Properties

Label 538.6.a.b.1.14
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +2.64462 q^{3} +16.0000 q^{4} -42.4071 q^{5} -10.5785 q^{6} -172.158 q^{7} -64.0000 q^{8} -236.006 q^{9} +169.629 q^{10} +648.081 q^{11} +42.3139 q^{12} -194.570 q^{13} +688.633 q^{14} -112.151 q^{15} +256.000 q^{16} -105.631 q^{17} +944.024 q^{18} +265.494 q^{19} -678.514 q^{20} -455.293 q^{21} -2592.32 q^{22} -3539.52 q^{23} -169.256 q^{24} -1326.63 q^{25} +778.279 q^{26} -1266.79 q^{27} -2754.53 q^{28} -4994.21 q^{29} +448.603 q^{30} -6587.50 q^{31} -1024.00 q^{32} +1713.93 q^{33} +422.523 q^{34} +7300.74 q^{35} -3776.10 q^{36} -4255.79 q^{37} -1061.98 q^{38} -514.563 q^{39} +2714.06 q^{40} -7107.79 q^{41} +1821.17 q^{42} +18226.1 q^{43} +10369.3 q^{44} +10008.3 q^{45} +14158.1 q^{46} -28805.4 q^{47} +677.023 q^{48} +12831.4 q^{49} +5306.54 q^{50} -279.353 q^{51} -3113.12 q^{52} +6660.77 q^{53} +5067.16 q^{54} -27483.3 q^{55} +11018.1 q^{56} +702.132 q^{57} +19976.8 q^{58} +12934.4 q^{59} -1794.41 q^{60} +11476.2 q^{61} +26350.0 q^{62} +40630.4 q^{63} +4096.00 q^{64} +8251.15 q^{65} -6855.72 q^{66} -27150.5 q^{67} -1690.09 q^{68} -9360.69 q^{69} -29202.9 q^{70} -38971.7 q^{71} +15104.4 q^{72} +61084.6 q^{73} +17023.2 q^{74} -3508.44 q^{75} +4247.91 q^{76} -111572. q^{77} +2058.25 q^{78} -44908.3 q^{79} -10856.2 q^{80} +53999.3 q^{81} +28431.1 q^{82} +107550. q^{83} -7284.69 q^{84} +4479.50 q^{85} -72904.4 q^{86} -13207.8 q^{87} -41477.2 q^{88} +31722.0 q^{89} -40033.4 q^{90} +33496.8 q^{91} -56632.3 q^{92} -17421.4 q^{93} +115222. q^{94} -11258.9 q^{95} -2708.09 q^{96} +73223.4 q^{97} -51325.7 q^{98} -152951. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 108 q^{2} + 33 q^{3} + 432 q^{4} + 139 q^{5} - 132 q^{6} - 25 q^{7} - 1728 q^{8} + 2346 q^{9} - 556 q^{10} + 1241 q^{11} + 528 q^{12} - 202 q^{13} + 100 q^{14} + 1786 q^{15} + 6912 q^{16} + 1550 q^{17}+ \cdots + 335378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 2.64462 0.169653 0.0848263 0.996396i \(-0.472966\pi\)
0.0848263 + 0.996396i \(0.472966\pi\)
\(4\) 16.0000 0.500000
\(5\) −42.4071 −0.758602 −0.379301 0.925273i \(-0.623836\pi\)
−0.379301 + 0.925273i \(0.623836\pi\)
\(6\) −10.5785 −0.119962
\(7\) −172.158 −1.32795 −0.663976 0.747754i \(-0.731132\pi\)
−0.663976 + 0.747754i \(0.731132\pi\)
\(8\) −64.0000 −0.353553
\(9\) −236.006 −0.971218
\(10\) 169.629 0.536413
\(11\) 648.081 1.61491 0.807454 0.589931i \(-0.200845\pi\)
0.807454 + 0.589931i \(0.200845\pi\)
\(12\) 42.3139 0.0848263
\(13\) −194.570 −0.319313 −0.159657 0.987173i \(-0.551039\pi\)
−0.159657 + 0.987173i \(0.551039\pi\)
\(14\) 688.633 0.939004
\(15\) −112.151 −0.128699
\(16\) 256.000 0.250000
\(17\) −105.631 −0.0886478 −0.0443239 0.999017i \(-0.514113\pi\)
−0.0443239 + 0.999017i \(0.514113\pi\)
\(18\) 944.024 0.686755
\(19\) 265.494 0.168722 0.0843609 0.996435i \(-0.473115\pi\)
0.0843609 + 0.996435i \(0.473115\pi\)
\(20\) −678.514 −0.379301
\(21\) −455.293 −0.225291
\(22\) −2592.32 −1.14191
\(23\) −3539.52 −1.39516 −0.697581 0.716506i \(-0.745740\pi\)
−0.697581 + 0.716506i \(0.745740\pi\)
\(24\) −169.256 −0.0599812
\(25\) −1326.63 −0.424523
\(26\) 778.279 0.225789
\(27\) −1266.79 −0.334422
\(28\) −2754.53 −0.663976
\(29\) −4994.21 −1.10274 −0.551369 0.834262i \(-0.685894\pi\)
−0.551369 + 0.834262i \(0.685894\pi\)
\(30\) 448.603 0.0910038
\(31\) −6587.50 −1.23116 −0.615582 0.788073i \(-0.711079\pi\)
−0.615582 + 0.788073i \(0.711079\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1713.93 0.273973
\(34\) 422.523 0.0626835
\(35\) 7300.74 1.00739
\(36\) −3776.10 −0.485609
\(37\) −4255.79 −0.511065 −0.255532 0.966801i \(-0.582251\pi\)
−0.255532 + 0.966801i \(0.582251\pi\)
\(38\) −1061.98 −0.119304
\(39\) −514.563 −0.0541723
\(40\) 2714.06 0.268206
\(41\) −7107.79 −0.660351 −0.330175 0.943920i \(-0.607108\pi\)
−0.330175 + 0.943920i \(0.607108\pi\)
\(42\) 1821.17 0.159304
\(43\) 18226.1 1.50322 0.751610 0.659608i \(-0.229278\pi\)
0.751610 + 0.659608i \(0.229278\pi\)
\(44\) 10369.3 0.807454
\(45\) 10008.3 0.736768
\(46\) 14158.1 0.986529
\(47\) −28805.4 −1.90208 −0.951040 0.309067i \(-0.899983\pi\)
−0.951040 + 0.309067i \(0.899983\pi\)
\(48\) 677.023 0.0424131
\(49\) 12831.4 0.763458
\(50\) 5306.54 0.300183
\(51\) −279.353 −0.0150393
\(52\) −3113.12 −0.159657
\(53\) 6660.77 0.325713 0.162856 0.986650i \(-0.447929\pi\)
0.162856 + 0.986650i \(0.447929\pi\)
\(54\) 5067.16 0.236472
\(55\) −27483.3 −1.22507
\(56\) 11018.1 0.469502
\(57\) 702.132 0.0286241
\(58\) 19976.8 0.779753
\(59\) 12934.4 0.483746 0.241873 0.970308i \(-0.422238\pi\)
0.241873 + 0.970308i \(0.422238\pi\)
\(60\) −1794.41 −0.0643494
\(61\) 11476.2 0.394888 0.197444 0.980314i \(-0.436736\pi\)
0.197444 + 0.980314i \(0.436736\pi\)
\(62\) 26350.0 0.870565
\(63\) 40630.4 1.28973
\(64\) 4096.00 0.125000
\(65\) 8251.15 0.242232
\(66\) −6855.72 −0.193728
\(67\) −27150.5 −0.738909 −0.369454 0.929249i \(-0.620455\pi\)
−0.369454 + 0.929249i \(0.620455\pi\)
\(68\) −1690.09 −0.0443239
\(69\) −9360.69 −0.236693
\(70\) −29202.9 −0.712331
\(71\) −38971.7 −0.917494 −0.458747 0.888567i \(-0.651702\pi\)
−0.458747 + 0.888567i \(0.651702\pi\)
\(72\) 15104.4 0.343377
\(73\) 61084.6 1.34161 0.670803 0.741636i \(-0.265950\pi\)
0.670803 + 0.741636i \(0.265950\pi\)
\(74\) 17023.2 0.361377
\(75\) −3508.44 −0.0720214
\(76\) 4247.91 0.0843609
\(77\) −111572. −2.14452
\(78\) 2058.25 0.0383056
\(79\) −44908.3 −0.809579 −0.404789 0.914410i \(-0.632655\pi\)
−0.404789 + 0.914410i \(0.632655\pi\)
\(80\) −10856.2 −0.189651
\(81\) 53999.3 0.914482
\(82\) 28431.1 0.466938
\(83\) 107550. 1.71361 0.856807 0.515637i \(-0.172445\pi\)
0.856807 + 0.515637i \(0.172445\pi\)
\(84\) −7284.69 −0.112645
\(85\) 4479.50 0.0672484
\(86\) −72904.4 −1.06294
\(87\) −13207.8 −0.187082
\(88\) −41477.2 −0.570956
\(89\) 31722.0 0.424508 0.212254 0.977215i \(-0.431920\pi\)
0.212254 + 0.977215i \(0.431920\pi\)
\(90\) −40033.4 −0.520974
\(91\) 33496.8 0.424033
\(92\) −56632.3 −0.697581
\(93\) −17421.4 −0.208870
\(94\) 115222. 1.34497
\(95\) −11258.9 −0.127993
\(96\) −2708.09 −0.0299906
\(97\) 73223.4 0.790170 0.395085 0.918645i \(-0.370715\pi\)
0.395085 + 0.918645i \(0.370715\pi\)
\(98\) −51325.7 −0.539846
\(99\) −152951. −1.56843
\(100\) −21226.1 −0.212261
\(101\) −130998. −1.27779 −0.638897 0.769292i \(-0.720609\pi\)
−0.638897 + 0.769292i \(0.720609\pi\)
\(102\) 1117.41 0.0106344
\(103\) 47905.4 0.444929 0.222465 0.974941i \(-0.428590\pi\)
0.222465 + 0.974941i \(0.428590\pi\)
\(104\) 12452.5 0.112894
\(105\) 19307.7 0.170906
\(106\) −26643.1 −0.230314
\(107\) −140665. −1.18775 −0.593876 0.804557i \(-0.702403\pi\)
−0.593876 + 0.804557i \(0.702403\pi\)
\(108\) −20268.6 −0.167211
\(109\) −190680. −1.53723 −0.768616 0.639711i \(-0.779054\pi\)
−0.768616 + 0.639711i \(0.779054\pi\)
\(110\) 109933. 0.866257
\(111\) −11255.0 −0.0867034
\(112\) −44072.5 −0.331988
\(113\) 140537. 1.03537 0.517685 0.855571i \(-0.326794\pi\)
0.517685 + 0.855571i \(0.326794\pi\)
\(114\) −2808.53 −0.0202403
\(115\) 150101. 1.05837
\(116\) −79907.4 −0.551369
\(117\) 45919.6 0.310123
\(118\) −51737.7 −0.342060
\(119\) 18185.2 0.117720
\(120\) 7177.66 0.0455019
\(121\) 258958. 1.60793
\(122\) −45904.8 −0.279228
\(123\) −18797.4 −0.112030
\(124\) −105400. −0.615582
\(125\) 188781. 1.08065
\(126\) −162521. −0.911978
\(127\) 207445. 1.14128 0.570641 0.821200i \(-0.306695\pi\)
0.570641 + 0.821200i \(0.306695\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 48201.1 0.255025
\(130\) −33004.6 −0.171284
\(131\) 35800.6 0.182269 0.0911343 0.995839i \(-0.470951\pi\)
0.0911343 + 0.995839i \(0.470951\pi\)
\(132\) 27422.9 0.136987
\(133\) −45707.0 −0.224054
\(134\) 108602. 0.522487
\(135\) 53720.9 0.253693
\(136\) 6760.37 0.0313417
\(137\) 379065. 1.72549 0.862745 0.505640i \(-0.168744\pi\)
0.862745 + 0.505640i \(0.168744\pi\)
\(138\) 37442.8 0.167367
\(139\) −215908. −0.947831 −0.473915 0.880570i \(-0.657160\pi\)
−0.473915 + 0.880570i \(0.657160\pi\)
\(140\) 116812. 0.503694
\(141\) −76179.3 −0.322693
\(142\) 155887. 0.648766
\(143\) −126097. −0.515661
\(144\) −60417.5 −0.242805
\(145\) 211790. 0.836539
\(146\) −244339. −0.948658
\(147\) 33934.3 0.129523
\(148\) −68092.6 −0.255532
\(149\) 234224. 0.864303 0.432151 0.901801i \(-0.357755\pi\)
0.432151 + 0.901801i \(0.357755\pi\)
\(150\) 14033.8 0.0509268
\(151\) 437892. 1.56288 0.781439 0.623982i \(-0.214486\pi\)
0.781439 + 0.623982i \(0.214486\pi\)
\(152\) −16991.6 −0.0596521
\(153\) 24929.5 0.0860964
\(154\) 446290. 1.51641
\(155\) 279357. 0.933964
\(156\) −8233.01 −0.0270862
\(157\) 321591. 1.04125 0.520624 0.853786i \(-0.325699\pi\)
0.520624 + 0.853786i \(0.325699\pi\)
\(158\) 179633. 0.572459
\(159\) 17615.2 0.0552580
\(160\) 43424.9 0.134103
\(161\) 609357. 1.85271
\(162\) −215997. −0.646637
\(163\) −167781. −0.494624 −0.247312 0.968936i \(-0.579547\pi\)
−0.247312 + 0.968936i \(0.579547\pi\)
\(164\) −113725. −0.330175
\(165\) −72682.9 −0.207837
\(166\) −430198. −1.21171
\(167\) −219262. −0.608376 −0.304188 0.952612i \(-0.598385\pi\)
−0.304188 + 0.952612i \(0.598385\pi\)
\(168\) 29138.8 0.0796522
\(169\) −333436. −0.898039
\(170\) −17918.0 −0.0475518
\(171\) −62658.2 −0.163866
\(172\) 291618. 0.751610
\(173\) 406899. 1.03364 0.516822 0.856093i \(-0.327115\pi\)
0.516822 + 0.856093i \(0.327115\pi\)
\(174\) 52831.2 0.132287
\(175\) 228391. 0.563746
\(176\) 165909. 0.403727
\(177\) 34206.7 0.0820687
\(178\) −126888. −0.300172
\(179\) −347306. −0.810177 −0.405088 0.914278i \(-0.632759\pi\)
−0.405088 + 0.914278i \(0.632759\pi\)
\(180\) 160133. 0.368384
\(181\) −339461. −0.770182 −0.385091 0.922879i \(-0.625830\pi\)
−0.385091 + 0.922879i \(0.625830\pi\)
\(182\) −133987. −0.299836
\(183\) 30350.2 0.0669937
\(184\) 226529. 0.493264
\(185\) 180476. 0.387695
\(186\) 69685.7 0.147694
\(187\) −68457.3 −0.143158
\(188\) −460886. −0.951040
\(189\) 218088. 0.444097
\(190\) 45035.4 0.0905045
\(191\) −311944. −0.618719 −0.309359 0.950945i \(-0.600115\pi\)
−0.309359 + 0.950945i \(0.600115\pi\)
\(192\) 10832.4 0.0212066
\(193\) 80846.4 0.156231 0.0781155 0.996944i \(-0.475110\pi\)
0.0781155 + 0.996944i \(0.475110\pi\)
\(194\) −292894. −0.558735
\(195\) 21821.2 0.0410952
\(196\) 205303. 0.381729
\(197\) −960730. −1.76375 −0.881873 0.471488i \(-0.843717\pi\)
−0.881873 + 0.471488i \(0.843717\pi\)
\(198\) 611804. 1.10905
\(199\) 362141. 0.648254 0.324127 0.946014i \(-0.394930\pi\)
0.324127 + 0.946014i \(0.394930\pi\)
\(200\) 84904.6 0.150091
\(201\) −71802.8 −0.125358
\(202\) 523992. 0.903537
\(203\) 859794. 1.46438
\(204\) −4469.65 −0.00751967
\(205\) 301421. 0.500943
\(206\) −191621. −0.314613
\(207\) 835348. 1.35501
\(208\) −49809.9 −0.0798283
\(209\) 172062. 0.272470
\(210\) −77230.7 −0.120849
\(211\) 779268. 1.20498 0.602491 0.798126i \(-0.294175\pi\)
0.602491 + 0.798126i \(0.294175\pi\)
\(212\) 106572. 0.162856
\(213\) −103065. −0.155655
\(214\) 562659. 0.839867
\(215\) −772917. −1.14035
\(216\) 81074.5 0.118236
\(217\) 1.13409e6 1.63493
\(218\) 762721. 1.08699
\(219\) 161546. 0.227607
\(220\) −439732. −0.612536
\(221\) 20552.6 0.0283064
\(222\) 45019.8 0.0613086
\(223\) −350070. −0.471404 −0.235702 0.971825i \(-0.575739\pi\)
−0.235702 + 0.971825i \(0.575739\pi\)
\(224\) 176290. 0.234751
\(225\) 313094. 0.412304
\(226\) −562150. −0.732118
\(227\) 1.19359e6 1.53741 0.768704 0.639605i \(-0.220902\pi\)
0.768704 + 0.639605i \(0.220902\pi\)
\(228\) 11234.1 0.0143120
\(229\) −123666. −0.155834 −0.0779168 0.996960i \(-0.524827\pi\)
−0.0779168 + 0.996960i \(0.524827\pi\)
\(230\) −600404. −0.748383
\(231\) −295067. −0.363823
\(232\) 319630. 0.389876
\(233\) 1.05599e6 1.27429 0.637146 0.770743i \(-0.280115\pi\)
0.637146 + 0.770743i \(0.280115\pi\)
\(234\) −183679. −0.219290
\(235\) 1.22155e6 1.44292
\(236\) 206951. 0.241873
\(237\) −118766. −0.137347
\(238\) −72740.8 −0.0832407
\(239\) 812322. 0.919884 0.459942 0.887949i \(-0.347870\pi\)
0.459942 + 0.887949i \(0.347870\pi\)
\(240\) −28710.6 −0.0321747
\(241\) −1.31322e6 −1.45644 −0.728221 0.685342i \(-0.759653\pi\)
−0.728221 + 0.685342i \(0.759653\pi\)
\(242\) −1.03583e6 −1.13698
\(243\) 450638. 0.489566
\(244\) 183619. 0.197444
\(245\) −544144. −0.579160
\(246\) 75189.6 0.0792173
\(247\) −51657.1 −0.0538751
\(248\) 421600. 0.435282
\(249\) 284428. 0.290719
\(250\) −755124. −0.764132
\(251\) −344173. −0.344820 −0.172410 0.985025i \(-0.555155\pi\)
−0.172410 + 0.985025i \(0.555155\pi\)
\(252\) 650086. 0.644866
\(253\) −2.29390e6 −2.25306
\(254\) −829779. −0.807008
\(255\) 11846.6 0.0114089
\(256\) 65536.0 0.0625000
\(257\) 285569. 0.269698 0.134849 0.990866i \(-0.456945\pi\)
0.134849 + 0.990866i \(0.456945\pi\)
\(258\) −192805. −0.180330
\(259\) 732669. 0.678669
\(260\) 132018. 0.121116
\(261\) 1.17866e6 1.07100
\(262\) −143202. −0.128883
\(263\) 873850. 0.779018 0.389509 0.921023i \(-0.372645\pi\)
0.389509 + 0.921023i \(0.372645\pi\)
\(264\) −109692. −0.0968642
\(265\) −282464. −0.247086
\(266\) 182828. 0.158430
\(267\) 83892.7 0.0720188
\(268\) −434408. −0.369454
\(269\) 72361.0 0.0609711
\(270\) −214884. −0.179388
\(271\) −872993. −0.722084 −0.361042 0.932550i \(-0.617579\pi\)
−0.361042 + 0.932550i \(0.617579\pi\)
\(272\) −27041.5 −0.0221620
\(273\) 88586.3 0.0719383
\(274\) −1.51626e6 −1.22011
\(275\) −859767. −0.685565
\(276\) −149771. −0.118346
\(277\) 1.85667e6 1.45390 0.726952 0.686689i \(-0.240936\pi\)
0.726952 + 0.686689i \(0.240936\pi\)
\(278\) 863630. 0.670218
\(279\) 1.55469e6 1.19573
\(280\) −467247. −0.356165
\(281\) 625660. 0.472686 0.236343 0.971670i \(-0.424051\pi\)
0.236343 + 0.971670i \(0.424051\pi\)
\(282\) 304717. 0.228178
\(283\) −217469. −0.161410 −0.0807052 0.996738i \(-0.525717\pi\)
−0.0807052 + 0.996738i \(0.525717\pi\)
\(284\) −623547. −0.458747
\(285\) −29775.4 −0.0217143
\(286\) 504388. 0.364628
\(287\) 1.22366e6 0.876914
\(288\) 241670. 0.171689
\(289\) −1.40870e6 −0.992142
\(290\) −847161. −0.591522
\(291\) 193648. 0.134054
\(292\) 977354. 0.670803
\(293\) 2.18405e6 1.48625 0.743127 0.669150i \(-0.233342\pi\)
0.743127 + 0.669150i \(0.233342\pi\)
\(294\) −135737. −0.0915863
\(295\) −548512. −0.366971
\(296\) 272371. 0.180689
\(297\) −820983. −0.540061
\(298\) −936896. −0.611154
\(299\) 688684. 0.445494
\(300\) −56135.1 −0.0360107
\(301\) −3.13777e6 −1.99620
\(302\) −1.75157e6 −1.10512
\(303\) −346440. −0.216781
\(304\) 67966.5 0.0421804
\(305\) −486673. −0.299563
\(306\) −99718.0 −0.0608793
\(307\) −1.17552e6 −0.711845 −0.355922 0.934516i \(-0.615833\pi\)
−0.355922 + 0.934516i \(0.615833\pi\)
\(308\) −1.78516e6 −1.07226
\(309\) 126692. 0.0754834
\(310\) −1.11743e6 −0.660412
\(311\) 187420. 0.109879 0.0549396 0.998490i \(-0.482503\pi\)
0.0549396 + 0.998490i \(0.482503\pi\)
\(312\) 32932.1 0.0191528
\(313\) −685459. −0.395477 −0.197738 0.980255i \(-0.563360\pi\)
−0.197738 + 0.980255i \(0.563360\pi\)
\(314\) −1.28636e6 −0.736274
\(315\) −1.72302e6 −0.978393
\(316\) −718533. −0.404789
\(317\) −655449. −0.366345 −0.183173 0.983081i \(-0.558637\pi\)
−0.183173 + 0.983081i \(0.558637\pi\)
\(318\) −70460.9 −0.0390733
\(319\) −3.23666e6 −1.78082
\(320\) −173700. −0.0948253
\(321\) −372005. −0.201505
\(322\) −2.43743e6 −1.31006
\(323\) −28044.4 −0.0149568
\(324\) 863988. 0.457241
\(325\) 258123. 0.135556
\(326\) 671126. 0.349752
\(327\) −504277. −0.260795
\(328\) 454898. 0.233469
\(329\) 4.95908e6 2.52587
\(330\) 290731. 0.146963
\(331\) −3.45469e6 −1.73316 −0.866580 0.499038i \(-0.833687\pi\)
−0.866580 + 0.499038i \(0.833687\pi\)
\(332\) 1.72079e6 0.856807
\(333\) 1.00439e6 0.496355
\(334\) 877048. 0.430187
\(335\) 1.15138e6 0.560538
\(336\) −116555. −0.0563226
\(337\) −641336. −0.307617 −0.153809 0.988101i \(-0.549154\pi\)
−0.153809 + 0.988101i \(0.549154\pi\)
\(338\) 1.33374e6 0.635009
\(339\) 371668. 0.175653
\(340\) 71672.0 0.0336242
\(341\) −4.26923e6 −1.98822
\(342\) 250633. 0.115870
\(343\) 684427. 0.314117
\(344\) −1.16647e6 −0.531468
\(345\) 396960. 0.179556
\(346\) −1.62759e6 −0.730897
\(347\) 4.16069e6 1.85499 0.927496 0.373834i \(-0.121957\pi\)
0.927496 + 0.373834i \(0.121957\pi\)
\(348\) −211325. −0.0935411
\(349\) −361045. −0.158671 −0.0793356 0.996848i \(-0.525280\pi\)
−0.0793356 + 0.996848i \(0.525280\pi\)
\(350\) −913563. −0.398629
\(351\) 246479. 0.106785
\(352\) −663635. −0.285478
\(353\) −1.41983e6 −0.606458 −0.303229 0.952918i \(-0.598065\pi\)
−0.303229 + 0.952918i \(0.598065\pi\)
\(354\) −136827. −0.0580313
\(355\) 1.65268e6 0.696013
\(356\) 507552. 0.212254
\(357\) 48093.0 0.0199715
\(358\) 1.38922e6 0.572881
\(359\) −2.60383e6 −1.06629 −0.533146 0.846023i \(-0.678990\pi\)
−0.533146 + 0.846023i \(0.678990\pi\)
\(360\) −640534. −0.260487
\(361\) −2.40561e6 −0.971533
\(362\) 1.35784e6 0.544601
\(363\) 684847. 0.272789
\(364\) 535948. 0.212016
\(365\) −2.59043e6 −1.01774
\(366\) −121401. −0.0473717
\(367\) −3.14883e6 −1.22035 −0.610174 0.792267i \(-0.708901\pi\)
−0.610174 + 0.792267i \(0.708901\pi\)
\(368\) −906117. −0.348791
\(369\) 1.67748e6 0.641345
\(370\) −721904. −0.274142
\(371\) −1.14671e6 −0.432531
\(372\) −278743. −0.104435
\(373\) 646752. 0.240694 0.120347 0.992732i \(-0.461599\pi\)
0.120347 + 0.992732i \(0.461599\pi\)
\(374\) 273829. 0.101228
\(375\) 499255. 0.183334
\(376\) 1.84354e6 0.672487
\(377\) 971723. 0.352119
\(378\) −872353. −0.314024
\(379\) −3.85752e6 −1.37946 −0.689731 0.724066i \(-0.742271\pi\)
−0.689731 + 0.724066i \(0.742271\pi\)
\(380\) −180142. −0.0639963
\(381\) 548613. 0.193621
\(382\) 1.24778e6 0.437500
\(383\) 4.00290e6 1.39437 0.697184 0.716892i \(-0.254436\pi\)
0.697184 + 0.716892i \(0.254436\pi\)
\(384\) −43329.5 −0.0149953
\(385\) 4.73147e6 1.62684
\(386\) −323385. −0.110472
\(387\) −4.30147e6 −1.45995
\(388\) 1.17157e6 0.395085
\(389\) −380075. −0.127349 −0.0636744 0.997971i \(-0.520282\pi\)
−0.0636744 + 0.997971i \(0.520282\pi\)
\(390\) −87284.7 −0.0290587
\(391\) 373882. 0.123678
\(392\) −821212. −0.269923
\(393\) 94679.0 0.0309223
\(394\) 3.84292e6 1.24716
\(395\) 1.90443e6 0.614148
\(396\) −2.44722e6 −0.784214
\(397\) 6.02621e6 1.91897 0.959485 0.281761i \(-0.0909186\pi\)
0.959485 + 0.281761i \(0.0909186\pi\)
\(398\) −1.44856e6 −0.458384
\(399\) −120878. −0.0380114
\(400\) −339618. −0.106131
\(401\) −486904. −0.151211 −0.0756053 0.997138i \(-0.524089\pi\)
−0.0756053 + 0.997138i \(0.524089\pi\)
\(402\) 287211. 0.0886413
\(403\) 1.28173e6 0.393127
\(404\) −2.09597e6 −0.638897
\(405\) −2.28996e6 −0.693728
\(406\) −3.43918e6 −1.03547
\(407\) −2.75810e6 −0.825322
\(408\) 17878.6 0.00531721
\(409\) −3.72734e6 −1.10177 −0.550884 0.834582i \(-0.685710\pi\)
−0.550884 + 0.834582i \(0.685710\pi\)
\(410\) −1.20568e6 −0.354221
\(411\) 1.00248e6 0.292734
\(412\) 766486. 0.222465
\(413\) −2.22677e6 −0.642391
\(414\) −3.34139e6 −0.958135
\(415\) −4.56087e6 −1.29995
\(416\) 199239. 0.0564471
\(417\) −570994. −0.160802
\(418\) −688247. −0.192665
\(419\) 992231. 0.276107 0.138054 0.990425i \(-0.455915\pi\)
0.138054 + 0.990425i \(0.455915\pi\)
\(420\) 308923. 0.0854529
\(421\) −4.13355e6 −1.13663 −0.568313 0.822812i \(-0.692404\pi\)
−0.568313 + 0.822812i \(0.692404\pi\)
\(422\) −3.11707e6 −0.852051
\(423\) 6.79824e6 1.84733
\(424\) −426289. −0.115157
\(425\) 140133. 0.0376330
\(426\) 412261. 0.110065
\(427\) −1.97572e6 −0.524392
\(428\) −2.25064e6 −0.593876
\(429\) −333479. −0.0874833
\(430\) 3.09167e6 0.806346
\(431\) 6.79852e6 1.76287 0.881437 0.472301i \(-0.156576\pi\)
0.881437 + 0.472301i \(0.156576\pi\)
\(432\) −324298. −0.0836055
\(433\) −1.58309e6 −0.405774 −0.202887 0.979202i \(-0.565032\pi\)
−0.202887 + 0.979202i \(0.565032\pi\)
\(434\) −4.53636e6 −1.15607
\(435\) 560105. 0.141921
\(436\) −3.05088e6 −0.768616
\(437\) −939722. −0.235394
\(438\) −646183. −0.160942
\(439\) 6.99769e6 1.73298 0.866489 0.499195i \(-0.166371\pi\)
0.866489 + 0.499195i \(0.166371\pi\)
\(440\) 1.75893e6 0.433129
\(441\) −3.02829e6 −0.741484
\(442\) −82210.2 −0.0200157
\(443\) −1.76557e6 −0.427440 −0.213720 0.976895i \(-0.568558\pi\)
−0.213720 + 0.976895i \(0.568558\pi\)
\(444\) −180079. −0.0433517
\(445\) −1.34524e6 −0.322032
\(446\) 1.40028e6 0.333333
\(447\) 619434. 0.146631
\(448\) −705160. −0.165994
\(449\) 94486.2 0.0221183 0.0110592 0.999939i \(-0.496480\pi\)
0.0110592 + 0.999939i \(0.496480\pi\)
\(450\) −1.25237e6 −0.291543
\(451\) −4.60642e6 −1.06641
\(452\) 2.24860e6 0.517685
\(453\) 1.15806e6 0.265146
\(454\) −4.77435e6 −1.08711
\(455\) −1.42050e6 −0.321672
\(456\) −44936.4 −0.0101201
\(457\) 1.19691e6 0.268084 0.134042 0.990976i \(-0.457204\pi\)
0.134042 + 0.990976i \(0.457204\pi\)
\(458\) 494664. 0.110191
\(459\) 133812. 0.0296458
\(460\) 2.40161e6 0.529187
\(461\) 3.95013e6 0.865683 0.432842 0.901470i \(-0.357511\pi\)
0.432842 + 0.901470i \(0.357511\pi\)
\(462\) 1.18027e6 0.257262
\(463\) −8.41496e6 −1.82431 −0.912157 0.409840i \(-0.865584\pi\)
−0.912157 + 0.409840i \(0.865584\pi\)
\(464\) −1.27852e6 −0.275684
\(465\) 738793. 0.158449
\(466\) −4.22395e6 −0.901061
\(467\) −8.52363e6 −1.80856 −0.904279 0.426941i \(-0.859591\pi\)
−0.904279 + 0.426941i \(0.859591\pi\)
\(468\) 734714. 0.155061
\(469\) 4.67418e6 0.981236
\(470\) −4.88622e6 −1.02030
\(471\) 850486. 0.176650
\(472\) −827803. −0.171030
\(473\) 1.18120e7 2.42756
\(474\) 475062. 0.0971191
\(475\) −352214. −0.0716262
\(476\) 290963. 0.0588600
\(477\) −1.57198e6 −0.316338
\(478\) −3.24929e6 −0.650456
\(479\) −796614. −0.158639 −0.0793193 0.996849i \(-0.525275\pi\)
−0.0793193 + 0.996849i \(0.525275\pi\)
\(480\) 114842. 0.0227509
\(481\) 828048. 0.163190
\(482\) 5.25286e6 1.02986
\(483\) 1.61152e6 0.314317
\(484\) 4.14333e6 0.803964
\(485\) −3.10520e6 −0.599425
\(486\) −1.80255e6 −0.346176
\(487\) 5.22787e6 0.998855 0.499427 0.866356i \(-0.333544\pi\)
0.499427 + 0.866356i \(0.333544\pi\)
\(488\) −734477. −0.139614
\(489\) −443719. −0.0839142
\(490\) 2.17658e6 0.409528
\(491\) 1.46114e6 0.273520 0.136760 0.990604i \(-0.456331\pi\)
0.136760 + 0.990604i \(0.456331\pi\)
\(492\) −300758. −0.0560151
\(493\) 527542. 0.0977552
\(494\) 206629. 0.0380954
\(495\) 6.48622e6 1.18981
\(496\) −1.68640e6 −0.307791
\(497\) 6.70929e6 1.21839
\(498\) −1.13771e6 −0.205569
\(499\) 3.87785e6 0.697172 0.348586 0.937277i \(-0.386662\pi\)
0.348586 + 0.937277i \(0.386662\pi\)
\(500\) 3.02050e6 0.540323
\(501\) −579865. −0.103213
\(502\) 1.37669e6 0.243824
\(503\) −6.93030e6 −1.22133 −0.610664 0.791890i \(-0.709097\pi\)
−0.610664 + 0.791890i \(0.709097\pi\)
\(504\) −2.60034e6 −0.455989
\(505\) 5.55525e6 0.969338
\(506\) 9.17559e6 1.59315
\(507\) −881811. −0.152355
\(508\) 3.31911e6 0.570641
\(509\) 5.73900e6 0.981843 0.490922 0.871204i \(-0.336660\pi\)
0.490922 + 0.871204i \(0.336660\pi\)
\(510\) −47386.3 −0.00806729
\(511\) −1.05162e7 −1.78159
\(512\) −262144. −0.0441942
\(513\) −336325. −0.0564243
\(514\) −1.14227e6 −0.190705
\(515\) −2.03153e6 −0.337524
\(516\) 771218. 0.127513
\(517\) −1.86682e7 −3.07168
\(518\) −2.93068e6 −0.479892
\(519\) 1.07609e6 0.175360
\(520\) −528074. −0.0856418
\(521\) 414941. 0.0669718 0.0334859 0.999439i \(-0.489339\pi\)
0.0334859 + 0.999439i \(0.489339\pi\)
\(522\) −4.71466e6 −0.757310
\(523\) −9.70473e6 −1.55142 −0.775709 0.631090i \(-0.782608\pi\)
−0.775709 + 0.631090i \(0.782608\pi\)
\(524\) 572809. 0.0911343
\(525\) 604007. 0.0956410
\(526\) −3.49540e6 −0.550849
\(527\) 695842. 0.109140
\(528\) 438766. 0.0684933
\(529\) 6.09186e6 0.946478
\(530\) 1.12986e6 0.174716
\(531\) −3.05260e6 −0.469823
\(532\) −731312. −0.112027
\(533\) 1.38296e6 0.210859
\(534\) −335571. −0.0509250
\(535\) 5.96519e6 0.901031
\(536\) 1.73763e6 0.261244
\(537\) −918493. −0.137449
\(538\) −289444. −0.0431131
\(539\) 8.31581e6 1.23291
\(540\) 859535. 0.126847
\(541\) 7.52073e6 1.10476 0.552379 0.833593i \(-0.313720\pi\)
0.552379 + 0.833593i \(0.313720\pi\)
\(542\) 3.49197e6 0.510590
\(543\) −897745. −0.130663
\(544\) 108166. 0.0156709
\(545\) 8.08620e6 1.16615
\(546\) −354345. −0.0508680
\(547\) 1.15446e6 0.164972 0.0824861 0.996592i \(-0.473714\pi\)
0.0824861 + 0.996592i \(0.473714\pi\)
\(548\) 6.06504e6 0.862745
\(549\) −2.70845e6 −0.383522
\(550\) 3.43907e6 0.484768
\(551\) −1.32593e6 −0.186056
\(552\) 599084. 0.0836836
\(553\) 7.73133e6 1.07508
\(554\) −7.42669e6 −1.02807
\(555\) 477290. 0.0657734
\(556\) −3.45452e6 −0.473915
\(557\) 3.97240e6 0.542518 0.271259 0.962506i \(-0.412560\pi\)
0.271259 + 0.962506i \(0.412560\pi\)
\(558\) −6.21875e6 −0.845508
\(559\) −3.54625e6 −0.479998
\(560\) 1.86899e6 0.251847
\(561\) −181044. −0.0242871
\(562\) −2.50264e6 −0.334239
\(563\) −5.83753e6 −0.776173 −0.388086 0.921623i \(-0.626864\pi\)
−0.388086 + 0.921623i \(0.626864\pi\)
\(564\) −1.21887e6 −0.161346
\(565\) −5.95979e6 −0.785434
\(566\) 869877. 0.114134
\(567\) −9.29642e6 −1.21439
\(568\) 2.49419e6 0.324383
\(569\) 1.16912e7 1.51383 0.756915 0.653513i \(-0.226706\pi\)
0.756915 + 0.653513i \(0.226706\pi\)
\(570\) 119102. 0.0153543
\(571\) 8.42334e6 1.08117 0.540585 0.841289i \(-0.318203\pi\)
0.540585 + 0.841289i \(0.318203\pi\)
\(572\) −2.01755e6 −0.257831
\(573\) −824974. −0.104967
\(574\) −4.89465e6 −0.620072
\(575\) 4.69565e6 0.592278
\(576\) −966680. −0.121402
\(577\) 4.55890e6 0.570060 0.285030 0.958519i \(-0.407996\pi\)
0.285030 + 0.958519i \(0.407996\pi\)
\(578\) 5.63480e6 0.701550
\(579\) 213808. 0.0265050
\(580\) 3.38864e6 0.418269
\(581\) −1.85155e7 −2.27560
\(582\) −774593. −0.0947908
\(583\) 4.31672e6 0.525996
\(584\) −3.90942e6 −0.474329
\(585\) −1.94732e6 −0.235260
\(586\) −8.73619e6 −1.05094
\(587\) −8.64175e6 −1.03516 −0.517579 0.855636i \(-0.673166\pi\)
−0.517579 + 0.855636i \(0.673166\pi\)
\(588\) 542948. 0.0647613
\(589\) −1.74894e6 −0.207724
\(590\) 2.19405e6 0.259487
\(591\) −2.54077e6 −0.299224
\(592\) −1.08948e6 −0.127766
\(593\) −2.18979e6 −0.255721 −0.127860 0.991792i \(-0.540811\pi\)
−0.127860 + 0.991792i \(0.540811\pi\)
\(594\) 3.28393e6 0.381881
\(595\) −771182. −0.0893027
\(596\) 3.74759e6 0.432151
\(597\) 957726. 0.109978
\(598\) −2.75473e6 −0.315012
\(599\) −1.37049e7 −1.56067 −0.780333 0.625365i \(-0.784950\pi\)
−0.780333 + 0.625365i \(0.784950\pi\)
\(600\) 224540. 0.0254634
\(601\) −6.69658e6 −0.756253 −0.378126 0.925754i \(-0.623432\pi\)
−0.378126 + 0.925754i \(0.623432\pi\)
\(602\) 1.25511e7 1.41153
\(603\) 6.40768e6 0.717642
\(604\) 7.00628e6 0.781439
\(605\) −1.09817e7 −1.21978
\(606\) 1.38576e6 0.153287
\(607\) 1.77118e7 1.95115 0.975574 0.219669i \(-0.0704979\pi\)
0.975574 + 0.219669i \(0.0704979\pi\)
\(608\) −271866. −0.0298261
\(609\) 2.27383e6 0.248436
\(610\) 1.94669e6 0.211823
\(611\) 5.60466e6 0.607360
\(612\) 398872. 0.0430482
\(613\) −1.54369e7 −1.65924 −0.829619 0.558330i \(-0.811442\pi\)
−0.829619 + 0.558330i \(0.811442\pi\)
\(614\) 4.70209e6 0.503350
\(615\) 797144. 0.0849863
\(616\) 7.14064e6 0.758203
\(617\) −8.28216e6 −0.875851 −0.437926 0.899011i \(-0.644287\pi\)
−0.437926 + 0.899011i \(0.644287\pi\)
\(618\) −506766. −0.0533748
\(619\) 9.17280e6 0.962223 0.481111 0.876660i \(-0.340233\pi\)
0.481111 + 0.876660i \(0.340233\pi\)
\(620\) 4.46971e6 0.466982
\(621\) 4.48383e6 0.466573
\(622\) −749681. −0.0776963
\(623\) −5.46120e6 −0.563726
\(624\) −131728. −0.0135431
\(625\) −3.85994e6 −0.395258
\(626\) 2.74184e6 0.279644
\(627\) 455038. 0.0462252
\(628\) 5.14545e6 0.520624
\(629\) 449542. 0.0453048
\(630\) 6.89207e6 0.691828
\(631\) 8.75086e6 0.874938 0.437469 0.899234i \(-0.355875\pi\)
0.437469 + 0.899234i \(0.355875\pi\)
\(632\) 2.87413e6 0.286229
\(633\) 2.06087e6 0.204428
\(634\) 2.62180e6 0.259045
\(635\) −8.79714e6 −0.865779
\(636\) 281843. 0.0276290
\(637\) −2.49661e6 −0.243782
\(638\) 1.29466e7 1.25923
\(639\) 9.19755e6 0.891087
\(640\) 694799. 0.0670516
\(641\) 1.35977e6 0.130714 0.0653568 0.997862i \(-0.479181\pi\)
0.0653568 + 0.997862i \(0.479181\pi\)
\(642\) 1.48802e6 0.142486
\(643\) 9.04005e6 0.862270 0.431135 0.902287i \(-0.358113\pi\)
0.431135 + 0.902287i \(0.358113\pi\)
\(644\) 9.74972e6 0.926355
\(645\) −2.04407e6 −0.193463
\(646\) 112177. 0.0105761
\(647\) 4.61515e6 0.433436 0.216718 0.976234i \(-0.430465\pi\)
0.216718 + 0.976234i \(0.430465\pi\)
\(648\) −3.45595e6 −0.323318
\(649\) 8.38256e6 0.781205
\(650\) −1.03249e6 −0.0958524
\(651\) 2.99924e6 0.277370
\(652\) −2.68450e6 −0.247312
\(653\) −7.50726e6 −0.688967 −0.344484 0.938792i \(-0.611946\pi\)
−0.344484 + 0.938792i \(0.611946\pi\)
\(654\) 2.01711e6 0.184410
\(655\) −1.51820e6 −0.138269
\(656\) −1.81959e6 −0.165088
\(657\) −1.44163e7 −1.30299
\(658\) −1.98363e7 −1.78606
\(659\) 2.48414e6 0.222824 0.111412 0.993774i \(-0.464463\pi\)
0.111412 + 0.993774i \(0.464463\pi\)
\(660\) −1.16293e6 −0.103918
\(661\) 1.72264e7 1.53352 0.766760 0.641933i \(-0.221867\pi\)
0.766760 + 0.641933i \(0.221867\pi\)
\(662\) 1.38187e7 1.22553
\(663\) 54353.7 0.00480226
\(664\) −6.88317e6 −0.605854
\(665\) 1.93830e6 0.169968
\(666\) −4.01757e6 −0.350976
\(667\) 1.76771e7 1.53850
\(668\) −3.50819e6 −0.304188
\(669\) −925804. −0.0799749
\(670\) −4.60550e6 −0.396360
\(671\) 7.43751e6 0.637707
\(672\) 466220. 0.0398261
\(673\) 1.10827e7 0.943210 0.471605 0.881810i \(-0.343675\pi\)
0.471605 + 0.881810i \(0.343675\pi\)
\(674\) 2.56534e6 0.217518
\(675\) 1.68057e6 0.141970
\(676\) −5.33497e6 −0.449020
\(677\) 1.76385e7 1.47907 0.739536 0.673117i \(-0.235045\pi\)
0.739536 + 0.673117i \(0.235045\pi\)
\(678\) −1.48667e6 −0.124206
\(679\) −1.26060e7 −1.04931
\(680\) −286688. −0.0237759
\(681\) 3.15658e6 0.260825
\(682\) 1.70769e7 1.40588
\(683\) 1.33312e7 1.09350 0.546748 0.837297i \(-0.315866\pi\)
0.546748 + 0.837297i \(0.315866\pi\)
\(684\) −1.00253e6 −0.0819328
\(685\) −1.60751e7 −1.30896
\(686\) −2.73771e6 −0.222114
\(687\) −327050. −0.0264376
\(688\) 4.66588e6 0.375805
\(689\) −1.29598e6 −0.104004
\(690\) −1.58784e6 −0.126965
\(691\) −4.45922e6 −0.355274 −0.177637 0.984096i \(-0.556845\pi\)
−0.177637 + 0.984096i \(0.556845\pi\)
\(692\) 6.51038e6 0.516822
\(693\) 2.63318e7 2.08280
\(694\) −1.66428e7 −1.31168
\(695\) 9.15602e6 0.719026
\(696\) 845299. 0.0661435
\(697\) 750801. 0.0585387
\(698\) 1.44418e6 0.112197
\(699\) 2.79269e6 0.216187
\(700\) 3.65425e6 0.281873
\(701\) −1.51937e7 −1.16780 −0.583899 0.811826i \(-0.698474\pi\)
−0.583899 + 0.811826i \(0.698474\pi\)
\(702\) −985916. −0.0755087
\(703\) −1.12989e6 −0.0862277
\(704\) 2.65454e6 0.201863
\(705\) 3.23055e6 0.244795
\(706\) 5.67934e6 0.428831
\(707\) 2.25524e7 1.69685
\(708\) 547307. 0.0410344
\(709\) −1.07823e7 −0.805558 −0.402779 0.915297i \(-0.631956\pi\)
−0.402779 + 0.915297i \(0.631956\pi\)
\(710\) −6.61071e6 −0.492155
\(711\) 1.05986e7 0.786277
\(712\) −2.03021e6 −0.150086
\(713\) 2.33166e7 1.71767
\(714\) −192372. −0.0141220
\(715\) 5.34741e6 0.391182
\(716\) −5.55690e6 −0.405088
\(717\) 2.14828e6 0.156061
\(718\) 1.04153e7 0.753982
\(719\) 6.55088e6 0.472582 0.236291 0.971682i \(-0.424068\pi\)
0.236291 + 0.971682i \(0.424068\pi\)
\(720\) 2.56214e6 0.184192
\(721\) −8.24730e6 −0.590845
\(722\) 9.62245e6 0.686978
\(723\) −3.47296e6 −0.247089
\(724\) −5.43137e6 −0.385091
\(725\) 6.62549e6 0.468137
\(726\) −2.73939e6 −0.192891
\(727\) −1.70595e7 −1.19710 −0.598550 0.801086i \(-0.704256\pi\)
−0.598550 + 0.801086i \(0.704256\pi\)
\(728\) −2.14379e6 −0.149918
\(729\) −1.19301e7 −0.831426
\(730\) 1.03617e7 0.719654
\(731\) −1.92524e6 −0.133257
\(732\) 485603. 0.0334968
\(733\) −1.46612e7 −1.00788 −0.503939 0.863739i \(-0.668117\pi\)
−0.503939 + 0.863739i \(0.668117\pi\)
\(734\) 1.25953e7 0.862917
\(735\) −1.43906e6 −0.0982561
\(736\) 3.62447e6 0.246632
\(737\) −1.75957e7 −1.19327
\(738\) −6.70992e6 −0.453499
\(739\) −1.91597e7 −1.29056 −0.645279 0.763947i \(-0.723259\pi\)
−0.645279 + 0.763947i \(0.723259\pi\)
\(740\) 2.88761e6 0.193847
\(741\) −136614. −0.00914005
\(742\) 4.58682e6 0.305846
\(743\) −2.19055e7 −1.45573 −0.727865 0.685721i \(-0.759487\pi\)
−0.727865 + 0.685721i \(0.759487\pi\)
\(744\) 1.11497e6 0.0738468
\(745\) −9.93278e6 −0.655662
\(746\) −2.58701e6 −0.170196
\(747\) −2.53823e7 −1.66429
\(748\) −1.09532e6 −0.0715790
\(749\) 2.42166e7 1.57728
\(750\) −1.99702e6 −0.129637
\(751\) 1.18458e7 0.766413 0.383207 0.923663i \(-0.374820\pi\)
0.383207 + 0.923663i \(0.374820\pi\)
\(752\) −7.37418e6 −0.475520
\(753\) −910206. −0.0584995
\(754\) −3.88689e6 −0.248985
\(755\) −1.85698e7 −1.18560
\(756\) 3.48941e6 0.222048
\(757\) −1.46228e7 −0.927451 −0.463726 0.885979i \(-0.653488\pi\)
−0.463726 + 0.885979i \(0.653488\pi\)
\(758\) 1.54301e7 0.975427
\(759\) −6.06649e6 −0.382237
\(760\) 720566. 0.0452522
\(761\) −448992. −0.0281045 −0.0140523 0.999901i \(-0.504473\pi\)
−0.0140523 + 0.999901i \(0.504473\pi\)
\(762\) −2.19445e6 −0.136911
\(763\) 3.28271e7 2.04137
\(764\) −4.99111e6 −0.309359
\(765\) −1.05719e6 −0.0653129
\(766\) −1.60116e7 −0.985967
\(767\) −2.51665e6 −0.154466
\(768\) 173318. 0.0106033
\(769\) −2.95734e7 −1.80337 −0.901686 0.432391i \(-0.857670\pi\)
−0.901686 + 0.432391i \(0.857670\pi\)
\(770\) −1.89259e7 −1.15035
\(771\) 755221. 0.0457550
\(772\) 1.29354e6 0.0781155
\(773\) −1.14951e7 −0.691933 −0.345967 0.938247i \(-0.612449\pi\)
−0.345967 + 0.938247i \(0.612449\pi\)
\(774\) 1.72059e7 1.03234
\(775\) 8.73920e6 0.522658
\(776\) −4.68630e6 −0.279367
\(777\) 1.93763e6 0.115138
\(778\) 1.52030e6 0.0900492
\(779\) −1.88708e6 −0.111416
\(780\) 349139. 0.0205476
\(781\) −2.52568e7 −1.48167
\(782\) −1.49553e6 −0.0874536
\(783\) 6.32662e6 0.368780
\(784\) 3.28485e6 0.190864
\(785\) −1.36377e7 −0.789893
\(786\) −378716. −0.0218654
\(787\) 9.20477e6 0.529756 0.264878 0.964282i \(-0.414668\pi\)
0.264878 + 0.964282i \(0.414668\pi\)
\(788\) −1.53717e7 −0.881873
\(789\) 2.31100e6 0.132162
\(790\) −7.61773e6 −0.434268
\(791\) −2.41947e7 −1.37492
\(792\) 9.78887e6 0.554523
\(793\) −2.23292e6 −0.126093
\(794\) −2.41048e7 −1.35692
\(795\) −747011. −0.0419188
\(796\) 5.79425e6 0.324127
\(797\) −1.73402e7 −0.966958 −0.483479 0.875356i \(-0.660627\pi\)
−0.483479 + 0.875356i \(0.660627\pi\)
\(798\) 483511. 0.0268781
\(799\) 3.04273e6 0.168615
\(800\) 1.35847e6 0.0750457
\(801\) −7.48658e6 −0.412289
\(802\) 1.94762e6 0.106922
\(803\) 3.95878e7 2.16657
\(804\) −1.14884e6 −0.0626789
\(805\) −2.58411e7 −1.40547
\(806\) −5.12691e6 −0.277983
\(807\) 191367. 0.0103439
\(808\) 8.38387e6 0.451769
\(809\) 2.72210e6 0.146229 0.0731145 0.997324i \(-0.476706\pi\)
0.0731145 + 0.997324i \(0.476706\pi\)
\(810\) 9.15982e6 0.490540
\(811\) −3.04561e7 −1.62600 −0.813002 0.582261i \(-0.802168\pi\)
−0.813002 + 0.582261i \(0.802168\pi\)
\(812\) 1.37567e7 0.732191
\(813\) −2.30874e6 −0.122503
\(814\) 1.10324e7 0.583591
\(815\) 7.11513e6 0.375223
\(816\) −71514.5 −0.00375983
\(817\) 4.83892e6 0.253626
\(818\) 1.49094e7 0.779068
\(819\) −7.90544e6 −0.411828
\(820\) 4.82273e6 0.250472
\(821\) 3.66630e6 0.189832 0.0949160 0.995485i \(-0.469742\pi\)
0.0949160 + 0.995485i \(0.469742\pi\)
\(822\) −4.00993e6 −0.206994
\(823\) 2.04062e7 1.05018 0.525089 0.851047i \(-0.324032\pi\)
0.525089 + 0.851047i \(0.324032\pi\)
\(824\) −3.06594e6 −0.157306
\(825\) −2.27376e6 −0.116308
\(826\) 8.90707e6 0.454239
\(827\) −5.43452e6 −0.276311 −0.138155 0.990411i \(-0.544117\pi\)
−0.138155 + 0.990411i \(0.544117\pi\)
\(828\) 1.33656e7 0.677503
\(829\) 3.02973e6 0.153115 0.0765574 0.997065i \(-0.475607\pi\)
0.0765574 + 0.997065i \(0.475607\pi\)
\(830\) 1.82435e7 0.919205
\(831\) 4.91019e6 0.246658
\(832\) −796958. −0.0399142
\(833\) −1.35539e6 −0.0676789
\(834\) 2.28397e6 0.113704
\(835\) 9.29828e6 0.461515
\(836\) 2.75299e6 0.136235
\(837\) 8.34497e6 0.411729
\(838\) −3.96892e6 −0.195237
\(839\) 3.30101e7 1.61898 0.809491 0.587133i \(-0.199743\pi\)
0.809491 + 0.587133i \(0.199743\pi\)
\(840\) −1.23569e6 −0.0604243
\(841\) 4.43100e6 0.216029
\(842\) 1.65342e7 0.803716
\(843\) 1.65463e6 0.0801924
\(844\) 1.24683e7 0.602491
\(845\) 1.41401e7 0.681254
\(846\) −2.71930e7 −1.30626
\(847\) −4.45818e7 −2.13525
\(848\) 1.70516e6 0.0814282
\(849\) −575124. −0.0273837
\(850\) −560533. −0.0266106
\(851\) 1.50635e7 0.713018
\(852\) −1.64905e6 −0.0778276
\(853\) −2.47097e7 −1.16277 −0.581386 0.813628i \(-0.697489\pi\)
−0.581386 + 0.813628i \(0.697489\pi\)
\(854\) 7.90288e6 0.370801
\(855\) 2.65716e6 0.124309
\(856\) 9.00254e6 0.419934
\(857\) −3.36607e7 −1.56557 −0.782784 0.622294i \(-0.786201\pi\)
−0.782784 + 0.622294i \(0.786201\pi\)
\(858\) 1.33392e6 0.0618600
\(859\) 4.07908e6 0.188616 0.0943081 0.995543i \(-0.469936\pi\)
0.0943081 + 0.995543i \(0.469936\pi\)
\(860\) −1.23667e7 −0.570173
\(861\) 3.23613e6 0.148771
\(862\) −2.71941e7 −1.24654
\(863\) 4.14774e7 1.89576 0.947881 0.318623i \(-0.103220\pi\)
0.947881 + 0.318623i \(0.103220\pi\)
\(864\) 1.29719e6 0.0591180
\(865\) −1.72554e7 −0.784124
\(866\) 6.33234e6 0.286926
\(867\) −3.72548e6 −0.168319
\(868\) 1.81455e7 0.817464
\(869\) −2.91042e7 −1.30739
\(870\) −2.24042e6 −0.100353
\(871\) 5.28267e6 0.235943
\(872\) 1.22035e7 0.543493
\(873\) −1.72812e7 −0.767428
\(874\) 3.75889e6 0.166449
\(875\) −3.25002e7 −1.43505
\(876\) 2.58473e6 0.113803
\(877\) −1.27324e7 −0.558999 −0.279499 0.960146i \(-0.590168\pi\)
−0.279499 + 0.960146i \(0.590168\pi\)
\(878\) −2.79908e7 −1.22540
\(879\) 5.77598e6 0.252147
\(880\) −7.03572e6 −0.306268
\(881\) 2.09875e6 0.0911005 0.0455503 0.998962i \(-0.485496\pi\)
0.0455503 + 0.998962i \(0.485496\pi\)
\(882\) 1.21132e7 0.524308
\(883\) 2.75482e7 1.18903 0.594514 0.804085i \(-0.297345\pi\)
0.594514 + 0.804085i \(0.297345\pi\)
\(884\) 328841. 0.0141532
\(885\) −1.45061e6 −0.0622575
\(886\) 7.06227e6 0.302246
\(887\) 2.32724e7 0.993187 0.496594 0.867983i \(-0.334584\pi\)
0.496594 + 0.867983i \(0.334584\pi\)
\(888\) 720317. 0.0306543
\(889\) −3.57133e7 −1.51557
\(890\) 5.38096e6 0.227711
\(891\) 3.49959e7 1.47680
\(892\) −5.60113e6 −0.235702
\(893\) −7.64766e6 −0.320922
\(894\) −2.47774e6 −0.103684
\(895\) 1.47283e7 0.614602
\(896\) 2.82064e6 0.117376
\(897\) 1.82131e6 0.0755792
\(898\) −377945. −0.0156400
\(899\) 3.28994e7 1.35765
\(900\) 5.00950e6 0.206152
\(901\) −703582. −0.0288737
\(902\) 1.84257e7 0.754063
\(903\) −8.29822e6 −0.338661
\(904\) −8.99439e6 −0.366059
\(905\) 1.43956e7 0.584261
\(906\) −4.63224e6 −0.187487
\(907\) −7.37611e6 −0.297721 −0.148860 0.988858i \(-0.547561\pi\)
−0.148860 + 0.988858i \(0.547561\pi\)
\(908\) 1.90974e7 0.768704
\(909\) 3.09163e7 1.24102
\(910\) 5.68201e6 0.227457
\(911\) 6.41549e6 0.256114 0.128057 0.991767i \(-0.459126\pi\)
0.128057 + 0.991767i \(0.459126\pi\)
\(912\) 179746. 0.00715602
\(913\) 6.97008e7 2.76733
\(914\) −4.78763e6 −0.189564
\(915\) −1.28707e6 −0.0508216
\(916\) −1.97865e6 −0.0779168
\(917\) −6.16336e6 −0.242044
\(918\) −535248. −0.0209627
\(919\) −2.03466e7 −0.794701 −0.397350 0.917667i \(-0.630070\pi\)
−0.397350 + 0.917667i \(0.630070\pi\)
\(920\) −9.60646e6 −0.374191
\(921\) −3.10881e6 −0.120766
\(922\) −1.58005e7 −0.612131
\(923\) 7.58271e6 0.292968
\(924\) −4.72107e6 −0.181912
\(925\) 5.64587e6 0.216959
\(926\) 3.36599e7 1.28999
\(927\) −1.13060e7 −0.432123
\(928\) 5.11407e6 0.194938
\(929\) 1.39985e7 0.532159 0.266079 0.963951i \(-0.414272\pi\)
0.266079 + 0.963951i \(0.414272\pi\)
\(930\) −2.95517e6 −0.112041
\(931\) 3.40667e6 0.128812
\(932\) 1.68958e7 0.637146
\(933\) 495655. 0.0186413
\(934\) 3.40945e7 1.27884
\(935\) 2.90308e6 0.108600
\(936\) −2.93886e6 −0.109645
\(937\) −1.96842e7 −0.732435 −0.366217 0.930529i \(-0.619347\pi\)
−0.366217 + 0.930529i \(0.619347\pi\)
\(938\) −1.86967e7 −0.693838
\(939\) −1.81278e6 −0.0670936
\(940\) 1.95449e7 0.721461
\(941\) −4.11760e7 −1.51590 −0.757949 0.652314i \(-0.773798\pi\)
−0.757949 + 0.652314i \(0.773798\pi\)
\(942\) −3.40194e6 −0.124911
\(943\) 2.51581e7 0.921296
\(944\) 3.31121e6 0.120936
\(945\) −9.24850e6 −0.336893
\(946\) −4.72480e7 −1.71655
\(947\) −4.16384e7 −1.50876 −0.754378 0.656440i \(-0.772061\pi\)
−0.754378 + 0.656440i \(0.772061\pi\)
\(948\) −1.90025e6 −0.0686735
\(949\) −1.18852e7 −0.428392
\(950\) 1.40885e6 0.0506474
\(951\) −1.73341e6 −0.0621514
\(952\) −1.16385e6 −0.0416203
\(953\) 2.35585e7 0.840263 0.420131 0.907463i \(-0.361984\pi\)
0.420131 + 0.907463i \(0.361984\pi\)
\(954\) 6.28793e6 0.223685
\(955\) 1.32287e7 0.469361
\(956\) 1.29971e7 0.459942
\(957\) −8.55973e6 −0.302120
\(958\) 3.18646e6 0.112174
\(959\) −6.52591e7 −2.29137
\(960\) −459370. −0.0160873
\(961\) 1.47660e7 0.515766
\(962\) −3.31219e6 −0.115393
\(963\) 3.31977e7 1.15357
\(964\) −2.10115e7 −0.728221
\(965\) −3.42846e6 −0.118517
\(966\) −6.44608e6 −0.222256
\(967\) 4.89280e7 1.68264 0.841319 0.540538i \(-0.181779\pi\)
0.841319 + 0.540538i \(0.181779\pi\)
\(968\) −1.65733e7 −0.568488
\(969\) −74166.7 −0.00253746
\(970\) 1.24208e7 0.423857
\(971\) 2.26979e7 0.772568 0.386284 0.922380i \(-0.373758\pi\)
0.386284 + 0.922380i \(0.373758\pi\)
\(972\) 7.21020e6 0.244783
\(973\) 3.71702e7 1.25867
\(974\) −2.09115e7 −0.706297
\(975\) 682637. 0.0229974
\(976\) 2.93791e6 0.0987219
\(977\) −2.80773e7 −0.941065 −0.470533 0.882383i \(-0.655938\pi\)
−0.470533 + 0.882383i \(0.655938\pi\)
\(978\) 1.77487e6 0.0593363
\(979\) 2.05584e7 0.685541
\(980\) −8.70631e6 −0.289580
\(981\) 4.50017e7 1.49299
\(982\) −5.84457e6 −0.193408
\(983\) −1.53300e7 −0.506010 −0.253005 0.967465i \(-0.581419\pi\)
−0.253005 + 0.967465i \(0.581419\pi\)
\(984\) 1.20303e6 0.0396087
\(985\) 4.07418e7 1.33798
\(986\) −2.11017e6 −0.0691234
\(987\) 1.31149e7 0.428521
\(988\) −826514. −0.0269375
\(989\) −6.45116e7 −2.09724
\(990\) −2.59449e7 −0.841324
\(991\) 4.10889e7 1.32905 0.664523 0.747267i \(-0.268635\pi\)
0.664523 + 0.747267i \(0.268635\pi\)
\(992\) 6.74560e6 0.217641
\(993\) −9.13634e6 −0.294035
\(994\) −2.68372e7 −0.861531
\(995\) −1.53574e7 −0.491766
\(996\) 4.55084e6 0.145360
\(997\) −5.63505e7 −1.79539 −0.897697 0.440613i \(-0.854761\pi\)
−0.897697 + 0.440613i \(0.854761\pi\)
\(998\) −1.55114e7 −0.492975
\(999\) 5.39119e6 0.170911
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.b.1.14 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.b.1.14 27 1.1 even 1 trivial