Properties

Label 538.6.a.b.1.10
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -8.18103 q^{3} +16.0000 q^{4} -4.49984 q^{5} +32.7241 q^{6} +129.673 q^{7} -64.0000 q^{8} -176.071 q^{9} +17.9994 q^{10} -320.988 q^{11} -130.896 q^{12} -526.959 q^{13} -518.693 q^{14} +36.8133 q^{15} +256.000 q^{16} -111.314 q^{17} +704.283 q^{18} -559.106 q^{19} -71.9975 q^{20} -1060.86 q^{21} +1283.95 q^{22} +1967.84 q^{23} +523.586 q^{24} -3104.75 q^{25} +2107.83 q^{26} +3428.43 q^{27} +2074.77 q^{28} -558.996 q^{29} -147.253 q^{30} -1366.88 q^{31} -1024.00 q^{32} +2626.01 q^{33} +445.256 q^{34} -583.509 q^{35} -2817.13 q^{36} +8325.86 q^{37} +2236.42 q^{38} +4311.06 q^{39} +287.990 q^{40} +16577.7 q^{41} +4243.44 q^{42} -8136.63 q^{43} -5135.80 q^{44} +792.291 q^{45} -7871.37 q^{46} -24739.9 q^{47} -2094.34 q^{48} +8.16140 q^{49} +12419.0 q^{50} +910.662 q^{51} -8431.34 q^{52} -33249.8 q^{53} -13713.7 q^{54} +1444.39 q^{55} -8299.09 q^{56} +4574.06 q^{57} +2235.99 q^{58} +10297.0 q^{59} +589.013 q^{60} +905.539 q^{61} +5467.51 q^{62} -22831.7 q^{63} +4096.00 q^{64} +2371.23 q^{65} -10504.0 q^{66} -4482.56 q^{67} -1781.02 q^{68} -16099.0 q^{69} +2334.04 q^{70} -66494.9 q^{71} +11268.5 q^{72} +77206.4 q^{73} -33303.4 q^{74} +25400.1 q^{75} -8945.69 q^{76} -41623.5 q^{77} -17244.3 q^{78} -48991.9 q^{79} -1151.96 q^{80} +14737.1 q^{81} -66310.9 q^{82} +18670.4 q^{83} -16973.8 q^{84} +500.895 q^{85} +32546.5 q^{86} +4573.17 q^{87} +20543.2 q^{88} +133418. q^{89} -3169.16 q^{90} -68332.4 q^{91} +31485.5 q^{92} +11182.5 q^{93} +98959.6 q^{94} +2515.89 q^{95} +8377.37 q^{96} -78905.2 q^{97} -32.6456 q^{98} +56516.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 108 q^{2} + 33 q^{3} + 432 q^{4} + 139 q^{5} - 132 q^{6} - 25 q^{7} - 1728 q^{8} + 2346 q^{9} - 556 q^{10} + 1241 q^{11} + 528 q^{12} - 202 q^{13} + 100 q^{14} + 1786 q^{15} + 6912 q^{16} + 1550 q^{17}+ \cdots + 335378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −8.18103 −0.524813 −0.262407 0.964957i \(-0.584516\pi\)
−0.262407 + 0.964957i \(0.584516\pi\)
\(4\) 16.0000 0.500000
\(5\) −4.49984 −0.0804956 −0.0402478 0.999190i \(-0.512815\pi\)
−0.0402478 + 0.999190i \(0.512815\pi\)
\(6\) 32.7241 0.371099
\(7\) 129.673 1.00024 0.500121 0.865955i \(-0.333289\pi\)
0.500121 + 0.865955i \(0.333289\pi\)
\(8\) −64.0000 −0.353553
\(9\) −176.071 −0.724571
\(10\) 17.9994 0.0569190
\(11\) −320.988 −0.799846 −0.399923 0.916549i \(-0.630963\pi\)
−0.399923 + 0.916549i \(0.630963\pi\)
\(12\) −130.896 −0.262407
\(13\) −526.959 −0.864805 −0.432402 0.901681i \(-0.642334\pi\)
−0.432402 + 0.901681i \(0.642334\pi\)
\(14\) −518.693 −0.707278
\(15\) 36.8133 0.0422452
\(16\) 256.000 0.250000
\(17\) −111.314 −0.0934173 −0.0467086 0.998909i \(-0.514873\pi\)
−0.0467086 + 0.998909i \(0.514873\pi\)
\(18\) 704.283 0.512349
\(19\) −559.106 −0.355312 −0.177656 0.984093i \(-0.556851\pi\)
−0.177656 + 0.984093i \(0.556851\pi\)
\(20\) −71.9975 −0.0402478
\(21\) −1060.86 −0.524941
\(22\) 1283.95 0.565577
\(23\) 1967.84 0.775659 0.387829 0.921731i \(-0.373225\pi\)
0.387829 + 0.921731i \(0.373225\pi\)
\(24\) 523.586 0.185550
\(25\) −3104.75 −0.993520
\(26\) 2107.83 0.611509
\(27\) 3428.43 0.905078
\(28\) 2074.77 0.500121
\(29\) −558.996 −0.123428 −0.0617140 0.998094i \(-0.519657\pi\)
−0.0617140 + 0.998094i \(0.519657\pi\)
\(30\) −147.253 −0.0298718
\(31\) −1366.88 −0.255461 −0.127731 0.991809i \(-0.540769\pi\)
−0.127731 + 0.991809i \(0.540769\pi\)
\(32\) −1024.00 −0.176777
\(33\) 2626.01 0.419770
\(34\) 445.256 0.0660560
\(35\) −583.509 −0.0805152
\(36\) −2817.13 −0.362286
\(37\) 8325.86 0.999827 0.499913 0.866075i \(-0.333365\pi\)
0.499913 + 0.866075i \(0.333365\pi\)
\(38\) 2236.42 0.251244
\(39\) 4311.06 0.453861
\(40\) 287.990 0.0284595
\(41\) 16577.7 1.54016 0.770079 0.637948i \(-0.220217\pi\)
0.770079 + 0.637948i \(0.220217\pi\)
\(42\) 4243.44 0.371189
\(43\) −8136.63 −0.671079 −0.335539 0.942026i \(-0.608919\pi\)
−0.335539 + 0.942026i \(0.608919\pi\)
\(44\) −5135.80 −0.399923
\(45\) 792.291 0.0583248
\(46\) −7871.37 −0.548474
\(47\) −24739.9 −1.63363 −0.816814 0.576901i \(-0.804262\pi\)
−0.816814 + 0.576901i \(0.804262\pi\)
\(48\) −2094.34 −0.131203
\(49\) 8.16140 0.000485596 0
\(50\) 12419.0 0.702525
\(51\) 910.662 0.0490266
\(52\) −8431.34 −0.432402
\(53\) −33249.8 −1.62592 −0.812961 0.582318i \(-0.802146\pi\)
−0.812961 + 0.582318i \(0.802146\pi\)
\(54\) −13713.7 −0.639987
\(55\) 1444.39 0.0643841
\(56\) −8299.09 −0.353639
\(57\) 4574.06 0.186472
\(58\) 2235.99 0.0872768
\(59\) 10297.0 0.385106 0.192553 0.981287i \(-0.438323\pi\)
0.192553 + 0.981287i \(0.438323\pi\)
\(60\) 589.013 0.0211226
\(61\) 905.539 0.0311589 0.0155795 0.999879i \(-0.495041\pi\)
0.0155795 + 0.999879i \(0.495041\pi\)
\(62\) 5467.51 0.180638
\(63\) −22831.7 −0.724747
\(64\) 4096.00 0.125000
\(65\) 2371.23 0.0696130
\(66\) −10504.0 −0.296822
\(67\) −4482.56 −0.121994 −0.0609971 0.998138i \(-0.519428\pi\)
−0.0609971 + 0.998138i \(0.519428\pi\)
\(68\) −1781.02 −0.0467086
\(69\) −16099.0 −0.407076
\(70\) 2334.04 0.0569328
\(71\) −66494.9 −1.56546 −0.782731 0.622360i \(-0.786174\pi\)
−0.782731 + 0.622360i \(0.786174\pi\)
\(72\) 11268.5 0.256175
\(73\) 77206.4 1.69569 0.847844 0.530246i \(-0.177900\pi\)
0.847844 + 0.530246i \(0.177900\pi\)
\(74\) −33303.4 −0.706984
\(75\) 25400.1 0.521413
\(76\) −8945.69 −0.177656
\(77\) −41623.5 −0.800040
\(78\) −17244.3 −0.320928
\(79\) −48991.9 −0.883194 −0.441597 0.897213i \(-0.645588\pi\)
−0.441597 + 0.897213i \(0.645588\pi\)
\(80\) −1151.96 −0.0201239
\(81\) 14737.1 0.249574
\(82\) −66310.9 −1.08906
\(83\) 18670.4 0.297481 0.148740 0.988876i \(-0.452478\pi\)
0.148740 + 0.988876i \(0.452478\pi\)
\(84\) −16973.8 −0.262470
\(85\) 500.895 0.00751968
\(86\) 32546.5 0.474524
\(87\) 4573.17 0.0647767
\(88\) 20543.2 0.282788
\(89\) 133418. 1.78541 0.892706 0.450639i \(-0.148804\pi\)
0.892706 + 0.450639i \(0.148804\pi\)
\(90\) −3169.16 −0.0412419
\(91\) −68332.4 −0.865015
\(92\) 31485.5 0.387829
\(93\) 11182.5 0.134069
\(94\) 98959.6 1.15515
\(95\) 2515.89 0.0286011
\(96\) 8377.37 0.0927748
\(97\) −78905.2 −0.851484 −0.425742 0.904845i \(-0.639987\pi\)
−0.425742 + 0.904845i \(0.639987\pi\)
\(98\) −32.6456 −0.000343368 0
\(99\) 56516.5 0.579545
\(100\) −49676.0 −0.496760
\(101\) 178715. 1.74324 0.871619 0.490184i \(-0.163071\pi\)
0.871619 + 0.490184i \(0.163071\pi\)
\(102\) −3642.65 −0.0346671
\(103\) −104450. −0.970098 −0.485049 0.874487i \(-0.661198\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(104\) 33725.3 0.305755
\(105\) 4773.71 0.0422554
\(106\) 132999. 1.14970
\(107\) 147033. 1.24152 0.620761 0.784000i \(-0.286824\pi\)
0.620761 + 0.784000i \(0.286824\pi\)
\(108\) 54854.9 0.452539
\(109\) −133770. −1.07843 −0.539215 0.842168i \(-0.681279\pi\)
−0.539215 + 0.842168i \(0.681279\pi\)
\(110\) −5777.57 −0.0455264
\(111\) −68114.1 −0.524722
\(112\) 33196.4 0.250061
\(113\) −84037.9 −0.619126 −0.309563 0.950879i \(-0.600183\pi\)
−0.309563 + 0.950879i \(0.600183\pi\)
\(114\) −18296.2 −0.131856
\(115\) −8854.98 −0.0624371
\(116\) −8943.94 −0.0617140
\(117\) 92782.0 0.626612
\(118\) −41188.0 −0.272311
\(119\) −14434.4 −0.0934399
\(120\) −2356.05 −0.0149359
\(121\) −58018.0 −0.360246
\(122\) −3622.16 −0.0220327
\(123\) −135623. −0.808296
\(124\) −21870.0 −0.127731
\(125\) 28032.9 0.160470
\(126\) 91326.7 0.512473
\(127\) 230568. 1.26850 0.634249 0.773129i \(-0.281309\pi\)
0.634249 + 0.773129i \(0.281309\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 66566.0 0.352191
\(130\) −9484.92 −0.0492238
\(131\) 175408. 0.893039 0.446520 0.894774i \(-0.352663\pi\)
0.446520 + 0.894774i \(0.352663\pi\)
\(132\) 42016.1 0.209885
\(133\) −72501.1 −0.355398
\(134\) 17930.3 0.0862630
\(135\) −15427.4 −0.0728548
\(136\) 7124.09 0.0330280
\(137\) −106195. −0.483395 −0.241697 0.970352i \(-0.577704\pi\)
−0.241697 + 0.970352i \(0.577704\pi\)
\(138\) 64395.9 0.287846
\(139\) 246545. 1.08233 0.541165 0.840916i \(-0.317983\pi\)
0.541165 + 0.840916i \(0.317983\pi\)
\(140\) −9336.15 −0.0402576
\(141\) 202398. 0.857350
\(142\) 265980. 1.10695
\(143\) 169147. 0.691711
\(144\) −45074.1 −0.181143
\(145\) 2515.40 0.00993542
\(146\) −308825. −1.19903
\(147\) −66.7687 −0.000254847 0
\(148\) 133214. 0.499913
\(149\) 90173.2 0.332745 0.166373 0.986063i \(-0.446795\pi\)
0.166373 + 0.986063i \(0.446795\pi\)
\(150\) −101600. −0.368694
\(151\) 5899.00 0.0210541 0.0105270 0.999945i \(-0.496649\pi\)
0.0105270 + 0.999945i \(0.496649\pi\)
\(152\) 35782.8 0.125622
\(153\) 19599.1 0.0676874
\(154\) 166494. 0.565714
\(155\) 6150.73 0.0205635
\(156\) 68977.0 0.226930
\(157\) −306248. −0.991570 −0.495785 0.868445i \(-0.665120\pi\)
−0.495785 + 0.868445i \(0.665120\pi\)
\(158\) 195968. 0.624513
\(159\) 272018. 0.853306
\(160\) 4607.84 0.0142297
\(161\) 255177. 0.775847
\(162\) −58948.4 −0.176476
\(163\) −273207. −0.805422 −0.402711 0.915327i \(-0.631932\pi\)
−0.402711 + 0.915327i \(0.631932\pi\)
\(164\) 265244. 0.770079
\(165\) −11816.6 −0.0337896
\(166\) −74681.7 −0.210351
\(167\) 579511. 1.60794 0.803971 0.594668i \(-0.202716\pi\)
0.803971 + 0.594668i \(0.202716\pi\)
\(168\) 67895.1 0.185595
\(169\) −93607.7 −0.252113
\(170\) −2003.58 −0.00531722
\(171\) 98442.2 0.257449
\(172\) −130186. −0.335539
\(173\) 327012. 0.830708 0.415354 0.909660i \(-0.363658\pi\)
0.415354 + 0.909660i \(0.363658\pi\)
\(174\) −18292.7 −0.0458040
\(175\) −402603. −0.993762
\(176\) −82172.8 −0.199962
\(177\) −84240.0 −0.202109
\(178\) −533671. −1.26248
\(179\) 252475. 0.588960 0.294480 0.955658i \(-0.404854\pi\)
0.294480 + 0.955658i \(0.404854\pi\)
\(180\) 12676.6 0.0291624
\(181\) 561278. 1.27345 0.636724 0.771092i \(-0.280289\pi\)
0.636724 + 0.771092i \(0.280289\pi\)
\(182\) 273330. 0.611658
\(183\) −7408.24 −0.0163526
\(184\) −125942. −0.274237
\(185\) −37465.1 −0.0804817
\(186\) −44729.8 −0.0948014
\(187\) 35730.4 0.0747194
\(188\) −395838. −0.816814
\(189\) 444576. 0.905297
\(190\) −10063.5 −0.0202240
\(191\) 44227.2 0.0877215 0.0438608 0.999038i \(-0.486034\pi\)
0.0438608 + 0.999038i \(0.486034\pi\)
\(192\) −33509.5 −0.0656017
\(193\) 832064. 1.60792 0.803958 0.594686i \(-0.202724\pi\)
0.803958 + 0.594686i \(0.202724\pi\)
\(194\) 315621. 0.602090
\(195\) −19399.1 −0.0365338
\(196\) 130.582 0.000242798 0
\(197\) 923407. 1.69523 0.847613 0.530614i \(-0.178039\pi\)
0.847613 + 0.530614i \(0.178039\pi\)
\(198\) −226066. −0.409800
\(199\) 589613. 1.05544 0.527721 0.849418i \(-0.323047\pi\)
0.527721 + 0.849418i \(0.323047\pi\)
\(200\) 198704. 0.351263
\(201\) 36672.0 0.0640242
\(202\) −714858. −1.23266
\(203\) −72486.9 −0.123458
\(204\) 14570.6 0.0245133
\(205\) −74597.2 −0.123976
\(206\) 417800. 0.685963
\(207\) −346479. −0.562020
\(208\) −134901. −0.216201
\(209\) 179466. 0.284195
\(210\) −19094.8 −0.0298791
\(211\) 367136. 0.567702 0.283851 0.958868i \(-0.408388\pi\)
0.283851 + 0.958868i \(0.408388\pi\)
\(212\) −531997. −0.812961
\(213\) 543997. 0.821575
\(214\) −588131. −0.877889
\(215\) 36613.6 0.0540189
\(216\) −219420. −0.319993
\(217\) −177247. −0.255523
\(218\) 535080. 0.762566
\(219\) −631627. −0.889920
\(220\) 23110.3 0.0321921
\(221\) 58657.8 0.0807877
\(222\) 272456. 0.371035
\(223\) 402082. 0.541443 0.270722 0.962658i \(-0.412738\pi\)
0.270722 + 0.962658i \(0.412738\pi\)
\(224\) −132785. −0.176820
\(225\) 546656. 0.719876
\(226\) 336152. 0.437788
\(227\) −964086. −1.24180 −0.620899 0.783890i \(-0.713232\pi\)
−0.620899 + 0.783890i \(0.713232\pi\)
\(228\) 73185.0 0.0932362
\(229\) 1.31061e6 1.65152 0.825760 0.564021i \(-0.190746\pi\)
0.825760 + 0.564021i \(0.190746\pi\)
\(230\) 35419.9 0.0441497
\(231\) 340523. 0.419872
\(232\) 35775.8 0.0436384
\(233\) 881268. 1.06345 0.531726 0.846916i \(-0.321544\pi\)
0.531726 + 0.846916i \(0.321544\pi\)
\(234\) −371128. −0.443082
\(235\) 111326. 0.131500
\(236\) 164752. 0.192553
\(237\) 400804. 0.463512
\(238\) 57737.8 0.0660720
\(239\) 1.53737e6 1.74094 0.870469 0.492224i \(-0.163816\pi\)
0.870469 + 0.492224i \(0.163816\pi\)
\(240\) 9424.21 0.0105613
\(241\) −303134. −0.336195 −0.168098 0.985770i \(-0.553762\pi\)
−0.168098 + 0.985770i \(0.553762\pi\)
\(242\) 232072. 0.254732
\(243\) −953673. −1.03606
\(244\) 14488.6 0.0155795
\(245\) −36.7250 −3.90883e−5 0
\(246\) 542492. 0.571551
\(247\) 294626. 0.307276
\(248\) 87480.1 0.0903192
\(249\) −152743. −0.156122
\(250\) −112132. −0.113469
\(251\) 1.12436e6 1.12648 0.563238 0.826295i \(-0.309555\pi\)
0.563238 + 0.826295i \(0.309555\pi\)
\(252\) −365307. −0.362373
\(253\) −631653. −0.620408
\(254\) −922273. −0.896964
\(255\) −4097.84 −0.00394643
\(256\) 65536.0 0.0625000
\(257\) −213101. −0.201258 −0.100629 0.994924i \(-0.532085\pi\)
−0.100629 + 0.994924i \(0.532085\pi\)
\(258\) −266264. −0.249037
\(259\) 1.07964e6 1.00007
\(260\) 37939.7 0.0348065
\(261\) 98422.9 0.0894324
\(262\) −701631. −0.631474
\(263\) −1.99320e6 −1.77690 −0.888448 0.458978i \(-0.848216\pi\)
−0.888448 + 0.458978i \(0.848216\pi\)
\(264\) −168065. −0.148411
\(265\) 149619. 0.130880
\(266\) 290004. 0.251305
\(267\) −1.09149e6 −0.937008
\(268\) −71721.0 −0.0609971
\(269\) 72361.0 0.0609711
\(270\) 61709.6 0.0515161
\(271\) −1.48527e6 −1.22852 −0.614262 0.789102i \(-0.710546\pi\)
−0.614262 + 0.789102i \(0.710546\pi\)
\(272\) −28496.4 −0.0233543
\(273\) 559030. 0.453971
\(274\) 424779. 0.341812
\(275\) 996587. 0.794664
\(276\) −257584. −0.203538
\(277\) −1.17388e6 −0.919227 −0.459613 0.888119i \(-0.652012\pi\)
−0.459613 + 0.888119i \(0.652012\pi\)
\(278\) −986182. −0.765323
\(279\) 240667. 0.185100
\(280\) 37344.6 0.0284664
\(281\) −528685. −0.399421 −0.199710 0.979855i \(-0.564000\pi\)
−0.199710 + 0.979855i \(0.564000\pi\)
\(282\) −809591. −0.606238
\(283\) 851227. 0.631799 0.315900 0.948793i \(-0.397694\pi\)
0.315900 + 0.948793i \(0.397694\pi\)
\(284\) −1.06392e6 −0.782731
\(285\) −20582.5 −0.0150102
\(286\) −676588. −0.489113
\(287\) 2.14969e6 1.54053
\(288\) 180296. 0.128087
\(289\) −1.40747e6 −0.991273
\(290\) −10061.6 −0.00702540
\(291\) 645526. 0.446870
\(292\) 1.23530e6 0.847844
\(293\) −1.06424e6 −0.724220 −0.362110 0.932135i \(-0.617944\pi\)
−0.362110 + 0.932135i \(0.617944\pi\)
\(294\) 267.075 0.000180204 0
\(295\) −46334.8 −0.0309993
\(296\) −532855. −0.353492
\(297\) −1.10048e6 −0.723923
\(298\) −360693. −0.235286
\(299\) −1.03697e6 −0.670793
\(300\) 406401. 0.260706
\(301\) −1.05510e6 −0.671242
\(302\) −23596.0 −0.0148875
\(303\) −1.46207e6 −0.914874
\(304\) −143131. −0.0888280
\(305\) −4074.78 −0.00250816
\(306\) −78396.5 −0.0478622
\(307\) 326834. 0.197916 0.0989581 0.995092i \(-0.468449\pi\)
0.0989581 + 0.995092i \(0.468449\pi\)
\(308\) −665976. −0.400020
\(309\) 854509. 0.509120
\(310\) −24602.9 −0.0145406
\(311\) −120503. −0.0706473 −0.0353237 0.999376i \(-0.511246\pi\)
−0.0353237 + 0.999376i \(0.511246\pi\)
\(312\) −275908. −0.160464
\(313\) −1.42853e6 −0.824190 −0.412095 0.911141i \(-0.635203\pi\)
−0.412095 + 0.911141i \(0.635203\pi\)
\(314\) 1.22499e6 0.701146
\(315\) 102739. 0.0583389
\(316\) −783870. −0.441597
\(317\) −144666. −0.0808570 −0.0404285 0.999182i \(-0.512872\pi\)
−0.0404285 + 0.999182i \(0.512872\pi\)
\(318\) −1.08807e6 −0.603378
\(319\) 179431. 0.0987235
\(320\) −18431.4 −0.0100620
\(321\) −1.20288e6 −0.651567
\(322\) −1.02071e6 −0.548607
\(323\) 62236.2 0.0331923
\(324\) 235794. 0.124787
\(325\) 1.63608e6 0.859201
\(326\) 1.09283e6 0.569519
\(327\) 1.09438e6 0.565975
\(328\) −1.06097e6 −0.544528
\(329\) −3.20810e6 −1.63402
\(330\) 47266.5 0.0238929
\(331\) 2.03741e6 1.02214 0.511068 0.859540i \(-0.329250\pi\)
0.511068 + 0.859540i \(0.329250\pi\)
\(332\) 298727. 0.148740
\(333\) −1.46594e6 −0.724446
\(334\) −2.31804e6 −1.13699
\(335\) 20170.8 0.00982000
\(336\) −271580. −0.131235
\(337\) 2.62479e6 1.25898 0.629492 0.777007i \(-0.283263\pi\)
0.629492 + 0.777007i \(0.283263\pi\)
\(338\) 374431. 0.178271
\(339\) 687517. 0.324926
\(340\) 8014.32 0.00375984
\(341\) 438750. 0.204330
\(342\) −393769. −0.182044
\(343\) −2.17836e6 −0.999757
\(344\) 520744. 0.237262
\(345\) 72442.8 0.0327678
\(346\) −1.30805e6 −0.587399
\(347\) 4.35017e6 1.93947 0.969733 0.244169i \(-0.0785151\pi\)
0.969733 + 0.244169i \(0.0785151\pi\)
\(348\) 73170.7 0.0323884
\(349\) −12156.8 −0.00534265 −0.00267133 0.999996i \(-0.500850\pi\)
−0.00267133 + 0.999996i \(0.500850\pi\)
\(350\) 1.61041e6 0.702696
\(351\) −1.80664e6 −0.782716
\(352\) 328691. 0.141394
\(353\) 2.72752e6 1.16502 0.582508 0.812825i \(-0.302072\pi\)
0.582508 + 0.812825i \(0.302072\pi\)
\(354\) 336960. 0.142912
\(355\) 299217. 0.126013
\(356\) 2.13468e6 0.892706
\(357\) 118089. 0.0490385
\(358\) −1.00990e6 −0.416458
\(359\) 854521. 0.349935 0.174967 0.984574i \(-0.444018\pi\)
0.174967 + 0.984574i \(0.444018\pi\)
\(360\) −50706.6 −0.0206209
\(361\) −2.16350e6 −0.873753
\(362\) −2.24511e6 −0.900464
\(363\) 474647. 0.189062
\(364\) −1.09332e6 −0.432507
\(365\) −347416. −0.136495
\(366\) 29633.0 0.0115631
\(367\) 4.48843e6 1.73952 0.869760 0.493475i \(-0.164274\pi\)
0.869760 + 0.493475i \(0.164274\pi\)
\(368\) 503768. 0.193915
\(369\) −2.91885e6 −1.11595
\(370\) 149860. 0.0569091
\(371\) −4.31162e6 −1.62632
\(372\) 178919. 0.0670347
\(373\) 3.36839e6 1.25358 0.626788 0.779190i \(-0.284369\pi\)
0.626788 + 0.779190i \(0.284369\pi\)
\(374\) −142922. −0.0528346
\(375\) −229338. −0.0842166
\(376\) 1.58335e6 0.577575
\(377\) 294568. 0.106741
\(378\) −1.77830e6 −0.640142
\(379\) −2.60226e6 −0.930578 −0.465289 0.885159i \(-0.654050\pi\)
−0.465289 + 0.885159i \(0.654050\pi\)
\(380\) 40254.2 0.0143005
\(381\) −1.88628e6 −0.665725
\(382\) −176909. −0.0620285
\(383\) −1.12236e6 −0.390964 −0.195482 0.980707i \(-0.562627\pi\)
−0.195482 + 0.980707i \(0.562627\pi\)
\(384\) 134038. 0.0463874
\(385\) 187299. 0.0643997
\(386\) −3.32825e6 −1.13697
\(387\) 1.43262e6 0.486244
\(388\) −1.26248e6 −0.425742
\(389\) −1.53614e6 −0.514704 −0.257352 0.966318i \(-0.582850\pi\)
−0.257352 + 0.966318i \(0.582850\pi\)
\(390\) 77596.4 0.0258333
\(391\) −219048. −0.0724599
\(392\) −522.330 −0.000171684 0
\(393\) −1.43502e6 −0.468679
\(394\) −3.69363e6 −1.19871
\(395\) 220456. 0.0710933
\(396\) 904264. 0.289773
\(397\) 3.78536e6 1.20540 0.602700 0.797968i \(-0.294091\pi\)
0.602700 + 0.797968i \(0.294091\pi\)
\(398\) −2.35845e6 −0.746310
\(399\) 593133. 0.186518
\(400\) −794816. −0.248380
\(401\) 1.97513e6 0.613387 0.306693 0.951808i \(-0.400777\pi\)
0.306693 + 0.951808i \(0.400777\pi\)
\(402\) −146688. −0.0452720
\(403\) 720287. 0.220924
\(404\) 2.85943e6 0.871619
\(405\) −66314.6 −0.0200896
\(406\) 289948. 0.0872980
\(407\) −2.67250e6 −0.799708
\(408\) −58282.4 −0.0173335
\(409\) −2.50677e6 −0.740979 −0.370489 0.928837i \(-0.620810\pi\)
−0.370489 + 0.928837i \(0.620810\pi\)
\(410\) 298389. 0.0876643
\(411\) 868783. 0.253692
\(412\) −1.67120e6 −0.485049
\(413\) 1.33524e6 0.385200
\(414\) 1.38592e6 0.397408
\(415\) −84014.0 −0.0239459
\(416\) 539606. 0.152877
\(417\) −2.01700e6 −0.568022
\(418\) −717864. −0.200956
\(419\) −242450. −0.0674663 −0.0337332 0.999431i \(-0.510740\pi\)
−0.0337332 + 0.999431i \(0.510740\pi\)
\(420\) 76379.3 0.0211277
\(421\) −2.55168e6 −0.701651 −0.350826 0.936441i \(-0.614099\pi\)
−0.350826 + 0.936441i \(0.614099\pi\)
\(422\) −1.46854e6 −0.401426
\(423\) 4.35597e6 1.18368
\(424\) 2.12799e6 0.574850
\(425\) 345602. 0.0928120
\(426\) −2.17599e6 −0.580941
\(427\) 117424. 0.0311665
\(428\) 2.35252e6 0.620761
\(429\) −1.38380e6 −0.363019
\(430\) −146454. −0.0381971
\(431\) 5.86782e6 1.52154 0.760771 0.649020i \(-0.224821\pi\)
0.760771 + 0.649020i \(0.224821\pi\)
\(432\) 877678. 0.226269
\(433\) 1.35364e6 0.346963 0.173482 0.984837i \(-0.444498\pi\)
0.173482 + 0.984837i \(0.444498\pi\)
\(434\) 708990. 0.180682
\(435\) −20578.5 −0.00521424
\(436\) −2.14032e6 −0.539215
\(437\) −1.10023e6 −0.275601
\(438\) 2.52651e6 0.629268
\(439\) −3.15308e6 −0.780861 −0.390431 0.920632i \(-0.627674\pi\)
−0.390431 + 0.920632i \(0.627674\pi\)
\(440\) −92441.2 −0.0227632
\(441\) −1436.98 −0.000351848 0
\(442\) −234631. −0.0571255
\(443\) 1.51996e6 0.367978 0.183989 0.982928i \(-0.441099\pi\)
0.183989 + 0.982928i \(0.441099\pi\)
\(444\) −1.08983e6 −0.262361
\(445\) −600359. −0.143718
\(446\) −1.60833e6 −0.382858
\(447\) −737709. −0.174629
\(448\) 531142. 0.125030
\(449\) −3.18720e6 −0.746093 −0.373047 0.927813i \(-0.621687\pi\)
−0.373047 + 0.927813i \(0.621687\pi\)
\(450\) −2.18662e6 −0.509029
\(451\) −5.32125e6 −1.23189
\(452\) −1.34461e6 −0.309563
\(453\) −48259.9 −0.0110495
\(454\) 3.85634e6 0.878084
\(455\) 307485. 0.0696299
\(456\) −292740. −0.0659280
\(457\) −5.00524e6 −1.12107 −0.560537 0.828129i \(-0.689405\pi\)
−0.560537 + 0.828129i \(0.689405\pi\)
\(458\) −5.24243e6 −1.16780
\(459\) −381632. −0.0845499
\(460\) −141680. −0.0312186
\(461\) −6.49152e6 −1.42264 −0.711319 0.702869i \(-0.751902\pi\)
−0.711319 + 0.702869i \(0.751902\pi\)
\(462\) −1.36209e6 −0.296894
\(463\) −7.69883e6 −1.66906 −0.834531 0.550961i \(-0.814261\pi\)
−0.834531 + 0.550961i \(0.814261\pi\)
\(464\) −143103. −0.0308570
\(465\) −50319.3 −0.0107920
\(466\) −3.52507e6 −0.751974
\(467\) −99627.5 −0.0211391 −0.0105696 0.999944i \(-0.503364\pi\)
−0.0105696 + 0.999944i \(0.503364\pi\)
\(468\) 1.48451e6 0.313306
\(469\) −581269. −0.122024
\(470\) −445302. −0.0929845
\(471\) 2.50542e6 0.520389
\(472\) −659008. −0.136156
\(473\) 2.61176e6 0.536760
\(474\) −1.60322e6 −0.327753
\(475\) 1.73588e6 0.353010
\(476\) −230951. −0.0467200
\(477\) 5.85432e6 1.17810
\(478\) −6.14947e6 −1.23103
\(479\) 8.29383e6 1.65164 0.825822 0.563931i \(-0.190712\pi\)
0.825822 + 0.563931i \(0.190712\pi\)
\(480\) −37696.9 −0.00746796
\(481\) −4.38738e6 −0.864655
\(482\) 1.21253e6 0.237726
\(483\) −2.08761e6 −0.407175
\(484\) −928288. −0.180123
\(485\) 355061. 0.0685407
\(486\) 3.81469e6 0.732603
\(487\) −295103. −0.0563835 −0.0281917 0.999603i \(-0.508975\pi\)
−0.0281917 + 0.999603i \(0.508975\pi\)
\(488\) −57954.5 −0.0110163
\(489\) 2.23512e6 0.422696
\(490\) 146.900 2.76396e−5 0
\(491\) 1.05479e7 1.97452 0.987260 0.159117i \(-0.0508648\pi\)
0.987260 + 0.159117i \(0.0508648\pi\)
\(492\) −2.16997e6 −0.404148
\(493\) 62224.1 0.0115303
\(494\) −1.17850e6 −0.217277
\(495\) −254315. −0.0466509
\(496\) −349920. −0.0638653
\(497\) −8.62261e6 −1.56584
\(498\) 610973. 0.110395
\(499\) −5.86674e6 −1.05474 −0.527370 0.849636i \(-0.676822\pi\)
−0.527370 + 0.849636i \(0.676822\pi\)
\(500\) 448526. 0.0802348
\(501\) −4.74100e6 −0.843870
\(502\) −4.49745e6 −0.796539
\(503\) −1.06665e7 −1.87976 −0.939882 0.341498i \(-0.889066\pi\)
−0.939882 + 0.341498i \(0.889066\pi\)
\(504\) 1.46123e6 0.256237
\(505\) −804187. −0.140323
\(506\) 2.52661e6 0.438694
\(507\) 765808. 0.132312
\(508\) 3.68909e6 0.634249
\(509\) −2.03629e6 −0.348374 −0.174187 0.984713i \(-0.555730\pi\)
−0.174187 + 0.984713i \(0.555730\pi\)
\(510\) 16391.3 0.00279055
\(511\) 1.00116e7 1.69610
\(512\) −262144. −0.0441942
\(513\) −1.91685e6 −0.321585
\(514\) 852404. 0.142311
\(515\) 470009. 0.0780886
\(516\) 1.06506e6 0.176096
\(517\) 7.94120e6 1.30665
\(518\) −4.31857e6 −0.707156
\(519\) −2.67529e6 −0.435966
\(520\) −151759. −0.0246119
\(521\) −3.22728e6 −0.520886 −0.260443 0.965489i \(-0.583869\pi\)
−0.260443 + 0.965489i \(0.583869\pi\)
\(522\) −393692. −0.0632383
\(523\) 8.12883e6 1.29949 0.649746 0.760151i \(-0.274875\pi\)
0.649746 + 0.760151i \(0.274875\pi\)
\(524\) 2.80652e6 0.446520
\(525\) 3.29371e6 0.521539
\(526\) 7.97281e6 1.25645
\(527\) 152152. 0.0238645
\(528\) 672258. 0.104942
\(529\) −2.56394e6 −0.398354
\(530\) −598476. −0.0925459
\(531\) −1.81300e6 −0.279037
\(532\) −1.16002e6 −0.177699
\(533\) −8.73578e6 −1.33194
\(534\) 4.36598e6 0.662565
\(535\) −661624. −0.0999371
\(536\) 286884. 0.0431315
\(537\) −2.06550e6 −0.309094
\(538\) −289444. −0.0431131
\(539\) −2619.71 −0.000388402 0
\(540\) −246838. −0.0364274
\(541\) 1.27666e7 1.87535 0.937676 0.347510i \(-0.112973\pi\)
0.937676 + 0.347510i \(0.112973\pi\)
\(542\) 5.94110e6 0.868697
\(543\) −4.59183e6 −0.668323
\(544\) 113985. 0.0165140
\(545\) 601943. 0.0868089
\(546\) −2.23612e6 −0.321006
\(547\) 6.38665e6 0.912651 0.456325 0.889813i \(-0.349165\pi\)
0.456325 + 0.889813i \(0.349165\pi\)
\(548\) −1.69912e6 −0.241697
\(549\) −159439. −0.0225769
\(550\) −3.98635e6 −0.561912
\(551\) 312538. 0.0438555
\(552\) 1.03033e6 0.143923
\(553\) −6.35294e6 −0.883409
\(554\) 4.69550e6 0.649992
\(555\) 306503. 0.0422379
\(556\) 3.94473e6 0.541165
\(557\) 1.37092e7 1.87230 0.936148 0.351606i \(-0.114364\pi\)
0.936148 + 0.351606i \(0.114364\pi\)
\(558\) −962668. −0.130885
\(559\) 4.28767e6 0.580352
\(560\) −149378. −0.0201288
\(561\) −292311. −0.0392138
\(562\) 2.11474e6 0.282433
\(563\) −3.63178e6 −0.482890 −0.241445 0.970414i \(-0.577621\pi\)
−0.241445 + 0.970414i \(0.577621\pi\)
\(564\) 3.23836e6 0.428675
\(565\) 378157. 0.0498369
\(566\) −3.40491e6 −0.446750
\(567\) 1.91101e6 0.249635
\(568\) 4.25567e6 0.553474
\(569\) 1.48701e7 1.92545 0.962726 0.270479i \(-0.0871821\pi\)
0.962726 + 0.270479i \(0.0871821\pi\)
\(570\) 82330.2 0.0106138
\(571\) −8.82127e6 −1.13225 −0.566123 0.824321i \(-0.691557\pi\)
−0.566123 + 0.824321i \(0.691557\pi\)
\(572\) 2.70635e6 0.345855
\(573\) −361824. −0.0460374
\(574\) −8.59876e6 −1.08932
\(575\) −6.10966e6 −0.770633
\(576\) −721186. −0.0905714
\(577\) −4.07125e6 −0.509082 −0.254541 0.967062i \(-0.581924\pi\)
−0.254541 + 0.967062i \(0.581924\pi\)
\(578\) 5.62986e6 0.700936
\(579\) −6.80714e6 −0.843855
\(580\) 40246.3 0.00496771
\(581\) 2.42106e6 0.297553
\(582\) −2.58210e6 −0.315985
\(583\) 1.06728e7 1.30049
\(584\) −4.94121e6 −0.599516
\(585\) −417504. −0.0504396
\(586\) 4.25696e6 0.512101
\(587\) 9.65348e6 1.15635 0.578174 0.815913i \(-0.303765\pi\)
0.578174 + 0.815913i \(0.303765\pi\)
\(588\) −1068.30 −0.000127423 0
\(589\) 764229. 0.0907685
\(590\) 185339. 0.0219199
\(591\) −7.55442e6 −0.889677
\(592\) 2.13142e6 0.249957
\(593\) −1.58606e7 −1.85218 −0.926090 0.377302i \(-0.876852\pi\)
−0.926090 + 0.377302i \(0.876852\pi\)
\(594\) 4.40193e6 0.511891
\(595\) 64952.7 0.00752150
\(596\) 1.44277e6 0.166373
\(597\) −4.82364e6 −0.553910
\(598\) 4.14788e6 0.474322
\(599\) −9.80937e6 −1.11705 −0.558527 0.829486i \(-0.688633\pi\)
−0.558527 + 0.829486i \(0.688633\pi\)
\(600\) −1.62560e6 −0.184347
\(601\) −5.41631e6 −0.611670 −0.305835 0.952084i \(-0.598936\pi\)
−0.305835 + 0.952084i \(0.598936\pi\)
\(602\) 4.22042e6 0.474640
\(603\) 789248. 0.0883935
\(604\) 94384.1 0.0105270
\(605\) 261072. 0.0289982
\(606\) 5.84828e6 0.646914
\(607\) 2.21422e6 0.243921 0.121960 0.992535i \(-0.461082\pi\)
0.121960 + 0.992535i \(0.461082\pi\)
\(608\) 572524. 0.0628109
\(609\) 593017. 0.0647924
\(610\) 16299.1 0.00177354
\(611\) 1.30369e7 1.41277
\(612\) 313586. 0.0338437
\(613\) −7.86427e6 −0.845293 −0.422646 0.906295i \(-0.638899\pi\)
−0.422646 + 0.906295i \(0.638899\pi\)
\(614\) −1.30734e6 −0.139948
\(615\) 610282. 0.0650643
\(616\) 2.66390e6 0.282857
\(617\) −4.00230e6 −0.423250 −0.211625 0.977351i \(-0.567876\pi\)
−0.211625 + 0.977351i \(0.567876\pi\)
\(618\) −3.41804e6 −0.360002
\(619\) 1.13493e7 1.19053 0.595267 0.803528i \(-0.297046\pi\)
0.595267 + 0.803528i \(0.297046\pi\)
\(620\) 98411.7 0.0102818
\(621\) 6.74661e6 0.702031
\(622\) 482011. 0.0499552
\(623\) 1.73007e7 1.78585
\(624\) 1.10363e6 0.113465
\(625\) 9.57620e6 0.980603
\(626\) 5.71410e6 0.582790
\(627\) −1.46822e6 −0.149149
\(628\) −4.89996e6 −0.495785
\(629\) −926784. −0.0934011
\(630\) −410956. −0.0412519
\(631\) 7.52545e6 0.752418 0.376209 0.926535i \(-0.377227\pi\)
0.376209 + 0.926535i \(0.377227\pi\)
\(632\) 3.13548e6 0.312256
\(633\) −3.00355e6 −0.297938
\(634\) 578663. 0.0571745
\(635\) −1.03752e6 −0.102109
\(636\) 4.35229e6 0.426653
\(637\) −4300.72 −0.000419945 0
\(638\) −717724. −0.0698080
\(639\) 1.17078e7 1.13429
\(640\) 73725.4 0.00711487
\(641\) 8.19920e6 0.788181 0.394091 0.919072i \(-0.371060\pi\)
0.394091 + 0.919072i \(0.371060\pi\)
\(642\) 4.81152e6 0.460728
\(643\) 1.15319e7 1.09995 0.549976 0.835180i \(-0.314637\pi\)
0.549976 + 0.835180i \(0.314637\pi\)
\(644\) 4.08282e6 0.387923
\(645\) −299537. −0.0283498
\(646\) −248945. −0.0234705
\(647\) 8.38640e6 0.787617 0.393808 0.919193i \(-0.371157\pi\)
0.393808 + 0.919193i \(0.371157\pi\)
\(648\) −943175. −0.0882378
\(649\) −3.30521e6 −0.308026
\(650\) −6.54430e6 −0.607547
\(651\) 1.45007e6 0.134102
\(652\) −4.37132e6 −0.402711
\(653\) −3.71980e6 −0.341379 −0.170690 0.985325i \(-0.554600\pi\)
−0.170690 + 0.985325i \(0.554600\pi\)
\(654\) −4.37750e6 −0.400205
\(655\) −789307. −0.0718857
\(656\) 4.24390e6 0.385040
\(657\) −1.35938e7 −1.22865
\(658\) 1.28324e7 1.15543
\(659\) 1.48109e6 0.132852 0.0664259 0.997791i \(-0.478840\pi\)
0.0664259 + 0.997791i \(0.478840\pi\)
\(660\) −189066. −0.0168948
\(661\) −1.58550e7 −1.41144 −0.705719 0.708492i \(-0.749376\pi\)
−0.705719 + 0.708492i \(0.749376\pi\)
\(662\) −8.14965e6 −0.722760
\(663\) −479881. −0.0423984
\(664\) −1.19491e6 −0.105175
\(665\) 326243. 0.0286080
\(666\) 5.86376e6 0.512260
\(667\) −1.10002e6 −0.0957381
\(668\) 9.27218e6 0.803971
\(669\) −3.28945e6 −0.284157
\(670\) −80683.3 −0.00694379
\(671\) −290667. −0.0249224
\(672\) 1.08632e6 0.0927973
\(673\) 6.42447e6 0.546764 0.273382 0.961906i \(-0.411858\pi\)
0.273382 + 0.961906i \(0.411858\pi\)
\(674\) −1.04992e7 −0.890237
\(675\) −1.06444e7 −0.899213
\(676\) −1.49772e6 −0.126056
\(677\) 1.96627e7 1.64881 0.824407 0.565998i \(-0.191509\pi\)
0.824407 + 0.565998i \(0.191509\pi\)
\(678\) −2.75007e6 −0.229757
\(679\) −1.02319e7 −0.851691
\(680\) −32057.3 −0.00265861
\(681\) 7.88722e6 0.651712
\(682\) −1.75500e6 −0.144483
\(683\) 9.72816e6 0.797956 0.398978 0.916960i \(-0.369365\pi\)
0.398978 + 0.916960i \(0.369365\pi\)
\(684\) 1.57507e6 0.128724
\(685\) 477860. 0.0389111
\(686\) 8.71344e6 0.706935
\(687\) −1.07221e7 −0.866740
\(688\) −2.08298e6 −0.167770
\(689\) 1.75213e7 1.40611
\(690\) −289771. −0.0231704
\(691\) −1.34584e7 −1.07226 −0.536128 0.844136i \(-0.680114\pi\)
−0.536128 + 0.844136i \(0.680114\pi\)
\(692\) 5.23219e6 0.415354
\(693\) 7.32868e6 0.579686
\(694\) −1.74007e7 −1.37141
\(695\) −1.10942e6 −0.0871229
\(696\) −292683. −0.0229020
\(697\) −1.84533e6 −0.143877
\(698\) 48627.3 0.00377783
\(699\) −7.20968e6 −0.558114
\(700\) −6.44165e6 −0.496881
\(701\) −1.31637e7 −1.01177 −0.505885 0.862601i \(-0.668834\pi\)
−0.505885 + 0.862601i \(0.668834\pi\)
\(702\) 7.22656e6 0.553463
\(703\) −4.65504e6 −0.355251
\(704\) −1.31477e6 −0.0999808
\(705\) −910758. −0.0690129
\(706\) −1.09101e7 −0.823790
\(707\) 2.31745e7 1.74366
\(708\) −1.34784e6 −0.101054
\(709\) −8.66178e6 −0.647130 −0.323565 0.946206i \(-0.604881\pi\)
−0.323565 + 0.946206i \(0.604881\pi\)
\(710\) −1.19687e6 −0.0891045
\(711\) 8.62604e6 0.639937
\(712\) −8.53874e6 −0.631239
\(713\) −2.68980e6 −0.198151
\(714\) −472354. −0.0346755
\(715\) −761135. −0.0556797
\(716\) 4.03960e6 0.294480
\(717\) −1.25773e7 −0.913667
\(718\) −3.41809e6 −0.247441
\(719\) 1.63398e7 1.17876 0.589379 0.807857i \(-0.299372\pi\)
0.589379 + 0.807857i \(0.299372\pi\)
\(720\) 202826. 0.0145812
\(721\) −1.35444e7 −0.970334
\(722\) 8.65400e6 0.617837
\(723\) 2.47995e6 0.176440
\(724\) 8.98044e6 0.636724
\(725\) 1.73554e6 0.122628
\(726\) −1.89859e6 −0.133687
\(727\) 1.83055e7 1.28453 0.642266 0.766482i \(-0.277994\pi\)
0.642266 + 0.766482i \(0.277994\pi\)
\(728\) 4.37328e6 0.305829
\(729\) 4.22091e6 0.294163
\(730\) 1.38967e6 0.0965169
\(731\) 905720. 0.0626903
\(732\) −118532. −0.00817631
\(733\) 5.38425e6 0.370139 0.185070 0.982725i \(-0.440749\pi\)
0.185070 + 0.982725i \(0.440749\pi\)
\(734\) −1.79537e7 −1.23003
\(735\) 300.449 2.05141e−5 0
\(736\) −2.01507e6 −0.137118
\(737\) 1.43885e6 0.0975766
\(738\) 1.16754e7 0.789099
\(739\) −2.43585e7 −1.64074 −0.820370 0.571832i \(-0.806233\pi\)
−0.820370 + 0.571832i \(0.806233\pi\)
\(740\) −599441. −0.0402408
\(741\) −2.41034e6 −0.161262
\(742\) 1.72465e7 1.14998
\(743\) 1.19506e7 0.794179 0.397090 0.917780i \(-0.370020\pi\)
0.397090 + 0.917780i \(0.370020\pi\)
\(744\) −715677. −0.0474007
\(745\) −405765. −0.0267845
\(746\) −1.34736e7 −0.886412
\(747\) −3.28732e6 −0.215546
\(748\) 571686. 0.0373597
\(749\) 1.90662e7 1.24182
\(750\) 917352. 0.0595501
\(751\) −4.25982e6 −0.275608 −0.137804 0.990460i \(-0.544004\pi\)
−0.137804 + 0.990460i \(0.544004\pi\)
\(752\) −6.33341e6 −0.408407
\(753\) −9.19844e6 −0.591190
\(754\) −1.17827e6 −0.0754774
\(755\) −26544.6 −0.00169476
\(756\) 7.11321e6 0.452649
\(757\) 2.82685e7 1.79293 0.896465 0.443114i \(-0.146126\pi\)
0.896465 + 0.443114i \(0.146126\pi\)
\(758\) 1.04090e7 0.658018
\(759\) 5.16757e6 0.325598
\(760\) −161017. −0.0101120
\(761\) 2.14111e7 1.34023 0.670113 0.742260i \(-0.266246\pi\)
0.670113 + 0.742260i \(0.266246\pi\)
\(762\) 7.54514e6 0.470739
\(763\) −1.73464e7 −1.07869
\(764\) 707636. 0.0438608
\(765\) −88192.9 −0.00544854
\(766\) 4.48945e6 0.276453
\(767\) −5.42609e6 −0.333042
\(768\) −536152. −0.0328008
\(769\) −1.66000e7 −1.01226 −0.506130 0.862457i \(-0.668924\pi\)
−0.506130 + 0.862457i \(0.668924\pi\)
\(770\) −749197. −0.0455375
\(771\) 1.74338e6 0.105623
\(772\) 1.33130e7 0.803958
\(773\) −6.99308e6 −0.420939 −0.210470 0.977600i \(-0.567499\pi\)
−0.210470 + 0.977600i \(0.567499\pi\)
\(774\) −5.73049e6 −0.343827
\(775\) 4.24381e6 0.253806
\(776\) 5.04994e6 0.301045
\(777\) −8.83258e6 −0.524850
\(778\) 6.14457e6 0.363951
\(779\) −9.26871e6 −0.547237
\(780\) −310386. −0.0182669
\(781\) 2.13440e7 1.25213
\(782\) 876193. 0.0512369
\(783\) −1.91648e6 −0.111712
\(784\) 2089.32 0.000121399 0
\(785\) 1.37807e6 0.0798171
\(786\) 5.74006e6 0.331406
\(787\) 577701. 0.0332481 0.0166240 0.999862i \(-0.494708\pi\)
0.0166240 + 0.999862i \(0.494708\pi\)
\(788\) 1.47745e7 0.847613
\(789\) 1.63064e7 0.932538
\(790\) −881823. −0.0502705
\(791\) −1.08975e7 −0.619276
\(792\) −3.61706e6 −0.204900
\(793\) −477182. −0.0269464
\(794\) −1.51415e7 −0.852347
\(795\) −1.22404e6 −0.0686874
\(796\) 9.43381e6 0.527721
\(797\) −2.18951e7 −1.22096 −0.610480 0.792031i \(-0.709024\pi\)
−0.610480 + 0.792031i \(0.709024\pi\)
\(798\) −2.37253e6 −0.131888
\(799\) 2.75389e6 0.152609
\(800\) 3.17927e6 0.175631
\(801\) −2.34910e7 −1.29366
\(802\) −7.90052e6 −0.433730
\(803\) −2.47823e7 −1.35629
\(804\) 586752. 0.0320121
\(805\) −1.14825e6 −0.0624523
\(806\) −2.88115e6 −0.156217
\(807\) −591987. −0.0319984
\(808\) −1.14377e7 −0.616328
\(809\) 3.20759e7 1.72309 0.861543 0.507685i \(-0.169499\pi\)
0.861543 + 0.507685i \(0.169499\pi\)
\(810\) 265259. 0.0142055
\(811\) 9.64590e6 0.514980 0.257490 0.966281i \(-0.417104\pi\)
0.257490 + 0.966281i \(0.417104\pi\)
\(812\) −1.15979e6 −0.0617290
\(813\) 1.21511e7 0.644745
\(814\) 1.06900e7 0.565479
\(815\) 1.22939e6 0.0648329
\(816\) 233130. 0.0122567
\(817\) 4.54924e6 0.238442
\(818\) 1.00271e7 0.523951
\(819\) 1.20313e7 0.626765
\(820\) −1.19355e6 −0.0619880
\(821\) −2.78407e7 −1.44152 −0.720762 0.693183i \(-0.756208\pi\)
−0.720762 + 0.693183i \(0.756208\pi\)
\(822\) −3.47513e6 −0.179387
\(823\) −2.02943e7 −1.04442 −0.522210 0.852817i \(-0.674892\pi\)
−0.522210 + 0.852817i \(0.674892\pi\)
\(824\) 6.68480e6 0.342981
\(825\) −8.15310e6 −0.417050
\(826\) −5.34098e6 −0.272377
\(827\) −2.50241e7 −1.27231 −0.636157 0.771560i \(-0.719477\pi\)
−0.636157 + 0.771560i \(0.719477\pi\)
\(828\) −5.54367e6 −0.281010
\(829\) 5.70901e6 0.288519 0.144260 0.989540i \(-0.453920\pi\)
0.144260 + 0.989540i \(0.453920\pi\)
\(830\) 336056. 0.0169323
\(831\) 9.60351e6 0.482422
\(832\) −2.15842e6 −0.108101
\(833\) −908.478 −4.53630e−5 0
\(834\) 8.06798e6 0.401652
\(835\) −2.60771e6 −0.129432
\(836\) 2.87146e6 0.142097
\(837\) −4.68624e6 −0.231212
\(838\) 969800. 0.0477059
\(839\) −4.39868e6 −0.215734 −0.107867 0.994165i \(-0.534402\pi\)
−0.107867 + 0.994165i \(0.534402\pi\)
\(840\) −305517. −0.0149395
\(841\) −2.01987e7 −0.984766
\(842\) 1.02067e7 0.496143
\(843\) 4.32518e6 0.209621
\(844\) 5.87418e6 0.283851
\(845\) 421220. 0.0202940
\(846\) −1.74239e7 −0.836988
\(847\) −7.52338e6 −0.360334
\(848\) −8.51196e6 −0.406481
\(849\) −6.96391e6 −0.331577
\(850\) −1.38241e6 −0.0656280
\(851\) 1.63840e7 0.775524
\(852\) 8.70395e6 0.410788
\(853\) 6.09800e6 0.286956 0.143478 0.989654i \(-0.454171\pi\)
0.143478 + 0.989654i \(0.454171\pi\)
\(854\) −469697. −0.0220380
\(855\) −442974. −0.0207235
\(856\) −9.41010e6 −0.438944
\(857\) −2.39347e7 −1.11321 −0.556604 0.830778i \(-0.687896\pi\)
−0.556604 + 0.830778i \(0.687896\pi\)
\(858\) 5.53519e6 0.256693
\(859\) −3.26808e7 −1.51116 −0.755579 0.655058i \(-0.772644\pi\)
−0.755579 + 0.655058i \(0.772644\pi\)
\(860\) 585817. 0.0270095
\(861\) −1.75867e7 −0.808492
\(862\) −2.34713e7 −1.07589
\(863\) −2.12310e6 −0.0970382 −0.0485191 0.998822i \(-0.515450\pi\)
−0.0485191 + 0.998822i \(0.515450\pi\)
\(864\) −3.51071e6 −0.159997
\(865\) −1.47150e6 −0.0668683
\(866\) −5.41456e6 −0.245340
\(867\) 1.15145e7 0.520233
\(868\) −2.83596e6 −0.127762
\(869\) 1.57258e7 0.706420
\(870\) 82314.1 0.00368702
\(871\) 2.36212e6 0.105501
\(872\) 8.56128e6 0.381283
\(873\) 1.38929e7 0.616961
\(874\) 4.40093e6 0.194879
\(875\) 3.63512e6 0.160509
\(876\) −1.01060e7 −0.444960
\(877\) −2.14470e7 −0.941601 −0.470801 0.882240i \(-0.656035\pi\)
−0.470801 + 0.882240i \(0.656035\pi\)
\(878\) 1.26123e7 0.552152
\(879\) 8.70658e6 0.380080
\(880\) 369765. 0.0160960
\(881\) 5.27396e6 0.228927 0.114463 0.993427i \(-0.463485\pi\)
0.114463 + 0.993427i \(0.463485\pi\)
\(882\) 5747.94 0.000248794 0
\(883\) −4.42714e7 −1.91083 −0.955414 0.295268i \(-0.904591\pi\)
−0.955414 + 0.295268i \(0.904591\pi\)
\(884\) 938525. 0.0403938
\(885\) 379067. 0.0162689
\(886\) −6.07983e6 −0.260200
\(887\) −2.07642e7 −0.886146 −0.443073 0.896485i \(-0.646112\pi\)
−0.443073 + 0.896485i \(0.646112\pi\)
\(888\) 4.35930e6 0.185517
\(889\) 2.98985e7 1.26881
\(890\) 2.40143e6 0.101624
\(891\) −4.73043e6 −0.199621
\(892\) 6.43332e6 0.270722
\(893\) 1.38322e7 0.580448
\(894\) 2.95084e6 0.123481
\(895\) −1.13610e6 −0.0474087
\(896\) −2.12457e6 −0.0884098
\(897\) 8.48349e6 0.352041
\(898\) 1.27488e7 0.527568
\(899\) 764079. 0.0315311
\(900\) 8.74650e6 0.359938
\(901\) 3.70117e6 0.151889
\(902\) 2.12850e7 0.871078
\(903\) 8.63184e6 0.352277
\(904\) 5.37843e6 0.218894
\(905\) −2.52566e6 −0.102507
\(906\) 193040. 0.00781315
\(907\) −3.50219e7 −1.41358 −0.706792 0.707422i \(-0.749858\pi\)
−0.706792 + 0.707422i \(0.749858\pi\)
\(908\) −1.54254e7 −0.620899
\(909\) −3.14664e7 −1.26310
\(910\) −1.22994e6 −0.0492358
\(911\) −3.27024e7 −1.30552 −0.652761 0.757564i \(-0.726389\pi\)
−0.652761 + 0.757564i \(0.726389\pi\)
\(912\) 1.17096e6 0.0466181
\(913\) −5.99297e6 −0.237939
\(914\) 2.00209e7 0.792719
\(915\) 33335.9 0.00131631
\(916\) 2.09697e7 0.825760
\(917\) 2.27457e7 0.893256
\(918\) 1.52653e6 0.0597858
\(919\) −5.55289e6 −0.216885 −0.108443 0.994103i \(-0.534586\pi\)
−0.108443 + 0.994103i \(0.534586\pi\)
\(920\) 566719. 0.0220749
\(921\) −2.67384e6 −0.103869
\(922\) 2.59661e7 1.00596
\(923\) 3.50401e7 1.35382
\(924\) 5.44837e6 0.209936
\(925\) −2.58497e7 −0.993348
\(926\) 3.07953e7 1.18021
\(927\) 1.83906e7 0.702905
\(928\) 572412. 0.0218192
\(929\) −1.98243e7 −0.753631 −0.376815 0.926288i \(-0.622981\pi\)
−0.376815 + 0.926288i \(0.622981\pi\)
\(930\) 201277. 0.00763110
\(931\) −4563.09 −0.000172538 0
\(932\) 1.41003e7 0.531726
\(933\) 985836. 0.0370766
\(934\) 398510. 0.0149476
\(935\) −160781. −0.00601459
\(936\) −5.93805e6 −0.221541
\(937\) 2.56390e7 0.954008 0.477004 0.878901i \(-0.341723\pi\)
0.477004 + 0.878901i \(0.341723\pi\)
\(938\) 2.32507e6 0.0862839
\(939\) 1.16868e7 0.432546
\(940\) 1.78121e6 0.0657499
\(941\) −2.00098e7 −0.736663 −0.368331 0.929695i \(-0.620071\pi\)
−0.368331 + 0.929695i \(0.620071\pi\)
\(942\) −1.00217e7 −0.367971
\(943\) 3.26224e7 1.19464
\(944\) 2.63603e6 0.0962765
\(945\) −2.00052e6 −0.0728725
\(946\) −1.04470e7 −0.379547
\(947\) 1.73797e7 0.629750 0.314875 0.949133i \(-0.398037\pi\)
0.314875 + 0.949133i \(0.398037\pi\)
\(948\) 6.41286e6 0.231756
\(949\) −4.06845e7 −1.46644
\(950\) −6.94354e6 −0.249616
\(951\) 1.18351e6 0.0424348
\(952\) 923804. 0.0330360
\(953\) −4.04381e7 −1.44231 −0.721154 0.692775i \(-0.756388\pi\)
−0.721154 + 0.692775i \(0.756388\pi\)
\(954\) −2.34173e7 −0.833040
\(955\) −199015. −0.00706120
\(956\) 2.45979e7 0.870469
\(957\) −1.46793e6 −0.0518114
\(958\) −3.31753e7 −1.16789
\(959\) −1.37706e7 −0.483512
\(960\) 150787. 0.00528065
\(961\) −2.67608e7 −0.934740
\(962\) 1.75495e7 0.611403
\(963\) −2.58882e7 −0.899571
\(964\) −4.85014e6 −0.168098
\(965\) −3.74415e6 −0.129430
\(966\) 8.35043e6 0.287916
\(967\) 1.26654e7 0.435566 0.217783 0.975997i \(-0.430118\pi\)
0.217783 + 0.975997i \(0.430118\pi\)
\(968\) 3.71315e6 0.127366
\(969\) −509156. −0.0174197
\(970\) −1.42024e6 −0.0484656
\(971\) 5.26371e7 1.79161 0.895806 0.444446i \(-0.146599\pi\)
0.895806 + 0.444446i \(0.146599\pi\)
\(972\) −1.52588e7 −0.518029
\(973\) 3.19704e7 1.08259
\(974\) 1.18041e6 0.0398691
\(975\) −1.33848e7 −0.450920
\(976\) 231818. 0.00778974
\(977\) −2.32884e7 −0.780553 −0.390277 0.920698i \(-0.627621\pi\)
−0.390277 + 0.920698i \(0.627621\pi\)
\(978\) −8.94047e6 −0.298891
\(979\) −4.28254e7 −1.42806
\(980\) −587.600 −1.95442e−5 0
\(981\) 2.35530e7 0.781400
\(982\) −4.21915e7 −1.39620
\(983\) 4.53666e7 1.49745 0.748725 0.662881i \(-0.230666\pi\)
0.748725 + 0.662881i \(0.230666\pi\)
\(984\) 8.67987e6 0.285776
\(985\) −4.15519e6 −0.136458
\(986\) −248896. −0.00815316
\(987\) 2.62456e7 0.857558
\(988\) 4.71401e6 0.153638
\(989\) −1.60116e7 −0.520528
\(990\) 1.01726e6 0.0329871
\(991\) −3.18589e6 −0.103050 −0.0515249 0.998672i \(-0.516408\pi\)
−0.0515249 + 0.998672i \(0.516408\pi\)
\(992\) 1.39968e6 0.0451596
\(993\) −1.66681e7 −0.536431
\(994\) 3.44905e7 1.10722
\(995\) −2.65316e6 −0.0849584
\(996\) −2.44389e6 −0.0780610
\(997\) 2.31939e7 0.738985 0.369492 0.929234i \(-0.379532\pi\)
0.369492 + 0.929234i \(0.379532\pi\)
\(998\) 2.34670e7 0.745814
\(999\) 2.85446e7 0.904921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.b.1.10 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.b.1.10 27 1.1 even 1 trivial