Properties

Label 538.6.a.c.1.13
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $1$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(1\)
Dimension: \(30\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -7.00462 q^{3} +16.0000 q^{4} +30.1411 q^{5} +28.0185 q^{6} -141.413 q^{7} -64.0000 q^{8} -193.935 q^{9} -120.565 q^{10} +146.526 q^{11} -112.074 q^{12} -116.391 q^{13} +565.653 q^{14} -211.127 q^{15} +256.000 q^{16} +782.764 q^{17} +775.741 q^{18} +1775.40 q^{19} +482.258 q^{20} +990.547 q^{21} -586.103 q^{22} -132.024 q^{23} +448.296 q^{24} -2216.51 q^{25} +465.565 q^{26} +3060.57 q^{27} -2262.61 q^{28} -254.793 q^{29} +844.510 q^{30} +7579.28 q^{31} -1024.00 q^{32} -1026.36 q^{33} -3131.05 q^{34} -4262.36 q^{35} -3102.96 q^{36} -10076.2 q^{37} -7101.60 q^{38} +815.277 q^{39} -1929.03 q^{40} +19015.2 q^{41} -3962.19 q^{42} -10210.4 q^{43} +2344.41 q^{44} -5845.43 q^{45} +528.095 q^{46} -13642.4 q^{47} -1793.18 q^{48} +3190.71 q^{49} +8866.05 q^{50} -5482.97 q^{51} -1862.26 q^{52} -3407.93 q^{53} -12242.3 q^{54} +4416.45 q^{55} +9050.45 q^{56} -12436.0 q^{57} +1019.17 q^{58} +22157.1 q^{59} -3378.04 q^{60} +20595.6 q^{61} -30317.1 q^{62} +27425.0 q^{63} +4096.00 q^{64} -3508.17 q^{65} +4105.43 q^{66} +26682.3 q^{67} +12524.2 q^{68} +924.777 q^{69} +17049.4 q^{70} +45901.5 q^{71} +12411.9 q^{72} -49954.2 q^{73} +40305.0 q^{74} +15525.8 q^{75} +28406.4 q^{76} -20720.7 q^{77} -3261.11 q^{78} -35619.0 q^{79} +7716.13 q^{80} +25688.1 q^{81} -76061.0 q^{82} +7121.80 q^{83} +15848.7 q^{84} +23593.4 q^{85} +40841.4 q^{86} +1784.73 q^{87} -9377.65 q^{88} -76444.8 q^{89} +23381.7 q^{90} +16459.3 q^{91} -2112.38 q^{92} -53090.0 q^{93} +54569.6 q^{94} +53512.6 q^{95} +7172.74 q^{96} +91550.6 q^{97} -12762.8 q^{98} -28416.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 120 q^{2} - 30 q^{3} + 480 q^{4} - 136 q^{5} + 120 q^{6} - 123 q^{7} - 1920 q^{8} + 2670 q^{9} + 544 q^{10} - 1058 q^{11} - 480 q^{12} - 371 q^{13} + 492 q^{14} - 1364 q^{15} + 7680 q^{16} - 1918 q^{17}+ \cdots - 78063 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −7.00462 −0.449347 −0.224673 0.974434i \(-0.572132\pi\)
−0.224673 + 0.974434i \(0.572132\pi\)
\(4\) 16.0000 0.500000
\(5\) 30.1411 0.539181 0.269591 0.962975i \(-0.413112\pi\)
0.269591 + 0.962975i \(0.413112\pi\)
\(6\) 28.0185 0.317736
\(7\) −141.413 −1.09080 −0.545400 0.838176i \(-0.683622\pi\)
−0.545400 + 0.838176i \(0.683622\pi\)
\(8\) −64.0000 −0.353553
\(9\) −193.935 −0.798087
\(10\) −120.565 −0.381259
\(11\) 146.526 0.365117 0.182559 0.983195i \(-0.441562\pi\)
0.182559 + 0.983195i \(0.441562\pi\)
\(12\) −112.074 −0.224673
\(13\) −116.391 −0.191013 −0.0955063 0.995429i \(-0.530447\pi\)
−0.0955063 + 0.995429i \(0.530447\pi\)
\(14\) 565.653 0.771312
\(15\) −211.127 −0.242279
\(16\) 256.000 0.250000
\(17\) 782.764 0.656914 0.328457 0.944519i \(-0.393471\pi\)
0.328457 + 0.944519i \(0.393471\pi\)
\(18\) 775.741 0.564333
\(19\) 1775.40 1.12827 0.564134 0.825683i \(-0.309210\pi\)
0.564134 + 0.825683i \(0.309210\pi\)
\(20\) 482.258 0.269591
\(21\) 990.547 0.490147
\(22\) −586.103 −0.258177
\(23\) −132.024 −0.0520394 −0.0260197 0.999661i \(-0.508283\pi\)
−0.0260197 + 0.999661i \(0.508283\pi\)
\(24\) 448.296 0.158868
\(25\) −2216.51 −0.709284
\(26\) 465.565 0.135066
\(27\) 3060.57 0.807965
\(28\) −2262.61 −0.545400
\(29\) −254.793 −0.0562590 −0.0281295 0.999604i \(-0.508955\pi\)
−0.0281295 + 0.999604i \(0.508955\pi\)
\(30\) 844.510 0.171317
\(31\) 7579.28 1.41652 0.708261 0.705950i \(-0.249480\pi\)
0.708261 + 0.705950i \(0.249480\pi\)
\(32\) −1024.00 −0.176777
\(33\) −1026.36 −0.164064
\(34\) −3131.05 −0.464508
\(35\) −4262.36 −0.588139
\(36\) −3102.96 −0.399044
\(37\) −10076.2 −1.21002 −0.605012 0.796216i \(-0.706832\pi\)
−0.605012 + 0.796216i \(0.706832\pi\)
\(38\) −7101.60 −0.797806
\(39\) 815.277 0.0858309
\(40\) −1929.03 −0.190629
\(41\) 19015.2 1.76662 0.883308 0.468793i \(-0.155311\pi\)
0.883308 + 0.468793i \(0.155311\pi\)
\(42\) −3962.19 −0.346587
\(43\) −10210.4 −0.842111 −0.421056 0.907035i \(-0.638340\pi\)
−0.421056 + 0.907035i \(0.638340\pi\)
\(44\) 2344.41 0.182559
\(45\) −5845.43 −0.430314
\(46\) 528.095 0.0367974
\(47\) −13642.4 −0.900836 −0.450418 0.892818i \(-0.648725\pi\)
−0.450418 + 0.892818i \(0.648725\pi\)
\(48\) −1793.18 −0.112337
\(49\) 3190.71 0.189844
\(50\) 8866.05 0.501539
\(51\) −5482.97 −0.295182
\(52\) −1862.26 −0.0955063
\(53\) −3407.93 −0.166649 −0.0833243 0.996522i \(-0.526554\pi\)
−0.0833243 + 0.996522i \(0.526554\pi\)
\(54\) −12242.3 −0.571317
\(55\) 4416.45 0.196864
\(56\) 9050.45 0.385656
\(57\) −12436.0 −0.506984
\(58\) 1019.17 0.0397811
\(59\) 22157.1 0.828672 0.414336 0.910124i \(-0.364014\pi\)
0.414336 + 0.910124i \(0.364014\pi\)
\(60\) −3378.04 −0.121140
\(61\) 20595.6 0.708680 0.354340 0.935117i \(-0.384706\pi\)
0.354340 + 0.935117i \(0.384706\pi\)
\(62\) −30317.1 −1.00163
\(63\) 27425.0 0.870554
\(64\) 4096.00 0.125000
\(65\) −3508.17 −0.102990
\(66\) 4105.43 0.116011
\(67\) 26682.3 0.726166 0.363083 0.931757i \(-0.381724\pi\)
0.363083 + 0.931757i \(0.381724\pi\)
\(68\) 12524.2 0.328457
\(69\) 924.777 0.0233838
\(70\) 17049.4 0.415877
\(71\) 45901.5 1.08064 0.540321 0.841459i \(-0.318303\pi\)
0.540321 + 0.841459i \(0.318303\pi\)
\(72\) 12411.9 0.282167
\(73\) −49954.2 −1.09715 −0.548574 0.836102i \(-0.684829\pi\)
−0.548574 + 0.836102i \(0.684829\pi\)
\(74\) 40305.0 0.855616
\(75\) 15525.8 0.318714
\(76\) 28406.4 0.564134
\(77\) −20720.7 −0.398270
\(78\) −3261.11 −0.0606916
\(79\) −35619.0 −0.642117 −0.321058 0.947059i \(-0.604039\pi\)
−0.321058 + 0.947059i \(0.604039\pi\)
\(80\) 7716.13 0.134795
\(81\) 25688.1 0.435031
\(82\) −76061.0 −1.24919
\(83\) 7121.80 0.113473 0.0567367 0.998389i \(-0.481930\pi\)
0.0567367 + 0.998389i \(0.481930\pi\)
\(84\) 15848.7 0.245074
\(85\) 23593.4 0.354195
\(86\) 40841.4 0.595463
\(87\) 1784.73 0.0252798
\(88\) −9377.65 −0.129088
\(89\) −76444.8 −1.02299 −0.511497 0.859285i \(-0.670909\pi\)
−0.511497 + 0.859285i \(0.670909\pi\)
\(90\) 23381.7 0.304278
\(91\) 16459.3 0.208356
\(92\) −2112.38 −0.0260197
\(93\) −53090.0 −0.636510
\(94\) 54569.6 0.636987
\(95\) 53512.6 0.608341
\(96\) 7172.74 0.0794341
\(97\) 91550.6 0.987943 0.493972 0.869478i \(-0.335545\pi\)
0.493972 + 0.869478i \(0.335545\pi\)
\(98\) −12762.8 −0.134240
\(99\) −28416.5 −0.291395
\(100\) −35464.2 −0.354642
\(101\) 124214. 1.21162 0.605809 0.795610i \(-0.292850\pi\)
0.605809 + 0.795610i \(0.292850\pi\)
\(102\) 21931.9 0.208725
\(103\) −103888. −0.964880 −0.482440 0.875929i \(-0.660249\pi\)
−0.482440 + 0.875929i \(0.660249\pi\)
\(104\) 7449.04 0.0675331
\(105\) 29856.2 0.264278
\(106\) 13631.7 0.117838
\(107\) −107447. −0.907269 −0.453635 0.891188i \(-0.649873\pi\)
−0.453635 + 0.891188i \(0.649873\pi\)
\(108\) 48969.1 0.403982
\(109\) 28106.3 0.226588 0.113294 0.993561i \(-0.463860\pi\)
0.113294 + 0.993561i \(0.463860\pi\)
\(110\) −17665.8 −0.139204
\(111\) 70580.3 0.543721
\(112\) −36201.8 −0.272700
\(113\) 173201. 1.27601 0.638004 0.770033i \(-0.279760\pi\)
0.638004 + 0.770033i \(0.279760\pi\)
\(114\) 49744.0 0.358492
\(115\) −3979.35 −0.0280587
\(116\) −4076.68 −0.0281295
\(117\) 22572.4 0.152445
\(118\) −88628.3 −0.585959
\(119\) −110693. −0.716561
\(120\) 13512.2 0.0856587
\(121\) −139581. −0.866689
\(122\) −82382.4 −0.501112
\(123\) −133195. −0.793823
\(124\) 121268. 0.708261
\(125\) −160999. −0.921614
\(126\) −109700. −0.615574
\(127\) −182020. −1.00141 −0.500703 0.865619i \(-0.666925\pi\)
−0.500703 + 0.865619i \(0.666925\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 71519.7 0.378400
\(130\) 14032.7 0.0728252
\(131\) −376457. −1.91663 −0.958313 0.285720i \(-0.907767\pi\)
−0.958313 + 0.285720i \(0.907767\pi\)
\(132\) −16421.7 −0.0820321
\(133\) −251065. −1.23071
\(134\) −106729. −0.513477
\(135\) 92249.0 0.435639
\(136\) −50096.9 −0.232254
\(137\) −109528. −0.498568 −0.249284 0.968430i \(-0.580195\pi\)
−0.249284 + 0.968430i \(0.580195\pi\)
\(138\) −3699.11 −0.0165348
\(139\) −204804. −0.899087 −0.449543 0.893259i \(-0.648413\pi\)
−0.449543 + 0.893259i \(0.648413\pi\)
\(140\) −68197.7 −0.294069
\(141\) 95559.8 0.404788
\(142\) −183606. −0.764129
\(143\) −17054.3 −0.0697420
\(144\) −49647.4 −0.199522
\(145\) −7679.74 −0.0303338
\(146\) 199817. 0.775800
\(147\) −22349.7 −0.0853059
\(148\) −161220. −0.605012
\(149\) 262832. 0.969867 0.484933 0.874551i \(-0.338844\pi\)
0.484933 + 0.874551i \(0.338844\pi\)
\(150\) −62103.3 −0.225365
\(151\) −368740. −1.31607 −0.658034 0.752989i \(-0.728612\pi\)
−0.658034 + 0.752989i \(0.728612\pi\)
\(152\) −113626. −0.398903
\(153\) −151805. −0.524275
\(154\) 82882.7 0.281619
\(155\) 228448. 0.763762
\(156\) 13044.4 0.0429155
\(157\) −313590. −1.01534 −0.507672 0.861550i \(-0.669494\pi\)
−0.507672 + 0.861550i \(0.669494\pi\)
\(158\) 142476. 0.454045
\(159\) 23871.3 0.0748830
\(160\) −30864.5 −0.0953147
\(161\) 18669.9 0.0567646
\(162\) −102753. −0.307613
\(163\) −16471.0 −0.0485569 −0.0242785 0.999705i \(-0.507729\pi\)
−0.0242785 + 0.999705i \(0.507729\pi\)
\(164\) 304244. 0.883308
\(165\) −30935.6 −0.0884604
\(166\) −28487.2 −0.0802379
\(167\) 194218. 0.538888 0.269444 0.963016i \(-0.413160\pi\)
0.269444 + 0.963016i \(0.413160\pi\)
\(168\) −63395.0 −0.173293
\(169\) −357746. −0.963514
\(170\) −94373.6 −0.250454
\(171\) −344313. −0.900456
\(172\) −163366. −0.421056
\(173\) −321551. −0.816836 −0.408418 0.912795i \(-0.633919\pi\)
−0.408418 + 0.912795i \(0.633919\pi\)
\(174\) −7138.91 −0.0178755
\(175\) 313444. 0.773687
\(176\) 37510.6 0.0912793
\(177\) −155202. −0.372361
\(178\) 305779. 0.723365
\(179\) −589979. −1.37627 −0.688136 0.725582i \(-0.741571\pi\)
−0.688136 + 0.725582i \(0.741571\pi\)
\(180\) −93526.9 −0.215157
\(181\) −108550. −0.246282 −0.123141 0.992389i \(-0.539297\pi\)
−0.123141 + 0.992389i \(0.539297\pi\)
\(182\) −65837.1 −0.147330
\(183\) −144264. −0.318443
\(184\) 8449.52 0.0183987
\(185\) −303709. −0.652422
\(186\) 212360. 0.450081
\(187\) 114695. 0.239850
\(188\) −218278. −0.450418
\(189\) −432805. −0.881328
\(190\) −214050. −0.430162
\(191\) 491532. 0.974918 0.487459 0.873146i \(-0.337924\pi\)
0.487459 + 0.873146i \(0.337924\pi\)
\(192\) −28690.9 −0.0561684
\(193\) 600081. 1.15962 0.579811 0.814751i \(-0.303126\pi\)
0.579811 + 0.814751i \(0.303126\pi\)
\(194\) −366202. −0.698581
\(195\) 24573.4 0.0462784
\(196\) 51051.4 0.0949221
\(197\) 71656.5 0.131550 0.0657749 0.997834i \(-0.479048\pi\)
0.0657749 + 0.997834i \(0.479048\pi\)
\(198\) 113666. 0.206048
\(199\) −504730. −0.903496 −0.451748 0.892146i \(-0.649199\pi\)
−0.451748 + 0.892146i \(0.649199\pi\)
\(200\) 141857. 0.250770
\(201\) −186899. −0.326300
\(202\) −496854. −0.856743
\(203\) 36031.1 0.0613673
\(204\) −87727.4 −0.147591
\(205\) 573141. 0.952526
\(206\) 415553. 0.682273
\(207\) 25604.1 0.0415320
\(208\) −29796.2 −0.0477531
\(209\) 260142. 0.411950
\(210\) −119425. −0.186873
\(211\) 238538. 0.368852 0.184426 0.982846i \(-0.440957\pi\)
0.184426 + 0.982846i \(0.440957\pi\)
\(212\) −54526.9 −0.0833243
\(213\) −321523. −0.485583
\(214\) 429789. 0.641536
\(215\) −307752. −0.454051
\(216\) −195876. −0.285659
\(217\) −1.07181e6 −1.54514
\(218\) −112425. −0.160222
\(219\) 349910. 0.493000
\(220\) 70663.3 0.0984322
\(221\) −91106.8 −0.125479
\(222\) −282321. −0.384469
\(223\) 103013. 0.138717 0.0693584 0.997592i \(-0.477905\pi\)
0.0693584 + 0.997592i \(0.477905\pi\)
\(224\) 144807. 0.192828
\(225\) 429860. 0.566070
\(226\) −692802. −0.902273
\(227\) −416223. −0.536119 −0.268059 0.963402i \(-0.586382\pi\)
−0.268059 + 0.963402i \(0.586382\pi\)
\(228\) −198976. −0.253492
\(229\) 732743. 0.923343 0.461672 0.887051i \(-0.347250\pi\)
0.461672 + 0.887051i \(0.347250\pi\)
\(230\) 15917.4 0.0198405
\(231\) 145141. 0.178961
\(232\) 16306.7 0.0198906
\(233\) 406445. 0.490470 0.245235 0.969464i \(-0.421135\pi\)
0.245235 + 0.969464i \(0.421135\pi\)
\(234\) −90289.5 −0.107795
\(235\) −411197. −0.485714
\(236\) 354513. 0.414336
\(237\) 249498. 0.288533
\(238\) 442773. 0.506685
\(239\) −1.49130e6 −1.68877 −0.844383 0.535741i \(-0.820032\pi\)
−0.844383 + 0.535741i \(0.820032\pi\)
\(240\) −54048.6 −0.0605698
\(241\) −1.23609e6 −1.37091 −0.685455 0.728115i \(-0.740397\pi\)
−0.685455 + 0.728115i \(0.740397\pi\)
\(242\) 558325. 0.612842
\(243\) −923654. −1.00344
\(244\) 329530. 0.354340
\(245\) 96171.7 0.102360
\(246\) 532779. 0.561318
\(247\) −206641. −0.215513
\(248\) −485074. −0.500816
\(249\) −49885.5 −0.0509890
\(250\) 643997. 0.651679
\(251\) −1.38010e6 −1.38269 −0.691347 0.722522i \(-0.742983\pi\)
−0.691347 + 0.722522i \(0.742983\pi\)
\(252\) 438800. 0.435277
\(253\) −19344.9 −0.0190005
\(254\) 728081. 0.708101
\(255\) −165263. −0.159157
\(256\) 65536.0 0.0625000
\(257\) 9837.81 0.00929106 0.00464553 0.999989i \(-0.498521\pi\)
0.00464553 + 0.999989i \(0.498521\pi\)
\(258\) −286079. −0.267569
\(259\) 1.42491e6 1.31989
\(260\) −56130.6 −0.0514952
\(261\) 49413.3 0.0448996
\(262\) 1.50583e6 1.35526
\(263\) 174206. 0.155301 0.0776506 0.996981i \(-0.475258\pi\)
0.0776506 + 0.996981i \(0.475258\pi\)
\(264\) 65686.9 0.0580055
\(265\) −102719. −0.0898537
\(266\) 1.00426e6 0.870246
\(267\) 535467. 0.459679
\(268\) 426916. 0.363083
\(269\) −72361.0 −0.0609711
\(270\) −368996. −0.308044
\(271\) −1.75856e6 −1.45457 −0.727283 0.686338i \(-0.759217\pi\)
−0.727283 + 0.686338i \(0.759217\pi\)
\(272\) 200387. 0.164228
\(273\) −115291. −0.0936243
\(274\) 438113. 0.352541
\(275\) −324776. −0.258972
\(276\) 14796.4 0.0116919
\(277\) 1.92015e6 1.50361 0.751807 0.659383i \(-0.229182\pi\)
0.751807 + 0.659383i \(0.229182\pi\)
\(278\) 819216. 0.635750
\(279\) −1.46989e6 −1.13051
\(280\) 272791. 0.207938
\(281\) 283251. 0.213996 0.106998 0.994259i \(-0.465876\pi\)
0.106998 + 0.994259i \(0.465876\pi\)
\(282\) −382239. −0.286228
\(283\) −1.67620e6 −1.24411 −0.622056 0.782973i \(-0.713702\pi\)
−0.622056 + 0.782973i \(0.713702\pi\)
\(284\) 734425. 0.540321
\(285\) −374836. −0.273356
\(286\) 68217.3 0.0493150
\(287\) −2.68901e6 −1.92702
\(288\) 198590. 0.141083
\(289\) −807138. −0.568464
\(290\) 30719.0 0.0214492
\(291\) −641278. −0.443929
\(292\) −799267. −0.548574
\(293\) −1.08332e6 −0.737203 −0.368602 0.929587i \(-0.620163\pi\)
−0.368602 + 0.929587i \(0.620163\pi\)
\(294\) 89398.9 0.0603204
\(295\) 667840. 0.446804
\(296\) 644879. 0.427808
\(297\) 448452. 0.295002
\(298\) −1.05133e6 −0.685799
\(299\) 15366.4 0.00994019
\(300\) 248413. 0.159357
\(301\) 1.44388e6 0.918575
\(302\) 1.47496e6 0.930600
\(303\) −870070. −0.544437
\(304\) 454502. 0.282067
\(305\) 620775. 0.382107
\(306\) 607222. 0.370718
\(307\) 1.09219e6 0.661383 0.330691 0.943739i \(-0.392718\pi\)
0.330691 + 0.943739i \(0.392718\pi\)
\(308\) −331531. −0.199135
\(309\) 727698. 0.433566
\(310\) −913792. −0.540061
\(311\) −1.33500e6 −0.782672 −0.391336 0.920248i \(-0.627987\pi\)
−0.391336 + 0.920248i \(0.627987\pi\)
\(312\) −52177.7 −0.0303458
\(313\) −1.91972e6 −1.10759 −0.553794 0.832654i \(-0.686820\pi\)
−0.553794 + 0.832654i \(0.686820\pi\)
\(314\) 1.25436e6 0.717957
\(315\) 826621. 0.469386
\(316\) −569904. −0.321058
\(317\) 2.25945e6 1.26286 0.631429 0.775434i \(-0.282469\pi\)
0.631429 + 0.775434i \(0.282469\pi\)
\(318\) −95485.2 −0.0529503
\(319\) −37333.7 −0.0205411
\(320\) 123458. 0.0673976
\(321\) 752628. 0.407679
\(322\) −74679.7 −0.0401386
\(323\) 1.38972e6 0.741175
\(324\) 411010. 0.217515
\(325\) 257983. 0.135482
\(326\) 65884.0 0.0343349
\(327\) −196874. −0.101817
\(328\) −1.21698e6 −0.624593
\(329\) 1.92921e6 0.982632
\(330\) 123742. 0.0625509
\(331\) 1.34558e6 0.675054 0.337527 0.941316i \(-0.390410\pi\)
0.337527 + 0.941316i \(0.390410\pi\)
\(332\) 113949. 0.0567367
\(333\) 1.95414e6 0.965705
\(334\) −776872. −0.381051
\(335\) 804234. 0.391535
\(336\) 253580. 0.122537
\(337\) −1.87630e6 −0.899969 −0.449985 0.893036i \(-0.648571\pi\)
−0.449985 + 0.893036i \(0.648571\pi\)
\(338\) 1.43098e6 0.681307
\(339\) −1.21320e6 −0.573370
\(340\) 377494. 0.177098
\(341\) 1.11056e6 0.517197
\(342\) 1.37725e6 0.636719
\(343\) 1.92552e6 0.883718
\(344\) 653462. 0.297731
\(345\) 27873.8 0.0126081
\(346\) 1.28620e6 0.577590
\(347\) −1.35820e6 −0.605534 −0.302767 0.953065i \(-0.597910\pi\)
−0.302767 + 0.953065i \(0.597910\pi\)
\(348\) 28555.6 0.0126399
\(349\) 59218.0 0.0260250 0.0130125 0.999915i \(-0.495858\pi\)
0.0130125 + 0.999915i \(0.495858\pi\)
\(350\) −1.25378e6 −0.547079
\(351\) −356223. −0.154331
\(352\) −150042. −0.0645442
\(353\) −2.57774e6 −1.10104 −0.550519 0.834823i \(-0.685570\pi\)
−0.550519 + 0.834823i \(0.685570\pi\)
\(354\) 620808. 0.263299
\(355\) 1.38353e6 0.582661
\(356\) −1.22312e6 −0.511497
\(357\) 775364. 0.321985
\(358\) 2.35992e6 0.973171
\(359\) −4.01621e6 −1.64468 −0.822338 0.568999i \(-0.807331\pi\)
−0.822338 + 0.568999i \(0.807331\pi\)
\(360\) 374107. 0.152139
\(361\) 675946. 0.272988
\(362\) 434200. 0.174148
\(363\) 977714. 0.389444
\(364\) 263348. 0.104178
\(365\) −1.50568e6 −0.591561
\(366\) 577058. 0.225173
\(367\) 2.27437e6 0.881448 0.440724 0.897643i \(-0.354722\pi\)
0.440724 + 0.897643i \(0.354722\pi\)
\(368\) −33798.1 −0.0130099
\(369\) −3.68773e6 −1.40991
\(370\) 1.21484e6 0.461332
\(371\) 481927. 0.181780
\(372\) −849440. −0.318255
\(373\) −6160.18 −0.00229256 −0.00114628 0.999999i \(-0.500365\pi\)
−0.00114628 + 0.999999i \(0.500365\pi\)
\(374\) −458780. −0.169600
\(375\) 1.12774e6 0.414124
\(376\) 873113. 0.318494
\(377\) 29655.6 0.0107462
\(378\) 1.73122e6 0.623193
\(379\) 4.74069e6 1.69529 0.847644 0.530565i \(-0.178020\pi\)
0.847644 + 0.530565i \(0.178020\pi\)
\(380\) 856201. 0.304170
\(381\) 1.27498e6 0.449979
\(382\) −1.96613e6 −0.689371
\(383\) −5.36562e6 −1.86906 −0.934530 0.355885i \(-0.884180\pi\)
−0.934530 + 0.355885i \(0.884180\pi\)
\(384\) 114764. 0.0397170
\(385\) −624545. −0.214740
\(386\) −2.40032e6 −0.819977
\(387\) 1.98015e6 0.672078
\(388\) 1.46481e6 0.493972
\(389\) 2.40076e6 0.804404 0.402202 0.915551i \(-0.368245\pi\)
0.402202 + 0.915551i \(0.368245\pi\)
\(390\) −98293.5 −0.0327238
\(391\) −103343. −0.0341854
\(392\) −204206. −0.0671201
\(393\) 2.63694e6 0.861230
\(394\) −286626. −0.0930197
\(395\) −1.07360e6 −0.346217
\(396\) −454664. −0.145698
\(397\) 2.43127e6 0.774206 0.387103 0.922036i \(-0.373476\pi\)
0.387103 + 0.922036i \(0.373476\pi\)
\(398\) 2.01892e6 0.638868
\(399\) 1.75862e6 0.553018
\(400\) −567427. −0.177321
\(401\) 5.72777e6 1.77879 0.889395 0.457140i \(-0.151126\pi\)
0.889395 + 0.457140i \(0.151126\pi\)
\(402\) 747597. 0.230729
\(403\) −882161. −0.270574
\(404\) 1.98742e6 0.605809
\(405\) 774270. 0.234560
\(406\) −144124. −0.0433932
\(407\) −1.47643e6 −0.441801
\(408\) 350910. 0.104363
\(409\) −285844. −0.0844931 −0.0422465 0.999107i \(-0.513451\pi\)
−0.0422465 + 0.999107i \(0.513451\pi\)
\(410\) −2.29256e6 −0.673538
\(411\) 767204. 0.224030
\(412\) −1.66221e6 −0.482440
\(413\) −3.13330e6 −0.903915
\(414\) −102416. −0.0293676
\(415\) 214659. 0.0611828
\(416\) 119185. 0.0337666
\(417\) 1.43458e6 0.404002
\(418\) −1.04057e6 −0.291293
\(419\) −2.79748e6 −0.778451 −0.389226 0.921142i \(-0.627257\pi\)
−0.389226 + 0.921142i \(0.627257\pi\)
\(420\) 477699. 0.132139
\(421\) 4.02156e6 1.10583 0.552916 0.833237i \(-0.313515\pi\)
0.552916 + 0.833237i \(0.313515\pi\)
\(422\) −954153. −0.260818
\(423\) 2.64574e6 0.718946
\(424\) 218108. 0.0589192
\(425\) −1.73500e6 −0.465938
\(426\) 1.28609e6 0.343359
\(427\) −2.91249e6 −0.773028
\(428\) −1.71916e6 −0.453635
\(429\) 119459. 0.0313383
\(430\) 1.23101e6 0.321062
\(431\) 4.12311e6 1.06913 0.534567 0.845126i \(-0.320475\pi\)
0.534567 + 0.845126i \(0.320475\pi\)
\(432\) 783505. 0.201991
\(433\) −715562. −0.183412 −0.0917060 0.995786i \(-0.529232\pi\)
−0.0917060 + 0.995786i \(0.529232\pi\)
\(434\) 4.28724e6 1.09258
\(435\) 53793.7 0.0136304
\(436\) 449701. 0.113294
\(437\) −234395. −0.0587144
\(438\) −1.39964e6 −0.348603
\(439\) 6.01411e6 1.48939 0.744697 0.667402i \(-0.232594\pi\)
0.744697 + 0.667402i \(0.232594\pi\)
\(440\) −282653. −0.0696020
\(441\) −618791. −0.151512
\(442\) 364427. 0.0887269
\(443\) −4.56997e6 −1.10638 −0.553190 0.833055i \(-0.686590\pi\)
−0.553190 + 0.833055i \(0.686590\pi\)
\(444\) 1.12928e6 0.271860
\(445\) −2.30413e6 −0.551579
\(446\) −412051. −0.0980875
\(447\) −1.84104e6 −0.435807
\(448\) −579229. −0.136350
\(449\) −70469.6 −0.0164963 −0.00824814 0.999966i \(-0.502625\pi\)
−0.00824814 + 0.999966i \(0.502625\pi\)
\(450\) −1.71944e6 −0.400272
\(451\) 2.78622e6 0.645022
\(452\) 2.77121e6 0.638004
\(453\) 2.58289e6 0.591371
\(454\) 1.66489e6 0.379093
\(455\) 496101. 0.112342
\(456\) 795905. 0.179246
\(457\) −5.00593e6 −1.12123 −0.560614 0.828077i \(-0.689435\pi\)
−0.560614 + 0.828077i \(0.689435\pi\)
\(458\) −2.93097e6 −0.652902
\(459\) 2.39570e6 0.530763
\(460\) −63669.6 −0.0140293
\(461\) 6.35210e6 1.39208 0.696042 0.718001i \(-0.254943\pi\)
0.696042 + 0.718001i \(0.254943\pi\)
\(462\) −580563. −0.126545
\(463\) 6.69522e6 1.45148 0.725742 0.687967i \(-0.241496\pi\)
0.725742 + 0.687967i \(0.241496\pi\)
\(464\) −65226.9 −0.0140647
\(465\) −1.60019e6 −0.343194
\(466\) −1.62578e6 −0.346814
\(467\) 1.02905e6 0.218346 0.109173 0.994023i \(-0.465180\pi\)
0.109173 + 0.994023i \(0.465180\pi\)
\(468\) 361158. 0.0762224
\(469\) −3.77323e6 −0.792101
\(470\) 1.64479e6 0.343452
\(471\) 2.19658e6 0.456242
\(472\) −1.41805e6 −0.292980
\(473\) −1.49608e6 −0.307469
\(474\) −997991. −0.204024
\(475\) −3.93519e6 −0.800262
\(476\) −1.77109e6 −0.358281
\(477\) 660918. 0.133000
\(478\) 5.96519e6 1.19414
\(479\) −6.18377e6 −1.23144 −0.615722 0.787963i \(-0.711136\pi\)
−0.615722 + 0.787963i \(0.711136\pi\)
\(480\) 216194. 0.0428293
\(481\) 1.17279e6 0.231130
\(482\) 4.94438e6 0.969380
\(483\) −130776. −0.0255070
\(484\) −2.23330e6 −0.433345
\(485\) 2.75944e6 0.532680
\(486\) 3.69461e6 0.709543
\(487\) −7.35384e6 −1.40505 −0.702525 0.711659i \(-0.747944\pi\)
−0.702525 + 0.711659i \(0.747944\pi\)
\(488\) −1.31812e6 −0.250556
\(489\) 115373. 0.0218189
\(490\) −384687. −0.0723797
\(491\) −482664. −0.0903528 −0.0451764 0.998979i \(-0.514385\pi\)
−0.0451764 + 0.998979i \(0.514385\pi\)
\(492\) −2.13111e6 −0.396912
\(493\) −199442. −0.0369573
\(494\) 826564. 0.152391
\(495\) −856506. −0.157115
\(496\) 1.94029e6 0.354131
\(497\) −6.49109e6 −1.17876
\(498\) 199542. 0.0360546
\(499\) 2.21552e6 0.398312 0.199156 0.979968i \(-0.436180\pi\)
0.199156 + 0.979968i \(0.436180\pi\)
\(500\) −2.57599e6 −0.460807
\(501\) −1.36042e6 −0.242148
\(502\) 5.52040e6 0.977713
\(503\) −5.33618e6 −0.940395 −0.470197 0.882561i \(-0.655817\pi\)
−0.470197 + 0.882561i \(0.655817\pi\)
\(504\) −1.75520e6 −0.307787
\(505\) 3.74394e6 0.653282
\(506\) 77379.6 0.0134354
\(507\) 2.50588e6 0.432952
\(508\) −2.91232e6 −0.500703
\(509\) 1.11435e6 0.190646 0.0953230 0.995446i \(-0.469612\pi\)
0.0953230 + 0.995446i \(0.469612\pi\)
\(510\) 661051. 0.112541
\(511\) 7.06419e6 1.19677
\(512\) −262144. −0.0441942
\(513\) 5.43373e6 0.911601
\(514\) −39351.2 −0.00656977
\(515\) −3.13131e6 −0.520245
\(516\) 1.14431e6 0.189200
\(517\) −1.99896e6 −0.328911
\(518\) −5.69966e6 −0.933306
\(519\) 2.25235e6 0.367043
\(520\) 224523. 0.0364126
\(521\) 3.67291e6 0.592811 0.296405 0.955062i \(-0.404212\pi\)
0.296405 + 0.955062i \(0.404212\pi\)
\(522\) −197653. −0.0317488
\(523\) 3.82421e6 0.611347 0.305674 0.952136i \(-0.401118\pi\)
0.305674 + 0.952136i \(0.401118\pi\)
\(524\) −6.02332e6 −0.958313
\(525\) −2.19556e6 −0.347654
\(526\) −696826. −0.109815
\(527\) 5.93278e6 0.930533
\(528\) −262748. −0.0410161
\(529\) −6.41891e6 −0.997292
\(530\) 410876. 0.0635362
\(531\) −4.29704e6 −0.661352
\(532\) −4.01704e6 −0.615357
\(533\) −2.21321e6 −0.337446
\(534\) −2.14187e6 −0.325042
\(535\) −3.23858e6 −0.489182
\(536\) −1.70767e6 −0.256738
\(537\) 4.13258e6 0.618423
\(538\) 289444. 0.0431131
\(539\) 467521. 0.0693154
\(540\) 1.47598e6 0.217820
\(541\) −210553. −0.0309292 −0.0154646 0.999880i \(-0.504923\pi\)
−0.0154646 + 0.999880i \(0.504923\pi\)
\(542\) 7.03423e6 1.02853
\(543\) 760351. 0.110666
\(544\) −801550. −0.116127
\(545\) 847156. 0.122172
\(546\) 461164. 0.0662024
\(547\) −2.11250e6 −0.301875 −0.150938 0.988543i \(-0.548229\pi\)
−0.150938 + 0.988543i \(0.548229\pi\)
\(548\) −1.75245e6 −0.249284
\(549\) −3.99421e6 −0.565588
\(550\) 1.29910e6 0.183121
\(551\) −452359. −0.0634752
\(552\) −59185.7 −0.00826741
\(553\) 5.03700e6 0.700421
\(554\) −7.68061e6 −1.06322
\(555\) 2.12737e6 0.293164
\(556\) −3.27687e6 −0.449543
\(557\) −393675. −0.0537651 −0.0268825 0.999639i \(-0.508558\pi\)
−0.0268825 + 0.999639i \(0.508558\pi\)
\(558\) 5.87955e6 0.799390
\(559\) 1.18840e6 0.160854
\(560\) −1.09116e6 −0.147035
\(561\) −803396. −0.107776
\(562\) −1.13301e6 −0.151318
\(563\) 4.75844e6 0.632694 0.316347 0.948644i \(-0.397544\pi\)
0.316347 + 0.948644i \(0.397544\pi\)
\(564\) 1.52896e6 0.202394
\(565\) 5.22046e6 0.687999
\(566\) 6.70480e6 0.879720
\(567\) −3.63264e6 −0.474532
\(568\) −2.93770e6 −0.382064
\(569\) −1.36827e6 −0.177171 −0.0885854 0.996069i \(-0.528235\pi\)
−0.0885854 + 0.996069i \(0.528235\pi\)
\(570\) 1.49934e6 0.193292
\(571\) −6.56779e6 −0.843003 −0.421501 0.906828i \(-0.638497\pi\)
−0.421501 + 0.906828i \(0.638497\pi\)
\(572\) −272869. −0.0348710
\(573\) −3.44300e6 −0.438076
\(574\) 1.07560e7 1.36261
\(575\) 292632. 0.0369107
\(576\) −794359. −0.0997609
\(577\) −1.13941e7 −1.42475 −0.712375 0.701799i \(-0.752381\pi\)
−0.712375 + 0.701799i \(0.752381\pi\)
\(578\) 3.22855e6 0.401965
\(579\) −4.20334e6 −0.521073
\(580\) −122876. −0.0151669
\(581\) −1.00712e6 −0.123777
\(582\) 2.56511e6 0.313905
\(583\) −499350. −0.0608462
\(584\) 3.19707e6 0.387900
\(585\) 680357. 0.0821953
\(586\) 4.33328e6 0.521281
\(587\) −5.49443e6 −0.658154 −0.329077 0.944303i \(-0.606738\pi\)
−0.329077 + 0.944303i \(0.606738\pi\)
\(588\) −357596. −0.0426529
\(589\) 1.34562e7 1.59822
\(590\) −2.67136e6 −0.315938
\(591\) −501927. −0.0591115
\(592\) −2.57952e6 −0.302506
\(593\) −9.03344e6 −1.05491 −0.527456 0.849582i \(-0.676854\pi\)
−0.527456 + 0.849582i \(0.676854\pi\)
\(594\) −1.79381e6 −0.208598
\(595\) −3.33642e6 −0.386356
\(596\) 4.20531e6 0.484933
\(597\) 3.53544e6 0.405983
\(598\) −61465.7 −0.00702878
\(599\) 1.25886e6 0.143354 0.0716770 0.997428i \(-0.477165\pi\)
0.0716770 + 0.997428i \(0.477165\pi\)
\(600\) −993653. −0.112683
\(601\) −2.03254e6 −0.229537 −0.114768 0.993392i \(-0.536613\pi\)
−0.114768 + 0.993392i \(0.536613\pi\)
\(602\) −5.77552e6 −0.649531
\(603\) −5.17463e6 −0.579544
\(604\) −5.89984e6 −0.658034
\(605\) −4.20714e6 −0.467303
\(606\) 3.48028e6 0.384975
\(607\) 7.39381e6 0.814510 0.407255 0.913314i \(-0.366486\pi\)
0.407255 + 0.913314i \(0.366486\pi\)
\(608\) −1.81801e6 −0.199451
\(609\) −252384. −0.0275752
\(610\) −2.48310e6 −0.270190
\(611\) 1.58785e6 0.172071
\(612\) −2.42889e6 −0.262137
\(613\) −6.20300e6 −0.666731 −0.333365 0.942798i \(-0.608184\pi\)
−0.333365 + 0.942798i \(0.608184\pi\)
\(614\) −4.36877e6 −0.467668
\(615\) −4.01464e6 −0.428015
\(616\) 1.32612e6 0.140810
\(617\) 3.24055e6 0.342693 0.171347 0.985211i \(-0.445188\pi\)
0.171347 + 0.985211i \(0.445188\pi\)
\(618\) −2.91079e6 −0.306577
\(619\) 1.31608e7 1.38056 0.690279 0.723543i \(-0.257488\pi\)
0.690279 + 0.723543i \(0.257488\pi\)
\(620\) 3.65517e6 0.381881
\(621\) −404068. −0.0420461
\(622\) 5.33999e6 0.553433
\(623\) 1.08103e7 1.11588
\(624\) 208711. 0.0214577
\(625\) 2.07390e6 0.212367
\(626\) 7.67890e6 0.783183
\(627\) −1.82220e6 −0.185108
\(628\) −5.01744e6 −0.507672
\(629\) −7.88731e6 −0.794882
\(630\) −3.30649e6 −0.331906
\(631\) 9.19773e6 0.919618 0.459809 0.888018i \(-0.347918\pi\)
0.459809 + 0.888018i \(0.347918\pi\)
\(632\) 2.27962e6 0.227023
\(633\) −1.67087e6 −0.165742
\(634\) −9.03780e6 −0.892976
\(635\) −5.48630e6 −0.539940
\(636\) 381941. 0.0374415
\(637\) −371371. −0.0362626
\(638\) 149335. 0.0145248
\(639\) −8.90193e6 −0.862446
\(640\) −493832. −0.0476573
\(641\) −1.86531e7 −1.79310 −0.896551 0.442941i \(-0.853935\pi\)
−0.896551 + 0.442941i \(0.853935\pi\)
\(642\) −3.01051e6 −0.288272
\(643\) 2.83581e6 0.270489 0.135244 0.990812i \(-0.456818\pi\)
0.135244 + 0.990812i \(0.456818\pi\)
\(644\) 298719. 0.0283823
\(645\) 2.15568e6 0.204026
\(646\) −5.55887e6 −0.524090
\(647\) −6.43163e6 −0.604033 −0.302016 0.953303i \(-0.597660\pi\)
−0.302016 + 0.953303i \(0.597660\pi\)
\(648\) −1.64404e6 −0.153807
\(649\) 3.24658e6 0.302562
\(650\) −1.03193e6 −0.0958003
\(651\) 7.50763e6 0.694305
\(652\) −263536. −0.0242785
\(653\) −1.58350e7 −1.45323 −0.726616 0.687044i \(-0.758908\pi\)
−0.726616 + 0.687044i \(0.758908\pi\)
\(654\) 787496. 0.0719953
\(655\) −1.13469e7 −1.03341
\(656\) 4.86790e6 0.441654
\(657\) 9.68788e6 0.875619
\(658\) −7.71686e6 −0.694826
\(659\) −8.51499e6 −0.763784 −0.381892 0.924207i \(-0.624727\pi\)
−0.381892 + 0.924207i \(0.624727\pi\)
\(660\) −494970. −0.0442302
\(661\) −1.00810e6 −0.0897427 −0.0448713 0.998993i \(-0.514288\pi\)
−0.0448713 + 0.998993i \(0.514288\pi\)
\(662\) −5.38231e6 −0.477335
\(663\) 638169. 0.0563835
\(664\) −455795. −0.0401189
\(665\) −7.56739e6 −0.663578
\(666\) −7.81655e6 −0.682857
\(667\) 33638.7 0.00292769
\(668\) 3.10749e6 0.269444
\(669\) −721566. −0.0623319
\(670\) −3.21694e6 −0.276857
\(671\) 3.01779e6 0.258751
\(672\) −1.01432e6 −0.0866467
\(673\) 9.47555e6 0.806430 0.403215 0.915105i \(-0.367893\pi\)
0.403215 + 0.915105i \(0.367893\pi\)
\(674\) 7.50520e6 0.636375
\(675\) −6.78378e6 −0.573076
\(676\) −5.72394e6 −0.481757
\(677\) −1.37544e7 −1.15337 −0.576686 0.816966i \(-0.695654\pi\)
−0.576686 + 0.816966i \(0.695654\pi\)
\(678\) 4.85282e6 0.405434
\(679\) −1.29465e7 −1.07765
\(680\) −1.50998e6 −0.125227
\(681\) 2.91548e6 0.240903
\(682\) −4.44224e6 −0.365713
\(683\) −2.18232e6 −0.179005 −0.0895026 0.995987i \(-0.528528\pi\)
−0.0895026 + 0.995987i \(0.528528\pi\)
\(684\) −5.50900e6 −0.450228
\(685\) −3.30131e6 −0.268819
\(686\) −7.70210e6 −0.624883
\(687\) −5.13259e6 −0.414901
\(688\) −2.61385e6 −0.210528
\(689\) 396654. 0.0318320
\(690\) −111495. −0.00891526
\(691\) 8.97674e6 0.715193 0.357597 0.933876i \(-0.383596\pi\)
0.357597 + 0.933876i \(0.383596\pi\)
\(692\) −5.14482e6 −0.408418
\(693\) 4.01847e6 0.317854
\(694\) 5.43278e6 0.428177
\(695\) −6.17303e6 −0.484771
\(696\) −114223. −0.00893776
\(697\) 1.48844e7 1.16051
\(698\) −236872. −0.0184024
\(699\) −2.84699e6 −0.220391
\(700\) 5.01511e6 0.386843
\(701\) −8.46411e6 −0.650558 −0.325279 0.945618i \(-0.605458\pi\)
−0.325279 + 0.945618i \(0.605458\pi\)
\(702\) 1.42489e6 0.109129
\(703\) −1.78894e7 −1.36523
\(704\) 600170. 0.0456397
\(705\) 2.88028e6 0.218254
\(706\) 1.03110e7 0.778552
\(707\) −1.75655e7 −1.32163
\(708\) −2.48323e6 −0.186180
\(709\) 2.51142e6 0.187631 0.0938153 0.995590i \(-0.470094\pi\)
0.0938153 + 0.995590i \(0.470094\pi\)
\(710\) −5.53410e6 −0.412004
\(711\) 6.90778e6 0.512465
\(712\) 4.89246e6 0.361683
\(713\) −1.00064e6 −0.0737151
\(714\) −3.10146e6 −0.227677
\(715\) −514037. −0.0376036
\(716\) −9.43967e6 −0.688136
\(717\) 1.04460e7 0.758841
\(718\) 1.60649e7 1.16296
\(719\) −1.94814e7 −1.40539 −0.702697 0.711489i \(-0.748021\pi\)
−0.702697 + 0.711489i \(0.748021\pi\)
\(720\) −1.49643e6 −0.107578
\(721\) 1.46912e7 1.05249
\(722\) −2.70379e6 −0.193032
\(723\) 8.65838e6 0.616015
\(724\) −1.73680e6 −0.123141
\(725\) 564751. 0.0399036
\(726\) −3.91086e6 −0.275379
\(727\) 7.75969e6 0.544513 0.272257 0.962225i \(-0.412230\pi\)
0.272257 + 0.962225i \(0.412230\pi\)
\(728\) −1.05339e6 −0.0736651
\(729\) 227629. 0.0158639
\(730\) 6.02271e6 0.418297
\(731\) −7.99229e6 −0.553195
\(732\) −2.30823e6 −0.159222
\(733\) −9.39411e6 −0.645796 −0.322898 0.946434i \(-0.604657\pi\)
−0.322898 + 0.946434i \(0.604657\pi\)
\(734\) −9.09749e6 −0.623278
\(735\) −673647. −0.0459953
\(736\) 135192. 0.00919936
\(737\) 3.90964e6 0.265136
\(738\) 1.47509e7 0.996960
\(739\) 1.83497e7 1.23600 0.618000 0.786178i \(-0.287943\pi\)
0.618000 + 0.786178i \(0.287943\pi\)
\(740\) −4.85935e6 −0.326211
\(741\) 1.44744e6 0.0968403
\(742\) −1.92771e6 −0.128538
\(743\) 1.77016e7 1.17636 0.588181 0.808729i \(-0.299844\pi\)
0.588181 + 0.808729i \(0.299844\pi\)
\(744\) 3.39776e6 0.225040
\(745\) 7.92205e6 0.522934
\(746\) 24640.7 0.00162109
\(747\) −1.38117e6 −0.0905618
\(748\) 1.83512e6 0.119925
\(749\) 1.51945e7 0.989649
\(750\) −4.51096e6 −0.292830
\(751\) −4.72045e6 −0.305410 −0.152705 0.988272i \(-0.548798\pi\)
−0.152705 + 0.988272i \(0.548798\pi\)
\(752\) −3.49245e6 −0.225209
\(753\) 9.66708e6 0.621310
\(754\) −118623. −0.00759869
\(755\) −1.11142e7 −0.709599
\(756\) −6.92488e6 −0.440664
\(757\) 1.13581e7 0.720388 0.360194 0.932877i \(-0.382711\pi\)
0.360194 + 0.932877i \(0.382711\pi\)
\(758\) −1.89628e7 −1.19875
\(759\) 135504. 0.00853781
\(760\) −3.42481e6 −0.215081
\(761\) −202337. −0.0126652 −0.00633261 0.999980i \(-0.502016\pi\)
−0.00633261 + 0.999980i \(0.502016\pi\)
\(762\) −5.09993e6 −0.318183
\(763\) −3.97460e6 −0.247162
\(764\) 7.86451e6 0.487459
\(765\) −4.57559e6 −0.282679
\(766\) 2.14625e7 1.32162
\(767\) −2.57889e6 −0.158287
\(768\) −459055. −0.0280842
\(769\) 1.62109e7 0.988533 0.494267 0.869310i \(-0.335437\pi\)
0.494267 + 0.869310i \(0.335437\pi\)
\(770\) 2.49818e6 0.151844
\(771\) −68910.1 −0.00417491
\(772\) 9.60129e6 0.579811
\(773\) 9.18039e6 0.552602 0.276301 0.961071i \(-0.410891\pi\)
0.276301 + 0.961071i \(0.410891\pi\)
\(774\) −7.92059e6 −0.475231
\(775\) −1.67996e7 −1.00472
\(776\) −5.85924e6 −0.349291
\(777\) −9.98099e6 −0.593090
\(778\) −9.60303e6 −0.568799
\(779\) 3.37597e7 1.99322
\(780\) 393174. 0.0231392
\(781\) 6.72576e6 0.394561
\(782\) 413374. 0.0241727
\(783\) −779810. −0.0454553
\(784\) 816822. 0.0474610
\(785\) −9.45197e6 −0.547455
\(786\) −1.05478e7 −0.608982
\(787\) 3.46106e7 1.99192 0.995960 0.0897972i \(-0.0286219\pi\)
0.995960 + 0.0897972i \(0.0286219\pi\)
\(788\) 1.14650e6 0.0657749
\(789\) −1.22025e6 −0.0697841
\(790\) 4.29439e6 0.244813
\(791\) −2.44929e7 −1.39187
\(792\) 1.81866e6 0.103024
\(793\) −2.39715e6 −0.135367
\(794\) −9.72507e6 −0.547446
\(795\) 719508. 0.0403755
\(796\) −8.07568e6 −0.451748
\(797\) 1.67718e7 0.935264 0.467632 0.883923i \(-0.345107\pi\)
0.467632 + 0.883923i \(0.345107\pi\)
\(798\) −7.03447e6 −0.391043
\(799\) −1.06788e7 −0.591772
\(800\) 2.26971e6 0.125385
\(801\) 1.48253e7 0.816438
\(802\) −2.29111e7 −1.25779
\(803\) −7.31958e6 −0.400587
\(804\) −2.99039e6 −0.163150
\(805\) 562733. 0.0306064
\(806\) 3.52865e6 0.191324
\(807\) 506862. 0.0273972
\(808\) −7.94967e6 −0.428372
\(809\) 355816. 0.0191141 0.00955706 0.999954i \(-0.496958\pi\)
0.00955706 + 0.999954i \(0.496958\pi\)
\(810\) −3.09708e6 −0.165859
\(811\) 2.29373e7 1.22459 0.612295 0.790629i \(-0.290246\pi\)
0.612295 + 0.790629i \(0.290246\pi\)
\(812\) 576497. 0.0306836
\(813\) 1.23180e7 0.653604
\(814\) 5.90571e6 0.312400
\(815\) −496455. −0.0261810
\(816\) −1.40364e6 −0.0737955
\(817\) −1.81275e7 −0.950127
\(818\) 1.14338e6 0.0597456
\(819\) −3.19203e6 −0.166287
\(820\) 9.17026e6 0.476263
\(821\) 2.23270e7 1.15604 0.578018 0.816024i \(-0.303826\pi\)
0.578018 + 0.816024i \(0.303826\pi\)
\(822\) −3.06882e6 −0.158413
\(823\) −1.82423e7 −0.938815 −0.469408 0.882982i \(-0.655533\pi\)
−0.469408 + 0.882982i \(0.655533\pi\)
\(824\) 6.64885e6 0.341137
\(825\) 2.27493e6 0.116368
\(826\) 1.25332e7 0.639164
\(827\) 2.12085e7 1.07832 0.539158 0.842205i \(-0.318743\pi\)
0.539158 + 0.842205i \(0.318743\pi\)
\(828\) 409665. 0.0207660
\(829\) 3.84252e7 1.94191 0.970957 0.239254i \(-0.0769029\pi\)
0.970957 + 0.239254i \(0.0769029\pi\)
\(830\) −858637. −0.0432627
\(831\) −1.34500e7 −0.675644
\(832\) −476739. −0.0238766
\(833\) 2.49757e6 0.124711
\(834\) −5.73830e6 −0.285672
\(835\) 5.85396e6 0.290558
\(836\) 4.16227e6 0.205975
\(837\) 2.31969e7 1.14450
\(838\) 1.11899e7 0.550448
\(839\) −4.33208e6 −0.212467 −0.106234 0.994341i \(-0.533879\pi\)
−0.106234 + 0.994341i \(0.533879\pi\)
\(840\) −1.91080e6 −0.0934365
\(841\) −2.04462e7 −0.996835
\(842\) −1.60862e7 −0.781941
\(843\) −1.98407e6 −0.0961586
\(844\) 3.81661e6 0.184426
\(845\) −1.07829e7 −0.519509
\(846\) −1.05830e7 −0.508372
\(847\) 1.97386e7 0.945385
\(848\) −872431. −0.0416621
\(849\) 1.17411e7 0.559038
\(850\) 6.94002e6 0.329468
\(851\) 1.33030e6 0.0629690
\(852\) −5.14437e6 −0.242791
\(853\) −2.60078e7 −1.22386 −0.611930 0.790912i \(-0.709607\pi\)
−0.611930 + 0.790912i \(0.709607\pi\)
\(854\) 1.16500e7 0.546613
\(855\) −1.03780e7 −0.485509
\(856\) 6.87663e6 0.320768
\(857\) −1.06641e6 −0.0495988 −0.0247994 0.999692i \(-0.507895\pi\)
−0.0247994 + 0.999692i \(0.507895\pi\)
\(858\) −477836. −0.0221596
\(859\) 4.24985e6 0.196513 0.0982563 0.995161i \(-0.468674\pi\)
0.0982563 + 0.995161i \(0.468674\pi\)
\(860\) −4.92403e6 −0.227025
\(861\) 1.88355e7 0.865903
\(862\) −1.64924e7 −0.755992
\(863\) 2.64597e7 1.20936 0.604682 0.796467i \(-0.293300\pi\)
0.604682 + 0.796467i \(0.293300\pi\)
\(864\) −3.13402e6 −0.142829
\(865\) −9.69192e6 −0.440423
\(866\) 2.86225e6 0.129692
\(867\) 5.65370e6 0.255438
\(868\) −1.71490e7 −0.772571
\(869\) −5.21910e6 −0.234448
\(870\) −215175. −0.00963814
\(871\) −3.10558e6 −0.138707
\(872\) −1.79880e6 −0.0801111
\(873\) −1.77549e7 −0.788465
\(874\) 937580. 0.0415174
\(875\) 2.27674e7 1.00530
\(876\) 5.59857e6 0.246500
\(877\) −1.93576e7 −0.849872 −0.424936 0.905224i \(-0.639703\pi\)
−0.424936 + 0.905224i \(0.639703\pi\)
\(878\) −2.40564e7 −1.05316
\(879\) 7.58824e6 0.331260
\(880\) 1.13061e6 0.0492161
\(881\) 2.05942e7 0.893936 0.446968 0.894550i \(-0.352504\pi\)
0.446968 + 0.894550i \(0.352504\pi\)
\(882\) 2.47517e6 0.107135
\(883\) −3.12635e7 −1.34939 −0.674693 0.738098i \(-0.735724\pi\)
−0.674693 + 0.738098i \(0.735724\pi\)
\(884\) −1.45771e6 −0.0627394
\(885\) −4.67797e6 −0.200770
\(886\) 1.82799e7 0.782329
\(887\) −2.00863e7 −0.857217 −0.428608 0.903490i \(-0.640996\pi\)
−0.428608 + 0.903490i \(0.640996\pi\)
\(888\) −4.51714e6 −0.192234
\(889\) 2.57401e7 1.09233
\(890\) 9.21653e6 0.390025
\(891\) 3.76397e6 0.158837
\(892\) 1.64820e6 0.0693584
\(893\) −2.42207e7 −1.01638
\(894\) 7.36415e6 0.308162
\(895\) −1.77827e7 −0.742060
\(896\) 2.31691e6 0.0964140
\(897\) −107636. −0.00446659
\(898\) 281878. 0.0116646
\(899\) −1.93114e6 −0.0796921
\(900\) 6.87775e6 0.283035
\(901\) −2.66761e6 −0.109474
\(902\) −1.11449e7 −0.456099
\(903\) −1.01138e7 −0.412759
\(904\) −1.10848e7 −0.451137
\(905\) −3.27182e6 −0.132791
\(906\) −1.03315e7 −0.418162
\(907\) −3.69898e7 −1.49301 −0.746507 0.665377i \(-0.768271\pi\)
−0.746507 + 0.665377i \(0.768271\pi\)
\(908\) −6.65956e6 −0.268059
\(909\) −2.40894e7 −0.966977
\(910\) −1.98440e6 −0.0794377
\(911\) −3.45672e7 −1.37997 −0.689983 0.723826i \(-0.742382\pi\)
−0.689983 + 0.723826i \(0.742382\pi\)
\(912\) −3.18362e6 −0.126746
\(913\) 1.04353e6 0.0414311
\(914\) 2.00237e7 0.792828
\(915\) −4.34830e6 −0.171698
\(916\) 1.17239e7 0.461672
\(917\) 5.32361e7 2.09066
\(918\) −9.58280e6 −0.375306
\(919\) −4.89308e7 −1.91115 −0.955573 0.294756i \(-0.904762\pi\)
−0.955573 + 0.294756i \(0.904762\pi\)
\(920\) 254678. 0.00992025
\(921\) −7.65039e6 −0.297190
\(922\) −2.54084e7 −0.984352
\(923\) −5.34254e6 −0.206416
\(924\) 2.32225e6 0.0894806
\(925\) 2.23341e7 0.858251
\(926\) −2.67809e7 −1.02635
\(927\) 2.01476e7 0.770059
\(928\) 260908. 0.00994528
\(929\) 4.11751e7 1.56529 0.782645 0.622468i \(-0.213870\pi\)
0.782645 + 0.622468i \(0.213870\pi\)
\(930\) 6.40077e6 0.242675
\(931\) 5.66479e6 0.214195
\(932\) 6.50312e6 0.245235
\(933\) 9.35116e6 0.351691
\(934\) −4.11620e6 −0.154394
\(935\) 3.45704e6 0.129323
\(936\) −1.44463e6 −0.0538974
\(937\) 4.52601e7 1.68410 0.842048 0.539403i \(-0.181350\pi\)
0.842048 + 0.539403i \(0.181350\pi\)
\(938\) 1.50929e7 0.560100
\(939\) 1.34469e7 0.497691
\(940\) −6.57916e6 −0.242857
\(941\) 2.77391e7 1.02122 0.510609 0.859813i \(-0.329420\pi\)
0.510609 + 0.859813i \(0.329420\pi\)
\(942\) −8.78633e6 −0.322612
\(943\) −2.51046e6 −0.0919337
\(944\) 5.67221e6 0.207168
\(945\) −1.30452e7 −0.475195
\(946\) 5.98432e6 0.217414
\(947\) −3.74649e7 −1.35753 −0.678765 0.734356i \(-0.737484\pi\)
−0.678765 + 0.734356i \(0.737484\pi\)
\(948\) 3.99196e6 0.144267
\(949\) 5.81423e6 0.209569
\(950\) 1.57408e7 0.565871
\(951\) −1.58266e7 −0.567461
\(952\) 7.08436e6 0.253343
\(953\) −2.66749e7 −0.951418 −0.475709 0.879603i \(-0.657808\pi\)
−0.475709 + 0.879603i \(0.657808\pi\)
\(954\) −2.64367e6 −0.0940453
\(955\) 1.48153e7 0.525658
\(956\) −2.38607e7 −0.844383
\(957\) 261508. 0.00923009
\(958\) 2.47351e7 0.870763
\(959\) 1.54887e7 0.543838
\(960\) −864778. −0.0302849
\(961\) 2.88163e7 1.00654
\(962\) −4.69114e6 −0.163434
\(963\) 2.08378e7 0.724080
\(964\) −1.97775e7 −0.685455
\(965\) 1.80871e7 0.625246
\(966\) 523103. 0.0180362
\(967\) −5.25408e6 −0.180688 −0.0903442 0.995911i \(-0.528797\pi\)
−0.0903442 + 0.995911i \(0.528797\pi\)
\(968\) 8.93320e6 0.306421
\(969\) −9.73446e6 −0.333045
\(970\) −1.10378e7 −0.376662
\(971\) 2.46081e7 0.837588 0.418794 0.908081i \(-0.362453\pi\)
0.418794 + 0.908081i \(0.362453\pi\)
\(972\) −1.47785e7 −0.501722
\(973\) 2.89620e7 0.980724
\(974\) 2.94154e7 0.993521
\(975\) −1.80707e6 −0.0608785
\(976\) 5.27248e6 0.177170
\(977\) −2.19749e7 −0.736529 −0.368264 0.929721i \(-0.620048\pi\)
−0.368264 + 0.929721i \(0.620048\pi\)
\(978\) −461493. −0.0154283
\(979\) −1.12011e7 −0.373512
\(980\) 1.53875e6 0.0511802
\(981\) −5.45080e6 −0.180837
\(982\) 1.93066e6 0.0638891
\(983\) 5.51108e7 1.81908 0.909542 0.415613i \(-0.136433\pi\)
0.909542 + 0.415613i \(0.136433\pi\)
\(984\) 8.52446e6 0.280659
\(985\) 2.15981e6 0.0709292
\(986\) 797770. 0.0261328
\(987\) −1.35134e7 −0.441543
\(988\) −3.30626e6 −0.107757
\(989\) 1.34801e6 0.0438230
\(990\) 3.42602e6 0.111097
\(991\) −1.52842e7 −0.494377 −0.247188 0.968967i \(-0.579507\pi\)
−0.247188 + 0.968967i \(0.579507\pi\)
\(992\) −7.76118e6 −0.250408
\(993\) −9.42526e6 −0.303334
\(994\) 2.59644e7 0.833511
\(995\) −1.52131e7 −0.487148
\(996\) −798168. −0.0254945
\(997\) 2.50421e7 0.797873 0.398936 0.916979i \(-0.369379\pi\)
0.398936 + 0.916979i \(0.369379\pi\)
\(998\) −8.86207e6 −0.281649
\(999\) −3.08390e7 −0.977657
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.c.1.13 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.c.1.13 30 1.1 even 1 trivial