 0.832050i 0.312833π0.312833\pi
−0.554700 + 0.832050i 0.687167π0.687167\pi
1414 0 0
1515 2.00000 0.516398
1616 0 0
1717 −2.00000 −0.485071 −0.242536 0.970143i 0.577979π-0.577979\pi
−0.242536 + 0.970143i 0.577979π0.577979\pi
1818 0 0
1919 4.00000i 0.917663i 0.888523 + 0.458831i 0.151732π0.151732\pi
−0.888523 + 0.458831i 0.848268π0.848268\pi
2020 0 0
2121 − 1.00000i − 0.218218i
2222 0 0
2323 −4.00000 −0.834058 −0.417029 0.908893i 0.636929π-0.636929\pi
−0.417029 + 0.908893i 0.636929π0.636929\pi
2424 0 0
2525 1.00000 0.200000
2626 0 0
2727 − 1.00000i − 0.192450i
2828 0 0
2929 2.00000i 0.371391i 0.982607 + 0.185695i 0.0594537π0.0594537\pi
−0.982607 + 0.185695i 0.940546π0.940546\pi
3030 0 0
3131 −8.00000 −1.43684 −0.718421 0.695608i 0.755135π-0.755135\pi
−0.718421 + 0.695608i 0.755135π0.755135\pi
3232 0 0
3333 −4.00000 −0.696311
3434 0 0
3535 2.00000i 0.338062i
3636 0 0
3737 − 10.0000i − 1.64399i −0.569495 0.821995i 0.692861π-0.692861\pi
0.569495 0.821995i 0.307139π-0.307139\pi
3838 0 0
3939 −6.00000 −0.960769
4040 0 0
4141 2.00000 0.312348 0.156174 0.987730i 0.450084π-0.450084\pi
0.156174 + 0.987730i 0.450084π0.450084\pi
4242 0 0
4343 − 8.00000i − 1.21999i −0.792406 0.609994i 0.791172π-0.791172\pi
0.792406 0.609994i 0.208828π-0.208828\pi
4444 0 0
4545 2.00000i 0.298142i
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 1.00000 0.142857
5050 0 0
5151 − 2.00000i − 0.280056i
5252 0 0
5353 − 10.0000i − 1.37361i −0.726844 0.686803i 0.759014π-0.759014\pi
0.726844 0.686803i 0.240986π-0.240986\pi
5454 0 0
5555 8.00000 1.07872
5656 0 0
5757 −4.00000 −0.529813
5858 0 0
5959 12.0000i 1.56227i 0.624364 + 0.781133i 0.285358π0.285358\pi
−0.624364 + 0.781133i 0.714642π0.714642\pi
6060 0 0
6161 − 10.0000i − 1.28037i −0.768221 0.640184i 0.778858π-0.778858\pi
0.768221 0.640184i 0.221142π-0.221142\pi
6262 0 0
6363 1.00000 0.125988
6464 0 0
6565 12.0000 1.48842
6666 0 0
6767 − 8.00000i − 0.977356i −0.872464 0.488678i 0.837479π-0.837479\pi
0.872464 0.488678i 0.162521π-0.162521\pi
6868 0 0
6969 − 4.00000i − 0.481543i
7070 0 0
7171 12.0000 1.42414 0.712069 0.702109i 0.247758π-0.247758\pi
0.712069 + 0.702109i 0.247758π0.247758\pi
7272 0 0
7373 −2.00000 −0.234082 −0.117041 0.993127i 0.537341π-0.537341\pi
−0.117041 + 0.993127i 0.537341π0.537341\pi
7474 0 0
7575 1.00000i 0.115470i
7676 0 0
7777 − 4.00000i − 0.455842i
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 12.0000i 1.31717i 0.752506 + 0.658586i 0.228845π0.228845\pi
−0.752506 + 0.658586i 0.771155π0.771155\pi
8484 0 0
8585 4.00000i 0.433861i
8686 0 0
8787 −2.00000 −0.214423
8888 0 0
8989 −6.00000 −0.635999 −0.317999 0.948091i 0.603011π-0.603011\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 − 6.00000i − 0.628971i
9292 0 0
9393 − 8.00000i − 0.829561i
9494 0 0
9595 8.00000 0.820783
9696 0 0
9797 2.00000 0.203069 0.101535 0.994832i 0.467625π-0.467625\pi
0.101535 + 0.994832i 0.467625π0.467625\pi
9898 0 0
9999 − 4.00000i − 0.402015i
100100 0 0
101101 − 10.0000i − 0.995037i −0.867453 0.497519i 0.834245π-0.834245\pi
0.867453 0.497519i 0.165755π-0.165755\pi
102102 0 0
103103 −8.00000 −0.788263 −0.394132 0.919054i 0.628955π-0.628955\pi
−0.394132 + 0.919054i 0.628955π0.628955\pi
104104 0 0
105105 −2.00000 −0.195180
106106 0 0
107107 12.0000i 1.16008i 0.814587 + 0.580042i 0.196964π0.196964\pi
−0.814587 + 0.580042i 0.803036π0.803036\pi
108108 0 0
109109 2.00000i 0.191565i 0.995402 + 0.0957826i 0.0305354π0.0305354\pi
−0.995402 + 0.0957826i 0.969465π0.969465\pi
110110 0 0
111111 10.0000 0.949158
112112 0 0
113113 −14.0000 −1.31701 −0.658505 0.752577i 0.728811π-0.728811\pi
−0.658505 + 0.752577i 0.728811π0.728811\pi
114114 0 0
115115 8.00000i 0.746004i
116116 0 0
117117 − 6.00000i − 0.554700i
118118 0 0
119119 2.00000 0.183340
120120 0 0
121121 −5.00000 −0.454545
122122 0 0
123123 2.00000i 0.180334i
124124 0 0
125125 − 12.0000i − 1.07331i
126126 0 0
127127 −8.00000 −0.709885 −0.354943 0.934888i 0.615500π-0.615500\pi
−0.354943 + 0.934888i 0.615500π0.615500\pi
128128 0 0
129129 8.00000 0.704361
130130 0 0
131131 − 20.0000i − 1.74741i −0.486458 0.873704i 0.661711π-0.661711\pi
0.486458 0.873704i 0.338289π-0.338289\pi
132132 0 0
133133 − 4.00000i − 0.346844i
134134 0 0
135135 −2.00000 −0.172133
136136 0 0
137137 −18.0000 −1.53784 −0.768922 0.639343i 0.779207π-0.779207\pi
−0.768922 + 0.639343i 0.779207π0.779207\pi
138138 0 0
139139 − 20.0000i − 1.69638i −0.529694 0.848189i 0.677693π-0.677693\pi
0.529694 0.848189i 0.322307π-0.322307\pi
140140 0 0
141141 0 0
142142 0 0
143143 −24.0000 −2.00698
144144 0 0
145145 4.00000 0.332182
146146 0 0
147147 1.00000i 0.0824786i
148148 0 0
149149 6.00000i 0.491539i 0.969328 + 0.245770i 0.0790407π0.0790407\pi
−0.969328 + 0.245770i 0.920959π0.920959\pi
150150 0 0
151151 −16.0000 −1.30206 −0.651031 0.759051i 0.725663π-0.725663\pi
−0.651031 + 0.759051i 0.725663π0.725663\pi
152152 0 0
153153 2.00000 0.161690
154154 0 0
155155 16.0000i 1.28515i
156156 0 0
157157 − 2.00000i − 0.159617i −0.996810 0.0798087i 0.974569π-0.974569\pi
0.996810 0.0798087i 0.0254309π-0.0254309\pi
158158 0 0
159159 10.0000 0.793052
160160 0 0
161161 4.00000 0.315244
162162 0 0
163163 16.0000i 1.25322i 0.779334 + 0.626608i 0.215557π0.215557\pi
−0.779334 + 0.626608i 0.784443π0.784443\pi
164164 0 0
165165 8.00000i 0.622799i
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −23.0000 −1.76923
170170 0 0
171171 − 4.00000i − 0.305888i
172172 0 0
173173 − 6.00000i − 0.456172i −0.973641 0.228086i 0.926753π-0.926753\pi
0.973641 0.228086i 0.0732467π-0.0732467\pi
174174 0 0
175175 −1.00000 −0.0755929
176176 0 0
177177 −12.0000 −0.901975
178178 0 0
179179 − 20.0000i − 1.49487i −0.664335 0.747435i 0.731285π-0.731285\pi
0.664335 0.747435i 0.268715π-0.268715\pi
180180 0 0
181181 2.00000i 0.148659i 0.997234 + 0.0743294i 0.0236816π0.0236816\pi
−0.997234 + 0.0743294i 0.976318π0.976318\pi
182182 0 0
183183 10.0000 0.739221
184184 0 0
185185 −20.0000 −1.47043
186186 0 0
187187 − 8.00000i − 0.585018i
188188 0 0
189189 1.00000i 0.0727393i
190190 0 0
191191 −12.0000 −0.868290 −0.434145 0.900843i 0.642949π-0.642949\pi
−0.434145 + 0.900843i 0.642949π0.642949\pi
192192 0 0
193193 −14.0000 −1.00774 −0.503871 0.863779i 0.668091π-0.668091\pi
−0.503871 + 0.863779i 0.668091π0.668091\pi
194194 0 0
195195 12.0000i 0.859338i
196196 0 0
197197 6.00000i 0.427482i 0.976890 + 0.213741i 0.0685649π0.0685649\pi
−0.976890 + 0.213741i 0.931435π0.931435\pi
198198 0 0
199199 16.0000 1.13421 0.567105 0.823646i 0.308063π-0.308063\pi
0.567105 + 0.823646i 0.308063π0.308063\pi
200200 0 0
201201 8.00000 0.564276
202202 0 0
203203 − 2.00000i − 0.140372i
204204 0 0
205205 − 4.00000i − 0.279372i
206206 0 0
207207 4.00000 0.278019
208208 0 0
209209 −16.0000 −1.10674
210210 0 0
211211 − 16.0000i − 1.10149i −0.834675 0.550743i 0.814345π-0.814345\pi
0.834675 0.550743i 0.185655π-0.185655\pi
212212 0 0
213213 12.0000i 0.822226i
214214 0 0
215215 −16.0000 −1.09119
216216 0 0
217217 8.00000 0.543075
218218 0 0
219219 − 2.00000i − 0.135147i
220220 0 0
221221 − 12.0000i − 0.807207i
222222 0 0
223223 8.00000 0.535720 0.267860 0.963458i 0.413684π-0.413684\pi
0.267860 + 0.963458i 0.413684π0.413684\pi
224224 0 0
225225 −1.00000 −0.0666667
226226 0 0
227227 20.0000i 1.32745i 0.747978 + 0.663723i 0.231025π0.231025\pi
−0.747978 + 0.663723i 0.768975π0.768975\pi
228228 0 0
229229 18.0000i 1.18947i 0.803921 + 0.594737i 0.202744π0.202744\pi
−0.803921 + 0.594737i 0.797256π0.797256\pi
230230 0 0
231231 4.00000 0.263181
232232 0 0
233233 14.0000 0.917170 0.458585 0.888650i 0.348356π-0.348356\pi
0.458585 + 0.888650i 0.348356π0.348356\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −12.0000 −0.776215 −0.388108 0.921614i 0.626871π-0.626871\pi
−0.388108 + 0.921614i 0.626871π0.626871\pi
240240 0 0
241241 −30.0000 −1.93247 −0.966235 0.257663i 0.917048π-0.917048\pi
−0.966235 + 0.257663i 0.917048π0.917048\pi
242242 0 0
243243 1.00000i 0.0641500i
244244 0 0
245245 − 2.00000i − 0.127775i
246246 0 0
247247 −24.0000 −1.52708
248248 0 0
249249 −12.0000 −0.760469
250250 0 0
251251 4.00000i 0.252478i 0.992000 + 0.126239i 0.0402906π0.0402906\pi
−0.992000 + 0.126239i 0.959709π0.959709\pi
252252 0 0
253253 − 16.0000i − 1.00591i
254254 0 0
255255 −4.00000 −0.250490
256256 0 0
257257 −18.0000 −1.12281 −0.561405 0.827541i 0.689739π-0.689739\pi
−0.561405 + 0.827541i 0.689739π0.689739\pi
258258 0 0
259259 10.0000i 0.621370i
260260 0 0
261261 − 2.00000i − 0.123797i
262262 0 0
263263 −12.0000 −0.739952 −0.369976 0.929041i 0.620634π-0.620634\pi
−0.369976 + 0.929041i 0.620634π0.620634\pi
264264 0 0
265265 −20.0000 −1.22859
266266 0 0
267267 − 6.00000i − 0.367194i
268268 0 0
269269 2.00000i 0.121942i 0.998140 + 0.0609711i 0.0194197π0.0194197\pi
−0.998140 + 0.0609711i 0.980580π0.980580\pi
270270 0 0
271271 32.0000 1.94386 0.971931 0.235267i 0.0755965π-0.0755965\pi
0.971931 + 0.235267i 0.0755965π0.0755965\pi
272272 0 0
273273 6.00000 0.363137
274274 0 0
275275 4.00000i 0.241209i
276276 0 0
277277 − 18.0000i − 1.08152i −0.841178 0.540758i 0.818138π-0.818138\pi
0.841178 0.540758i 0.181862π-0.181862\pi
278278 0 0
279279 8.00000 0.478947
280280 0 0
281281 30.0000 1.78965 0.894825 0.446417i 0.147300π-0.147300\pi
0.894825 + 0.446417i 0.147300π0.147300\pi
282282 0 0
283283 12.0000i 0.713326i 0.934233 + 0.356663i 0.116086π0.116086\pi
−0.934233 + 0.356663i 0.883914π0.883914\pi
284284 0 0
285285 8.00000i 0.473879i
286286 0 0
287287 −2.00000 −0.118056
288288 0 0
289289 −13.0000 −0.764706
290290 0 0
291291 2.00000i 0.117242i
292292 0 0
293293 6.00000i 0.350524i 0.984522 + 0.175262i 0.0560772π0.0560772\pi
−0.984522 + 0.175262i 0.943923π0.943923\pi
294294 0 0
295295 24.0000 1.39733
296296 0 0
297297 4.00000 0.232104
298298 0 0
299299 − 24.0000i − 1.38796i
300300 0 0
301301 8.00000i 0.461112i
302302 0 0
303303 10.0000 0.574485
304304 0 0
305305 −20.0000 −1.14520
306306 0 0
307307 4.00000i 0.228292i 0.993464 + 0.114146i 0.0364132π0.0364132\pi
−0.993464 + 0.114146i 0.963587π0.963587\pi
308308 0 0
309309 − 8.00000i − 0.455104i
310310 0 0
311311 8.00000 0.453638 0.226819 0.973937i 0.427167π-0.427167\pi
0.226819 + 0.973937i 0.427167π0.427167\pi
312312 0 0
313313 14.0000 0.791327 0.395663 0.918396i 0.370515π-0.370515\pi
0.395663 + 0.918396i 0.370515π0.370515\pi
314314 0 0
315315 − 2.00000i − 0.112687i
316316 0 0
317317 2.00000i 0.112331i 0.998421 + 0.0561656i 0.0178875π0.0178875\pi
−0.998421 + 0.0561656i 0.982113π0.982113\pi
318318 0 0
319319 −8.00000 −0.447914
320320 0 0
321321 −12.0000 −0.669775
322322 0 0
323323 − 8.00000i − 0.445132i
324324 0 0
325325 6.00000i 0.332820i
326326 0 0
327327 −2.00000 −0.110600
328328 0 0
329329 0 0
330330 0 0
331331 8.00000i 0.439720i 0.975531 + 0.219860i 0.0705600π0.0705600\pi
−0.975531 + 0.219860i 0.929440π0.929440\pi
332332 0 0
333333 10.0000i 0.547997i
334334 0 0
335335 −16.0000 −0.874173
336336 0 0
337337 −14.0000 −0.762629 −0.381314 0.924445i 0.624528π-0.624528\pi
−0.381314 + 0.924445i 0.624528π0.624528\pi
338338 0 0
339339 − 14.0000i − 0.760376i
340340 0 0
341341 − 32.0000i − 1.73290i
342342 0 0
343343 −1.00000 −0.0539949
344344 0 0
345345 −8.00000 −0.430706
346346 0 0
347347 28.0000i 1.50312i 0.659665 + 0.751559i 0.270698π0.270698\pi
−0.659665 + 0.751559i 0.729302π0.729302\pi
348348 0 0
349349 − 18.0000i − 0.963518i −0.876304 0.481759i 0.839998π-0.839998\pi
0.876304 0.481759i 0.160002π-0.160002\pi
350350 0 0
351351 6.00000 0.320256
352352 0 0
353353 6.00000 0.319348 0.159674 0.987170i 0.448956π-0.448956\pi
0.159674 + 0.987170i 0.448956π0.448956\pi
354354 0 0
355355 − 24.0000i − 1.27379i
356356 0 0
357357 2.00000i 0.105851i
358358 0 0
359359 −12.0000 −0.633336 −0.316668 0.948536i 0.602564π-0.602564\pi
−0.316668 + 0.948536i 0.602564π0.602564\pi
360360 0 0
361361 3.00000 0.157895
362362 0 0
363363 − 5.00000i − 0.262432i
364364 0 0
365365 4.00000i 0.209370i
366366 0 0
367367 24.0000 1.25279 0.626395 0.779506i 0.284530π-0.284530\pi
0.626395 + 0.779506i 0.284530π0.284530\pi
368368 0 0
369369 −2.00000 −0.104116
370370 0 0
371371 10.0000i 0.519174i
372372 0 0
373373 − 34.0000i − 1.76045i −0.474554 0.880227i 0.657390π-0.657390\pi
0.474554 0.880227i 0.342610π-0.342610\pi
374374 0 0
375375 12.0000 0.619677
376376 0 0
377377 −12.0000 −0.618031
378378 0 0
379379 8.00000i 0.410932i 0.978664 + 0.205466i 0.0658711π0.0658711\pi
−0.978664 + 0.205466i 0.934129π0.934129\pi
380380 0 0
381381 − 8.00000i − 0.409852i
382382 0 0
383383 8.00000 0.408781 0.204390 0.978889i 0.434479π-0.434479\pi
0.204390 + 0.978889i 0.434479π0.434479\pi
384384 0 0
385385 −8.00000 −0.407718
386386 0 0
387387 8.00000i 0.406663i
388388 0 0
389389 38.0000i 1.92668i 0.268290 + 0.963338i 0.413542π0.413542\pi
−0.268290 + 0.963338i 0.586458π0.586458\pi
390390 0 0
391391 8.00000 0.404577
392392 0 0
393393 20.0000 1.00887
394394 0 0
395395 0 0
396396 0 0
397397 − 34.0000i − 1.70641i −0.521575 0.853206i 0.674655π-0.674655\pi
0.521575 0.853206i 0.325345π-0.325345\pi
398398 0 0
399399 4.00000 0.200250
400400 0 0
401401 10.0000 0.499376 0.249688 0.968326i 0.419672π-0.419672\pi
0.249688 + 0.968326i 0.419672π0.419672\pi
402402 0 0
403403 − 48.0000i − 2.39105i
404404 0 0
405405 − 2.00000i − 0.0993808i
406406 0 0
407407 40.0000 1.98273
408408 0 0
409409 22.0000 1.08783 0.543915 0.839140i 0.316941π-0.316941\pi
0.543915 + 0.839140i 0.316941π0.316941\pi
410410 0 0
411411 − 18.0000i − 0.887875i
412412 0 0
413413 − 12.0000i − 0.590481i
414414 0 0
415415 24.0000 1.17811
416416 0 0
417417 20.0000 0.979404
418418 0 0
419419 12.0000i 0.586238i 0.956076 + 0.293119i 0.0946933π0.0946933\pi
−0.956076 + 0.293119i 0.905307π0.905307\pi
420420 0 0
421421 − 34.0000i − 1.65706i −0.559946 0.828529i 0.689178π-0.689178\pi
0.559946 0.828529i 0.310822π-0.310822\pi
422422 0 0
423423 0 0
424424 0 0
425425 −2.00000 −0.0970143
426426 0 0
427427 10.0000i 0.483934i
428428 0 0
429429 − 24.0000i − 1.15873i
430430 0 0
431431 −36.0000 −1.73406 −0.867029 0.498257i 0.833974π-0.833974\pi
−0.867029 + 0.498257i 0.833974π0.833974\pi
432432 0 0
433433 −6.00000 −0.288342 −0.144171 0.989553i 0.546051π-0.546051\pi
−0.144171 + 0.989553i 0.546051π0.546051\pi
434434 0 0
435435 4.00000i 0.191785i
436436 0 0
437437 − 16.0000i − 0.765384i
438438 0 0
439439 8.00000 0.381819 0.190910 0.981608i 0.438856π-0.438856\pi
0.190910 + 0.981608i 0.438856π0.438856\pi
440440 0 0
441441 −1.00000 −0.0476190
442442 0 0
443443 − 28.0000i − 1.33032i −0.746701 0.665160i 0.768363π-0.768363\pi
0.746701 0.665160i 0.231637π-0.231637\pi
444444 0 0
445445 12.0000i 0.568855i
446446 0 0
447447 −6.00000 −0.283790
448448 0 0
449449 18.0000 0.849473 0.424736 0.905317i 0.360367π-0.360367\pi
0.424736 + 0.905317i 0.360367π0.360367\pi
450450 0 0
451451 8.00000i 0.376705i
452452 0 0
453453 − 16.0000i − 0.751746i
454454 0 0
455455 −12.0000 −0.562569
456456 0 0
457457 6.00000 0.280668 0.140334 0.990104i 0.455182π-0.455182\pi
0.140334 + 0.990104i 0.455182π0.455182\pi
458458 0 0
459459 2.00000i 0.0933520i
460460 0 0
461461 26.0000i 1.21094i 0.795868 + 0.605470i 0.207015π0.207015\pi
−0.795868 + 0.605470i 0.792985π0.792985\pi
462462 0 0
463463 −16.0000 −0.743583 −0.371792 0.928316i 0.621256π-0.621256\pi
−0.371792 + 0.928316i 0.621256π0.621256\pi
464464 0 0
465465 −16.0000 −0.741982
466466 0 0
467467 36.0000i 1.66588i 0.553362 + 0.832941i 0.313345π0.313345\pi
−0.553362 + 0.832941i 0.686655π0.686655\pi
468468 0 0
469469 8.00000i 0.369406i
470470 0 0
471471 2.00000 0.0921551
472472 0 0
473473 32.0000 1.47136
474474 0 0
475475 4.00000i 0.183533i
476476 0 0
477477 10.0000i 0.457869i
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 60.0000 2.73576
482482 0 0
483483 4.00000i 0.182006i
484484 0 0
485485 − 4.00000i − 0.181631i
486486 0 0
487487 −32.0000 −1.45006 −0.725029 0.688718i 0.758174π-0.758174\pi
−0.725029 + 0.688718i 0.758174π0.758174\pi
488488 0 0
489489 −16.0000 −0.723545
490490 0 0
491491 36.0000i 1.62466i 0.583200 + 0.812329i 0.301800π0.301800\pi
−0.583200 + 0.812329i 0.698200π0.698200\pi
492492 0 0
493493 − 4.00000i − 0.180151i
494494 0 0
495495 −8.00000 −0.359573
496496 0 0
497497 −12.0000 −0.538274
498498 0 0
499499 − 16.0000i − 0.716258i −0.933672 0.358129i 0.883415π-0.883415\pi
0.933672 0.358129i 0.116585π-0.116585\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 −20.0000 −0.889988
506506 0 0
507507 − 23.0000i − 1.02147i
508508 0 0
509509 18.0000i 0.797836i 0.916987 + 0.398918i 0.130614π0.130614\pi
−0.916987 + 0.398918i 0.869386π0.869386\pi
510510 0 0
511511 2.00000 0.0884748
512512 0 0
513513 4.00000 0.176604
514514 0 0
515515 16.0000i 0.705044i
516516 0 0
517517 0 0
518518 0 0
519519 6.00000 0.263371
520520 0 0
521521 −38.0000 −1.66481 −0.832405 0.554168i 0.813037π-0.813037\pi
−0.832405 + 0.554168i 0.813037π0.813037\pi
522522 0 0
523523 − 28.0000i − 1.22435i −0.790721 0.612177i 0.790294π-0.790294\pi
0.790721 0.612177i 0.209706π-0.209706\pi
524524 0 0
525525 − 1.00000i − 0.0436436i
526526 0 0
527527 16.0000 0.696971
528528 0 0
529529 −7.00000 −0.304348
530530 0 0
531531 − 12.0000i − 0.520756i
532532 0 0
533533 12.0000i 0.519778i
534534 0 0
535535 24.0000 1.03761
536536 0 0
537537 20.0000 0.863064
538538 0 0
539539 4.00000i 0.172292i
540540 0 0
541541 26.0000i 1.11783i 0.829226 + 0.558914i 0.188782π0.188782\pi
−0.829226 + 0.558914i 0.811218π0.811218\pi
542542 0 0
543543 −2.00000 −0.0858282
544544 0 0
545545 4.00000 0.171341
546546 0 0
547547 − 32.0000i − 1.36822i −0.729378 0.684111i 0.760191π-0.760191\pi
0.729378 0.684111i 0.239809π-0.239809\pi
548548 0 0
549549 10.0000i 0.426790i
550550 0 0
551551 −8.00000 −0.340811
552552 0 0
553553 0 0
554554 0 0
555555 − 20.0000i − 0.848953i
556556 0 0
557557 − 30.0000i − 1.27114i −0.772043 0.635570i 0.780765π-0.780765\pi
0.772043 0.635570i 0.219235π-0.219235\pi
558558 0 0
559559 48.0000 2.03018
560560 0 0
561561 8.00000 0.337760
562562 0 0
563563 − 20.0000i − 0.842900i −0.906852 0.421450i 0.861521π-0.861521\pi
0.906852 0.421450i 0.138479π-0.138479\pi
564564 0 0
565565 28.0000i 1.17797i
566566 0 0
567567 −1.00000 −0.0419961
568568 0 0
569569 −18.0000 −0.754599 −0.377300 0.926091i 0.623147π-0.623147\pi
−0.377300 + 0.926091i 0.623147π0.623147\pi
570570 0 0
571571 − 16.0000i − 0.669579i −0.942293 0.334790i 0.891335π-0.891335\pi
0.942293 0.334790i 0.108665π-0.108665\pi
572572 0 0
573573 − 12.0000i − 0.501307i
574574 0 0
575575 −4.00000 −0.166812
576576 0 0
577577 2.00000 0.0832611 0.0416305 0.999133i 0.486745π-0.486745\pi
0.0416305 + 0.999133i 0.486745π0.486745\pi
578578 0 0
579579 − 14.0000i − 0.581820i
580580 0 0
581581 − 12.0000i − 0.497844i
582582 0 0
583583 40.0000 1.65663
584584 0 0
585585 −12.0000 −0.496139
586586 0 0
587587 − 12.0000i − 0.495293i −0.968850 0.247647i 0.920343π-0.920343\pi
0.968850 0.247647i 0.0796572π-0.0796572\pi
588588 0 0
589589 − 32.0000i − 1.31854i
590590 0 0
591591 −6.00000 −0.246807
592592 0 0
593593 −42.0000 −1.72473 −0.862367 0.506284i 0.831019π-0.831019\pi
−0.862367 + 0.506284i 0.831019π0.831019\pi
594594 0 0
595595 − 4.00000i − 0.163984i
596596 0 0
597597 16.0000i 0.654836i
598598 0 0
599599 −36.0000 −1.47092 −0.735460 0.677568i 0.763034π-0.763034\pi
−0.735460 + 0.677568i 0.763034π0.763034\pi
600600 0 0
601601 −10.0000 −0.407909 −0.203954 0.978980i 0.565379π-0.565379\pi
−0.203954 + 0.978980i 0.565379π0.565379\pi
602602 0 0
603603 8.00000i 0.325785i
604604 0 0
605605 10.0000i 0.406558i
606606 0 0
607607 −8.00000 −0.324710 −0.162355 0.986732i 0.551909π-0.551909\pi
−0.162355 + 0.986732i 0.551909π0.551909\pi
608608 0 0
609609 2.00000 0.0810441
610610 0 0
611611 0 0
612612 0 0
613613 − 10.0000i − 0.403896i −0.979396 0.201948i 0.935273π-0.935273\pi
0.979396 0.201948i 0.0647272π-0.0647272\pi
614614 0 0
615615 4.00000 0.161296
616616 0 0
617617 −18.0000 −0.724653 −0.362326 0.932051i 0.618017π-0.618017\pi
−0.362326 + 0.932051i 0.618017π0.618017\pi
618618 0 0
619619 20.0000i 0.803868i 0.915669 + 0.401934i 0.131662π0.131662\pi
−0.915669 + 0.401934i 0.868338π0.868338\pi
620620 0 0
621621 4.00000i 0.160514i
622622 0 0
623623 6.00000 0.240385
624624 0 0
625625 −19.0000 −0.760000
626626 0 0
627627 − 16.0000i − 0.638978i
628628 0 0
629629 20.0000i 0.797452i
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 16.0000 0.635943
634634 0 0
635635 16.0000i 0.634941i
636636 0 0
637637 6.00000i 0.237729i
638638 0 0
639639 −12.0000 −0.474713
640640 0 0
641641 26.0000 1.02694 0.513469 0.858108i 0.328360π-0.328360\pi
0.513469 + 0.858108i 0.328360π0.328360\pi
642642 0 0
643643 28.0000i 1.10421i 0.833774 + 0.552106i 0.186176π0.186176\pi
−0.833774 + 0.552106i 0.813824π0.813824\pi
644644 0 0
645645 − 16.0000i − 0.629999i
646646 0 0
647647 −16.0000 −0.629025 −0.314512 0.949253i 0.601841π-0.601841\pi
−0.314512 + 0.949253i 0.601841π0.601841\pi
648648 0 0
649649 −48.0000 −1.88416
650650 0 0
651651 8.00000i 0.313545i
652652 0 0
653653 − 14.0000i − 0.547862i −0.961749 0.273931i 0.911676π-0.911676\pi
0.961749 0.273931i 0.0883240π-0.0883240\pi
654654 0 0
655655 −40.0000 −1.56293
656656 0 0
657657 2.00000 0.0780274
658658 0 0
659659 44.0000i 1.71400i 0.515319 + 0.856998i 0.327673π0.327673\pi
−0.515319 + 0.856998i 0.672327π0.672327\pi
660660 0 0
661661 18.0000i 0.700119i 0.936727 + 0.350059i 0.113839π0.113839\pi
−0.936727 + 0.350059i 0.886161π0.886161\pi
662662 0 0
663663 12.0000 0.466041
664664 0 0
665665 −8.00000 −0.310227
666666 0 0
667667 − 8.00000i − 0.309761i
668668 0 0
669669 8.00000i 0.309298i
670670 0 0
671671 40.0000 1.54418
672672 0 0
673673 50.0000 1.92736 0.963679 0.267063i 0.0860531π-0.0860531\pi
0.963679 + 0.267063i 0.0860531π0.0860531\pi
674674 0 0
675675 − 1.00000i − 0.0384900i
676676 0 0
677677 − 18.0000i − 0.691796i −0.938272 0.345898i 0.887574π-0.887574\pi
0.938272 0.345898i 0.112426π-0.112426\pi
678678 0 0
679679 −2.00000 −0.0767530
680680 0 0
681681 −20.0000 −0.766402
682682 0 0
683683 − 28.0000i − 1.07139i −0.844411 0.535695i 0.820050π-0.820050\pi
0.844411 0.535695i 0.179950π-0.179950\pi
684684 0 0
685685 36.0000i 1.37549i
686686 0 0
687687 −18.0000 −0.686743
688688 0 0
689689 60.0000 2.28582
690690 0 0
691691 12.0000i 0.456502i 0.973602 + 0.228251i 0.0733006π0.0733006\pi
−0.973602 + 0.228251i 0.926699π0.926699\pi
692692 0 0
693693 4.00000i 0.151947i
694694 0 0
695695 −40.0000 −1.51729
696696 0 0
697697 −4.00000 −0.151511
698698 0 0
699699 14.0000i 0.529529i
700700 0 0
701701 − 30.0000i − 1.13308i −0.824033 0.566542i 0.808281π-0.808281\pi
0.824033 0.566542i 0.191719π-0.191719\pi
702702 0 0
703703 40.0000 1.50863
704704 0 0
705705 0 0
706706 0 0
707707 10.0000i 0.376089i
708708 0 0
709709 38.0000i 1.42712i 0.700594 + 0.713560i 0.252918π0.252918\pi
−0.700594 + 0.713560i 0.747082π0.747082\pi
710710 0 0
711711 0 0
712712 0 0
713713 32.0000 1.19841
714714 0 0
715715 48.0000i 1.79510i
716716 0 0
717717 − 12.0000i − 0.448148i
718718 0 0
719719 −8.00000 −0.298350 −0.149175 0.988811i 0.547662π-0.547662\pi
−0.149175 + 0.988811i 0.547662π0.547662\pi
720720 0 0
721721 8.00000 0.297936
722722 0 0
723723 − 30.0000i − 1.11571i
724724 0 0
725725 2.00000i 0.0742781i
726726 0 0
727727 −40.0000 −1.48352 −0.741759 0.670667i 0.766008π-0.766008\pi
−0.741759 + 0.670667i 0.766008π0.766008\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 16.0000i 0.591781i
732732 0 0
733733 14.0000i 0.517102i 0.965998 + 0.258551i 0.0832450π0.0832450\pi
−0.965998 + 0.258551i 0.916755π0.916755\pi
734734 0 0
735735 2.00000 0.0737711
736736 0 0
737737 32.0000 1.17874
738738 0 0
739739 32.0000i 1.17714i 0.808447 + 0.588570i 0.200309π0.200309\pi
−0.808447 + 0.588570i 0.799691π0.799691\pi
740740 0 0
741741 − 24.0000i − 0.881662i
742742 0 0
743743 −28.0000 −1.02722 −0.513610 0.858024i 0.671692π-0.671692\pi
−0.513610 + 0.858024i 0.671692π0.671692\pi
744744 0 0
745745 12.0000 0.439646
746746 0 0
747747 − 12.0000i − 0.439057i
748748 0 0
749749 − 12.0000i − 0.438470i
750750 0 0
751751 −16.0000 −0.583848 −0.291924 0.956441i 0.594295π-0.594295\pi
−0.291924 + 0.956441i 0.594295π0.594295\pi
752752 0 0
753753 −4.00000 −0.145768
754754 0 0
755755 32.0000i 1.16460i
756756 0 0
757757 − 26.0000i − 0.944986i −0.881334 0.472493i 0.843354π-0.843354\pi
0.881334 0.472493i 0.156646π-0.156646\pi
758758 0 0
759759 16.0000 0.580763
760760 0 0
761761 −30.0000 −1.08750 −0.543750 0.839248i 0.682996π-0.682996\pi
−0.543750 + 0.839248i 0.682996π0.682996\pi
762762 0 0
763763 − 2.00000i − 0.0724049i
764764 0 0
765765 − 4.00000i − 0.144620i
766766 0 0
767767 −72.0000 −2.59977
768768 0 0
769769 26.0000 0.937584 0.468792 0.883309i 0.344689π-0.344689\pi
0.468792 + 0.883309i 0.344689π0.344689\pi
770770 0 0
771771 − 18.0000i − 0.648254i
772772 0 0
773773 − 42.0000i − 1.51064i −0.655359 0.755318i 0.727483π-0.727483\pi
0.655359 0.755318i 0.272517π-0.272517\pi
774774 0 0
775775 −8.00000 −0.287368
776776 0 0
777777 −10.0000 −0.358748
778778 0 0
779779 8.00000i 0.286630i
780780 0 0
781781 48.0000i 1.71758i
782782 0 0
783783 2.00000 0.0714742
784784 0 0
785785 −4.00000 −0.142766
786786 0 0
787787 − 4.00000i − 0.142585i −0.997455 0.0712923i 0.977288π-0.977288\pi
0.997455 0.0712923i 0.0227123π-0.0227123\pi
788788 0 0
789789 − 12.0000i − 0.427211i
790790 0 0
791791 14.0000 0.497783
792792 0 0
793793 60.0000 2.13066
794794 0 0
795795 − 20.0000i − 0.709327i
796796 0 0
797797 42.0000i 1.48772i 0.668338 + 0.743858i 0.267006π0.267006\pi
−0.668338 + 0.743858i 0.732994π0.732994\pi
798798 0 0
799799 0 0
800800 0 0
801801 6.00000 0.212000
802802 0 0
803803 − 8.00000i − 0.282314i
804804 0 0
805805 − 8.00000i − 0.281963i
806806 0 0
807807 −2.00000 −0.0704033
808808 0 0
809809 −10.0000 −0.351581 −0.175791 0.984428i 0.556248π-0.556248\pi
−0.175791 + 0.984428i 0.556248π0.556248\pi
810810 0 0
811811 4.00000i 0.140459i 0.997531 + 0.0702295i 0.0223732π0.0223732\pi
−0.997531 + 0.0702295i 0.977627π0.977627\pi
812812 0 0
813813 32.0000i 1.12229i
814814 0 0
815815 32.0000 1.12091
816816 0 0
817817 32.0000 1.11954
818818 0 0
819819 6.00000i 0.209657i
820820 0 0
821821 − 10.0000i − 0.349002i −0.984657 0.174501i 0.944169π-0.944169\pi
0.984657 0.174501i 0.0558313π-0.0558313\pi
822822 0 0
823823 32.0000 1.11545 0.557725 0.830026i 0.311674π-0.311674\pi
0.557725 + 0.830026i 0.311674π0.311674\pi
824824 0 0
825825 −4.00000 −0.139262
826826 0 0
827827 − 4.00000i − 0.139094i −0.997579 0.0695468i 0.977845π-0.977845\pi
0.997579 0.0695468i 0.0221553π-0.0221553\pi
828828 0 0
829829 14.0000i 0.486240i 0.969996 + 0.243120i 0.0781709π0.0781709\pi
−0.969996 + 0.243120i 0.921829π0.921829\pi
830830 0 0
831831 18.0000 0.624413
832832 0 0
833833 −2.00000 −0.0692959
834834 0 0
835835 0 0
836836 0 0
837837 8.00000i 0.276520i
838838 0 0
839839 −16.0000 −0.552381 −0.276191 0.961103i 0.589072π-0.589072\pi
−0.276191 + 0.961103i 0.589072π0.589072\pi
840840 0 0
841841 25.0000 0.862069
842842 0 0
843843 30.0000i 1.03325i
844844 0 0
845845 46.0000i 1.58245i
846846 0 0
847847 5.00000 0.171802
848848 0 0
849849 −12.0000 −0.411839
850850 0 0
851851 40.0000i 1.37118i
852852 0 0
853853 42.0000i 1.43805i 0.694983 + 0.719026i 0.255412π0.255412\pi
−0.694983 + 0.719026i 0.744588π0.744588\pi
854854 0 0
855855 −8.00000 −0.273594
856856 0 0
857857 18.0000 0.614868 0.307434 0.951569i 0.400530π-0.400530\pi
0.307434 + 0.951569i 0.400530π0.400530\pi
858858 0 0
859859 − 12.0000i − 0.409435i −0.978821 0.204717i 0.934372π-0.934372\pi
0.978821 0.204717i 0.0656275π-0.0656275\pi
860860 0 0
861861 − 2.00000i − 0.0681598i
862862 0 0
863863 −52.0000 −1.77010 −0.885050 0.465495i 0.845876π-0.845876\pi
−0.885050 + 0.465495i 0.845876π0.845876\pi
864864 0 0
865865 −12.0000 −0.408012
866866 0 0
867867 − 13.0000i − 0.441503i
868868 0 0
869869 0 0
870870 0 0
871871 48.0000 1.62642
872872 0 0
873873 −2.00000 −0.0676897
874874 0 0
875875 12.0000i 0.405674i
876876 0 0
877877 − 14.0000i − 0.472746i −0.971662 0.236373i 0.924041π-0.924041\pi
0.971662 0.236373i 0.0759588π-0.0759588\pi
878878 0 0
879879 −6.00000 −0.202375
880880 0 0
881881 −42.0000 −1.41502 −0.707508 0.706705i 0.750181π-0.750181\pi
−0.707508 + 0.706705i 0.750181π0.750181\pi
882882 0 0
883883 16.0000i 0.538443i 0.963078 + 0.269221i 0.0867663π0.0867663\pi
−0.963078 + 0.269221i 0.913234π0.913234\pi
884884 0 0
885885 24.0000i 0.806751i
886886 0 0
887887 −16.0000 −0.537227 −0.268614 0.963248i 0.586566π-0.586566\pi
−0.268614 + 0.963248i 0.586566π0.586566\pi
888888 0 0
889889 8.00000 0.268311
890890 0 0
891891 4.00000i 0.134005i
892892 0 0
893893 0 0
894894 0 0
895895 −40.0000 −1.33705
896896 0 0
897897 24.0000 0.801337
898898 0 0
899899 − 16.0000i − 0.533630i
900900 0 0
901901 20.0000i 0.666297i
902902 0 0
903903 −8.00000 −0.266223
904904 0 0
905905 4.00000 0.132964
906906 0 0
907907 − 48.0000i − 1.59381i −0.604102 0.796907i 0.706468π-0.706468\pi
0.604102 0.796907i 0.293532π-0.293532\pi
908908 0 0
909909 10.0000i 0.331679i
910910 0 0
911911 12.0000 0.397578 0.198789 0.980042i 0.436299π-0.436299\pi
0.198789 + 0.980042i 0.436299π0.436299\pi
912912 0 0
913913 −48.0000 −1.58857
914914 0 0
915915 − 20.0000i − 0.661180i
916916 0 0
917917 20.0000i 0.660458i
918918 0 0
919919 8.00000 0.263896 0.131948 0.991257i 0.457877π-0.457877\pi
0.131948 + 0.991257i 0.457877π0.457877\pi
920920 0 0
921921 −4.00000 −0.131804
922922 0 0
923923 72.0000i 2.36991i
924924 0 0
925925 − 10.0000i − 0.328798i
926926 0 0
927927 8.00000 0.262754
928928 0 0
929929 22.0000 0.721797 0.360898 0.932605i 0.382470π-0.382470\pi
0.360898 + 0.932605i 0.382470π0.382470\pi
930930 0 0
931931 4.00000i 0.131095i
932932 0 0
933933 8.00000i 0.261908i
934934 0 0
935935 −16.0000 −0.523256
936936 0 0
937937 −10.0000 −0.326686 −0.163343 0.986569i 0.552228π-0.552228\pi
−0.163343 + 0.986569i 0.552228π0.552228\pi
938938 0 0
939939 14.0000i 0.456873i
940940 0 0
941941 − 6.00000i − 0.195594i −0.995206 0.0977972i 0.968820π-0.968820\pi
0.995206 0.0977972i 0.0311797π-0.0311797\pi
942942 0 0
943943 −8.00000 −0.260516
944944 0 0
945945 2.00000 0.0650600
946946 0 0
947947 44.0000i 1.42981i 0.699223 + 0.714904i 0.253530π0.253530\pi
−0.699223 + 0.714904i 0.746470π0.746470\pi
948948 0 0
949949 − 12.0000i − 0.389536i
950950 0 0
951951 −2.00000 −0.0648544
952952 0 0
953953 54.0000 1.74923 0.874616 0.484817i 0.161114π-0.161114\pi
0.874616 + 0.484817i 0.161114π0.161114\pi
954954 0 0
955955 24.0000i 0.776622i
956956 0 0
957957 − 8.00000i − 0.258603i
958958 0 0
959959 18.0000 0.581250
960960 0 0
961961 33.0000 1.06452
962962 0 0
963963 − 12.0000i − 0.386695i
964964 0 0
965965 28.0000i 0.901352i
966966 0 0
967967 8.00000 0.257263 0.128631 0.991692i 0.458942π-0.458942\pi
0.128631 + 0.991692i 0.458942π0.458942\pi
968968 0 0
969969 8.00000 0.256997
970970 0 0
971971 − 28.0000i − 0.898563i −0.893390 0.449281i 0.851680π-0.851680\pi
0.893390 0.449281i 0.148320π-0.148320\pi
972972 0 0
973973 20.0000i 0.641171i
974974 0 0
975975 −6.00000 −0.192154
976976 0 0
977977 −22.0000 −0.703842 −0.351921 0.936030i 0.614471π-0.614471\pi
−0.351921 + 0.936030i 0.614471π0.614471\pi
978978 0 0
979979 − 24.0000i − 0.767043i
980980 0 0
981981 − 2.00000i − 0.0638551i
982982 0 0
983983 24.0000 0.765481 0.382741 0.923856i 0.374980π-0.374980\pi
0.382741 + 0.923856i 0.374980π0.374980\pi
984984 0 0
985985 12.0000 0.382352
986986 0 0
987987 0 0
988988 0 0
989989 32.0000i 1.01754i
990990 0 0
991991 −8.00000 −0.254128 −0.127064 0.991894i 0.540555π-0.540555\pi
−0.127064 + 0.991894i 0.540555π0.540555\pi
992992 0 0
993993 −8.00000 −0.253872
994994 0 0
995995 − 32.0000i − 1.01447i
996996 0 0
997997 − 62.0000i − 1.96356i −0.190022 0.981780i 0.560856π-0.560856\pi
0.190022 0.981780i 0.439144π-0.439144\pi
998998 0 0
999999 −10.0000 −0.316386
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5376.2.c.m.2689.2 2
4.3 odd 2 5376.2.c.s.2689.1 2
8.3 odd 2 5376.2.c.s.2689.2 2
8.5 even 2 inner 5376.2.c.m.2689.1 2
16.3 odd 4 672.2.a.f.1.1 yes 1
16.5 even 4 1344.2.a.r.1.1 1
16.11 odd 4 1344.2.a.h.1.1 1
16.13 even 4 672.2.a.b.1.1 1
48.5 odd 4 4032.2.a.n.1.1 1
48.11 even 4 4032.2.a.f.1.1 1
48.29 odd 4 2016.2.a.l.1.1 1
48.35 even 4 2016.2.a.k.1.1 1
112.13 odd 4 4704.2.a.be.1.1 1
112.27 even 4 9408.2.a.cb.1.1 1
112.69 odd 4 9408.2.a.g.1.1 1
112.83 even 4 4704.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.a.b.1.1 1 16.13 even 4
672.2.a.f.1.1 yes 1 16.3 odd 4
1344.2.a.h.1.1 1 16.11 odd 4
1344.2.a.r.1.1 1 16.5 even 4
2016.2.a.k.1.1 1 48.35 even 4
2016.2.a.l.1.1 1 48.29 odd 4
4032.2.a.f.1.1 1 48.11 even 4
4032.2.a.n.1.1 1 48.5 odd 4
4704.2.a.m.1.1 1 112.83 even 4
4704.2.a.be.1.1 1 112.13 odd 4
5376.2.c.m.2689.1 2 8.5 even 2 inner
5376.2.c.m.2689.2 2 1.1 even 1 trivial
5376.2.c.s.2689.1 2 4.3 odd 2
5376.2.c.s.2689.2 2 8.3 odd 2
9408.2.a.g.1.1 1 112.69 odd 4
9408.2.a.cb.1.1 1 112.27 even 4