Properties

Label 538.6.a.c.1.17
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $1$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(1\)
Dimension: \(30\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +2.68265 q^{3} +16.0000 q^{4} +25.8421 q^{5} -10.7306 q^{6} +96.3372 q^{7} -64.0000 q^{8} -235.803 q^{9} -103.369 q^{10} -93.7407 q^{11} +42.9224 q^{12} -667.002 q^{13} -385.349 q^{14} +69.3253 q^{15} +256.000 q^{16} +1784.88 q^{17} +943.214 q^{18} +2442.53 q^{19} +413.474 q^{20} +258.439 q^{21} +374.963 q^{22} +700.737 q^{23} -171.689 q^{24} -2457.18 q^{25} +2668.01 q^{26} -1284.46 q^{27} +1541.40 q^{28} -5936.54 q^{29} -277.301 q^{30} -8370.35 q^{31} -1024.00 q^{32} -251.473 q^{33} -7139.51 q^{34} +2489.56 q^{35} -3772.85 q^{36} -2065.32 q^{37} -9770.11 q^{38} -1789.33 q^{39} -1653.90 q^{40} -12488.4 q^{41} -1033.75 q^{42} +14743.9 q^{43} -1499.85 q^{44} -6093.66 q^{45} -2802.95 q^{46} +10629.1 q^{47} +686.758 q^{48} -7526.14 q^{49} +9828.74 q^{50} +4788.20 q^{51} -10672.0 q^{52} +7099.35 q^{53} +5137.84 q^{54} -2422.46 q^{55} -6165.58 q^{56} +6552.44 q^{57} +23746.2 q^{58} +44165.1 q^{59} +1109.21 q^{60} +12326.7 q^{61} +33481.4 q^{62} -22716.6 q^{63} +4096.00 q^{64} -17236.8 q^{65} +1005.89 q^{66} -29753.4 q^{67} +28558.0 q^{68} +1879.83 q^{69} -9958.23 q^{70} -42415.5 q^{71} +15091.4 q^{72} -11634.1 q^{73} +8261.28 q^{74} -6591.76 q^{75} +39080.4 q^{76} -9030.72 q^{77} +7157.32 q^{78} +3427.83 q^{79} +6615.59 q^{80} +53854.5 q^{81} +49953.7 q^{82} -62674.7 q^{83} +4135.02 q^{84} +46125.0 q^{85} -58975.4 q^{86} -15925.7 q^{87} +5999.40 q^{88} -145342. q^{89} +24374.6 q^{90} -64257.1 q^{91} +11211.8 q^{92} -22454.7 q^{93} -42516.6 q^{94} +63120.1 q^{95} -2747.03 q^{96} -34590.9 q^{97} +30104.6 q^{98} +22104.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 120 q^{2} - 30 q^{3} + 480 q^{4} - 136 q^{5} + 120 q^{6} - 123 q^{7} - 1920 q^{8} + 2670 q^{9} + 544 q^{10} - 1058 q^{11} - 480 q^{12} - 371 q^{13} + 492 q^{14} - 1364 q^{15} + 7680 q^{16} - 1918 q^{17}+ \cdots - 78063 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 2.68265 0.172092 0.0860460 0.996291i \(-0.472577\pi\)
0.0860460 + 0.996291i \(0.472577\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.8421 0.462278 0.231139 0.972921i \(-0.425755\pi\)
0.231139 + 0.972921i \(0.425755\pi\)
\(6\) −10.7306 −0.121687
\(7\) 96.3372 0.743103 0.371551 0.928412i \(-0.378826\pi\)
0.371551 + 0.928412i \(0.378826\pi\)
\(8\) −64.0000 −0.353553
\(9\) −235.803 −0.970384
\(10\) −103.369 −0.326880
\(11\) −93.7407 −0.233586 −0.116793 0.993156i \(-0.537261\pi\)
−0.116793 + 0.993156i \(0.537261\pi\)
\(12\) 42.9224 0.0860460
\(13\) −667.002 −1.09463 −0.547317 0.836926i \(-0.684351\pi\)
−0.547317 + 0.836926i \(0.684351\pi\)
\(14\) −385.349 −0.525453
\(15\) 69.3253 0.0795543
\(16\) 256.000 0.250000
\(17\) 1784.88 1.49791 0.748956 0.662620i \(-0.230556\pi\)
0.748956 + 0.662620i \(0.230556\pi\)
\(18\) 943.214 0.686165
\(19\) 2442.53 1.55223 0.776114 0.630593i \(-0.217188\pi\)
0.776114 + 0.630593i \(0.217188\pi\)
\(20\) 413.474 0.231139
\(21\) 258.439 0.127882
\(22\) 374.963 0.165170
\(23\) 700.737 0.276207 0.138104 0.990418i \(-0.455899\pi\)
0.138104 + 0.990418i \(0.455899\pi\)
\(24\) −171.689 −0.0608437
\(25\) −2457.18 −0.786299
\(26\) 2668.01 0.774023
\(27\) −1284.46 −0.339087
\(28\) 1541.40 0.371551
\(29\) −5936.54 −1.31081 −0.655403 0.755279i \(-0.727501\pi\)
−0.655403 + 0.755279i \(0.727501\pi\)
\(30\) −277.301 −0.0562534
\(31\) −8370.35 −1.56437 −0.782185 0.623046i \(-0.785895\pi\)
−0.782185 + 0.623046i \(0.785895\pi\)
\(32\) −1024.00 −0.176777
\(33\) −251.473 −0.0401982
\(34\) −7139.51 −1.05918
\(35\) 2489.56 0.343520
\(36\) −3772.85 −0.485192
\(37\) −2065.32 −0.248018 −0.124009 0.992281i \(-0.539575\pi\)
−0.124009 + 0.992281i \(0.539575\pi\)
\(38\) −9770.11 −1.09759
\(39\) −1789.33 −0.188378
\(40\) −1653.90 −0.163440
\(41\) −12488.4 −1.16024 −0.580120 0.814531i \(-0.696994\pi\)
−0.580120 + 0.814531i \(0.696994\pi\)
\(42\) −1033.75 −0.0904262
\(43\) 14743.9 1.21602 0.608009 0.793930i \(-0.291969\pi\)
0.608009 + 0.793930i \(0.291969\pi\)
\(44\) −1499.85 −0.116793
\(45\) −6093.66 −0.448587
\(46\) −2802.95 −0.195308
\(47\) 10629.1 0.701865 0.350933 0.936401i \(-0.385865\pi\)
0.350933 + 0.936401i \(0.385865\pi\)
\(48\) 686.758 0.0430230
\(49\) −7526.14 −0.447798
\(50\) 9828.74 0.555997
\(51\) 4788.20 0.257778
\(52\) −10672.0 −0.547317
\(53\) 7099.35 0.347160 0.173580 0.984820i \(-0.444467\pi\)
0.173580 + 0.984820i \(0.444467\pi\)
\(54\) 5137.84 0.239771
\(55\) −2422.46 −0.107982
\(56\) −6165.58 −0.262727
\(57\) 6552.44 0.267126
\(58\) 23746.2 0.926880
\(59\) 44165.1 1.65177 0.825884 0.563839i \(-0.190676\pi\)
0.825884 + 0.563839i \(0.190676\pi\)
\(60\) 1109.21 0.0397772
\(61\) 12326.7 0.424151 0.212076 0.977253i \(-0.431978\pi\)
0.212076 + 0.977253i \(0.431978\pi\)
\(62\) 33481.4 1.10618
\(63\) −22716.6 −0.721095
\(64\) 4096.00 0.125000
\(65\) −17236.8 −0.506025
\(66\) 1005.89 0.0284244
\(67\) −29753.4 −0.809747 −0.404873 0.914373i \(-0.632684\pi\)
−0.404873 + 0.914373i \(0.632684\pi\)
\(68\) 28558.0 0.748956
\(69\) 1879.83 0.0475331
\(70\) −9958.23 −0.242905
\(71\) −42415.5 −0.998569 −0.499285 0.866438i \(-0.666404\pi\)
−0.499285 + 0.866438i \(0.666404\pi\)
\(72\) 15091.4 0.343083
\(73\) −11634.1 −0.255520 −0.127760 0.991805i \(-0.540779\pi\)
−0.127760 + 0.991805i \(0.540779\pi\)
\(74\) 8261.28 0.175375
\(75\) −6591.76 −0.135316
\(76\) 39080.4 0.776114
\(77\) −9030.72 −0.173578
\(78\) 7157.32 0.133203
\(79\) 3427.83 0.0617948 0.0308974 0.999523i \(-0.490163\pi\)
0.0308974 + 0.999523i \(0.490163\pi\)
\(80\) 6615.59 0.115570
\(81\) 53854.5 0.912030
\(82\) 49953.7 0.820413
\(83\) −62674.7 −0.998613 −0.499307 0.866425i \(-0.666412\pi\)
−0.499307 + 0.866425i \(0.666412\pi\)
\(84\) 4135.02 0.0639410
\(85\) 46125.0 0.692451
\(86\) −58975.4 −0.859854
\(87\) −15925.7 −0.225579
\(88\) 5999.40 0.0825851
\(89\) −145342. −1.94498 −0.972492 0.232934i \(-0.925167\pi\)
−0.972492 + 0.232934i \(0.925167\pi\)
\(90\) 24374.6 0.317199
\(91\) −64257.1 −0.813425
\(92\) 11211.8 0.138104
\(93\) −22454.7 −0.269215
\(94\) −42516.6 −0.496294
\(95\) 63120.1 0.717561
\(96\) −2747.03 −0.0304218
\(97\) −34590.9 −0.373278 −0.186639 0.982429i \(-0.559759\pi\)
−0.186639 + 0.982429i \(0.559759\pi\)
\(98\) 30104.6 0.316641
\(99\) 22104.4 0.226668
\(100\) −39314.9 −0.393149
\(101\) 64859.4 0.632659 0.316329 0.948649i \(-0.397550\pi\)
0.316329 + 0.948649i \(0.397550\pi\)
\(102\) −19152.8 −0.182277
\(103\) 140594. 1.30580 0.652898 0.757446i \(-0.273553\pi\)
0.652898 + 0.757446i \(0.273553\pi\)
\(104\) 42688.1 0.387011
\(105\) 6678.61 0.0591170
\(106\) −28397.4 −0.245479
\(107\) 219999. 1.85764 0.928821 0.370528i \(-0.120823\pi\)
0.928821 + 0.370528i \(0.120823\pi\)
\(108\) −20551.4 −0.169544
\(109\) −115630. −0.932191 −0.466096 0.884734i \(-0.654340\pi\)
−0.466096 + 0.884734i \(0.654340\pi\)
\(110\) 9689.84 0.0763545
\(111\) −5540.52 −0.0426819
\(112\) 24662.3 0.185776
\(113\) −57789.7 −0.425749 −0.212875 0.977080i \(-0.568283\pi\)
−0.212875 + 0.977080i \(0.568283\pi\)
\(114\) −26209.7 −0.188886
\(115\) 18108.5 0.127685
\(116\) −94984.7 −0.655403
\(117\) 157281. 1.06222
\(118\) −176660. −1.16798
\(119\) 171950. 1.11310
\(120\) −4436.82 −0.0281267
\(121\) −152264. −0.945438
\(122\) −49306.6 −0.299920
\(123\) −33502.0 −0.199668
\(124\) −133926. −0.782185
\(125\) −144256. −0.825767
\(126\) 90866.6 0.509891
\(127\) −98669.2 −0.542841 −0.271420 0.962461i \(-0.587493\pi\)
−0.271420 + 0.962461i \(0.587493\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 39552.6 0.209267
\(130\) 68947.0 0.357814
\(131\) −140087. −0.713213 −0.356606 0.934255i \(-0.616066\pi\)
−0.356606 + 0.934255i \(0.616066\pi\)
\(132\) −4023.57 −0.0200991
\(133\) 235306. 1.15346
\(134\) 119014. 0.572577
\(135\) −33193.2 −0.156753
\(136\) −114232. −0.529592
\(137\) −408746. −1.86060 −0.930298 0.366804i \(-0.880452\pi\)
−0.930298 + 0.366804i \(0.880452\pi\)
\(138\) −7519.32 −0.0336110
\(139\) −117122. −0.514164 −0.257082 0.966390i \(-0.582761\pi\)
−0.257082 + 0.966390i \(0.582761\pi\)
\(140\) 39832.9 0.171760
\(141\) 28514.3 0.120785
\(142\) 169662. 0.706095
\(143\) 62525.2 0.255691
\(144\) −60365.7 −0.242596
\(145\) −153413. −0.605957
\(146\) 46536.3 0.180680
\(147\) −20190.0 −0.0770625
\(148\) −33045.1 −0.124009
\(149\) −486496. −1.79520 −0.897602 0.440807i \(-0.854692\pi\)
−0.897602 + 0.440807i \(0.854692\pi\)
\(150\) 26367.0 0.0956826
\(151\) −220928. −0.788513 −0.394257 0.919000i \(-0.628998\pi\)
−0.394257 + 0.919000i \(0.628998\pi\)
\(152\) −156322. −0.548795
\(153\) −420880. −1.45355
\(154\) 36122.9 0.122738
\(155\) −216308. −0.723174
\(156\) −28629.3 −0.0941888
\(157\) 280919. 0.909562 0.454781 0.890603i \(-0.349718\pi\)
0.454781 + 0.890603i \(0.349718\pi\)
\(158\) −13711.3 −0.0436955
\(159\) 19045.1 0.0597433
\(160\) −26462.3 −0.0817200
\(161\) 67507.0 0.205251
\(162\) −215418. −0.644903
\(163\) 514693. 1.51733 0.758663 0.651483i \(-0.225853\pi\)
0.758663 + 0.651483i \(0.225853\pi\)
\(164\) −199815. −0.580120
\(165\) −6498.60 −0.0185828
\(166\) 250699. 0.706126
\(167\) −465392. −1.29130 −0.645651 0.763633i \(-0.723414\pi\)
−0.645651 + 0.763633i \(0.723414\pi\)
\(168\) −16540.1 −0.0452131
\(169\) 73598.7 0.198223
\(170\) −184500. −0.489637
\(171\) −575956. −1.50626
\(172\) 235902. 0.608009
\(173\) 471105. 1.19675 0.598373 0.801218i \(-0.295814\pi\)
0.598373 + 0.801218i \(0.295814\pi\)
\(174\) 63702.6 0.159509
\(175\) −236718. −0.584301
\(176\) −23997.6 −0.0583965
\(177\) 118479. 0.284256
\(178\) 581368. 1.37531
\(179\) −123175. −0.287336 −0.143668 0.989626i \(-0.545890\pi\)
−0.143668 + 0.989626i \(0.545890\pi\)
\(180\) −97498.6 −0.224294
\(181\) −104028. −0.236023 −0.118011 0.993012i \(-0.537652\pi\)
−0.118011 + 0.993012i \(0.537652\pi\)
\(182\) 257028. 0.575179
\(183\) 33068.1 0.0729930
\(184\) −44847.2 −0.0976541
\(185\) −53372.3 −0.114653
\(186\) 89818.8 0.190364
\(187\) −167316. −0.349891
\(188\) 170066. 0.350933
\(189\) −123741. −0.251977
\(190\) −252480. −0.507392
\(191\) 569053. 1.12868 0.564338 0.825544i \(-0.309132\pi\)
0.564338 + 0.825544i \(0.309132\pi\)
\(192\) 10988.1 0.0215115
\(193\) −548209. −1.05938 −0.529692 0.848190i \(-0.677692\pi\)
−0.529692 + 0.848190i \(0.677692\pi\)
\(194\) 138363. 0.263947
\(195\) −46240.1 −0.0870828
\(196\) −120418. −0.223899
\(197\) −690801. −1.26820 −0.634100 0.773251i \(-0.718629\pi\)
−0.634100 + 0.773251i \(0.718629\pi\)
\(198\) −88417.5 −0.160279
\(199\) −112880. −0.202061 −0.101031 0.994883i \(-0.532214\pi\)
−0.101031 + 0.994883i \(0.532214\pi\)
\(200\) 157260. 0.277999
\(201\) −79817.8 −0.139351
\(202\) −259438. −0.447357
\(203\) −571910. −0.974064
\(204\) 76611.1 0.128889
\(205\) −322727. −0.536353
\(206\) −562378. −0.923337
\(207\) −165236. −0.268027
\(208\) −170753. −0.273658
\(209\) −228964. −0.362578
\(210\) −26714.4 −0.0418021
\(211\) −248207. −0.383802 −0.191901 0.981414i \(-0.561465\pi\)
−0.191901 + 0.981414i \(0.561465\pi\)
\(212\) 113590. 0.173580
\(213\) −113786. −0.171846
\(214\) −879998. −1.31355
\(215\) 381013. 0.562138
\(216\) 82205.5 0.119885
\(217\) −806376. −1.16249
\(218\) 462521. 0.659159
\(219\) −31210.1 −0.0439729
\(220\) −38759.4 −0.0539908
\(221\) −1.19052e6 −1.63966
\(222\) 22162.1 0.0301806
\(223\) −58638.9 −0.0789629 −0.0394815 0.999220i \(-0.512571\pi\)
−0.0394815 + 0.999220i \(0.512571\pi\)
\(224\) −98649.3 −0.131363
\(225\) 579412. 0.763012
\(226\) 231159. 0.301050
\(227\) −1.23401e6 −1.58947 −0.794736 0.606955i \(-0.792391\pi\)
−0.794736 + 0.606955i \(0.792391\pi\)
\(228\) 104839. 0.133563
\(229\) 30449.5 0.0383700 0.0191850 0.999816i \(-0.493893\pi\)
0.0191850 + 0.999816i \(0.493893\pi\)
\(230\) −72434.1 −0.0902867
\(231\) −24226.2 −0.0298714
\(232\) 379939. 0.463440
\(233\) −453583. −0.547353 −0.273676 0.961822i \(-0.588240\pi\)
−0.273676 + 0.961822i \(0.588240\pi\)
\(234\) −629125. −0.751100
\(235\) 274680. 0.324457
\(236\) 706642. 0.825884
\(237\) 9195.67 0.0106344
\(238\) −687800. −0.787082
\(239\) 194029. 0.219721 0.109861 0.993947i \(-0.464960\pi\)
0.109861 + 0.993947i \(0.464960\pi\)
\(240\) 17747.3 0.0198886
\(241\) 231818. 0.257101 0.128551 0.991703i \(-0.458968\pi\)
0.128551 + 0.991703i \(0.458968\pi\)
\(242\) 609055. 0.668525
\(243\) 456597. 0.496040
\(244\) 197227. 0.212076
\(245\) −194492. −0.207007
\(246\) 134008. 0.141186
\(247\) −1.62917e6 −1.69912
\(248\) 535703. 0.553088
\(249\) −168134. −0.171853
\(250\) 577022. 0.583905
\(251\) −990077. −0.991938 −0.495969 0.868340i \(-0.665187\pi\)
−0.495969 + 0.868340i \(0.665187\pi\)
\(252\) −363466. −0.360548
\(253\) −65687.6 −0.0645181
\(254\) 394677. 0.383846
\(255\) 123737. 0.119165
\(256\) 65536.0 0.0625000
\(257\) 948299. 0.895597 0.447798 0.894135i \(-0.352208\pi\)
0.447798 + 0.894135i \(0.352208\pi\)
\(258\) −158210. −0.147974
\(259\) −198967. −0.184303
\(260\) −275788. −0.253013
\(261\) 1.39986e6 1.27199
\(262\) 560347. 0.504318
\(263\) 372596. 0.332162 0.166081 0.986112i \(-0.446889\pi\)
0.166081 + 0.986112i \(0.446889\pi\)
\(264\) 16094.3 0.0142122
\(265\) 183462. 0.160484
\(266\) −941225. −0.815622
\(267\) −389901. −0.334716
\(268\) −476054. −0.404873
\(269\) −72361.0 −0.0609711
\(270\) 132773. 0.110841
\(271\) 1.75731e6 1.45354 0.726768 0.686883i \(-0.241022\pi\)
0.726768 + 0.686883i \(0.241022\pi\)
\(272\) 456929. 0.374478
\(273\) −172379. −0.139984
\(274\) 1.63498e6 1.31564
\(275\) 230338. 0.183668
\(276\) 30077.3 0.0237665
\(277\) −1.31062e6 −1.02630 −0.513152 0.858298i \(-0.671522\pi\)
−0.513152 + 0.858298i \(0.671522\pi\)
\(278\) 468488. 0.363569
\(279\) 1.97376e6 1.51804
\(280\) −159332. −0.121453
\(281\) −1.76221e6 −1.33135 −0.665674 0.746243i \(-0.731856\pi\)
−0.665674 + 0.746243i \(0.731856\pi\)
\(282\) −114057. −0.0854081
\(283\) 735849. 0.546163 0.273082 0.961991i \(-0.411957\pi\)
0.273082 + 0.961991i \(0.411957\pi\)
\(284\) −678647. −0.499285
\(285\) 169329. 0.123486
\(286\) −250101. −0.180801
\(287\) −1.20310e6 −0.862177
\(288\) 241463. 0.171541
\(289\) 1.76593e6 1.24374
\(290\) 613652. 0.428476
\(291\) −92795.1 −0.0642381
\(292\) −186145. −0.127760
\(293\) −2.08349e6 −1.41782 −0.708912 0.705297i \(-0.750814\pi\)
−0.708912 + 0.705297i \(0.750814\pi\)
\(294\) 80760.0 0.0544914
\(295\) 1.14132e6 0.763577
\(296\) 132180. 0.0876876
\(297\) 120406. 0.0792060
\(298\) 1.94599e6 1.26940
\(299\) −467393. −0.302346
\(300\) −105468. −0.0676578
\(301\) 1.42038e6 0.903626
\(302\) 883713. 0.557563
\(303\) 173995. 0.108875
\(304\) 625287. 0.388057
\(305\) 318547. 0.196076
\(306\) 1.68352e6 1.02781
\(307\) −849605. −0.514483 −0.257242 0.966347i \(-0.582814\pi\)
−0.257242 + 0.966347i \(0.582814\pi\)
\(308\) −144491. −0.0867891
\(309\) 377165. 0.224717
\(310\) 865231. 0.511361
\(311\) −2.36993e6 −1.38942 −0.694712 0.719288i \(-0.744468\pi\)
−0.694712 + 0.719288i \(0.744468\pi\)
\(312\) 114517. 0.0666015
\(313\) −2.09181e6 −1.20687 −0.603436 0.797411i \(-0.706202\pi\)
−0.603436 + 0.797411i \(0.706202\pi\)
\(314\) −1.12368e6 −0.643157
\(315\) −587046. −0.333347
\(316\) 54845.3 0.0308974
\(317\) 2.11077e6 1.17976 0.589880 0.807491i \(-0.299175\pi\)
0.589880 + 0.807491i \(0.299175\pi\)
\(318\) −76180.2 −0.0422449
\(319\) 556496. 0.306186
\(320\) 105849. 0.0577848
\(321\) 590181. 0.319685
\(322\) −270028. −0.145134
\(323\) 4.35961e6 2.32510
\(324\) 861672. 0.456015
\(325\) 1.63895e6 0.860709
\(326\) −2.05877e6 −1.07291
\(327\) −310195. −0.160423
\(328\) 799258. 0.410207
\(329\) 1.02398e6 0.521558
\(330\) 25994.4 0.0131400
\(331\) −2.53054e6 −1.26953 −0.634765 0.772705i \(-0.718903\pi\)
−0.634765 + 0.772705i \(0.718903\pi\)
\(332\) −1.00280e6 −0.499307
\(333\) 487009. 0.240673
\(334\) 1.86157e6 0.913088
\(335\) −768891. −0.374328
\(336\) 66160.3 0.0319705
\(337\) −1.57223e6 −0.754120 −0.377060 0.926189i \(-0.623065\pi\)
−0.377060 + 0.926189i \(0.623065\pi\)
\(338\) −294395. −0.140165
\(339\) −155029. −0.0732680
\(340\) 738000. 0.346226
\(341\) 784643. 0.365415
\(342\) 2.30382e6 1.06508
\(343\) −2.34419e6 −1.07586
\(344\) −943607. −0.429927
\(345\) 48578.8 0.0219735
\(346\) −1.88442e6 −0.846227
\(347\) −4.05633e6 −1.80846 −0.904232 0.427042i \(-0.859556\pi\)
−0.904232 + 0.427042i \(0.859556\pi\)
\(348\) −254810. −0.112790
\(349\) −2.13094e6 −0.936502 −0.468251 0.883596i \(-0.655116\pi\)
−0.468251 + 0.883596i \(0.655116\pi\)
\(350\) 946873. 0.413163
\(351\) 856738. 0.371176
\(352\) 95990.5 0.0412925
\(353\) 1.74063e6 0.743480 0.371740 0.928337i \(-0.378761\pi\)
0.371740 + 0.928337i \(0.378761\pi\)
\(354\) −473918. −0.200999
\(355\) −1.09611e6 −0.461617
\(356\) −2.32547e6 −0.972492
\(357\) 461281. 0.191556
\(358\) 492700. 0.203177
\(359\) 767082. 0.314127 0.157064 0.987588i \(-0.449797\pi\)
0.157064 + 0.987588i \(0.449797\pi\)
\(360\) 389994. 0.158600
\(361\) 3.48984e6 1.40941
\(362\) 416112. 0.166893
\(363\) −408470. −0.162702
\(364\) −1.02811e6 −0.406713
\(365\) −300649. −0.118121
\(366\) −132272. −0.0516139
\(367\) 2.26150e6 0.876459 0.438230 0.898863i \(-0.355606\pi\)
0.438230 + 0.898863i \(0.355606\pi\)
\(368\) 179389. 0.0690519
\(369\) 2.94481e6 1.12588
\(370\) 213489. 0.0810721
\(371\) 683932. 0.257975
\(372\) −359275. −0.134608
\(373\) 5.24435e6 1.95173 0.975865 0.218375i \(-0.0700755\pi\)
0.975865 + 0.218375i \(0.0700755\pi\)
\(374\) 669263. 0.247410
\(375\) −386987. −0.142108
\(376\) −680266. −0.248147
\(377\) 3.95969e6 1.43485
\(378\) 494965. 0.178174
\(379\) 815203. 0.291520 0.145760 0.989320i \(-0.453437\pi\)
0.145760 + 0.989320i \(0.453437\pi\)
\(380\) 1.00992e6 0.358780
\(381\) −264695. −0.0934185
\(382\) −2.27621e6 −0.798094
\(383\) 91973.3 0.0320379 0.0160190 0.999872i \(-0.494901\pi\)
0.0160190 + 0.999872i \(0.494901\pi\)
\(384\) −43952.5 −0.0152109
\(385\) −233373. −0.0802414
\(386\) 2.19284e6 0.749097
\(387\) −3.47665e6 −1.18000
\(388\) −553454. −0.186639
\(389\) −5.39926e6 −1.80909 −0.904545 0.426378i \(-0.859789\pi\)
−0.904545 + 0.426378i \(0.859789\pi\)
\(390\) 184961. 0.0615769
\(391\) 1.25073e6 0.413734
\(392\) 481673. 0.158321
\(393\) −375804. −0.122738
\(394\) 2.76321e6 0.896753
\(395\) 88582.5 0.0285664
\(396\) 353670. 0.113334
\(397\) 2.54729e6 0.811152 0.405576 0.914061i \(-0.367071\pi\)
0.405576 + 0.914061i \(0.367071\pi\)
\(398\) 451519. 0.142879
\(399\) 631243. 0.198502
\(400\) −629039. −0.196575
\(401\) −1.52464e6 −0.473486 −0.236743 0.971572i \(-0.576080\pi\)
−0.236743 + 0.971572i \(0.576080\pi\)
\(402\) 319271. 0.0985360
\(403\) 5.58304e6 1.71241
\(404\) 1.03775e6 0.316329
\(405\) 1.39171e6 0.421612
\(406\) 2.28764e6 0.688767
\(407\) 193605. 0.0579335
\(408\) −306445. −0.0911384
\(409\) −3.78578e6 −1.11904 −0.559522 0.828815i \(-0.689015\pi\)
−0.559522 + 0.828815i \(0.689015\pi\)
\(410\) 1.29091e6 0.379259
\(411\) −1.09652e6 −0.320194
\(412\) 2.24951e6 0.652898
\(413\) 4.25474e6 1.22743
\(414\) 660944. 0.189524
\(415\) −1.61965e6 −0.461637
\(416\) 683010. 0.193506
\(417\) −314197. −0.0884834
\(418\) 915857. 0.256382
\(419\) −2.27184e6 −0.632181 −0.316091 0.948729i \(-0.602370\pi\)
−0.316091 + 0.948729i \(0.602370\pi\)
\(420\) 106858. 0.0295585
\(421\) −422161. −0.116084 −0.0580420 0.998314i \(-0.518486\pi\)
−0.0580420 + 0.998314i \(0.518486\pi\)
\(422\) 992826. 0.271389
\(423\) −2.50639e6 −0.681079
\(424\) −454359. −0.122739
\(425\) −4.38577e6 −1.17781
\(426\) 455143. 0.121513
\(427\) 1.18752e6 0.315188
\(428\) 3.51999e6 0.928821
\(429\) 167733. 0.0440023
\(430\) −1.52405e6 −0.397492
\(431\) 1.83504e6 0.475832 0.237916 0.971286i \(-0.423536\pi\)
0.237916 + 0.971286i \(0.423536\pi\)
\(432\) −328822. −0.0847718
\(433\) 1.53555e6 0.393591 0.196795 0.980445i \(-0.436947\pi\)
0.196795 + 0.980445i \(0.436947\pi\)
\(434\) 3.22550e6 0.822003
\(435\) −411553. −0.104280
\(436\) −1.85008e6 −0.466096
\(437\) 1.71157e6 0.428737
\(438\) 124840. 0.0310935
\(439\) −4.38781e6 −1.08664 −0.543321 0.839525i \(-0.682833\pi\)
−0.543321 + 0.839525i \(0.682833\pi\)
\(440\) 155037. 0.0381773
\(441\) 1.77469e6 0.434536
\(442\) 4.76207e6 1.15942
\(443\) 7.94980e6 1.92463 0.962314 0.271941i \(-0.0876655\pi\)
0.962314 + 0.271941i \(0.0876655\pi\)
\(444\) −88648.4 −0.0213409
\(445\) −3.75595e6 −0.899124
\(446\) 234555. 0.0558352
\(447\) −1.30510e6 −0.308940
\(448\) 394597. 0.0928878
\(449\) 5.67095e6 1.32752 0.663758 0.747948i \(-0.268961\pi\)
0.663758 + 0.747948i \(0.268961\pi\)
\(450\) −2.31765e6 −0.539531
\(451\) 1.17067e6 0.271015
\(452\) −924635. −0.212875
\(453\) −592673. −0.135697
\(454\) 4.93603e6 1.12393
\(455\) −1.66054e6 −0.376029
\(456\) −419356. −0.0944432
\(457\) 4.59081e6 1.02825 0.514125 0.857715i \(-0.328117\pi\)
0.514125 + 0.857715i \(0.328117\pi\)
\(458\) −121798. −0.0271317
\(459\) −2.29260e6 −0.507923
\(460\) 289737. 0.0638423
\(461\) 1.51804e6 0.332683 0.166341 0.986068i \(-0.446805\pi\)
0.166341 + 0.986068i \(0.446805\pi\)
\(462\) 96904.9 0.0211223
\(463\) 3.78434e6 0.820422 0.410211 0.911991i \(-0.365455\pi\)
0.410211 + 0.911991i \(0.365455\pi\)
\(464\) −1.51976e6 −0.327702
\(465\) −580277. −0.124452
\(466\) 1.81433e6 0.387037
\(467\) −5.87911e6 −1.24744 −0.623720 0.781648i \(-0.714379\pi\)
−0.623720 + 0.781648i \(0.714379\pi\)
\(468\) 2.51650e6 0.531108
\(469\) −2.86636e6 −0.601725
\(470\) −1.09872e6 −0.229426
\(471\) 753607. 0.156528
\(472\) −2.82657e6 −0.583989
\(473\) −1.38210e6 −0.284044
\(474\) −36782.7 −0.00751965
\(475\) −6.00174e6 −1.22051
\(476\) 2.75120e6 0.556551
\(477\) −1.67405e6 −0.336878
\(478\) −776116. −0.155366
\(479\) 4.27765e6 0.851856 0.425928 0.904757i \(-0.359948\pi\)
0.425928 + 0.904757i \(0.359948\pi\)
\(480\) −70989.1 −0.0140633
\(481\) 1.37757e6 0.271489
\(482\) −927271. −0.181798
\(483\) 181098. 0.0353220
\(484\) −2.43622e6 −0.472719
\(485\) −893902. −0.172558
\(486\) −1.82639e6 −0.350753
\(487\) 4.92226e6 0.940464 0.470232 0.882543i \(-0.344170\pi\)
0.470232 + 0.882543i \(0.344170\pi\)
\(488\) −788906. −0.149960
\(489\) 1.38074e6 0.261120
\(490\) 777966. 0.146376
\(491\) 4.46862e6 0.836508 0.418254 0.908330i \(-0.362642\pi\)
0.418254 + 0.908330i \(0.362642\pi\)
\(492\) −536032. −0.0998339
\(493\) −1.05960e7 −1.96347
\(494\) 6.51668e6 1.20146
\(495\) 571224. 0.104784
\(496\) −2.14281e6 −0.391092
\(497\) −4.08619e6 −0.742040
\(498\) 672537. 0.121519
\(499\) 2.31892e6 0.416902 0.208451 0.978033i \(-0.433158\pi\)
0.208451 + 0.978033i \(0.433158\pi\)
\(500\) −2.30809e6 −0.412883
\(501\) −1.24848e6 −0.222223
\(502\) 3.96031e6 0.701406
\(503\) 2.98267e6 0.525636 0.262818 0.964845i \(-0.415348\pi\)
0.262818 + 0.964845i \(0.415348\pi\)
\(504\) 1.45386e6 0.254946
\(505\) 1.67611e6 0.292464
\(506\) 262750. 0.0456212
\(507\) 197439. 0.0341125
\(508\) −1.57871e6 −0.271420
\(509\) −3.25087e6 −0.556167 −0.278083 0.960557i \(-0.589699\pi\)
−0.278083 + 0.960557i \(0.589699\pi\)
\(510\) −494949. −0.0842626
\(511\) −1.12079e6 −0.189877
\(512\) −262144. −0.0441942
\(513\) −3.13733e6 −0.526340
\(514\) −3.79320e6 −0.633283
\(515\) 3.63326e6 0.603641
\(516\) 632841. 0.104633
\(517\) −996384. −0.163946
\(518\) 795868. 0.130322
\(519\) 1.26381e6 0.205950
\(520\) 1.10315e6 0.178907
\(521\) −1.80103e6 −0.290688 −0.145344 0.989381i \(-0.546429\pi\)
−0.145344 + 0.989381i \(0.546429\pi\)
\(522\) −5.59943e6 −0.899430
\(523\) 6.68223e6 1.06824 0.534118 0.845410i \(-0.320644\pi\)
0.534118 + 0.845410i \(0.320644\pi\)
\(524\) −2.24139e6 −0.356606
\(525\) −635032. −0.100553
\(526\) −1.49039e6 −0.234874
\(527\) −1.49401e7 −2.34329
\(528\) −64377.2 −0.0100496
\(529\) −5.94531e6 −0.923709
\(530\) −733850. −0.113479
\(531\) −1.04143e7 −1.60285
\(532\) 3.76490e6 0.576732
\(533\) 8.32980e6 1.27004
\(534\) 1.55961e6 0.236680
\(535\) 5.68525e6 0.858747
\(536\) 1.90422e6 0.286289
\(537\) −330435. −0.0494482
\(538\) 289444. 0.0431131
\(539\) 705506. 0.104599
\(540\) −531091. −0.0783763
\(541\) 2.12886e6 0.312718 0.156359 0.987700i \(-0.450024\pi\)
0.156359 + 0.987700i \(0.450024\pi\)
\(542\) −7.02925e6 −1.02780
\(543\) −279071. −0.0406176
\(544\) −1.82771e6 −0.264796
\(545\) −2.98813e6 −0.430931
\(546\) 689517. 0.0989836
\(547\) 4.78809e6 0.684217 0.342109 0.939660i \(-0.388859\pi\)
0.342109 + 0.939660i \(0.388859\pi\)
\(548\) −6.53994e6 −0.930298
\(549\) −2.90667e6 −0.411590
\(550\) −921353. −0.129873
\(551\) −1.45002e7 −2.03467
\(552\) −120309. −0.0168055
\(553\) 330228. 0.0459199
\(554\) 5.24247e6 0.725707
\(555\) −143179. −0.0197309
\(556\) −1.87395e6 −0.257082
\(557\) 1.01290e7 1.38334 0.691669 0.722214i \(-0.256876\pi\)
0.691669 + 0.722214i \(0.256876\pi\)
\(558\) −7.89503e6 −1.07342
\(559\) −9.83418e6 −1.33109
\(560\) 637327. 0.0858800
\(561\) −448849. −0.0602134
\(562\) 7.04884e6 0.941405
\(563\) −1.12196e6 −0.149179 −0.0745895 0.997214i \(-0.523765\pi\)
−0.0745895 + 0.997214i \(0.523765\pi\)
\(564\) 456228. 0.0603927
\(565\) −1.49341e6 −0.196815
\(566\) −2.94339e6 −0.386196
\(567\) 5.18819e6 0.677732
\(568\) 2.71459e6 0.353048
\(569\) 4.94630e6 0.640471 0.320235 0.947338i \(-0.396238\pi\)
0.320235 + 0.947338i \(0.396238\pi\)
\(570\) −677316. −0.0873181
\(571\) 7.72683e6 0.991771 0.495885 0.868388i \(-0.334844\pi\)
0.495885 + 0.868388i \(0.334844\pi\)
\(572\) 1.00040e6 0.127845
\(573\) 1.52657e6 0.194236
\(574\) 4.81239e6 0.609651
\(575\) −1.72184e6 −0.217182
\(576\) −965851. −0.121298
\(577\) 344575. 0.0430868 0.0215434 0.999768i \(-0.493142\pi\)
0.0215434 + 0.999768i \(0.493142\pi\)
\(578\) −7.06372e6 −0.879455
\(579\) −1.47065e6 −0.182311
\(580\) −2.45461e6 −0.302979
\(581\) −6.03791e6 −0.742072
\(582\) 371180. 0.0454232
\(583\) −665498. −0.0810915
\(584\) 744580. 0.0903398
\(585\) 4.06448e6 0.491039
\(586\) 8.33396e6 1.00255
\(587\) −668046. −0.0800223 −0.0400112 0.999199i \(-0.512739\pi\)
−0.0400112 + 0.999199i \(0.512739\pi\)
\(588\) −323040. −0.0385312
\(589\) −2.04448e7 −2.42826
\(590\) −4.56528e6 −0.539930
\(591\) −1.85318e6 −0.218247
\(592\) −528722. −0.0620045
\(593\) 1.38808e7 1.62098 0.810488 0.585756i \(-0.199202\pi\)
0.810488 + 0.585756i \(0.199202\pi\)
\(594\) −481625. −0.0560071
\(595\) 4.44356e6 0.514563
\(596\) −7.78394e6 −0.897602
\(597\) −302816. −0.0347731
\(598\) 1.86957e6 0.213791
\(599\) 8.94895e6 1.01907 0.509536 0.860449i \(-0.329817\pi\)
0.509536 + 0.860449i \(0.329817\pi\)
\(600\) 421873. 0.0478413
\(601\) 1.44289e7 1.62947 0.814736 0.579832i \(-0.196882\pi\)
0.814736 + 0.579832i \(0.196882\pi\)
\(602\) −5.68153e6 −0.638960
\(603\) 7.01595e6 0.785766
\(604\) −3.53485e6 −0.394257
\(605\) −3.93482e6 −0.437055
\(606\) −695980. −0.0769866
\(607\) −5.32611e6 −0.586730 −0.293365 0.956001i \(-0.594775\pi\)
−0.293365 + 0.956001i \(0.594775\pi\)
\(608\) −2.50115e6 −0.274398
\(609\) −1.53423e6 −0.167629
\(610\) −1.27419e6 −0.138647
\(611\) −7.08966e6 −0.768285
\(612\) −6.73408e6 −0.726775
\(613\) 859906. 0.0924272 0.0462136 0.998932i \(-0.485285\pi\)
0.0462136 + 0.998932i \(0.485285\pi\)
\(614\) 3.39842e6 0.363795
\(615\) −865763. −0.0923021
\(616\) 577966. 0.0613692
\(617\) −1.20389e7 −1.27313 −0.636567 0.771221i \(-0.719646\pi\)
−0.636567 + 0.771221i \(0.719646\pi\)
\(618\) −1.50866e6 −0.158899
\(619\) −4.91989e6 −0.516094 −0.258047 0.966132i \(-0.583079\pi\)
−0.258047 + 0.966132i \(0.583079\pi\)
\(620\) −3.46092e6 −0.361587
\(621\) −900069. −0.0936584
\(622\) 9.47972e6 0.982470
\(623\) −1.40018e7 −1.44532
\(624\) −458069. −0.0470944
\(625\) 3.95083e6 0.404565
\(626\) 8.36724e6 0.853388
\(627\) −614230. −0.0623968
\(628\) 4.49471e6 0.454781
\(629\) −3.68634e6 −0.371509
\(630\) 2.34819e6 0.235712
\(631\) 1.53560e7 1.53534 0.767670 0.640846i \(-0.221416\pi\)
0.767670 + 0.640846i \(0.221416\pi\)
\(632\) −219381. −0.0218478
\(633\) −665851. −0.0660492
\(634\) −8.44310e6 −0.834216
\(635\) −2.54982e6 −0.250943
\(636\) 304721. 0.0298717
\(637\) 5.01995e6 0.490175
\(638\) −2.22598e6 −0.216506
\(639\) 1.00017e7 0.968996
\(640\) −423397. −0.0408600
\(641\) 9.59300e6 0.922167 0.461083 0.887357i \(-0.347461\pi\)
0.461083 + 0.887357i \(0.347461\pi\)
\(642\) −2.36072e6 −0.226052
\(643\) −1.68680e6 −0.160893 −0.0804465 0.996759i \(-0.525635\pi\)
−0.0804465 + 0.996759i \(0.525635\pi\)
\(644\) 1.08011e6 0.102625
\(645\) 1.02212e6 0.0967394
\(646\) −1.74384e7 −1.64409
\(647\) −1.68323e6 −0.158082 −0.0790409 0.996871i \(-0.525186\pi\)
−0.0790409 + 0.996871i \(0.525186\pi\)
\(648\) −3.44669e6 −0.322451
\(649\) −4.14007e6 −0.385830
\(650\) −6.55579e6 −0.608613
\(651\) −2.16322e6 −0.200055
\(652\) 8.23508e6 0.758663
\(653\) −4.81296e6 −0.441702 −0.220851 0.975308i \(-0.570883\pi\)
−0.220851 + 0.975308i \(0.570883\pi\)
\(654\) 1.24078e6 0.113436
\(655\) −3.62014e6 −0.329703
\(656\) −3.19703e6 −0.290060
\(657\) 2.74335e6 0.247952
\(658\) −4.09593e6 −0.368797
\(659\) −8.55674e6 −0.767529 −0.383764 0.923431i \(-0.625372\pi\)
−0.383764 + 0.923431i \(0.625372\pi\)
\(660\) −103978. −0.00929138
\(661\) −1.00927e7 −0.898473 −0.449237 0.893413i \(-0.648304\pi\)
−0.449237 + 0.893413i \(0.648304\pi\)
\(662\) 1.01222e7 0.897694
\(663\) −3.19374e6 −0.282173
\(664\) 4.01118e6 0.353063
\(665\) 6.08081e6 0.533221
\(666\) −1.94804e6 −0.170181
\(667\) −4.15995e6 −0.362055
\(668\) −7.44627e6 −0.645651
\(669\) −157307. −0.0135889
\(670\) 3.07556e6 0.264690
\(671\) −1.15551e6 −0.0990758
\(672\) −264641. −0.0226066
\(673\) 1.40486e7 1.19563 0.597814 0.801635i \(-0.296036\pi\)
0.597814 + 0.801635i \(0.296036\pi\)
\(674\) 6.28891e6 0.533243
\(675\) 3.15616e6 0.266624
\(676\) 1.17758e6 0.0991113
\(677\) 9.40935e6 0.789020 0.394510 0.918892i \(-0.370914\pi\)
0.394510 + 0.918892i \(0.370914\pi\)
\(678\) 620117. 0.0518083
\(679\) −3.33239e6 −0.277384
\(680\) −2.95200e6 −0.244819
\(681\) −3.31041e6 −0.273535
\(682\) −3.13857e6 −0.258387
\(683\) −1.09826e7 −0.900850 −0.450425 0.892814i \(-0.648728\pi\)
−0.450425 + 0.892814i \(0.648728\pi\)
\(684\) −9.21530e6 −0.753128
\(685\) −1.05629e7 −0.860113
\(686\) 9.37675e6 0.760750
\(687\) 81685.2 0.00660316
\(688\) 3.77443e6 0.304004
\(689\) −4.73528e6 −0.380012
\(690\) −194315. −0.0155376
\(691\) 1.57836e7 1.25750 0.628752 0.777606i \(-0.283566\pi\)
0.628752 + 0.777606i \(0.283566\pi\)
\(692\) 7.53767e6 0.598373
\(693\) 2.12947e6 0.168438
\(694\) 1.62253e7 1.27878
\(695\) −3.02668e6 −0.237687
\(696\) 1.01924e6 0.0797543
\(697\) −2.22903e7 −1.73794
\(698\) 8.52378e6 0.662207
\(699\) −1.21680e6 −0.0941950
\(700\) −3.78749e6 −0.292150
\(701\) 1.19739e7 0.920325 0.460162 0.887835i \(-0.347791\pi\)
0.460162 + 0.887835i \(0.347791\pi\)
\(702\) −3.42695e6 −0.262461
\(703\) −5.04460e6 −0.384980
\(704\) −383962. −0.0291982
\(705\) 736869. 0.0558364
\(706\) −6.96252e6 −0.525720
\(707\) 6.24837e6 0.470131
\(708\) 1.89567e6 0.142128
\(709\) 9.50451e6 0.710091 0.355046 0.934849i \(-0.384465\pi\)
0.355046 + 0.934849i \(0.384465\pi\)
\(710\) 4.38442e6 0.326412
\(711\) −808295. −0.0599647
\(712\) 9.30189e6 0.687656
\(713\) −5.86541e6 −0.432091
\(714\) −1.84513e6 −0.135450
\(715\) 1.61579e6 0.118200
\(716\) −1.97080e6 −0.143668
\(717\) 520511. 0.0378122
\(718\) −3.06833e6 −0.222121
\(719\) −1.90912e7 −1.37724 −0.688622 0.725120i \(-0.741784\pi\)
−0.688622 + 0.725120i \(0.741784\pi\)
\(720\) −1.55998e6 −0.112147
\(721\) 1.35445e7 0.970340
\(722\) −1.39593e7 −0.996603
\(723\) 621885. 0.0442450
\(724\) −1.66445e6 −0.118011
\(725\) 1.45872e7 1.03069
\(726\) 1.63388e6 0.115048
\(727\) 1.03393e7 0.725527 0.362764 0.931881i \(-0.381833\pi\)
0.362764 + 0.931881i \(0.381833\pi\)
\(728\) 4.11245e6 0.287589
\(729\) −1.18617e7 −0.826666
\(730\) 1.20260e6 0.0835243
\(731\) 2.63160e7 1.82149
\(732\) 529089. 0.0364965
\(733\) −9.49287e6 −0.652586 −0.326293 0.945269i \(-0.605800\pi\)
−0.326293 + 0.945269i \(0.605800\pi\)
\(734\) −9.04601e6 −0.619750
\(735\) −521752. −0.0356243
\(736\) −717554. −0.0488270
\(737\) 2.78910e6 0.189145
\(738\) −1.17792e7 −0.796116
\(739\) 8.62625e6 0.581046 0.290523 0.956868i \(-0.406171\pi\)
0.290523 + 0.956868i \(0.406171\pi\)
\(740\) −853956. −0.0573266
\(741\) −4.37049e6 −0.292405
\(742\) −2.73573e6 −0.182416
\(743\) −1.15175e7 −0.765395 −0.382698 0.923874i \(-0.625005\pi\)
−0.382698 + 0.923874i \(0.625005\pi\)
\(744\) 1.43710e6 0.0951820
\(745\) −1.25721e7 −0.829884
\(746\) −2.09774e7 −1.38008
\(747\) 1.47789e7 0.969038
\(748\) −2.67705e6 −0.174945
\(749\) 2.11941e7 1.38042
\(750\) 1.54795e6 0.100485
\(751\) −4.89021e6 −0.316393 −0.158197 0.987408i \(-0.550568\pi\)
−0.158197 + 0.987408i \(0.550568\pi\)
\(752\) 2.72106e6 0.175466
\(753\) −2.65603e6 −0.170705
\(754\) −1.58387e7 −1.01459
\(755\) −5.70926e6 −0.364512
\(756\) −1.97986e6 −0.125988
\(757\) 1.39630e7 0.885606 0.442803 0.896619i \(-0.353984\pi\)
0.442803 + 0.896619i \(0.353984\pi\)
\(758\) −3.26081e6 −0.206136
\(759\) −176217. −0.0111030
\(760\) −4.03969e6 −0.253696
\(761\) −2.10536e7 −1.31785 −0.658925 0.752209i \(-0.728988\pi\)
−0.658925 + 0.752209i \(0.728988\pi\)
\(762\) 1.05878e6 0.0660568
\(763\) −1.11395e7 −0.692714
\(764\) 9.10485e6 0.564338
\(765\) −1.08764e7 −0.671944
\(766\) −367893. −0.0226543
\(767\) −2.94582e7 −1.80808
\(768\) 175810. 0.0107557
\(769\) 3.62465e6 0.221029 0.110515 0.993874i \(-0.464750\pi\)
0.110515 + 0.993874i \(0.464750\pi\)
\(770\) 933492. 0.0567393
\(771\) 2.54395e6 0.154125
\(772\) −8.77135e6 −0.529692
\(773\) −6.05290e6 −0.364347 −0.182173 0.983266i \(-0.558313\pi\)
−0.182173 + 0.983266i \(0.558313\pi\)
\(774\) 1.39066e7 0.834389
\(775\) 2.05675e7 1.23006
\(776\) 2.21382e6 0.131974
\(777\) −533759. −0.0317170
\(778\) 2.15970e7 1.27922
\(779\) −3.05033e7 −1.80096
\(780\) −739842. −0.0435414
\(781\) 3.97605e6 0.233252
\(782\) −5.00292e6 −0.292554
\(783\) 7.62526e6 0.444478
\(784\) −1.92669e6 −0.111950
\(785\) 7.25955e6 0.420471
\(786\) 1.50321e6 0.0867890
\(787\) 1.08966e7 0.627126 0.313563 0.949567i \(-0.398477\pi\)
0.313563 + 0.949567i \(0.398477\pi\)
\(788\) −1.10528e7 −0.634100
\(789\) 999545. 0.0571623
\(790\) −354330. −0.0201995
\(791\) −5.56729e6 −0.316376
\(792\) −1.41468e6 −0.0801393
\(793\) −8.22191e6 −0.464290
\(794\) −1.01892e7 −0.573571
\(795\) 492165. 0.0276180
\(796\) −1.80607e6 −0.101031
\(797\) −1.77449e7 −0.989528 −0.494764 0.869027i \(-0.664745\pi\)
−0.494764 + 0.869027i \(0.664745\pi\)
\(798\) −2.52497e6 −0.140362
\(799\) 1.89717e7 1.05133
\(800\) 2.51616e6 0.138999
\(801\) 3.42721e7 1.88738
\(802\) 6.09857e6 0.334805
\(803\) 1.09059e6 0.0596858
\(804\) −1.27709e6 −0.0696754
\(805\) 1.74453e6 0.0948828
\(806\) −2.23322e7 −1.21086
\(807\) −194119. −0.0104926
\(808\) −4.15100e6 −0.223679
\(809\) −2.11929e7 −1.13846 −0.569232 0.822177i \(-0.692759\pi\)
−0.569232 + 0.822177i \(0.692759\pi\)
\(810\) −5.56686e6 −0.298124
\(811\) 8.97945e6 0.479399 0.239700 0.970847i \(-0.422951\pi\)
0.239700 + 0.970847i \(0.422951\pi\)
\(812\) −9.15056e6 −0.487032
\(813\) 4.71425e6 0.250142
\(814\) −774418. −0.0409651
\(815\) 1.33008e7 0.701427
\(816\) 1.22578e6 0.0644446
\(817\) 3.60122e7 1.88754
\(818\) 1.51431e7 0.791284
\(819\) 1.51520e7 0.789335
\(820\) −5.16364e6 −0.268177
\(821\) −3.01371e7 −1.56043 −0.780213 0.625514i \(-0.784889\pi\)
−0.780213 + 0.625514i \(0.784889\pi\)
\(822\) 4.38609e6 0.226411
\(823\) −5.76171e6 −0.296518 −0.148259 0.988949i \(-0.547367\pi\)
−0.148259 + 0.988949i \(0.547367\pi\)
\(824\) −8.99805e6 −0.461668
\(825\) 617916. 0.0316078
\(826\) −1.70190e7 −0.867927
\(827\) −2.12463e7 −1.08024 −0.540119 0.841589i \(-0.681621\pi\)
−0.540119 + 0.841589i \(0.681621\pi\)
\(828\) −2.64378e6 −0.134014
\(829\) 2.78936e7 1.40967 0.704837 0.709370i \(-0.251020\pi\)
0.704837 + 0.709370i \(0.251020\pi\)
\(830\) 6.47859e6 0.326427
\(831\) −3.51592e6 −0.176619
\(832\) −2.73204e6 −0.136829
\(833\) −1.34332e7 −0.670762
\(834\) 1.25679e6 0.0625672
\(835\) −1.20267e7 −0.596940
\(836\) −3.66343e6 −0.181289
\(837\) 1.07514e7 0.530458
\(838\) 9.08734e6 0.447020
\(839\) 1.88890e7 0.926410 0.463205 0.886251i \(-0.346699\pi\)
0.463205 + 0.886251i \(0.346699\pi\)
\(840\) −427431. −0.0209010
\(841\) 1.47314e7 0.718214
\(842\) 1.68864e6 0.0820838
\(843\) −4.72738e6 −0.229114
\(844\) −3.97130e6 −0.191901
\(845\) 1.90195e6 0.0916340
\(846\) 1.00256e7 0.481596
\(847\) −1.46687e7 −0.702557
\(848\) 1.81743e6 0.0867899
\(849\) 1.97402e6 0.0939903
\(850\) 1.75431e7 0.832835
\(851\) −1.44725e6 −0.0685044
\(852\) −1.82057e6 −0.0859229
\(853\) −3.31375e7 −1.55936 −0.779681 0.626177i \(-0.784619\pi\)
−0.779681 + 0.626177i \(0.784619\pi\)
\(854\) −4.75006e6 −0.222872
\(855\) −1.48839e7 −0.696310
\(856\) −1.40800e7 −0.656776
\(857\) 2.62281e7 1.21987 0.609936 0.792451i \(-0.291195\pi\)
0.609936 + 0.792451i \(0.291195\pi\)
\(858\) −670933. −0.0311143
\(859\) 3.75341e7 1.73557 0.867787 0.496937i \(-0.165542\pi\)
0.867787 + 0.496937i \(0.165542\pi\)
\(860\) 6.09620e6 0.281069
\(861\) −3.22749e6 −0.148374
\(862\) −7.34018e6 −0.336464
\(863\) −2.27040e7 −1.03771 −0.518854 0.854863i \(-0.673641\pi\)
−0.518854 + 0.854863i \(0.673641\pi\)
\(864\) 1.31529e6 0.0599427
\(865\) 1.21743e7 0.553230
\(866\) −6.14221e6 −0.278311
\(867\) 4.73737e6 0.214037
\(868\) −1.29020e7 −0.581244
\(869\) −321327. −0.0144344
\(870\) 1.64621e6 0.0737373
\(871\) 1.98456e7 0.886376
\(872\) 7.40033e6 0.329579
\(873\) 8.15664e6 0.362223
\(874\) −6.84627e6 −0.303163
\(875\) −1.38972e7 −0.613630
\(876\) −499361. −0.0219864
\(877\) 2.62522e7 1.15257 0.576284 0.817250i \(-0.304502\pi\)
0.576284 + 0.817250i \(0.304502\pi\)
\(878\) 1.75512e7 0.768372
\(879\) −5.58927e6 −0.243996
\(880\) −620150. −0.0269954
\(881\) 3.20496e7 1.39118 0.695590 0.718439i \(-0.255143\pi\)
0.695590 + 0.718439i \(0.255143\pi\)
\(882\) −7.09876e6 −0.307264
\(883\) 1.56098e7 0.673745 0.336873 0.941550i \(-0.390631\pi\)
0.336873 + 0.941550i \(0.390631\pi\)
\(884\) −1.90483e7 −0.819832
\(885\) 3.06176e6 0.131405
\(886\) −3.17992e7 −1.36092
\(887\) −3.70919e7 −1.58296 −0.791480 0.611195i \(-0.790689\pi\)
−0.791480 + 0.611195i \(0.790689\pi\)
\(888\) 354594. 0.0150903
\(889\) −9.50551e6 −0.403386
\(890\) 1.50238e7 0.635777
\(891\) −5.04836e6 −0.213037
\(892\) −938222. −0.0394815
\(893\) 2.59620e7 1.08945
\(894\) 5.22039e6 0.218454
\(895\) −3.18310e6 −0.132829
\(896\) −1.57839e6 −0.0656816
\(897\) −1.25385e6 −0.0520313
\(898\) −2.26838e7 −0.938695
\(899\) 4.96910e7 2.05059
\(900\) 9.27060e6 0.381506
\(901\) 1.26715e7 0.520014
\(902\) −4.68269e6 −0.191637
\(903\) 3.81038e6 0.155507
\(904\) 3.69854e6 0.150525
\(905\) −2.68831e6 −0.109108
\(906\) 2.37069e6 0.0959521
\(907\) 3.26587e7 1.31820 0.659098 0.752057i \(-0.270938\pi\)
0.659098 + 0.752057i \(0.270938\pi\)
\(908\) −1.97441e7 −0.794736
\(909\) −1.52941e7 −0.613922
\(910\) 6.64216e6 0.265892
\(911\) −2.64624e7 −1.05641 −0.528206 0.849117i \(-0.677135\pi\)
−0.528206 + 0.849117i \(0.677135\pi\)
\(912\) 1.67742e6 0.0667814
\(913\) 5.87517e6 0.233262
\(914\) −1.83632e7 −0.727083
\(915\) 854550. 0.0337431
\(916\) 487192. 0.0191850
\(917\) −1.34956e7 −0.529990
\(918\) 9.17042e6 0.359155
\(919\) 1.98496e7 0.775287 0.387643 0.921809i \(-0.373289\pi\)
0.387643 + 0.921809i \(0.373289\pi\)
\(920\) −1.15895e6 −0.0451433
\(921\) −2.27919e6 −0.0885384
\(922\) −6.07215e6 −0.235242
\(923\) 2.82912e7 1.09307
\(924\) −387620. −0.0149357
\(925\) 5.07487e6 0.195016
\(926\) −1.51373e7 −0.580126
\(927\) −3.31527e7 −1.26712
\(928\) 6.07902e6 0.231720
\(929\) 3.80714e7 1.44730 0.723652 0.690165i \(-0.242462\pi\)
0.723652 + 0.690165i \(0.242462\pi\)
\(930\) 2.32111e6 0.0880011
\(931\) −1.83828e7 −0.695085
\(932\) −7.25733e6 −0.273676
\(933\) −6.35769e6 −0.239108
\(934\) 2.35164e7 0.882073
\(935\) −4.32379e6 −0.161747
\(936\) −1.00660e7 −0.375550
\(937\) −3.54747e7 −1.31999 −0.659994 0.751271i \(-0.729441\pi\)
−0.659994 + 0.751271i \(0.729441\pi\)
\(938\) 1.14654e7 0.425484
\(939\) −5.61159e6 −0.207693
\(940\) 4.39488e6 0.162228
\(941\) −1.47629e7 −0.543497 −0.271749 0.962368i \(-0.587602\pi\)
−0.271749 + 0.962368i \(0.587602\pi\)
\(942\) −3.01443e6 −0.110682
\(943\) −8.75109e6 −0.320467
\(944\) 1.13063e7 0.412942
\(945\) −3.19774e6 −0.116483
\(946\) 5.52840e6 0.200850
\(947\) 1.95909e7 0.709871 0.354935 0.934891i \(-0.384503\pi\)
0.354935 + 0.934891i \(0.384503\pi\)
\(948\) 147131. 0.00531719
\(949\) 7.75994e6 0.279700
\(950\) 2.40070e7 0.863034
\(951\) 5.66246e6 0.203027
\(952\) −1.10048e7 −0.393541
\(953\) 1.99480e7 0.711488 0.355744 0.934583i \(-0.384227\pi\)
0.355744 + 0.934583i \(0.384227\pi\)
\(954\) 6.69621e6 0.238209
\(955\) 1.47055e7 0.521762
\(956\) 3.10446e6 0.109861
\(957\) 1.49288e6 0.0526921
\(958\) −1.71106e7 −0.602353
\(959\) −3.93774e7 −1.38261
\(960\) 283957. 0.00994429
\(961\) 4.14336e7 1.44725
\(962\) −5.51029e6 −0.191971
\(963\) −5.18766e7 −1.80263
\(964\) 3.70908e6 0.128551
\(965\) −1.41669e7 −0.489730
\(966\) −724390. −0.0249764
\(967\) 5.29988e7 1.82263 0.911317 0.411705i \(-0.135067\pi\)
0.911317 + 0.411705i \(0.135067\pi\)
\(968\) 9.74488e6 0.334263
\(969\) 1.16953e7 0.400131
\(970\) 3.57561e6 0.122017
\(971\) −4.33148e7 −1.47431 −0.737153 0.675725i \(-0.763830\pi\)
−0.737153 + 0.675725i \(0.763830\pi\)
\(972\) 7.30554e6 0.248020
\(973\) −1.12832e7 −0.382077
\(974\) −1.96890e7 −0.665008
\(975\) 4.39672e6 0.148121
\(976\) 3.15563e6 0.106038
\(977\) 3.51591e7 1.17842 0.589212 0.807978i \(-0.299438\pi\)
0.589212 + 0.807978i \(0.299438\pi\)
\(978\) −5.52296e6 −0.184639
\(979\) 1.36245e7 0.454321
\(980\) −3.11187e6 −0.103504
\(981\) 2.72660e7 0.904584
\(982\) −1.78745e7 −0.591500
\(983\) −4.19275e7 −1.38393 −0.691967 0.721929i \(-0.743256\pi\)
−0.691967 + 0.721929i \(0.743256\pi\)
\(984\) 2.14413e6 0.0705932
\(985\) −1.78518e7 −0.586261
\(986\) 4.23840e7 1.38838
\(987\) 2.74698e6 0.0897559
\(988\) −2.60667e7 −0.849560
\(989\) 1.03316e7 0.335873
\(990\) −2.28490e6 −0.0740932
\(991\) −2.45776e7 −0.794980 −0.397490 0.917607i \(-0.630119\pi\)
−0.397490 + 0.917607i \(0.630119\pi\)
\(992\) 8.57124e6 0.276544
\(993\) −6.78854e6 −0.218476
\(994\) 1.63447e7 0.524701
\(995\) −2.91705e6 −0.0934085
\(996\) −2.69015e6 −0.0859266
\(997\) −9.59067e6 −0.305570 −0.152785 0.988259i \(-0.548824\pi\)
−0.152785 + 0.988259i \(0.548824\pi\)
\(998\) −9.27567e6 −0.294794
\(999\) 2.65282e6 0.0840997
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.c.1.17 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.c.1.17 30 1.1 even 1 trivial