Properties

Label 538.6.a.b.1.18
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $27$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(27\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +10.6837 q^{3} +16.0000 q^{4} +72.6773 q^{5} -42.7347 q^{6} -163.422 q^{7} -64.0000 q^{8} -128.859 q^{9} -290.709 q^{10} +221.872 q^{11} +170.939 q^{12} -332.575 q^{13} +653.689 q^{14} +776.459 q^{15} +256.000 q^{16} -980.161 q^{17} +515.437 q^{18} -2433.01 q^{19} +1162.84 q^{20} -1745.95 q^{21} -887.488 q^{22} +2232.85 q^{23} -683.754 q^{24} +2156.98 q^{25} +1330.30 q^{26} -3972.82 q^{27} -2614.75 q^{28} -3079.40 q^{29} -3105.84 q^{30} +9855.95 q^{31} -1024.00 q^{32} +2370.41 q^{33} +3920.65 q^{34} -11877.1 q^{35} -2061.75 q^{36} +8882.23 q^{37} +9732.05 q^{38} -3553.12 q^{39} -4651.34 q^{40} +17703.1 q^{41} +6983.79 q^{42} +21321.4 q^{43} +3549.95 q^{44} -9365.14 q^{45} -8931.41 q^{46} +11613.1 q^{47} +2735.02 q^{48} +9899.80 q^{49} -8627.93 q^{50} -10471.7 q^{51} -5321.20 q^{52} +30085.6 q^{53} +15891.3 q^{54} +16125.0 q^{55} +10459.0 q^{56} -25993.5 q^{57} +12317.6 q^{58} +42282.4 q^{59} +12423.3 q^{60} +20201.9 q^{61} -39423.8 q^{62} +21058.5 q^{63} +4096.00 q^{64} -24170.6 q^{65} -9481.62 q^{66} -30823.7 q^{67} -15682.6 q^{68} +23855.0 q^{69} +47508.3 q^{70} -57312.7 q^{71} +8247.00 q^{72} +20408.1 q^{73} -35528.9 q^{74} +23044.5 q^{75} -38928.2 q^{76} -36258.8 q^{77} +14212.5 q^{78} -27329.0 q^{79} +18605.4 q^{80} -11131.5 q^{81} -70812.4 q^{82} -78758.0 q^{83} -27935.2 q^{84} -71235.4 q^{85} -85285.6 q^{86} -32899.3 q^{87} -14199.8 q^{88} +29455.8 q^{89} +37460.6 q^{90} +54350.1 q^{91} +35725.6 q^{92} +105298. q^{93} -46452.4 q^{94} -176825. q^{95} -10940.1 q^{96} +145868. q^{97} -39599.2 q^{98} -28590.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 27 q - 108 q^{2} + 33 q^{3} + 432 q^{4} + 139 q^{5} - 132 q^{6} - 25 q^{7} - 1728 q^{8} + 2346 q^{9} - 556 q^{10} + 1241 q^{11} + 528 q^{12} - 202 q^{13} + 100 q^{14} + 1786 q^{15} + 6912 q^{16} + 1550 q^{17}+ \cdots + 335378 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 10.6837 0.685357 0.342679 0.939453i \(-0.388666\pi\)
0.342679 + 0.939453i \(0.388666\pi\)
\(4\) 16.0000 0.500000
\(5\) 72.6773 1.30009 0.650045 0.759896i \(-0.274750\pi\)
0.650045 + 0.759896i \(0.274750\pi\)
\(6\) −42.7347 −0.484621
\(7\) −163.422 −1.26057 −0.630283 0.776365i \(-0.717061\pi\)
−0.630283 + 0.776365i \(0.717061\pi\)
\(8\) −64.0000 −0.353553
\(9\) −128.859 −0.530285
\(10\) −290.709 −0.919303
\(11\) 221.872 0.552867 0.276434 0.961033i \(-0.410847\pi\)
0.276434 + 0.961033i \(0.410847\pi\)
\(12\) 170.939 0.342679
\(13\) −332.575 −0.545797 −0.272899 0.962043i \(-0.587982\pi\)
−0.272899 + 0.962043i \(0.587982\pi\)
\(14\) 653.689 0.891355
\(15\) 776.459 0.891026
\(16\) 256.000 0.250000
\(17\) −980.161 −0.822575 −0.411287 0.911506i \(-0.634921\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(18\) 515.437 0.374968
\(19\) −2433.01 −1.54618 −0.773091 0.634295i \(-0.781290\pi\)
−0.773091 + 0.634295i \(0.781290\pi\)
\(20\) 1162.84 0.650045
\(21\) −1745.95 −0.863939
\(22\) −887.488 −0.390936
\(23\) 2232.85 0.880117 0.440058 0.897969i \(-0.354958\pi\)
0.440058 + 0.897969i \(0.354958\pi\)
\(24\) −683.754 −0.242310
\(25\) 2156.98 0.690235
\(26\) 1330.30 0.385937
\(27\) −3972.82 −1.04879
\(28\) −2614.75 −0.630283
\(29\) −3079.40 −0.679942 −0.339971 0.940436i \(-0.610417\pi\)
−0.339971 + 0.940436i \(0.610417\pi\)
\(30\) −3105.84 −0.630051
\(31\) 9855.95 1.84202 0.921010 0.389540i \(-0.127366\pi\)
0.921010 + 0.389540i \(0.127366\pi\)
\(32\) −1024.00 −0.176777
\(33\) 2370.41 0.378911
\(34\) 3920.65 0.581648
\(35\) −11877.1 −1.63885
\(36\) −2061.75 −0.265143
\(37\) 8882.23 1.06664 0.533320 0.845914i \(-0.320944\pi\)
0.533320 + 0.845914i \(0.320944\pi\)
\(38\) 9732.05 1.09332
\(39\) −3553.12 −0.374066
\(40\) −4651.34 −0.459651
\(41\) 17703.1 1.64471 0.822355 0.568975i \(-0.192660\pi\)
0.822355 + 0.568975i \(0.192660\pi\)
\(42\) 6983.79 0.610897
\(43\) 21321.4 1.75851 0.879254 0.476353i \(-0.158042\pi\)
0.879254 + 0.476353i \(0.158042\pi\)
\(44\) 3549.95 0.276434
\(45\) −9365.14 −0.689419
\(46\) −8931.41 −0.622337
\(47\) 11613.1 0.766837 0.383418 0.923575i \(-0.374747\pi\)
0.383418 + 0.923575i \(0.374747\pi\)
\(48\) 2735.02 0.171339
\(49\) 9899.80 0.589028
\(50\) −8627.93 −0.488070
\(51\) −10471.7 −0.563758
\(52\) −5321.20 −0.272899
\(53\) 30085.6 1.47119 0.735596 0.677420i \(-0.236902\pi\)
0.735596 + 0.677420i \(0.236902\pi\)
\(54\) 15891.3 0.741608
\(55\) 16125.0 0.718777
\(56\) 10459.0 0.445678
\(57\) −25993.5 −1.05969
\(58\) 12317.6 0.480791
\(59\) 42282.4 1.58136 0.790678 0.612232i \(-0.209728\pi\)
0.790678 + 0.612232i \(0.209728\pi\)
\(60\) 12423.3 0.445513
\(61\) 20201.9 0.695134 0.347567 0.937655i \(-0.387008\pi\)
0.347567 + 0.937655i \(0.387008\pi\)
\(62\) −39423.8 −1.30250
\(63\) 21058.5 0.668460
\(64\) 4096.00 0.125000
\(65\) −24170.6 −0.709585
\(66\) −9481.62 −0.267931
\(67\) −30823.7 −0.838876 −0.419438 0.907784i \(-0.637773\pi\)
−0.419438 + 0.907784i \(0.637773\pi\)
\(68\) −15682.6 −0.411287
\(69\) 23855.0 0.603195
\(70\) 47508.3 1.15884
\(71\) −57312.7 −1.34929 −0.674645 0.738143i \(-0.735703\pi\)
−0.674645 + 0.738143i \(0.735703\pi\)
\(72\) 8247.00 0.187484
\(73\) 20408.1 0.448224 0.224112 0.974563i \(-0.428052\pi\)
0.224112 + 0.974563i \(0.428052\pi\)
\(74\) −35528.9 −0.754228
\(75\) 23044.5 0.473057
\(76\) −38928.2 −0.773091
\(77\) −36258.8 −0.696926
\(78\) 14212.5 0.264505
\(79\) −27329.0 −0.492670 −0.246335 0.969185i \(-0.579226\pi\)
−0.246335 + 0.969185i \(0.579226\pi\)
\(80\) 18605.4 0.325023
\(81\) −11131.5 −0.188512
\(82\) −70812.4 −1.16299
\(83\) −78758.0 −1.25487 −0.627436 0.778668i \(-0.715896\pi\)
−0.627436 + 0.778668i \(0.715896\pi\)
\(84\) −27935.2 −0.431969
\(85\) −71235.4 −1.06942
\(86\) −85285.6 −1.24345
\(87\) −32899.3 −0.466003
\(88\) −14199.8 −0.195468
\(89\) 29455.8 0.394181 0.197091 0.980385i \(-0.436851\pi\)
0.197091 + 0.980385i \(0.436851\pi\)
\(90\) 37460.6 0.487493
\(91\) 54350.1 0.688014
\(92\) 35725.6 0.440058
\(93\) 105298. 1.26244
\(94\) −46452.4 −0.542236
\(95\) −176825. −2.01018
\(96\) −10940.1 −0.121155
\(97\) 145868. 1.57410 0.787048 0.616892i \(-0.211608\pi\)
0.787048 + 0.616892i \(0.211608\pi\)
\(98\) −39599.2 −0.416506
\(99\) −28590.3 −0.293177
\(100\) 34511.7 0.345117
\(101\) 118582. 1.15668 0.578342 0.815794i \(-0.303700\pi\)
0.578342 + 0.815794i \(0.303700\pi\)
\(102\) 41886.9 0.398637
\(103\) 145364. 1.35010 0.675049 0.737773i \(-0.264123\pi\)
0.675049 + 0.737773i \(0.264123\pi\)
\(104\) 21284.8 0.192968
\(105\) −126891. −1.12320
\(106\) −120343. −1.04029
\(107\) −143266. −1.20972 −0.604858 0.796334i \(-0.706770\pi\)
−0.604858 + 0.796334i \(0.706770\pi\)
\(108\) −63565.1 −0.524396
\(109\) 173115. 1.39563 0.697814 0.716279i \(-0.254156\pi\)
0.697814 + 0.716279i \(0.254156\pi\)
\(110\) −64500.2 −0.508252
\(111\) 94894.8 0.731029
\(112\) −41836.1 −0.315142
\(113\) −130507. −0.961475 −0.480737 0.876865i \(-0.659631\pi\)
−0.480737 + 0.876865i \(0.659631\pi\)
\(114\) 103974. 0.749312
\(115\) 162278. 1.14423
\(116\) −49270.5 −0.339971
\(117\) 42855.4 0.289428
\(118\) −169130. −1.11819
\(119\) 160180. 1.03691
\(120\) −49693.4 −0.315025
\(121\) −111824. −0.694338
\(122\) −80807.7 −0.491534
\(123\) 189134. 1.12721
\(124\) 157695. 0.921010
\(125\) −70352.8 −0.402723
\(126\) −84233.9 −0.472673
\(127\) 92885.7 0.511022 0.255511 0.966806i \(-0.417756\pi\)
0.255511 + 0.966806i \(0.417756\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 227791. 1.20521
\(130\) 96682.5 0.501753
\(131\) 64776.6 0.329792 0.164896 0.986311i \(-0.447271\pi\)
0.164896 + 0.986311i \(0.447271\pi\)
\(132\) 37926.5 0.189456
\(133\) 397608. 1.94907
\(134\) 123295. 0.593175
\(135\) −288734. −1.36352
\(136\) 62730.3 0.290824
\(137\) −216586. −0.985890 −0.492945 0.870060i \(-0.664080\pi\)
−0.492945 + 0.870060i \(0.664080\pi\)
\(138\) −95420.2 −0.426523
\(139\) 9409.80 0.0413089 0.0206544 0.999787i \(-0.493425\pi\)
0.0206544 + 0.999787i \(0.493425\pi\)
\(140\) −190033. −0.819425
\(141\) 124070. 0.525557
\(142\) 229251. 0.954091
\(143\) −73789.1 −0.301753
\(144\) −32988.0 −0.132571
\(145\) −223803. −0.883986
\(146\) −81632.3 −0.316942
\(147\) 105766. 0.403695
\(148\) 142116. 0.533320
\(149\) −461499. −1.70296 −0.851482 0.524384i \(-0.824295\pi\)
−0.851482 + 0.524384i \(0.824295\pi\)
\(150\) −92177.9 −0.334502
\(151\) 73810.3 0.263436 0.131718 0.991287i \(-0.457951\pi\)
0.131718 + 0.991287i \(0.457951\pi\)
\(152\) 155713. 0.546658
\(153\) 126303. 0.436199
\(154\) 145035. 0.492801
\(155\) 716303. 2.39479
\(156\) −56849.9 −0.187033
\(157\) 386739. 1.25219 0.626093 0.779749i \(-0.284653\pi\)
0.626093 + 0.779749i \(0.284653\pi\)
\(158\) 109316. 0.348370
\(159\) 321425. 1.00829
\(160\) −74421.5 −0.229826
\(161\) −364898. −1.10945
\(162\) 44525.8 0.133298
\(163\) −84131.1 −0.248020 −0.124010 0.992281i \(-0.539576\pi\)
−0.124010 + 0.992281i \(0.539576\pi\)
\(164\) 283249. 0.822355
\(165\) 172275. 0.492619
\(166\) 315032. 0.887329
\(167\) 379986. 1.05433 0.527164 0.849763i \(-0.323255\pi\)
0.527164 + 0.849763i \(0.323255\pi\)
\(168\) 111741. 0.305448
\(169\) −260687. −0.702106
\(170\) 284942. 0.756195
\(171\) 313516. 0.819917
\(172\) 341142. 0.879254
\(173\) −56864.2 −0.144452 −0.0722260 0.997388i \(-0.523010\pi\)
−0.0722260 + 0.997388i \(0.523010\pi\)
\(174\) 131597. 0.329514
\(175\) −352499. −0.870087
\(176\) 56799.2 0.138217
\(177\) 451731. 1.08379
\(178\) −117823. −0.278728
\(179\) 552368. 1.28853 0.644267 0.764801i \(-0.277163\pi\)
0.644267 + 0.764801i \(0.277163\pi\)
\(180\) −149842. −0.344709
\(181\) 57601.9 0.130689 0.0653447 0.997863i \(-0.479185\pi\)
0.0653447 + 0.997863i \(0.479185\pi\)
\(182\) −217400. −0.486499
\(183\) 215831. 0.476415
\(184\) −142903. −0.311168
\(185\) 645536. 1.38673
\(186\) −421190. −0.892681
\(187\) −217470. −0.454774
\(188\) 185809. 0.383418
\(189\) 649247. 1.32207
\(190\) 707299. 1.42141
\(191\) −464050. −0.920409 −0.460205 0.887813i \(-0.652224\pi\)
−0.460205 + 0.887813i \(0.652224\pi\)
\(192\) 43760.3 0.0856697
\(193\) −957625. −1.85056 −0.925278 0.379289i \(-0.876168\pi\)
−0.925278 + 0.379289i \(0.876168\pi\)
\(194\) −583473. −1.11305
\(195\) −258231. −0.486320
\(196\) 158397. 0.294514
\(197\) −24571.3 −0.0451089 −0.0225545 0.999746i \(-0.507180\pi\)
−0.0225545 + 0.999746i \(0.507180\pi\)
\(198\) 114361. 0.207308
\(199\) 18997.5 0.0340066 0.0170033 0.999855i \(-0.494587\pi\)
0.0170033 + 0.999855i \(0.494587\pi\)
\(200\) −138047. −0.244035
\(201\) −329310. −0.574930
\(202\) −474327. −0.817899
\(203\) 503243. 0.857112
\(204\) −167547. −0.281879
\(205\) 1.28661e6 2.13827
\(206\) −581458. −0.954663
\(207\) −287724. −0.466713
\(208\) −85139.2 −0.136449
\(209\) −539817. −0.854833
\(210\) 507563. 0.794221
\(211\) −584038. −0.903099 −0.451549 0.892246i \(-0.649129\pi\)
−0.451549 + 0.892246i \(0.649129\pi\)
\(212\) 481370. 0.735596
\(213\) −612310. −0.924745
\(214\) 573063. 0.855398
\(215\) 1.54958e6 2.28622
\(216\) 254260. 0.370804
\(217\) −1.61068e6 −2.32199
\(218\) −692462. −0.986858
\(219\) 218033. 0.307193
\(220\) 258001. 0.359389
\(221\) 325977. 0.448959
\(222\) −379579. −0.516916
\(223\) 851726. 1.14693 0.573466 0.819229i \(-0.305598\pi\)
0.573466 + 0.819229i \(0.305598\pi\)
\(224\) 167344. 0.222839
\(225\) −277947. −0.366021
\(226\) 522028. 0.679865
\(227\) 821810. 1.05854 0.529270 0.848454i \(-0.322466\pi\)
0.529270 + 0.848454i \(0.322466\pi\)
\(228\) −415896. −0.529843
\(229\) 963746. 1.21443 0.607217 0.794536i \(-0.292286\pi\)
0.607217 + 0.794536i \(0.292286\pi\)
\(230\) −649110. −0.809094
\(231\) −387377. −0.477643
\(232\) 197082. 0.240396
\(233\) 904381. 1.09134 0.545672 0.837999i \(-0.316275\pi\)
0.545672 + 0.837999i \(0.316275\pi\)
\(234\) −171422. −0.204657
\(235\) 844007. 0.996957
\(236\) 676518. 0.790678
\(237\) −291974. −0.337655
\(238\) −640720. −0.733206
\(239\) 304218. 0.344501 0.172250 0.985053i \(-0.444896\pi\)
0.172250 + 0.985053i \(0.444896\pi\)
\(240\) 198774. 0.222757
\(241\) −1.10700e6 −1.22774 −0.613868 0.789409i \(-0.710387\pi\)
−0.613868 + 0.789409i \(0.710387\pi\)
\(242\) 447295. 0.490971
\(243\) 846471. 0.919594
\(244\) 323231. 0.347567
\(245\) 719490. 0.765790
\(246\) −756535. −0.797061
\(247\) 809159. 0.843901
\(248\) −630781. −0.651252
\(249\) −841424. −0.860036
\(250\) 281411. 0.284768
\(251\) 514112. 0.515078 0.257539 0.966268i \(-0.417088\pi\)
0.257539 + 0.966268i \(0.417088\pi\)
\(252\) 336936. 0.334230
\(253\) 495407. 0.486588
\(254\) −371543. −0.361347
\(255\) −761055. −0.732936
\(256\) 65536.0 0.0625000
\(257\) −430131. −0.406226 −0.203113 0.979155i \(-0.565106\pi\)
−0.203113 + 0.979155i \(0.565106\pi\)
\(258\) −911162. −0.852210
\(259\) −1.45155e6 −1.34457
\(260\) −386730. −0.354793
\(261\) 396810. 0.360563
\(262\) −259106. −0.233198
\(263\) −901743. −0.803884 −0.401942 0.915665i \(-0.631665\pi\)
−0.401942 + 0.915665i \(0.631665\pi\)
\(264\) −151706. −0.133965
\(265\) 2.18654e6 1.91268
\(266\) −1.59043e6 −1.37820
\(267\) 314696. 0.270155
\(268\) −493179. −0.419438
\(269\) 72361.0 0.0609711
\(270\) 1.15493e6 0.964157
\(271\) 787231. 0.651147 0.325573 0.945517i \(-0.394443\pi\)
0.325573 + 0.945517i \(0.394443\pi\)
\(272\) −250921. −0.205644
\(273\) 580658. 0.471535
\(274\) 866343. 0.697130
\(275\) 478574. 0.381608
\(276\) 381681. 0.301597
\(277\) −52784.1 −0.0413337 −0.0206668 0.999786i \(-0.506579\pi\)
−0.0206668 + 0.999786i \(0.506579\pi\)
\(278\) −37639.2 −0.0292098
\(279\) −1.27003e6 −0.976796
\(280\) 760133. 0.579421
\(281\) −856015. −0.646719 −0.323359 0.946276i \(-0.604812\pi\)
−0.323359 + 0.946276i \(0.604812\pi\)
\(282\) −496281. −0.371625
\(283\) 2.66614e6 1.97887 0.989434 0.144984i \(-0.0463132\pi\)
0.989434 + 0.144984i \(0.0463132\pi\)
\(284\) −917003. −0.674645
\(285\) −1.88914e6 −1.37769
\(286\) 295156. 0.213372
\(287\) −2.89308e6 −2.07327
\(288\) 131952. 0.0937421
\(289\) −459140. −0.323371
\(290\) 895210. 0.625072
\(291\) 1.55841e6 1.07882
\(292\) 326529. 0.224112
\(293\) 1.71356e6 1.16608 0.583041 0.812443i \(-0.301863\pi\)
0.583041 + 0.812443i \(0.301863\pi\)
\(294\) −423065. −0.285455
\(295\) 3.07297e6 2.05591
\(296\) −568463. −0.377114
\(297\) −881457. −0.579843
\(298\) 1.84600e6 1.20418
\(299\) −742591. −0.480365
\(300\) 368712. 0.236529
\(301\) −3.48439e6 −2.21672
\(302\) −295241. −0.186277
\(303\) 1.26689e6 0.792742
\(304\) −622851. −0.386545
\(305\) 1.46822e6 0.903737
\(306\) −505212. −0.308439
\(307\) 371856. 0.225179 0.112590 0.993642i \(-0.464085\pi\)
0.112590 + 0.993642i \(0.464085\pi\)
\(308\) −580141. −0.348463
\(309\) 1.55303e6 0.925299
\(310\) −2.86521e6 −1.69337
\(311\) 2.09992e6 1.23112 0.615561 0.788089i \(-0.288929\pi\)
0.615561 + 0.788089i \(0.288929\pi\)
\(312\) 227400. 0.132252
\(313\) 2.23415e6 1.28900 0.644499 0.764606i \(-0.277066\pi\)
0.644499 + 0.764606i \(0.277066\pi\)
\(314\) −1.54695e6 −0.885429
\(315\) 1.53047e6 0.869058
\(316\) −437264. −0.246335
\(317\) −2.74743e6 −1.53560 −0.767800 0.640689i \(-0.778649\pi\)
−0.767800 + 0.640689i \(0.778649\pi\)
\(318\) −1.28570e6 −0.712971
\(319\) −683233. −0.375917
\(320\) 297686. 0.162511
\(321\) −1.53060e6 −0.829087
\(322\) 1.45959e6 0.784497
\(323\) 2.38475e6 1.27185
\(324\) −178103. −0.0942561
\(325\) −717358. −0.376728
\(326\) 336524. 0.175377
\(327\) 1.84951e6 0.956504
\(328\) −1.13300e6 −0.581493
\(329\) −1.89784e6 −0.966649
\(330\) −689098. −0.348334
\(331\) −1.68448e6 −0.845076 −0.422538 0.906345i \(-0.638861\pi\)
−0.422538 + 0.906345i \(0.638861\pi\)
\(332\) −1.26013e6 −0.627436
\(333\) −1.14456e6 −0.565623
\(334\) −1.51994e6 −0.745523
\(335\) −2.24018e6 −1.09061
\(336\) −446963. −0.215985
\(337\) −2.36863e6 −1.13611 −0.568057 0.822989i \(-0.692305\pi\)
−0.568057 + 0.822989i \(0.692305\pi\)
\(338\) 1.04275e6 0.496464
\(339\) −1.39429e6 −0.658954
\(340\) −1.13977e6 −0.534711
\(341\) 2.18676e6 1.01839
\(342\) −1.25407e6 −0.579769
\(343\) 1.12879e6 0.518057
\(344\) −1.36457e6 −0.621727
\(345\) 1.73372e6 0.784207
\(346\) 227457. 0.102143
\(347\) −444350. −0.198108 −0.0990539 0.995082i \(-0.531582\pi\)
−0.0990539 + 0.995082i \(0.531582\pi\)
\(348\) −526389. −0.233002
\(349\) −213616. −0.0938793 −0.0469397 0.998898i \(-0.514947\pi\)
−0.0469397 + 0.998898i \(0.514947\pi\)
\(350\) 1.41000e6 0.615244
\(351\) 1.32126e6 0.572428
\(352\) −227197. −0.0977340
\(353\) 119070. 0.0508587 0.0254293 0.999677i \(-0.491905\pi\)
0.0254293 + 0.999677i \(0.491905\pi\)
\(354\) −1.80692e6 −0.766358
\(355\) −4.16533e6 −1.75420
\(356\) 471293. 0.197091
\(357\) 1.71131e6 0.710654
\(358\) −2.20947e6 −0.911131
\(359\) 4.01362e6 1.64361 0.821807 0.569766i \(-0.192966\pi\)
0.821807 + 0.569766i \(0.192966\pi\)
\(360\) 599369. 0.243746
\(361\) 3.44346e6 1.39068
\(362\) −230408. −0.0924114
\(363\) −1.19469e6 −0.475870
\(364\) 869602. 0.344007
\(365\) 1.48320e6 0.582731
\(366\) −863323. −0.336876
\(367\) −68084.7 −0.0263867 −0.0131933 0.999913i \(-0.504200\pi\)
−0.0131933 + 0.999913i \(0.504200\pi\)
\(368\) 571610. 0.220029
\(369\) −2.28121e6 −0.872166
\(370\) −2.58214e6 −0.980565
\(371\) −4.91666e6 −1.85454
\(372\) 1.68476e6 0.631221
\(373\) −3.15537e6 −1.17430 −0.587150 0.809478i \(-0.699750\pi\)
−0.587150 + 0.809478i \(0.699750\pi\)
\(374\) 869881. 0.321574
\(375\) −751626. −0.276009
\(376\) −743238. −0.271118
\(377\) 1.02413e6 0.371110
\(378\) −2.59699e6 −0.934847
\(379\) −1.99619e6 −0.713844 −0.356922 0.934134i \(-0.616174\pi\)
−0.356922 + 0.934134i \(0.616174\pi\)
\(380\) −2.82920e6 −1.00509
\(381\) 992359. 0.350233
\(382\) 1.85620e6 0.650828
\(383\) −5.51741e6 −1.92193 −0.960966 0.276665i \(-0.910771\pi\)
−0.960966 + 0.276665i \(0.910771\pi\)
\(384\) −175041. −0.0605776
\(385\) −2.63519e6 −0.906066
\(386\) 3.83050e6 1.30854
\(387\) −2.74746e6 −0.932511
\(388\) 2.33389e6 0.787048
\(389\) 1.33600e6 0.447643 0.223821 0.974630i \(-0.428147\pi\)
0.223821 + 0.974630i \(0.428147\pi\)
\(390\) 1.03292e6 0.343880
\(391\) −2.18856e6 −0.723962
\(392\) −633587. −0.208253
\(393\) 692051. 0.226025
\(394\) 98285.2 0.0318968
\(395\) −1.98620e6 −0.640516
\(396\) −457444. −0.146589
\(397\) 2.23100e6 0.710433 0.355216 0.934784i \(-0.384407\pi\)
0.355216 + 0.934784i \(0.384407\pi\)
\(398\) −75989.8 −0.0240463
\(399\) 4.24791e6 1.33581
\(400\) 552188. 0.172559
\(401\) 3.51596e6 1.09190 0.545950 0.837818i \(-0.316169\pi\)
0.545950 + 0.837818i \(0.316169\pi\)
\(402\) 1.31724e6 0.406537
\(403\) −3.27784e6 −1.00537
\(404\) 1.89731e6 0.578342
\(405\) −809003. −0.245083
\(406\) −2.01297e6 −0.606070
\(407\) 1.97072e6 0.589710
\(408\) 670190. 0.199318
\(409\) −4.75138e6 −1.40447 −0.702233 0.711947i \(-0.747814\pi\)
−0.702233 + 0.711947i \(0.747814\pi\)
\(410\) −5.14645e6 −1.51199
\(411\) −2.31393e6 −0.675687
\(412\) 2.32583e6 0.675049
\(413\) −6.90988e6 −1.99340
\(414\) 1.15090e6 0.330016
\(415\) −5.72392e6 −1.63145
\(416\) 340557. 0.0964842
\(417\) 100531. 0.0283114
\(418\) 2.15927e6 0.604458
\(419\) −6.18829e6 −1.72201 −0.861005 0.508596i \(-0.830165\pi\)
−0.861005 + 0.508596i \(0.830165\pi\)
\(420\) −2.03025e6 −0.561599
\(421\) −6.47076e6 −1.77930 −0.889652 0.456639i \(-0.849053\pi\)
−0.889652 + 0.456639i \(0.849053\pi\)
\(422\) 2.33615e6 0.638587
\(423\) −1.49645e6 −0.406642
\(424\) −1.92548e6 −0.520145
\(425\) −2.11419e6 −0.567769
\(426\) 2.44924e6 0.653894
\(427\) −3.30144e6 −0.876262
\(428\) −2.29225e6 −0.604858
\(429\) −788337. −0.206809
\(430\) −6.19832e6 −1.61660
\(431\) 1.02200e6 0.265008 0.132504 0.991182i \(-0.457698\pi\)
0.132504 + 0.991182i \(0.457698\pi\)
\(432\) −1.01704e6 −0.262198
\(433\) 1.88514e6 0.483196 0.241598 0.970376i \(-0.422328\pi\)
0.241598 + 0.970376i \(0.422328\pi\)
\(434\) 6.44272e6 1.64189
\(435\) −2.39103e6 −0.605846
\(436\) 2.76985e6 0.697814
\(437\) −5.43256e6 −1.36082
\(438\) −872132. −0.217219
\(439\) 2.65719e6 0.658054 0.329027 0.944320i \(-0.393279\pi\)
0.329027 + 0.944320i \(0.393279\pi\)
\(440\) −1.03200e6 −0.254126
\(441\) −1.27568e6 −0.312353
\(442\) −1.30391e6 −0.317462
\(443\) 6.37750e6 1.54398 0.771989 0.635636i \(-0.219262\pi\)
0.771989 + 0.635636i \(0.219262\pi\)
\(444\) 1.51832e6 0.365515
\(445\) 2.14077e6 0.512471
\(446\) −3.40691e6 −0.811004
\(447\) −4.93050e6 −1.16714
\(448\) −669377. −0.157571
\(449\) 6.85016e6 1.60356 0.801779 0.597620i \(-0.203887\pi\)
0.801779 + 0.597620i \(0.203887\pi\)
\(450\) 1.11179e6 0.258816
\(451\) 3.92782e6 0.909306
\(452\) −2.08811e6 −0.480737
\(453\) 788565. 0.180548
\(454\) −3.28724e6 −0.748500
\(455\) 3.95002e6 0.894480
\(456\) 1.66358e6 0.374656
\(457\) 1.99282e6 0.446352 0.223176 0.974778i \(-0.428358\pi\)
0.223176 + 0.974778i \(0.428358\pi\)
\(458\) −3.85499e6 −0.858735
\(459\) 3.89401e6 0.862710
\(460\) 2.59644e6 0.572116
\(461\) 4.94978e6 1.08476 0.542380 0.840134i \(-0.317523\pi\)
0.542380 + 0.840134i \(0.317523\pi\)
\(462\) 1.54951e6 0.337745
\(463\) −2.37016e6 −0.513837 −0.256919 0.966433i \(-0.582707\pi\)
−0.256919 + 0.966433i \(0.582707\pi\)
\(464\) −788327. −0.169985
\(465\) 7.65274e6 1.64129
\(466\) −3.61752e6 −0.771696
\(467\) 4.83745e6 1.02642 0.513209 0.858264i \(-0.328456\pi\)
0.513209 + 0.858264i \(0.328456\pi\)
\(468\) 685686. 0.144714
\(469\) 5.03727e6 1.05746
\(470\) −3.37603e6 −0.704955
\(471\) 4.13179e6 0.858194
\(472\) −2.70607e6 −0.559094
\(473\) 4.73062e6 0.972221
\(474\) 1.16790e6 0.238758
\(475\) −5.24797e6 −1.06723
\(476\) 2.56288e6 0.518455
\(477\) −3.87682e6 −0.780152
\(478\) −1.21687e6 −0.243599
\(479\) 2.56529e6 0.510856 0.255428 0.966828i \(-0.417784\pi\)
0.255428 + 0.966828i \(0.417784\pi\)
\(480\) −795094. −0.157513
\(481\) −2.95401e6 −0.582169
\(482\) 4.42800e6 0.868140
\(483\) −3.89844e6 −0.760367
\(484\) −1.78918e6 −0.347169
\(485\) 1.06013e7 2.04647
\(486\) −3.38588e6 −0.650251
\(487\) 8.19420e6 1.56561 0.782806 0.622266i \(-0.213788\pi\)
0.782806 + 0.622266i \(0.213788\pi\)
\(488\) −1.29292e6 −0.245767
\(489\) −898828. −0.169983
\(490\) −2.87796e6 −0.541495
\(491\) −1.98990e6 −0.372501 −0.186250 0.982502i \(-0.559634\pi\)
−0.186250 + 0.982502i \(0.559634\pi\)
\(492\) 3.02614e6 0.563607
\(493\) 3.01831e6 0.559303
\(494\) −3.23664e6 −0.596728
\(495\) −2.07786e6 −0.381157
\(496\) 2.52312e6 0.460505
\(497\) 9.36617e6 1.70087
\(498\) 3.36570e6 0.608137
\(499\) −7.29203e6 −1.31098 −0.655491 0.755203i \(-0.727538\pi\)
−0.655491 + 0.755203i \(0.727538\pi\)
\(500\) −1.12565e6 −0.201362
\(501\) 4.05964e6 0.722592
\(502\) −2.05645e6 −0.364215
\(503\) 6.39026e6 1.12616 0.563078 0.826404i \(-0.309617\pi\)
0.563078 + 0.826404i \(0.309617\pi\)
\(504\) −1.34774e6 −0.236336
\(505\) 8.61820e6 1.50379
\(506\) −1.98163e6 −0.344069
\(507\) −2.78509e6 −0.481193
\(508\) 1.48617e6 0.255511
\(509\) −7.01692e6 −1.20047 −0.600236 0.799823i \(-0.704927\pi\)
−0.600236 + 0.799823i \(0.704927\pi\)
\(510\) 3.04422e6 0.518264
\(511\) −3.33513e6 −0.565016
\(512\) −262144. −0.0441942
\(513\) 9.66592e6 1.62162
\(514\) 1.72052e6 0.287245
\(515\) 1.05647e7 1.75525
\(516\) 3.64465e6 0.602603
\(517\) 2.57662e6 0.423959
\(518\) 5.80621e6 0.950755
\(519\) −607518. −0.0990013
\(520\) 1.54692e6 0.250876
\(521\) −7.81316e6 −1.26105 −0.630525 0.776169i \(-0.717160\pi\)
−0.630525 + 0.776169i \(0.717160\pi\)
\(522\) −1.58724e6 −0.254957
\(523\) −474750. −0.0758945 −0.0379473 0.999280i \(-0.512082\pi\)
−0.0379473 + 0.999280i \(0.512082\pi\)
\(524\) 1.03643e6 0.164896
\(525\) −3.76598e6 −0.596320
\(526\) 3.60697e6 0.568432
\(527\) −9.66042e6 −1.51520
\(528\) 606824. 0.0947279
\(529\) −1.45071e6 −0.225394
\(530\) −8.74617e6 −1.35247
\(531\) −5.44848e6 −0.838570
\(532\) 6.36173e6 0.974533
\(533\) −5.88760e6 −0.897678
\(534\) −1.25878e6 −0.191028
\(535\) −1.04122e7 −1.57274
\(536\) 1.97272e6 0.296587
\(537\) 5.90131e6 0.883106
\(538\) −289444. −0.0431131
\(539\) 2.19649e6 0.325654
\(540\) −4.61974e6 −0.681762
\(541\) −1.01655e7 −1.49326 −0.746632 0.665237i \(-0.768330\pi\)
−0.746632 + 0.665237i \(0.768330\pi\)
\(542\) −3.14892e6 −0.460430
\(543\) 615400. 0.0895690
\(544\) 1.00369e6 0.145412
\(545\) 1.25816e7 1.81444
\(546\) −2.32263e6 −0.333426
\(547\) 8.37810e6 1.19723 0.598614 0.801037i \(-0.295718\pi\)
0.598614 + 0.801037i \(0.295718\pi\)
\(548\) −3.46537e6 −0.492945
\(549\) −2.60321e6 −0.368619
\(550\) −1.91430e6 −0.269838
\(551\) 7.49223e6 1.05131
\(552\) −1.52672e6 −0.213262
\(553\) 4.46617e6 0.621044
\(554\) 211137. 0.0292273
\(555\) 6.89669e6 0.950404
\(556\) 150557. 0.0206544
\(557\) 8.54939e6 1.16761 0.583804 0.811895i \(-0.301564\pi\)
0.583804 + 0.811895i \(0.301564\pi\)
\(558\) 5.08012e6 0.690699
\(559\) −7.09096e6 −0.959789
\(560\) −3.04053e6 −0.409713
\(561\) −2.32338e6 −0.311683
\(562\) 3.42406e6 0.457299
\(563\) 25029.6 0.00332799 0.00166400 0.999999i \(-0.499470\pi\)
0.00166400 + 0.999999i \(0.499470\pi\)
\(564\) 1.98513e6 0.262779
\(565\) −9.48490e6 −1.25000
\(566\) −1.06646e7 −1.39927
\(567\) 1.81913e6 0.237632
\(568\) 3.66801e6 0.477046
\(569\) −675924. −0.0875220 −0.0437610 0.999042i \(-0.513934\pi\)
−0.0437610 + 0.999042i \(0.513934\pi\)
\(570\) 7.55654e6 0.974173
\(571\) 1.29887e7 1.66715 0.833574 0.552407i \(-0.186291\pi\)
0.833574 + 0.552407i \(0.186291\pi\)
\(572\) −1.18062e6 −0.150877
\(573\) −4.95775e6 −0.630809
\(574\) 1.15723e7 1.46602
\(575\) 4.81622e6 0.607487
\(576\) −527808. −0.0662857
\(577\) −3.02708e6 −0.378516 −0.189258 0.981927i \(-0.560608\pi\)
−0.189258 + 0.981927i \(0.560608\pi\)
\(578\) 1.83656e6 0.228658
\(579\) −1.02309e7 −1.26829
\(580\) −3.58084e6 −0.441993
\(581\) 1.28708e7 1.58185
\(582\) −6.23363e6 −0.762840
\(583\) 6.67516e6 0.813374
\(584\) −1.30612e6 −0.158471
\(585\) 3.11461e6 0.376283
\(586\) −6.85422e6 −0.824544
\(587\) −1.27023e7 −1.52155 −0.760775 0.649015i \(-0.775181\pi\)
−0.760775 + 0.649015i \(0.775181\pi\)
\(588\) 1.69226e6 0.201847
\(589\) −2.39797e7 −2.84810
\(590\) −1.22919e7 −1.45374
\(591\) −262512. −0.0309157
\(592\) 2.27385e6 0.266660
\(593\) −5.95457e6 −0.695366 −0.347683 0.937612i \(-0.613031\pi\)
−0.347683 + 0.937612i \(0.613031\pi\)
\(594\) 3.52583e6 0.410011
\(595\) 1.16414e7 1.34808
\(596\) −7.38399e6 −0.851482
\(597\) 202962. 0.0233066
\(598\) 2.97036e6 0.339670
\(599\) 93939.8 0.0106975 0.00534875 0.999986i \(-0.498297\pi\)
0.00534875 + 0.999986i \(0.498297\pi\)
\(600\) −1.47485e6 −0.167251
\(601\) 1.16122e7 1.31138 0.655691 0.755029i \(-0.272377\pi\)
0.655691 + 0.755029i \(0.272377\pi\)
\(602\) 1.39376e7 1.56746
\(603\) 3.97192e6 0.444843
\(604\) 1.18097e6 0.131718
\(605\) −8.12705e6 −0.902702
\(606\) −5.06755e6 −0.560553
\(607\) −3.66792e6 −0.404063 −0.202031 0.979379i \(-0.564754\pi\)
−0.202031 + 0.979379i \(0.564754\pi\)
\(608\) 2.49141e6 0.273329
\(609\) 5.37648e6 0.587428
\(610\) −5.87288e6 −0.639038
\(611\) −3.86222e6 −0.418537
\(612\) 2.02085e6 0.218100
\(613\) 7.87305e6 0.846237 0.423118 0.906074i \(-0.360935\pi\)
0.423118 + 0.906074i \(0.360935\pi\)
\(614\) −1.48742e6 −0.159226
\(615\) 1.37457e7 1.46548
\(616\) 2.32056e6 0.246400
\(617\) 6.17776e6 0.653308 0.326654 0.945144i \(-0.394079\pi\)
0.326654 + 0.945144i \(0.394079\pi\)
\(618\) −6.21210e6 −0.654285
\(619\) 6.01288e6 0.630748 0.315374 0.948967i \(-0.397870\pi\)
0.315374 + 0.948967i \(0.397870\pi\)
\(620\) 1.14609e7 1.19740
\(621\) −8.87072e6 −0.923060
\(622\) −8.39967e6 −0.870535
\(623\) −4.81373e6 −0.496891
\(624\) −909598. −0.0935165
\(625\) −1.18536e7 −1.21381
\(626\) −8.93661e6 −0.911459
\(627\) −5.76723e6 −0.585866
\(628\) 6.18782e6 0.626093
\(629\) −8.70602e6 −0.877391
\(630\) −6.12189e6 −0.614517
\(631\) −1.47485e7 −1.47460 −0.737300 0.675566i \(-0.763899\pi\)
−0.737300 + 0.675566i \(0.763899\pi\)
\(632\) 1.74906e6 0.174185
\(633\) −6.23967e6 −0.618945
\(634\) 1.09897e7 1.08583
\(635\) 6.75068e6 0.664374
\(636\) 5.14280e6 0.504146
\(637\) −3.29243e6 −0.321490
\(638\) 2.73293e6 0.265814
\(639\) 7.38528e6 0.715508
\(640\) −1.19074e6 −0.114913
\(641\) 1.98558e6 0.190872 0.0954360 0.995436i \(-0.469575\pi\)
0.0954360 + 0.995436i \(0.469575\pi\)
\(642\) 6.12241e6 0.586253
\(643\) 7.27451e6 0.693867 0.346934 0.937890i \(-0.387223\pi\)
0.346934 + 0.937890i \(0.387223\pi\)
\(644\) −5.83836e6 −0.554723
\(645\) 1.65552e7 1.56688
\(646\) −9.53898e6 −0.899334
\(647\) 7.90667e6 0.742563 0.371281 0.928520i \(-0.378919\pi\)
0.371281 + 0.928520i \(0.378919\pi\)
\(648\) 712413. 0.0666491
\(649\) 9.38128e6 0.874280
\(650\) 2.86943e6 0.266387
\(651\) −1.72080e7 −1.59139
\(652\) −1.34610e6 −0.124010
\(653\) 1.67178e7 1.53425 0.767124 0.641499i \(-0.221687\pi\)
0.767124 + 0.641499i \(0.221687\pi\)
\(654\) −7.39803e6 −0.676350
\(655\) 4.70778e6 0.428759
\(656\) 4.53199e6 0.411178
\(657\) −2.62977e6 −0.237686
\(658\) 7.59134e6 0.683524
\(659\) 6.78003e6 0.608160 0.304080 0.952646i \(-0.401651\pi\)
0.304080 + 0.952646i \(0.401651\pi\)
\(660\) 2.75639e6 0.246310
\(661\) −8.57343e6 −0.763222 −0.381611 0.924323i \(-0.624631\pi\)
−0.381611 + 0.924323i \(0.624631\pi\)
\(662\) 6.73792e6 0.597559
\(663\) 3.48263e6 0.307697
\(664\) 5.04051e6 0.443664
\(665\) 2.88971e7 2.53396
\(666\) 4.57823e6 0.399956
\(667\) −6.87585e6 −0.598428
\(668\) 6.07977e6 0.527164
\(669\) 9.09956e6 0.786059
\(670\) 8.96072e6 0.771181
\(671\) 4.48224e6 0.384317
\(672\) 1.78785e6 0.152724
\(673\) 6.56839e6 0.559012 0.279506 0.960144i \(-0.409829\pi\)
0.279506 + 0.960144i \(0.409829\pi\)
\(674\) 9.47451e6 0.803354
\(675\) −8.56930e6 −0.723913
\(676\) −4.17099e6 −0.351053
\(677\) −7.98281e6 −0.669397 −0.334699 0.942325i \(-0.608635\pi\)
−0.334699 + 0.942325i \(0.608635\pi\)
\(678\) 5.57717e6 0.465951
\(679\) −2.38381e7 −1.98425
\(680\) 4.55907e6 0.378098
\(681\) 8.77994e6 0.725478
\(682\) −8.74703e6 −0.720112
\(683\) −1.79637e7 −1.47348 −0.736740 0.676176i \(-0.763636\pi\)
−0.736740 + 0.676176i \(0.763636\pi\)
\(684\) 5.01626e6 0.409959
\(685\) −1.57409e7 −1.28175
\(686\) −4.51516e6 −0.366322
\(687\) 1.02963e7 0.832321
\(688\) 5.45828e6 0.439627
\(689\) −1.00057e7 −0.802973
\(690\) −6.93488e6 −0.554518
\(691\) 1.11833e7 0.890996 0.445498 0.895283i \(-0.353027\pi\)
0.445498 + 0.895283i \(0.353027\pi\)
\(692\) −909828. −0.0722260
\(693\) 4.67228e6 0.369570
\(694\) 1.77740e6 0.140083
\(695\) 683879. 0.0537053
\(696\) 2.10556e6 0.164757
\(697\) −1.73519e7 −1.35290
\(698\) 854464. 0.0663827
\(699\) 9.66210e6 0.747960
\(700\) −5.63998e6 −0.435043
\(701\) −1.08396e7 −0.833144 −0.416572 0.909103i \(-0.636769\pi\)
−0.416572 + 0.909103i \(0.636769\pi\)
\(702\) −5.28504e6 −0.404768
\(703\) −2.16106e7 −1.64922
\(704\) 908788. 0.0691084
\(705\) 9.01709e6 0.683272
\(706\) −476279. −0.0359625
\(707\) −1.93789e7 −1.45808
\(708\) 7.22770e6 0.541897
\(709\) 2.46360e6 0.184058 0.0920292 0.995756i \(-0.470665\pi\)
0.0920292 + 0.995756i \(0.470665\pi\)
\(710\) 1.66613e7 1.24040
\(711\) 3.52160e6 0.261256
\(712\) −1.88517e6 −0.139364
\(713\) 2.20069e7 1.62119
\(714\) −6.84524e6 −0.502508
\(715\) −5.36279e6 −0.392306
\(716\) 8.83789e6 0.644267
\(717\) 3.25016e6 0.236106
\(718\) −1.60545e7 −1.16221
\(719\) −6.46308e6 −0.466248 −0.233124 0.972447i \(-0.574895\pi\)
−0.233124 + 0.972447i \(0.574895\pi\)
\(720\) −2.39748e6 −0.172355
\(721\) −2.37558e7 −1.70189
\(722\) −1.37738e7 −0.983358
\(723\) −1.18268e7 −0.841437
\(724\) 921631. 0.0653447
\(725\) −6.64222e6 −0.469319
\(726\) 4.77875e6 0.336491
\(727\) −5.09622e6 −0.357612 −0.178806 0.983884i \(-0.557223\pi\)
−0.178806 + 0.983884i \(0.557223\pi\)
\(728\) −3.47841e6 −0.243250
\(729\) 1.17483e7 0.818763
\(730\) −5.93281e6 −0.412053
\(731\) −2.08984e7 −1.44650
\(732\) 3.45329e6 0.238208
\(733\) −1.92779e7 −1.32525 −0.662626 0.748950i \(-0.730558\pi\)
−0.662626 + 0.748950i \(0.730558\pi\)
\(734\) 272339. 0.0186582
\(735\) 7.68679e6 0.524840
\(736\) −2.28644e6 −0.155584
\(737\) −6.83891e6 −0.463787
\(738\) 9.12483e6 0.616714
\(739\) 2.48384e7 1.67307 0.836533 0.547917i \(-0.184579\pi\)
0.836533 + 0.547917i \(0.184579\pi\)
\(740\) 1.03286e7 0.693364
\(741\) 8.64479e6 0.578374
\(742\) 1.96666e7 1.31136
\(743\) 1.86619e7 1.24018 0.620090 0.784531i \(-0.287096\pi\)
0.620090 + 0.784531i \(0.287096\pi\)
\(744\) −6.73905e6 −0.446340
\(745\) −3.35405e7 −2.21401
\(746\) 1.26215e7 0.830355
\(747\) 1.01487e7 0.665441
\(748\) −3.47953e6 −0.227387
\(749\) 2.34128e7 1.52493
\(750\) 3.00650e6 0.195168
\(751\) 1.82226e7 1.17899 0.589495 0.807772i \(-0.299327\pi\)
0.589495 + 0.807772i \(0.299327\pi\)
\(752\) 2.97295e6 0.191709
\(753\) 5.49260e6 0.353013
\(754\) −4.09653e6 −0.262415
\(755\) 5.36433e6 0.342490
\(756\) 1.03879e7 0.661036
\(757\) −1.13560e7 −0.720254 −0.360127 0.932903i \(-0.617267\pi\)
−0.360127 + 0.932903i \(0.617267\pi\)
\(758\) 7.98475e6 0.504764
\(759\) 5.29277e6 0.333486
\(760\) 1.13168e7 0.710704
\(761\) −2.06212e6 −0.129078 −0.0645389 0.997915i \(-0.520558\pi\)
−0.0645389 + 0.997915i \(0.520558\pi\)
\(762\) −3.96944e6 −0.247652
\(763\) −2.82909e7 −1.75928
\(764\) −7.42479e6 −0.460205
\(765\) 9.17935e6 0.567098
\(766\) 2.20696e7 1.35901
\(767\) −1.40621e7 −0.863099
\(768\) 700165. 0.0428348
\(769\) −777529. −0.0474134 −0.0237067 0.999719i \(-0.507547\pi\)
−0.0237067 + 0.999719i \(0.507547\pi\)
\(770\) 1.05408e7 0.640686
\(771\) −4.59537e6 −0.278410
\(772\) −1.53220e7 −0.925278
\(773\) 2.74816e7 1.65422 0.827111 0.562038i \(-0.189983\pi\)
0.827111 + 0.562038i \(0.189983\pi\)
\(774\) 1.09898e7 0.659385
\(775\) 2.12591e7 1.27143
\(776\) −9.33556e6 −0.556527
\(777\) −1.55079e7 −0.921511
\(778\) −5.34399e6 −0.316531
\(779\) −4.30719e7 −2.54302
\(780\) −4.13169e6 −0.243160
\(781\) −1.27161e7 −0.745978
\(782\) 8.75422e6 0.511918
\(783\) 1.22339e7 0.713118
\(784\) 2.53435e6 0.147257
\(785\) 2.81071e7 1.62795
\(786\) −2.76820e6 −0.159824
\(787\) −1.93429e7 −1.11323 −0.556615 0.830771i \(-0.687900\pi\)
−0.556615 + 0.830771i \(0.687900\pi\)
\(788\) −393141. −0.0225545
\(789\) −9.63391e6 −0.550948
\(790\) 7.94479e6 0.452913
\(791\) 2.13277e7 1.21200
\(792\) 1.82978e6 0.103654
\(793\) −6.71866e6 −0.379402
\(794\) −8.92399e6 −0.502352
\(795\) 2.33603e7 1.31087
\(796\) 303959. 0.0170033
\(797\) 1.27455e7 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(798\) −1.69917e7 −0.944558
\(799\) −1.13827e7 −0.630781
\(800\) −2.20875e6 −0.122017
\(801\) −3.79565e6 −0.209028
\(802\) −1.40638e7 −0.772090
\(803\) 4.52798e6 0.247808
\(804\) −5.26896e6 −0.287465
\(805\) −2.65197e7 −1.44238
\(806\) 1.31114e7 0.710903
\(807\) 773081. 0.0417870
\(808\) −7.58924e6 −0.408950
\(809\) −1.25900e7 −0.676322 −0.338161 0.941088i \(-0.609805\pi\)
−0.338161 + 0.941088i \(0.609805\pi\)
\(810\) 3.23601e6 0.173300
\(811\) 2.21540e7 1.18277 0.591386 0.806389i \(-0.298581\pi\)
0.591386 + 0.806389i \(0.298581\pi\)
\(812\) 8.05189e6 0.428556
\(813\) 8.41051e6 0.446268
\(814\) −7.88287e6 −0.416988
\(815\) −6.11441e6 −0.322449
\(816\) −2.68076e6 −0.140939
\(817\) −5.18752e7 −2.71897
\(818\) 1.90055e7 0.993108
\(819\) −7.00352e6 −0.364843
\(820\) 2.05858e7 1.06914
\(821\) −3.15446e7 −1.63330 −0.816651 0.577131i \(-0.804172\pi\)
−0.816651 + 0.577131i \(0.804172\pi\)
\(822\) 9.25572e6 0.477783
\(823\) 3.54094e7 1.82230 0.911148 0.412079i \(-0.135197\pi\)
0.911148 + 0.412079i \(0.135197\pi\)
\(824\) −9.30333e6 −0.477332
\(825\) 5.11292e6 0.261538
\(826\) 2.76395e7 1.40955
\(827\) −6.84017e6 −0.347779 −0.173889 0.984765i \(-0.555634\pi\)
−0.173889 + 0.984765i \(0.555634\pi\)
\(828\) −4.60358e6 −0.233357
\(829\) −1.68528e6 −0.0851697 −0.0425848 0.999093i \(-0.513559\pi\)
−0.0425848 + 0.999093i \(0.513559\pi\)
\(830\) 2.28957e7 1.15361
\(831\) −563928. −0.0283283
\(832\) −1.36223e6 −0.0682246
\(833\) −9.70340e6 −0.484520
\(834\) −402125. −0.0200192
\(835\) 2.76163e7 1.37072
\(836\) −8.63708e6 −0.427416
\(837\) −3.91559e7 −1.93190
\(838\) 2.47532e7 1.21765
\(839\) 2.08944e7 1.02477 0.512384 0.858757i \(-0.328763\pi\)
0.512384 + 0.858757i \(0.328763\pi\)
\(840\) 8.12100e6 0.397111
\(841\) −1.10284e7 −0.537679
\(842\) 2.58830e7 1.25816
\(843\) −9.14537e6 −0.443233
\(844\) −9.34461e6 −0.451549
\(845\) −1.89460e7 −0.912801
\(846\) 5.98582e6 0.287540
\(847\) 1.82745e7 0.875259
\(848\) 7.70192e6 0.367798
\(849\) 2.84841e7 1.35623
\(850\) 8.45677e6 0.401474
\(851\) 1.98327e7 0.938768
\(852\) −9.79695e6 −0.462373
\(853\) 1.86077e7 0.875628 0.437814 0.899066i \(-0.355753\pi\)
0.437814 + 0.899066i \(0.355753\pi\)
\(854\) 1.32058e7 0.619611
\(855\) 2.27855e7 1.06597
\(856\) 9.16901e6 0.427699
\(857\) −9.57315e6 −0.445249 −0.222624 0.974904i \(-0.571462\pi\)
−0.222624 + 0.974904i \(0.571462\pi\)
\(858\) 3.15335e6 0.146236
\(859\) 1.29912e7 0.600713 0.300356 0.953827i \(-0.402894\pi\)
0.300356 + 0.953827i \(0.402894\pi\)
\(860\) 2.47933e7 1.14311
\(861\) −3.09087e7 −1.42093
\(862\) −4.08801e6 −0.187389
\(863\) 2.11178e7 0.965211 0.482606 0.875838i \(-0.339690\pi\)
0.482606 + 0.875838i \(0.339690\pi\)
\(864\) 4.06817e6 0.185402
\(865\) −4.13274e6 −0.187801
\(866\) −7.54055e6 −0.341671
\(867\) −4.90530e6 −0.221625
\(868\) −2.57709e7 −1.16099
\(869\) −6.06354e6 −0.272381
\(870\) 9.56413e6 0.428398
\(871\) 1.02512e7 0.457856
\(872\) −1.10794e7 −0.493429
\(873\) −1.87965e7 −0.834720
\(874\) 2.17302e7 0.962246
\(875\) 1.14972e7 0.507659
\(876\) 3.48853e6 0.153597
\(877\) −2.06495e7 −0.906589 −0.453295 0.891361i \(-0.649751\pi\)
−0.453295 + 0.891361i \(0.649751\pi\)
\(878\) −1.06288e7 −0.465315
\(879\) 1.83070e7 0.799183
\(880\) 4.12801e6 0.179694
\(881\) 2.77202e7 1.20325 0.601627 0.798777i \(-0.294519\pi\)
0.601627 + 0.798777i \(0.294519\pi\)
\(882\) 5.10273e6 0.220867
\(883\) −3.16009e7 −1.36395 −0.681974 0.731376i \(-0.738878\pi\)
−0.681974 + 0.731376i \(0.738878\pi\)
\(884\) 5.21563e6 0.224479
\(885\) 3.28306e7 1.40903
\(886\) −2.55100e7 −1.09176
\(887\) −3.99404e7 −1.70452 −0.852262 0.523115i \(-0.824770\pi\)
−0.852262 + 0.523115i \(0.824770\pi\)
\(888\) −6.07326e6 −0.258458
\(889\) −1.51796e7 −0.644177
\(890\) −8.56306e6 −0.362372
\(891\) −2.46976e6 −0.104222
\(892\) 1.36276e7 0.573466
\(893\) −2.82548e7 −1.18567
\(894\) 1.97220e7 0.825291
\(895\) 4.01446e7 1.67521
\(896\) 2.67751e6 0.111419
\(897\) −7.93359e6 −0.329222
\(898\) −2.74006e7 −1.13389
\(899\) −3.03504e7 −1.25247
\(900\) −4.44716e6 −0.183011
\(901\) −2.94888e7 −1.21017
\(902\) −1.57113e7 −0.642976
\(903\) −3.72260e7 −1.51924
\(904\) 8.35245e6 0.339933
\(905\) 4.18635e6 0.169908
\(906\) −3.15426e6 −0.127666
\(907\) 2.22380e7 0.897589 0.448795 0.893635i \(-0.351853\pi\)
0.448795 + 0.893635i \(0.351853\pi\)
\(908\) 1.31490e7 0.529270
\(909\) −1.52804e7 −0.613373
\(910\) −1.58001e7 −0.632493
\(911\) −7.75511e6 −0.309594 −0.154797 0.987946i \(-0.549472\pi\)
−0.154797 + 0.987946i \(0.549472\pi\)
\(912\) −6.65434e6 −0.264922
\(913\) −1.74742e7 −0.693778
\(914\) −7.97127e6 −0.315618
\(915\) 1.56860e7 0.619383
\(916\) 1.54199e7 0.607217
\(917\) −1.05859e7 −0.415724
\(918\) −1.55760e7 −0.610028
\(919\) −2.30155e7 −0.898940 −0.449470 0.893295i \(-0.648387\pi\)
−0.449470 + 0.893295i \(0.648387\pi\)
\(920\) −1.03858e7 −0.404547
\(921\) 3.97278e6 0.154328
\(922\) −1.97991e7 −0.767041
\(923\) 1.90608e7 0.736438
\(924\) −6.19803e6 −0.238822
\(925\) 1.91588e7 0.736231
\(926\) 9.48064e6 0.363338
\(927\) −1.87316e7 −0.715937
\(928\) 3.15331e6 0.120198
\(929\) 1.62634e7 0.618261 0.309130 0.951020i \(-0.399962\pi\)
0.309130 + 0.951020i \(0.399962\pi\)
\(930\) −3.06110e7 −1.16057
\(931\) −2.40863e7 −0.910745
\(932\) 1.44701e7 0.545672
\(933\) 2.24348e7 0.843759
\(934\) −1.93498e7 −0.725788
\(935\) −1.58051e7 −0.591248
\(936\) −2.74274e6 −0.102328
\(937\) 1.21689e7 0.452796 0.226398 0.974035i \(-0.427305\pi\)
0.226398 + 0.974035i \(0.427305\pi\)
\(938\) −2.01491e7 −0.747736
\(939\) 2.38689e7 0.883424
\(940\) 1.35041e7 0.498479
\(941\) 4.43110e7 1.63131 0.815656 0.578537i \(-0.196376\pi\)
0.815656 + 0.578537i \(0.196376\pi\)
\(942\) −1.65271e7 −0.606835
\(943\) 3.95284e7 1.44754
\(944\) 1.08243e7 0.395339
\(945\) 4.71855e7 1.71881
\(946\) −1.89225e7 −0.687464
\(947\) 2.88978e7 1.04711 0.523553 0.851993i \(-0.324606\pi\)
0.523553 + 0.851993i \(0.324606\pi\)
\(948\) −4.67158e6 −0.168828
\(949\) −6.78721e6 −0.244639
\(950\) 2.09919e7 0.754644
\(951\) −2.93526e7 −1.05244
\(952\) −1.02515e7 −0.366603
\(953\) −3.89881e7 −1.39059 −0.695297 0.718723i \(-0.744727\pi\)
−0.695297 + 0.718723i \(0.744727\pi\)
\(954\) 1.55073e7 0.551651
\(955\) −3.37258e7 −1.19662
\(956\) 4.86749e6 0.172250
\(957\) −7.29944e6 −0.257638
\(958\) −1.02612e7 −0.361230
\(959\) 3.53949e7 1.24278
\(960\) 3.18038e6 0.111378
\(961\) 6.85105e7 2.39303
\(962\) 1.18160e7 0.411655
\(963\) 1.84611e7 0.641494
\(964\) −1.77120e7 −0.613868
\(965\) −6.95976e7 −2.40589
\(966\) 1.55938e7 0.537661
\(967\) −4.16060e7 −1.43084 −0.715418 0.698697i \(-0.753764\pi\)
−0.715418 + 0.698697i \(0.753764\pi\)
\(968\) 7.15673e6 0.245486
\(969\) 2.54778e7 0.871672
\(970\) −4.24052e7 −1.44707
\(971\) 3.84903e7 1.31010 0.655049 0.755587i \(-0.272648\pi\)
0.655049 + 0.755587i \(0.272648\pi\)
\(972\) 1.35435e7 0.459797
\(973\) −1.53777e6 −0.0520726
\(974\) −3.27768e7 −1.10706
\(975\) −7.66402e6 −0.258193
\(976\) 5.17170e6 0.173783
\(977\) −4.02738e7 −1.34985 −0.674926 0.737885i \(-0.735825\pi\)
−0.674926 + 0.737885i \(0.735825\pi\)
\(978\) 3.59531e6 0.120196
\(979\) 6.53541e6 0.217930
\(980\) 1.15118e7 0.382895
\(981\) −2.23075e7 −0.740081
\(982\) 7.95959e6 0.263398
\(983\) 5.19848e7 1.71590 0.857951 0.513731i \(-0.171737\pi\)
0.857951 + 0.513731i \(0.171737\pi\)
\(984\) −1.21046e7 −0.398530
\(985\) −1.78577e6 −0.0586457
\(986\) −1.20733e7 −0.395487
\(987\) −2.02758e7 −0.662500
\(988\) 1.29465e7 0.421951
\(989\) 4.76075e7 1.54769
\(990\) 8.31145e6 0.269519
\(991\) 2.23612e6 0.0723287 0.0361644 0.999346i \(-0.488486\pi\)
0.0361644 + 0.999346i \(0.488486\pi\)
\(992\) −1.00925e7 −0.325626
\(993\) −1.79964e7 −0.579179
\(994\) −3.74647e7 −1.20270
\(995\) 1.38068e6 0.0442116
\(996\) −1.34628e7 −0.430018
\(997\) 4.05121e7 1.29077 0.645383 0.763859i \(-0.276698\pi\)
0.645383 + 0.763859i \(0.276698\pi\)
\(998\) 2.91681e7 0.927005
\(999\) −3.52875e7 −1.11868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.b.1.18 27
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.b.1.18 27 1.1 even 1 trivial