Properties

Label 538.6.a.c.1.7
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $1$
Dimension $30$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(1\)
Dimension: \(30\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -18.8532 q^{3} +16.0000 q^{4} -69.9105 q^{5} +75.4127 q^{6} +251.245 q^{7} -64.0000 q^{8} +112.442 q^{9} +279.642 q^{10} -554.401 q^{11} -301.651 q^{12} -295.362 q^{13} -1004.98 q^{14} +1318.03 q^{15} +256.000 q^{16} +1041.08 q^{17} -449.767 q^{18} +698.194 q^{19} -1118.57 q^{20} -4736.77 q^{21} +2217.60 q^{22} -3561.09 q^{23} +1206.60 q^{24} +1762.48 q^{25} +1181.45 q^{26} +2461.43 q^{27} +4019.92 q^{28} -5777.94 q^{29} -5272.14 q^{30} +851.123 q^{31} -1024.00 q^{32} +10452.2 q^{33} -4164.32 q^{34} -17564.7 q^{35} +1799.07 q^{36} +11407.6 q^{37} -2792.78 q^{38} +5568.51 q^{39} +4474.27 q^{40} -2368.35 q^{41} +18947.1 q^{42} -4542.00 q^{43} -8870.42 q^{44} -7860.87 q^{45} +14244.3 q^{46} +15678.2 q^{47} -4826.41 q^{48} +46317.2 q^{49} -7049.92 q^{50} -19627.7 q^{51} -4725.79 q^{52} +29228.9 q^{53} -9845.74 q^{54} +38758.5 q^{55} -16079.7 q^{56} -13163.2 q^{57} +23111.8 q^{58} +7562.69 q^{59} +21088.6 q^{60} -40717.5 q^{61} -3404.49 q^{62} +28250.5 q^{63} +4096.00 q^{64} +20648.9 q^{65} -41808.9 q^{66} +65923.1 q^{67} +16657.3 q^{68} +67137.7 q^{69} +70258.7 q^{70} +81488.4 q^{71} -7196.28 q^{72} +13007.3 q^{73} -45630.3 q^{74} -33228.3 q^{75} +11171.1 q^{76} -139291. q^{77} -22274.0 q^{78} +49650.7 q^{79} -17897.1 q^{80} -73729.2 q^{81} +9473.38 q^{82} +27957.3 q^{83} -75788.3 q^{84} -72782.5 q^{85} +18168.0 q^{86} +108932. q^{87} +35481.7 q^{88} -112434. q^{89} +31443.5 q^{90} -74208.3 q^{91} -56977.4 q^{92} -16046.4 q^{93} -62712.6 q^{94} -48811.1 q^{95} +19305.6 q^{96} -4913.93 q^{97} -185269. q^{98} -62337.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 120 q^{2} - 30 q^{3} + 480 q^{4} - 136 q^{5} + 120 q^{6} - 123 q^{7} - 1920 q^{8} + 2670 q^{9} + 544 q^{10} - 1058 q^{11} - 480 q^{12} - 371 q^{13} + 492 q^{14} - 1364 q^{15} + 7680 q^{16} - 1918 q^{17}+ \cdots - 78063 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −18.8532 −1.20943 −0.604716 0.796442i \(-0.706713\pi\)
−0.604716 + 0.796442i \(0.706713\pi\)
\(4\) 16.0000 0.500000
\(5\) −69.9105 −1.25060 −0.625299 0.780386i \(-0.715023\pi\)
−0.625299 + 0.780386i \(0.715023\pi\)
\(6\) 75.4127 0.855197
\(7\) 251.245 1.93800 0.968998 0.247070i \(-0.0794676\pi\)
0.968998 + 0.247070i \(0.0794676\pi\)
\(8\) −64.0000 −0.353553
\(9\) 112.442 0.462724
\(10\) 279.642 0.884306
\(11\) −554.401 −1.38147 −0.690736 0.723107i \(-0.742713\pi\)
−0.690736 + 0.723107i \(0.742713\pi\)
\(12\) −301.651 −0.604716
\(13\) −295.362 −0.484726 −0.242363 0.970186i \(-0.577922\pi\)
−0.242363 + 0.970186i \(0.577922\pi\)
\(14\) −1004.98 −1.37037
\(15\) 1318.03 1.51251
\(16\) 256.000 0.250000
\(17\) 1041.08 0.873699 0.436850 0.899535i \(-0.356094\pi\)
0.436850 + 0.899535i \(0.356094\pi\)
\(18\) −449.767 −0.327195
\(19\) 698.194 0.443703 0.221851 0.975080i \(-0.428790\pi\)
0.221851 + 0.975080i \(0.428790\pi\)
\(20\) −1118.57 −0.625299
\(21\) −4736.77 −2.34387
\(22\) 2217.60 0.976849
\(23\) −3561.09 −1.40366 −0.701832 0.712343i \(-0.747634\pi\)
−0.701832 + 0.712343i \(0.747634\pi\)
\(24\) 1206.60 0.427598
\(25\) 1762.48 0.563993
\(26\) 1181.45 0.342753
\(27\) 2461.43 0.649799
\(28\) 4019.92 0.968998
\(29\) −5777.94 −1.27579 −0.637893 0.770125i \(-0.720194\pi\)
−0.637893 + 0.770125i \(0.720194\pi\)
\(30\) −5272.14 −1.06951
\(31\) 851.123 0.159070 0.0795349 0.996832i \(-0.474656\pi\)
0.0795349 + 0.996832i \(0.474656\pi\)
\(32\) −1024.00 −0.176777
\(33\) 10452.2 1.67080
\(34\) −4164.32 −0.617799
\(35\) −17564.7 −2.42365
\(36\) 1799.07 0.231362
\(37\) 11407.6 1.36990 0.684950 0.728590i \(-0.259824\pi\)
0.684950 + 0.728590i \(0.259824\pi\)
\(38\) −2792.78 −0.313745
\(39\) 5568.51 0.586243
\(40\) 4474.27 0.442153
\(41\) −2368.35 −0.220032 −0.110016 0.993930i \(-0.535090\pi\)
−0.110016 + 0.993930i \(0.535090\pi\)
\(42\) 18947.1 1.65737
\(43\) −4542.00 −0.374607 −0.187303 0.982302i \(-0.559975\pi\)
−0.187303 + 0.982302i \(0.559975\pi\)
\(44\) −8870.42 −0.690736
\(45\) −7860.87 −0.578681
\(46\) 14244.3 0.992540
\(47\) 15678.2 1.03526 0.517631 0.855604i \(-0.326814\pi\)
0.517631 + 0.855604i \(0.326814\pi\)
\(48\) −4826.41 −0.302358
\(49\) 46317.2 2.75583
\(50\) −7049.92 −0.398804
\(51\) −19627.7 −1.05668
\(52\) −4725.79 −0.242363
\(53\) 29228.9 1.42930 0.714649 0.699483i \(-0.246587\pi\)
0.714649 + 0.699483i \(0.246587\pi\)
\(54\) −9845.74 −0.459477
\(55\) 38758.5 1.72767
\(56\) −16079.7 −0.685185
\(57\) −13163.2 −0.536628
\(58\) 23111.8 0.902117
\(59\) 7562.69 0.282844 0.141422 0.989949i \(-0.454833\pi\)
0.141422 + 0.989949i \(0.454833\pi\)
\(60\) 21088.6 0.756256
\(61\) −40717.5 −1.40106 −0.700530 0.713623i \(-0.747053\pi\)
−0.700530 + 0.713623i \(0.747053\pi\)
\(62\) −3404.49 −0.112479
\(63\) 28250.5 0.896756
\(64\) 4096.00 0.125000
\(65\) 20648.9 0.606197
\(66\) −41808.9 −1.18143
\(67\) 65923.1 1.79412 0.897058 0.441913i \(-0.145700\pi\)
0.897058 + 0.441913i \(0.145700\pi\)
\(68\) 16657.3 0.436850
\(69\) 67137.7 1.69763
\(70\) 70258.7 1.71378
\(71\) 81488.4 1.91845 0.959224 0.282648i \(-0.0912130\pi\)
0.959224 + 0.282648i \(0.0912130\pi\)
\(72\) −7196.28 −0.163597
\(73\) 13007.3 0.285679 0.142840 0.989746i \(-0.454377\pi\)
0.142840 + 0.989746i \(0.454377\pi\)
\(74\) −45630.3 −0.968666
\(75\) −33228.3 −0.682111
\(76\) 11171.1 0.221851
\(77\) −139291. −2.67729
\(78\) −22274.0 −0.414536
\(79\) 49650.7 0.895071 0.447535 0.894266i \(-0.352302\pi\)
0.447535 + 0.894266i \(0.352302\pi\)
\(80\) −17897.1 −0.312649
\(81\) −73729.2 −1.24861
\(82\) 9473.38 0.155586
\(83\) 27957.3 0.445451 0.222725 0.974881i \(-0.428505\pi\)
0.222725 + 0.974881i \(0.428505\pi\)
\(84\) −75788.3 −1.17194
\(85\) −72782.5 −1.09265
\(86\) 18168.0 0.264887
\(87\) 108932. 1.54298
\(88\) 35481.7 0.488424
\(89\) −112434. −1.50461 −0.752305 0.658816i \(-0.771058\pi\)
−0.752305 + 0.658816i \(0.771058\pi\)
\(90\) 31443.5 0.409189
\(91\) −74208.3 −0.939397
\(92\) −56977.4 −0.701832
\(93\) −16046.4 −0.192384
\(94\) −62712.6 −0.732041
\(95\) −48811.1 −0.554894
\(96\) 19305.6 0.213799
\(97\) −4913.93 −0.0530273 −0.0265136 0.999648i \(-0.508441\pi\)
−0.0265136 + 0.999648i \(0.508441\pi\)
\(98\) −185269. −1.94866
\(99\) −62337.9 −0.639240
\(100\) 28199.7 0.281997
\(101\) −129473. −1.26292 −0.631462 0.775407i \(-0.717545\pi\)
−0.631462 + 0.775407i \(0.717545\pi\)
\(102\) 78510.7 0.747185
\(103\) −168318. −1.56329 −0.781644 0.623725i \(-0.785618\pi\)
−0.781644 + 0.623725i \(0.785618\pi\)
\(104\) 18903.2 0.171377
\(105\) 331150. 2.93124
\(106\) −116916. −1.01067
\(107\) −108423. −0.915508 −0.457754 0.889079i \(-0.651346\pi\)
−0.457754 + 0.889079i \(0.651346\pi\)
\(108\) 39383.0 0.324899
\(109\) −197910. −1.59551 −0.797757 0.602979i \(-0.793980\pi\)
−0.797757 + 0.602979i \(0.793980\pi\)
\(110\) −155034. −1.22164
\(111\) −215069. −1.65680
\(112\) 64318.8 0.484499
\(113\) 246225. 1.81400 0.906999 0.421133i \(-0.138368\pi\)
0.906999 + 0.421133i \(0.138368\pi\)
\(114\) 52652.7 0.379453
\(115\) 248957. 1.75542
\(116\) −92447.0 −0.637893
\(117\) −33211.0 −0.224294
\(118\) −30250.8 −0.200001
\(119\) 261567. 1.69323
\(120\) −84354.2 −0.534753
\(121\) 146309. 0.908467
\(122\) 162870. 0.990700
\(123\) 44650.8 0.266113
\(124\) 13618.0 0.0795349
\(125\) 95254.5 0.545269
\(126\) −113002. −0.634102
\(127\) 258489. 1.42211 0.711056 0.703136i \(-0.248217\pi\)
0.711056 + 0.703136i \(0.248217\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 85631.0 0.453061
\(130\) −82595.7 −0.428646
\(131\) 133258. 0.678448 0.339224 0.940706i \(-0.389836\pi\)
0.339224 + 0.940706i \(0.389836\pi\)
\(132\) 167235. 0.835398
\(133\) 175418. 0.859894
\(134\) −263692. −1.26863
\(135\) −172080. −0.812637
\(136\) −66629.2 −0.308899
\(137\) −317756. −1.44642 −0.723208 0.690631i \(-0.757333\pi\)
−0.723208 + 0.690631i \(0.757333\pi\)
\(138\) −268551. −1.20041
\(139\) −92680.8 −0.406867 −0.203434 0.979089i \(-0.565210\pi\)
−0.203434 + 0.979089i \(0.565210\pi\)
\(140\) −281035. −1.21183
\(141\) −295583. −1.25208
\(142\) −325954. −1.35655
\(143\) 163749. 0.669636
\(144\) 28785.1 0.115681
\(145\) 403939. 1.59550
\(146\) −52029.1 −0.202006
\(147\) −873225. −3.33298
\(148\) 182521. 0.684950
\(149\) 16076.4 0.0593231 0.0296615 0.999560i \(-0.490557\pi\)
0.0296615 + 0.999560i \(0.490557\pi\)
\(150\) 132913. 0.482325
\(151\) 255779. 0.912900 0.456450 0.889749i \(-0.349121\pi\)
0.456450 + 0.889749i \(0.349121\pi\)
\(152\) −44684.4 −0.156873
\(153\) 117061. 0.404281
\(154\) 557162. 1.89313
\(155\) −59502.4 −0.198932
\(156\) 89096.2 0.293121
\(157\) −336742. −1.09030 −0.545152 0.838337i \(-0.683528\pi\)
−0.545152 + 0.838337i \(0.683528\pi\)
\(158\) −198603. −0.632911
\(159\) −551057. −1.72864
\(160\) 71588.4 0.221076
\(161\) −894706. −2.72029
\(162\) 294917. 0.882901
\(163\) 124878. 0.368143 0.184072 0.982913i \(-0.441072\pi\)
0.184072 + 0.982913i \(0.441072\pi\)
\(164\) −37893.5 −0.110016
\(165\) −730720. −2.08949
\(166\) −111829. −0.314981
\(167\) −418305. −1.16065 −0.580325 0.814385i \(-0.697075\pi\)
−0.580325 + 0.814385i \(0.697075\pi\)
\(168\) 303153. 0.828684
\(169\) −284054. −0.765041
\(170\) 291130. 0.772617
\(171\) 78506.2 0.205312
\(172\) −72672.0 −0.187303
\(173\) 603777. 1.53377 0.766887 0.641782i \(-0.221804\pi\)
0.766887 + 0.641782i \(0.221804\pi\)
\(174\) −435730. −1.09105
\(175\) 442815. 1.09302
\(176\) −141927. −0.345368
\(177\) −142581. −0.342080
\(178\) 449737. 1.06392
\(179\) −764371. −1.78308 −0.891542 0.452938i \(-0.850376\pi\)
−0.891542 + 0.452938i \(0.850376\pi\)
\(180\) −125774. −0.289340
\(181\) −443900. −1.00714 −0.503569 0.863955i \(-0.667980\pi\)
−0.503569 + 0.863955i \(0.667980\pi\)
\(182\) 296833. 0.664254
\(183\) 767655. 1.69449
\(184\) 227910. 0.496270
\(185\) −797510. −1.71319
\(186\) 64185.4 0.136036
\(187\) −577176. −1.20699
\(188\) 250851. 0.517631
\(189\) 618424. 1.25931
\(190\) 195244. 0.392369
\(191\) −229314. −0.454828 −0.227414 0.973798i \(-0.573027\pi\)
−0.227414 + 0.973798i \(0.573027\pi\)
\(192\) −77222.6 −0.151179
\(193\) 423980. 0.819316 0.409658 0.912239i \(-0.365648\pi\)
0.409658 + 0.912239i \(0.365648\pi\)
\(194\) 19655.7 0.0374959
\(195\) −389297. −0.733154
\(196\) 741075. 1.37791
\(197\) 303119. 0.556477 0.278239 0.960512i \(-0.410249\pi\)
0.278239 + 0.960512i \(0.410249\pi\)
\(198\) 249351. 0.452011
\(199\) 352737. 0.631421 0.315710 0.948856i \(-0.397757\pi\)
0.315710 + 0.948856i \(0.397757\pi\)
\(200\) −112799. −0.199402
\(201\) −1.24286e6 −2.16986
\(202\) 517894. 0.893023
\(203\) −1.45168e6 −2.47247
\(204\) −314043. −0.528340
\(205\) 165572. 0.275171
\(206\) 673274. 1.10541
\(207\) −400415. −0.649508
\(208\) −75612.7 −0.121182
\(209\) −387080. −0.612963
\(210\) −1.32460e6 −2.07270
\(211\) −1.17010e6 −1.80933 −0.904663 0.426128i \(-0.859877\pi\)
−0.904663 + 0.426128i \(0.859877\pi\)
\(212\) 467662. 0.714649
\(213\) −1.53631e6 −2.32023
\(214\) 433692. 0.647362
\(215\) 317533. 0.468482
\(216\) −157532. −0.229739
\(217\) 213841. 0.308277
\(218\) 791639. 1.12820
\(219\) −245228. −0.345510
\(220\) 620135. 0.863833
\(221\) −307496. −0.423505
\(222\) 860276. 1.17154
\(223\) 267505. 0.360221 0.180111 0.983646i \(-0.442354\pi\)
0.180111 + 0.983646i \(0.442354\pi\)
\(224\) −257275. −0.342592
\(225\) 198176. 0.260973
\(226\) −984901. −1.28269
\(227\) −795470. −1.02461 −0.512305 0.858803i \(-0.671208\pi\)
−0.512305 + 0.858803i \(0.671208\pi\)
\(228\) −210611. −0.268314
\(229\) 254230. 0.320360 0.160180 0.987088i \(-0.448793\pi\)
0.160180 + 0.987088i \(0.448793\pi\)
\(230\) −995830. −1.24127
\(231\) 2.62607e6 3.23800
\(232\) 369788. 0.451059
\(233\) −659664. −0.796036 −0.398018 0.917377i \(-0.630302\pi\)
−0.398018 + 0.917377i \(0.630302\pi\)
\(234\) 132844. 0.158600
\(235\) −1.09607e6 −1.29470
\(236\) 121003. 0.141422
\(237\) −936072. −1.08253
\(238\) −1.04627e6 −1.19729
\(239\) 29221.6 0.0330909 0.0165455 0.999863i \(-0.494733\pi\)
0.0165455 + 0.999863i \(0.494733\pi\)
\(240\) 337417. 0.378128
\(241\) 681088. 0.755372 0.377686 0.925934i \(-0.376720\pi\)
0.377686 + 0.925934i \(0.376720\pi\)
\(242\) −585238. −0.642383
\(243\) 791900. 0.860309
\(244\) −651481. −0.700530
\(245\) −3.23806e6 −3.44643
\(246\) −178603. −0.188171
\(247\) −206220. −0.215074
\(248\) −54471.9 −0.0562397
\(249\) −527083. −0.538742
\(250\) −381018. −0.385563
\(251\) 1.33876e6 1.34127 0.670636 0.741786i \(-0.266021\pi\)
0.670636 + 0.741786i \(0.266021\pi\)
\(252\) 452008. 0.448378
\(253\) 1.97427e6 1.93912
\(254\) −1.03396e6 −1.00558
\(255\) 1.37218e6 1.32148
\(256\) 65536.0 0.0625000
\(257\) 806338. 0.761525 0.380763 0.924673i \(-0.375662\pi\)
0.380763 + 0.924673i \(0.375662\pi\)
\(258\) −342524. −0.320363
\(259\) 2.86610e6 2.65486
\(260\) 330383. 0.303099
\(261\) −649682. −0.590336
\(262\) −533034. −0.479735
\(263\) −1.16728e6 −1.04060 −0.520301 0.853983i \(-0.674180\pi\)
−0.520301 + 0.853983i \(0.674180\pi\)
\(264\) −668942. −0.590716
\(265\) −2.04341e6 −1.78748
\(266\) −701672. −0.608037
\(267\) 2.11974e6 1.81972
\(268\) 1.05477e6 0.897058
\(269\) −72361.0 −0.0609711
\(270\) 688321. 0.574621
\(271\) −118480. −0.0979991 −0.0489996 0.998799i \(-0.515603\pi\)
−0.0489996 + 0.998799i \(0.515603\pi\)
\(272\) 266517. 0.218425
\(273\) 1.39906e6 1.13614
\(274\) 1.27103e6 1.02277
\(275\) −977121. −0.779142
\(276\) 1.07420e6 0.848817
\(277\) 1.28672e6 1.00759 0.503795 0.863823i \(-0.331937\pi\)
0.503795 + 0.863823i \(0.331937\pi\)
\(278\) 370723. 0.287699
\(279\) 95701.8 0.0736054
\(280\) 1.12414e6 0.856890
\(281\) 160733. 0.121434 0.0607169 0.998155i \(-0.480661\pi\)
0.0607169 + 0.998155i \(0.480661\pi\)
\(282\) 1.18233e6 0.885353
\(283\) −2.23047e6 −1.65551 −0.827754 0.561092i \(-0.810381\pi\)
−0.827754 + 0.561092i \(0.810381\pi\)
\(284\) 1.30381e6 0.959224
\(285\) 920244. 0.671106
\(286\) −654996. −0.473504
\(287\) −595036. −0.426421
\(288\) −115140. −0.0817987
\(289\) −336008. −0.236649
\(290\) −1.61575e6 −1.12819
\(291\) 92643.0 0.0641328
\(292\) 208116. 0.142840
\(293\) 411529. 0.280047 0.140024 0.990148i \(-0.455282\pi\)
0.140024 + 0.990148i \(0.455282\pi\)
\(294\) 3.49290e6 2.35677
\(295\) −528712. −0.353723
\(296\) −730085. −0.484333
\(297\) −1.36462e6 −0.897679
\(298\) −64305.7 −0.0419477
\(299\) 1.05181e6 0.680392
\(300\) −531653. −0.341056
\(301\) −1.14116e6 −0.725987
\(302\) −1.02312e6 −0.645518
\(303\) 2.44099e6 1.52742
\(304\) 178738. 0.110926
\(305\) 2.84658e6 1.75216
\(306\) −468244. −0.285870
\(307\) −565267. −0.342300 −0.171150 0.985245i \(-0.554748\pi\)
−0.171150 + 0.985245i \(0.554748\pi\)
\(308\) −2.22865e6 −1.33864
\(309\) 3.17334e6 1.89069
\(310\) 238010. 0.140666
\(311\) −2.52349e6 −1.47945 −0.739727 0.672907i \(-0.765045\pi\)
−0.739727 + 0.672907i \(0.765045\pi\)
\(312\) −356385. −0.207268
\(313\) −2.11561e6 −1.22060 −0.610302 0.792169i \(-0.708952\pi\)
−0.610302 + 0.792169i \(0.708952\pi\)
\(314\) 1.34697e6 0.770962
\(315\) −1.97500e6 −1.12148
\(316\) 794411. 0.447535
\(317\) −743761. −0.415705 −0.207853 0.978160i \(-0.566647\pi\)
−0.207853 + 0.978160i \(0.566647\pi\)
\(318\) 2.20423e6 1.22233
\(319\) 3.20330e6 1.76246
\(320\) −286353. −0.156325
\(321\) 2.04412e6 1.10724
\(322\) 3.57882e6 1.92354
\(323\) 726876. 0.387663
\(324\) −1.17967e6 −0.624305
\(325\) −520570. −0.273382
\(326\) −499512. −0.260316
\(327\) 3.73122e6 1.92967
\(328\) 151574. 0.0777930
\(329\) 3.93906e6 2.00633
\(330\) 2.92288e6 1.47749
\(331\) 2.29328e6 1.15050 0.575251 0.817977i \(-0.304904\pi\)
0.575251 + 0.817977i \(0.304904\pi\)
\(332\) 447317. 0.222725
\(333\) 1.28269e6 0.633885
\(334\) 1.67322e6 0.820704
\(335\) −4.60872e6 −2.24372
\(336\) −1.21261e6 −0.585968
\(337\) −1.72298e6 −0.826427 −0.413213 0.910634i \(-0.635594\pi\)
−0.413213 + 0.910634i \(0.635594\pi\)
\(338\) 1.13622e6 0.540965
\(339\) −4.64213e6 −2.19390
\(340\) −1.16452e6 −0.546323
\(341\) −471863. −0.219751
\(342\) −314025. −0.145177
\(343\) 7.41429e6 3.40278
\(344\) 290688. 0.132444
\(345\) −4.69363e6 −2.12306
\(346\) −2.41511e6 −1.08454
\(347\) 2.22978e6 0.994120 0.497060 0.867716i \(-0.334413\pi\)
0.497060 + 0.867716i \(0.334413\pi\)
\(348\) 1.74292e6 0.771488
\(349\) 826665. 0.363301 0.181650 0.983363i \(-0.441856\pi\)
0.181650 + 0.983363i \(0.441856\pi\)
\(350\) −1.77126e6 −0.772880
\(351\) −727014. −0.314974
\(352\) 567707. 0.244212
\(353\) 2.30753e6 0.985623 0.492812 0.870136i \(-0.335969\pi\)
0.492812 + 0.870136i \(0.335969\pi\)
\(354\) 570323. 0.241887
\(355\) −5.69689e6 −2.39920
\(356\) −1.79895e6 −0.752305
\(357\) −4.93136e6 −2.04784
\(358\) 3.05748e6 1.26083
\(359\) −1.10481e6 −0.452429 −0.226215 0.974077i \(-0.572635\pi\)
−0.226215 + 0.974077i \(0.572635\pi\)
\(360\) 503095. 0.204595
\(361\) −1.98862e6 −0.803128
\(362\) 1.77560e6 0.712154
\(363\) −2.75840e6 −1.09873
\(364\) −1.18733e6 −0.469698
\(365\) −909345. −0.357270
\(366\) −3.07062e6 −1.19818
\(367\) −1.02020e6 −0.395383 −0.197692 0.980264i \(-0.563344\pi\)
−0.197692 + 0.980264i \(0.563344\pi\)
\(368\) −911638. −0.350916
\(369\) −266301. −0.101814
\(370\) 3.19004e6 1.21141
\(371\) 7.34362e6 2.76997
\(372\) −256742. −0.0961920
\(373\) −4.50224e6 −1.67555 −0.837774 0.546017i \(-0.816143\pi\)
−0.837774 + 0.546017i \(0.816143\pi\)
\(374\) 2.30870e6 0.853472
\(375\) −1.79585e6 −0.659465
\(376\) −1.00340e6 −0.366021
\(377\) 1.70658e6 0.618407
\(378\) −2.47370e6 −0.890465
\(379\) −4.18405e6 −1.49623 −0.748115 0.663569i \(-0.769041\pi\)
−0.748115 + 0.663569i \(0.769041\pi\)
\(380\) −780978. −0.277447
\(381\) −4.87334e6 −1.71995
\(382\) 917256. 0.321612
\(383\) 2.78375e6 0.969692 0.484846 0.874600i \(-0.338876\pi\)
0.484846 + 0.874600i \(0.338876\pi\)
\(384\) 308890. 0.106900
\(385\) 9.73788e6 3.34821
\(386\) −1.69592e6 −0.579344
\(387\) −510711. −0.173339
\(388\) −78622.8 −0.0265136
\(389\) 2.10399e6 0.704969 0.352484 0.935818i \(-0.385337\pi\)
0.352484 + 0.935818i \(0.385337\pi\)
\(390\) 1.55719e6 0.518418
\(391\) −3.70738e6 −1.22638
\(392\) −2.96430e6 −0.974332
\(393\) −2.51234e6 −0.820536
\(394\) −1.21248e6 −0.393489
\(395\) −3.47110e6 −1.11937
\(396\) −997406. −0.319620
\(397\) −3.33402e6 −1.06168 −0.530838 0.847473i \(-0.678123\pi\)
−0.530838 + 0.847473i \(0.678123\pi\)
\(398\) −1.41095e6 −0.446482
\(399\) −3.30718e6 −1.03998
\(400\) 451195. 0.140998
\(401\) 2.15526e6 0.669327 0.334663 0.942338i \(-0.391377\pi\)
0.334663 + 0.942338i \(0.391377\pi\)
\(402\) 4.97144e6 1.53432
\(403\) −251389. −0.0771053
\(404\) −2.07158e6 −0.631462
\(405\) 5.15445e6 1.56151
\(406\) 5.80672e6 1.74830
\(407\) −6.32437e6 −1.89248
\(408\) 1.25617e6 0.373593
\(409\) 3.01358e6 0.890788 0.445394 0.895335i \(-0.353064\pi\)
0.445394 + 0.895335i \(0.353064\pi\)
\(410\) −662289. −0.194575
\(411\) 5.99071e6 1.74934
\(412\) −2.69310e6 −0.781644
\(413\) 1.90009e6 0.548150
\(414\) 1.60166e6 0.459272
\(415\) −1.95451e6 −0.557080
\(416\) 302451. 0.0856883
\(417\) 1.74733e6 0.492078
\(418\) 1.54832e6 0.433431
\(419\) −2.28129e6 −0.634814 −0.317407 0.948289i \(-0.602812\pi\)
−0.317407 + 0.948289i \(0.602812\pi\)
\(420\) 5.29840e6 1.46562
\(421\) −1.88462e6 −0.518224 −0.259112 0.965847i \(-0.583430\pi\)
−0.259112 + 0.965847i \(0.583430\pi\)
\(422\) 4.68040e6 1.27939
\(423\) 1.76288e6 0.479040
\(424\) −1.87065e6 −0.505333
\(425\) 1.83488e6 0.492761
\(426\) 6.14526e6 1.64065
\(427\) −1.02301e7 −2.71525
\(428\) −1.73477e6 −0.457754
\(429\) −3.08719e6 −0.809878
\(430\) −1.27013e6 −0.331267
\(431\) 2.51782e6 0.652877 0.326439 0.945218i \(-0.394151\pi\)
0.326439 + 0.945218i \(0.394151\pi\)
\(432\) 630127. 0.162450
\(433\) 2.60939e6 0.668834 0.334417 0.942425i \(-0.391461\pi\)
0.334417 + 0.942425i \(0.391461\pi\)
\(434\) −855362. −0.217985
\(435\) −7.61552e6 −1.92964
\(436\) −3.16656e6 −0.797757
\(437\) −2.48633e6 −0.622809
\(438\) 980913. 0.244312
\(439\) −96190.9 −0.0238217 −0.0119108 0.999929i \(-0.503791\pi\)
−0.0119108 + 0.999929i \(0.503791\pi\)
\(440\) −2.48054e6 −0.610822
\(441\) 5.20799e6 1.27519
\(442\) 1.22998e6 0.299463
\(443\) 714512. 0.172982 0.0864908 0.996253i \(-0.472435\pi\)
0.0864908 + 0.996253i \(0.472435\pi\)
\(444\) −3.44110e6 −0.828400
\(445\) 7.86034e6 1.88166
\(446\) −1.07002e6 −0.254715
\(447\) −303091. −0.0717471
\(448\) 1.02910e6 0.242249
\(449\) 480835. 0.112559 0.0562796 0.998415i \(-0.482076\pi\)
0.0562796 + 0.998415i \(0.482076\pi\)
\(450\) −792706. −0.184536
\(451\) 1.31301e6 0.303968
\(452\) 3.93961e6 0.906999
\(453\) −4.82225e6 −1.10409
\(454\) 3.18188e6 0.724509
\(455\) 5.18794e6 1.17481
\(456\) 842443. 0.189727
\(457\) −5.83406e6 −1.30671 −0.653357 0.757050i \(-0.726640\pi\)
−0.653357 + 0.757050i \(0.726640\pi\)
\(458\) −1.01692e6 −0.226528
\(459\) 2.56255e6 0.567729
\(460\) 3.98332e6 0.877709
\(461\) −2.54633e6 −0.558036 −0.279018 0.960286i \(-0.590009\pi\)
−0.279018 + 0.960286i \(0.590009\pi\)
\(462\) −1.05043e7 −2.28961
\(463\) 2.21247e6 0.479650 0.239825 0.970816i \(-0.422910\pi\)
0.239825 + 0.970816i \(0.422910\pi\)
\(464\) −1.47915e6 −0.318947
\(465\) 1.12181e6 0.240595
\(466\) 2.63866e6 0.562883
\(467\) −3.86803e6 −0.820725 −0.410362 0.911923i \(-0.634598\pi\)
−0.410362 + 0.911923i \(0.634598\pi\)
\(468\) −531377. −0.112147
\(469\) 1.65629e7 3.47699
\(470\) 4.38427e6 0.915489
\(471\) 6.34865e6 1.31865
\(472\) −484012. −0.100000
\(473\) 2.51809e6 0.517509
\(474\) 3.74429e6 0.765462
\(475\) 1.23055e6 0.250246
\(476\) 4.18506e6 0.846613
\(477\) 3.28655e6 0.661370
\(478\) −116886. −0.0233988
\(479\) 871432. 0.173538 0.0867691 0.996228i \(-0.472346\pi\)
0.0867691 + 0.996228i \(0.472346\pi\)
\(480\) −1.34967e6 −0.267377
\(481\) −3.36937e6 −0.664027
\(482\) −2.72435e6 −0.534129
\(483\) 1.68680e7 3.29001
\(484\) 2.34095e6 0.454233
\(485\) 343535. 0.0663158
\(486\) −3.16760e6 −0.608331
\(487\) −8.60687e6 −1.64446 −0.822229 0.569157i \(-0.807270\pi\)
−0.822229 + 0.569157i \(0.807270\pi\)
\(488\) 2.60592e6 0.495350
\(489\) −2.35434e6 −0.445244
\(490\) 1.29522e7 2.43699
\(491\) −5.64835e6 −1.05735 −0.528674 0.848825i \(-0.677311\pi\)
−0.528674 + 0.848825i \(0.677311\pi\)
\(492\) 714413. 0.133057
\(493\) −6.01530e6 −1.11465
\(494\) 824880. 0.152081
\(495\) 4.35807e6 0.799432
\(496\) 217887. 0.0397675
\(497\) 2.04736e7 3.71794
\(498\) 2.10833e6 0.380948
\(499\) 4909.17 0.000882586 0 0.000441293 1.00000i \(-0.499860\pi\)
0.000441293 1.00000i \(0.499860\pi\)
\(500\) 1.52407e6 0.272634
\(501\) 7.88637e6 1.40373
\(502\) −5.35502e6 −0.948423
\(503\) −3.87946e6 −0.683678 −0.341839 0.939759i \(-0.611050\pi\)
−0.341839 + 0.939759i \(0.611050\pi\)
\(504\) −1.80803e6 −0.317051
\(505\) 9.05156e6 1.57941
\(506\) −7.89708e6 −1.37117
\(507\) 5.35532e6 0.925264
\(508\) 4.13583e6 0.711056
\(509\) −192712. −0.0329696 −0.0164848 0.999864i \(-0.505248\pi\)
−0.0164848 + 0.999864i \(0.505248\pi\)
\(510\) −5.48872e6 −0.934428
\(511\) 3.26801e6 0.553645
\(512\) −262144. −0.0441942
\(513\) 1.71856e6 0.288318
\(514\) −3.22535e6 −0.538480
\(515\) 1.17672e7 1.95504
\(516\) 1.37010e6 0.226531
\(517\) −8.69199e6 −1.43019
\(518\) −1.14644e7 −1.87727
\(519\) −1.13831e7 −1.85499
\(520\) −1.32153e6 −0.214323
\(521\) 3.17552e6 0.512531 0.256266 0.966606i \(-0.417508\pi\)
0.256266 + 0.966606i \(0.417508\pi\)
\(522\) 2.59873e6 0.417431
\(523\) −1.13172e7 −1.80919 −0.904597 0.426268i \(-0.859828\pi\)
−0.904597 + 0.426268i \(0.859828\pi\)
\(524\) 2.13214e6 0.339224
\(525\) −8.34846e6 −1.32193
\(526\) 4.66911e6 0.735816
\(527\) 886087. 0.138979
\(528\) 2.67577e6 0.417699
\(529\) 6.24499e6 0.970270
\(530\) 8.17363e6 1.26394
\(531\) 850363. 0.130878
\(532\) 2.80669e6 0.429947
\(533\) 699519. 0.106655
\(534\) −8.47897e6 −1.28674
\(535\) 7.57991e6 1.14493
\(536\) −4.21908e6 −0.634316
\(537\) 1.44108e7 2.15652
\(538\) 289444. 0.0431131
\(539\) −2.56783e7 −3.80710
\(540\) −2.75328e6 −0.406318
\(541\) −8.74242e6 −1.28422 −0.642108 0.766614i \(-0.721940\pi\)
−0.642108 + 0.766614i \(0.721940\pi\)
\(542\) 473920. 0.0692959
\(543\) 8.36892e6 1.21806
\(544\) −1.06607e6 −0.154450
\(545\) 1.38360e7 1.99535
\(546\) −5.59625e6 −0.803369
\(547\) −1.04425e6 −0.149223 −0.0746116 0.997213i \(-0.523772\pi\)
−0.0746116 + 0.997213i \(0.523772\pi\)
\(548\) −5.08410e6 −0.723208
\(549\) −4.57835e6 −0.648304
\(550\) 3.90848e6 0.550936
\(551\) −4.03412e6 −0.566070
\(552\) −4.29682e6 −0.600204
\(553\) 1.24745e7 1.73464
\(554\) −5.14687e6 −0.712473
\(555\) 1.50356e7 2.07199
\(556\) −1.48289e6 −0.203434
\(557\) −225408. −0.0307844 −0.0153922 0.999882i \(-0.504900\pi\)
−0.0153922 + 0.999882i \(0.504900\pi\)
\(558\) −382807. −0.0520469
\(559\) 1.34153e6 0.181582
\(560\) −4.49656e6 −0.605913
\(561\) 1.08816e7 1.45977
\(562\) −642933. −0.0858667
\(563\) −1.49819e6 −0.199203 −0.0996015 0.995027i \(-0.531757\pi\)
−0.0996015 + 0.995027i \(0.531757\pi\)
\(564\) −4.72933e6 −0.626039
\(565\) −1.72137e7 −2.26858
\(566\) 8.92190e6 1.17062
\(567\) −1.85241e7 −2.41980
\(568\) −5.21526e6 −0.678273
\(569\) −5.08603e6 −0.658564 −0.329282 0.944232i \(-0.606807\pi\)
−0.329282 + 0.944232i \(0.606807\pi\)
\(570\) −3.68098e6 −0.474543
\(571\) −5.84412e6 −0.750117 −0.375058 0.927001i \(-0.622377\pi\)
−0.375058 + 0.927001i \(0.622377\pi\)
\(572\) 2.61998e6 0.334818
\(573\) 4.32329e6 0.550083
\(574\) 2.38014e6 0.301525
\(575\) −6.27634e6 −0.791657
\(576\) 460562. 0.0578404
\(577\) 8.07540e6 1.00977 0.504887 0.863185i \(-0.331534\pi\)
0.504887 + 0.863185i \(0.331534\pi\)
\(578\) 1.34403e6 0.167336
\(579\) −7.99336e6 −0.990907
\(580\) 6.46302e6 0.797748
\(581\) 7.02414e6 0.863282
\(582\) −370572. −0.0453488
\(583\) −1.62045e7 −1.97454
\(584\) −832465. −0.101003
\(585\) 2.32180e6 0.280502
\(586\) −1.64612e6 −0.198023
\(587\) −1.39140e7 −1.66670 −0.833348 0.552749i \(-0.813579\pi\)
−0.833348 + 0.552749i \(0.813579\pi\)
\(588\) −1.39716e7 −1.66649
\(589\) 594249. 0.0705798
\(590\) 2.11485e6 0.250120
\(591\) −5.71475e6 −0.673021
\(592\) 2.92034e6 0.342475
\(593\) 1.25773e7 1.46876 0.734379 0.678739i \(-0.237473\pi\)
0.734379 + 0.678739i \(0.237473\pi\)
\(594\) 5.45849e6 0.634755
\(595\) −1.82863e7 −2.11754
\(596\) 257223. 0.0296615
\(597\) −6.65022e6 −0.763660
\(598\) −4.20724e6 −0.481110
\(599\) −1.29484e7 −1.47452 −0.737258 0.675611i \(-0.763880\pi\)
−0.737258 + 0.675611i \(0.763880\pi\)
\(600\) 2.12661e6 0.241163
\(601\) −1.13130e7 −1.27759 −0.638793 0.769378i \(-0.720566\pi\)
−0.638793 + 0.769378i \(0.720566\pi\)
\(602\) 4.56462e6 0.513350
\(603\) 7.41251e6 0.830180
\(604\) 4.09247e6 0.456450
\(605\) −1.02286e7 −1.13613
\(606\) −9.76394e6 −1.08005
\(607\) 7.81963e6 0.861419 0.430709 0.902491i \(-0.358263\pi\)
0.430709 + 0.902491i \(0.358263\pi\)
\(608\) −714951. −0.0784363
\(609\) 2.73688e7 2.99028
\(610\) −1.13863e7 −1.23897
\(611\) −4.63073e6 −0.501819
\(612\) 1.87298e6 0.202141
\(613\) 7.28729e6 0.783276 0.391638 0.920119i \(-0.371909\pi\)
0.391638 + 0.920119i \(0.371909\pi\)
\(614\) 2.26107e6 0.242043
\(615\) −3.12156e6 −0.332801
\(616\) 8.91460e6 0.946564
\(617\) −5.46615e6 −0.578054 −0.289027 0.957321i \(-0.593332\pi\)
−0.289027 + 0.957321i \(0.593332\pi\)
\(618\) −1.26933e7 −1.33692
\(619\) 1.40249e7 1.47120 0.735600 0.677416i \(-0.236900\pi\)
0.735600 + 0.677416i \(0.236900\pi\)
\(620\) −952039. −0.0994662
\(621\) −8.76538e6 −0.912099
\(622\) 1.00940e7 1.04613
\(623\) −2.82486e7 −2.91593
\(624\) 1.42554e6 0.146561
\(625\) −1.21670e7 −1.24590
\(626\) 8.46244e6 0.863098
\(627\) 7.29768e6 0.741337
\(628\) −5.38787e6 −0.545152
\(629\) 1.18762e7 1.19688
\(630\) 7.90002e6 0.793007
\(631\) −1.53355e7 −1.53329 −0.766645 0.642071i \(-0.778075\pi\)
−0.766645 + 0.642071i \(0.778075\pi\)
\(632\) −3.17764e6 −0.316455
\(633\) 2.20601e7 2.18825
\(634\) 2.97505e6 0.293948
\(635\) −1.80711e7 −1.77849
\(636\) −8.81691e6 −0.864318
\(637\) −1.36803e7 −1.33582
\(638\) −1.28132e7 −1.24625
\(639\) 9.16270e6 0.887711
\(640\) 1.14541e6 0.110538
\(641\) −617357. −0.0593460 −0.0296730 0.999560i \(-0.509447\pi\)
−0.0296730 + 0.999560i \(0.509447\pi\)
\(642\) −8.17647e6 −0.782939
\(643\) −2.25889e6 −0.215460 −0.107730 0.994180i \(-0.534358\pi\)
−0.107730 + 0.994180i \(0.534358\pi\)
\(644\) −1.43153e7 −1.36015
\(645\) −5.98651e6 −0.566597
\(646\) −2.90751e6 −0.274119
\(647\) −1.78782e7 −1.67905 −0.839524 0.543322i \(-0.817166\pi\)
−0.839524 + 0.543322i \(0.817166\pi\)
\(648\) 4.71867e6 0.441450
\(649\) −4.19276e6 −0.390741
\(650\) 2.08228e6 0.193310
\(651\) −4.03157e6 −0.372839
\(652\) 1.99805e6 0.184072
\(653\) −318239. −0.0292059 −0.0146030 0.999893i \(-0.504648\pi\)
−0.0146030 + 0.999893i \(0.504648\pi\)
\(654\) −1.49249e7 −1.36448
\(655\) −9.31617e6 −0.848465
\(656\) −606296. −0.0550079
\(657\) 1.46256e6 0.132191
\(658\) −1.57563e7 −1.41869
\(659\) −1.51263e6 −0.135681 −0.0678403 0.997696i \(-0.521611\pi\)
−0.0678403 + 0.997696i \(0.521611\pi\)
\(660\) −1.16915e7 −1.04475
\(661\) 4.40951e6 0.392542 0.196271 0.980550i \(-0.437117\pi\)
0.196271 + 0.980550i \(0.437117\pi\)
\(662\) −9.17313e6 −0.813528
\(663\) 5.79727e6 0.512200
\(664\) −1.78927e6 −0.157491
\(665\) −1.22636e7 −1.07538
\(666\) −5.13076e6 −0.448225
\(667\) 2.05757e7 1.79077
\(668\) −6.69287e6 −0.580325
\(669\) −5.04331e6 −0.435663
\(670\) 1.84349e7 1.58655
\(671\) 2.25738e7 1.93553
\(672\) 4.85045e6 0.414342
\(673\) 1.65886e7 1.41180 0.705899 0.708312i \(-0.250543\pi\)
0.705899 + 0.708312i \(0.250543\pi\)
\(674\) 6.89190e6 0.584372
\(675\) 4.33823e6 0.366482
\(676\) −4.54487e6 −0.382520
\(677\) −1.15300e7 −0.966848 −0.483424 0.875386i \(-0.660607\pi\)
−0.483424 + 0.875386i \(0.660607\pi\)
\(678\) 1.85685e7 1.55132
\(679\) −1.23460e6 −0.102767
\(680\) 4.65808e6 0.386309
\(681\) 1.49971e7 1.23920
\(682\) 1.88745e6 0.155387
\(683\) 1.79284e7 1.47059 0.735293 0.677750i \(-0.237045\pi\)
0.735293 + 0.677750i \(0.237045\pi\)
\(684\) 1.25610e6 0.102656
\(685\) 2.22145e7 1.80888
\(686\) −2.96572e7 −2.40613
\(687\) −4.79304e6 −0.387453
\(688\) −1.16275e6 −0.0936517
\(689\) −8.63311e6 −0.692818
\(690\) 1.87745e7 1.50123
\(691\) 1.20893e7 0.963177 0.481588 0.876397i \(-0.340060\pi\)
0.481588 + 0.876397i \(0.340060\pi\)
\(692\) 9.66044e6 0.766887
\(693\) −1.56621e7 −1.23884
\(694\) −8.91913e6 −0.702949
\(695\) 6.47937e6 0.508827
\(696\) −6.97168e6 −0.545524
\(697\) −2.46564e6 −0.192242
\(698\) −3.30666e6 −0.256892
\(699\) 1.24368e7 0.962751
\(700\) 7.08503e6 0.546508
\(701\) 7.92968e6 0.609482 0.304741 0.952435i \(-0.401430\pi\)
0.304741 + 0.952435i \(0.401430\pi\)
\(702\) 2.90806e6 0.222721
\(703\) 7.96471e6 0.607829
\(704\) −2.27083e6 −0.172684
\(705\) 2.06644e7 1.56585
\(706\) −9.23013e6 −0.696941
\(707\) −3.25296e7 −2.44754
\(708\) −2.28129e6 −0.171040
\(709\) −1.32327e7 −0.988628 −0.494314 0.869284i \(-0.664581\pi\)
−0.494314 + 0.869284i \(0.664581\pi\)
\(710\) 2.27876e7 1.69649
\(711\) 5.58281e6 0.414170
\(712\) 7.19579e6 0.531960
\(713\) −3.03092e6 −0.223281
\(714\) 1.97254e7 1.44804
\(715\) −1.14478e7 −0.837445
\(716\) −1.22299e7 −0.891542
\(717\) −550919. −0.0400212
\(718\) 4.41923e6 0.319916
\(719\) 2.01622e7 1.45450 0.727252 0.686370i \(-0.240797\pi\)
0.727252 + 0.686370i \(0.240797\pi\)
\(720\) −2.01238e6 −0.144670
\(721\) −4.22892e7 −3.02964
\(722\) 7.95450e6 0.567897
\(723\) −1.28407e7 −0.913570
\(724\) −7.10240e6 −0.503569
\(725\) −1.01835e7 −0.719535
\(726\) 1.10336e7 0.776918
\(727\) −6.81712e6 −0.478371 −0.239186 0.970974i \(-0.576880\pi\)
−0.239186 + 0.970974i \(0.576880\pi\)
\(728\) 4.74933e6 0.332127
\(729\) 2.98637e6 0.208125
\(730\) 3.63738e6 0.252628
\(731\) −4.72859e6 −0.327294
\(732\) 1.22825e7 0.847243
\(733\) 1.69084e6 0.116237 0.0581183 0.998310i \(-0.481490\pi\)
0.0581183 + 0.998310i \(0.481490\pi\)
\(734\) 4.08078e6 0.279578
\(735\) 6.10476e7 4.16822
\(736\) 3.64655e6 0.248135
\(737\) −3.65478e7 −2.47852
\(738\) 1.06520e6 0.0719933
\(739\) 2.37957e7 1.60283 0.801414 0.598110i \(-0.204081\pi\)
0.801414 + 0.598110i \(0.204081\pi\)
\(740\) −1.27602e7 −0.856597
\(741\) 3.88790e6 0.260118
\(742\) −2.93745e7 −1.95867
\(743\) 346125. 0.0230017 0.0115009 0.999934i \(-0.496339\pi\)
0.0115009 + 0.999934i \(0.496339\pi\)
\(744\) 1.02697e6 0.0680180
\(745\) −1.12391e6 −0.0741892
\(746\) 1.80090e7 1.18479
\(747\) 3.14357e6 0.206121
\(748\) −9.23482e6 −0.603496
\(749\) −2.72408e7 −1.77425
\(750\) 7.18339e6 0.466312
\(751\) −5.97385e6 −0.386505 −0.193252 0.981149i \(-0.561904\pi\)
−0.193252 + 0.981149i \(0.561904\pi\)
\(752\) 4.01361e6 0.258816
\(753\) −2.52398e7 −1.62218
\(754\) −6.82634e6 −0.437280
\(755\) −1.78817e7 −1.14167
\(756\) 9.89478e6 0.629654
\(757\) −1.78157e7 −1.12996 −0.564979 0.825106i \(-0.691116\pi\)
−0.564979 + 0.825106i \(0.691116\pi\)
\(758\) 1.67362e7 1.05799
\(759\) −3.72212e7 −2.34523
\(760\) 3.12391e6 0.196185
\(761\) 6.61514e6 0.414073 0.207037 0.978333i \(-0.433618\pi\)
0.207037 + 0.978333i \(0.433618\pi\)
\(762\) 1.94934e7 1.21619
\(763\) −4.97239e7 −3.09210
\(764\) −3.66902e6 −0.227414
\(765\) −8.18379e6 −0.505593
\(766\) −1.11350e7 −0.685676
\(767\) −2.23373e6 −0.137102
\(768\) −1.23556e6 −0.0755894
\(769\) −321645. −0.0196138 −0.00980688 0.999952i \(-0.503122\pi\)
−0.00980688 + 0.999952i \(0.503122\pi\)
\(770\) −3.89515e7 −2.36754
\(771\) −1.52020e7 −0.921012
\(772\) 6.78367e6 0.409658
\(773\) 3.10097e7 1.86659 0.933295 0.359111i \(-0.116920\pi\)
0.933295 + 0.359111i \(0.116920\pi\)
\(774\) 2.04284e6 0.122569
\(775\) 1.50009e6 0.0897144
\(776\) 314491. 0.0187480
\(777\) −5.40351e7 −3.21087
\(778\) −8.41596e6 −0.498488
\(779\) −1.65357e6 −0.0976287
\(780\) −6.22876e6 −0.366577
\(781\) −4.51772e7 −2.65028
\(782\) 1.48295e7 0.867181
\(783\) −1.42220e7 −0.829005
\(784\) 1.18572e7 0.688957
\(785\) 2.35418e7 1.36353
\(786\) 1.00494e7 0.580207
\(787\) 6.33232e6 0.364440 0.182220 0.983258i \(-0.441672\pi\)
0.182220 + 0.983258i \(0.441672\pi\)
\(788\) 4.84990e6 0.278239
\(789\) 2.20069e7 1.25854
\(790\) 1.38844e7 0.791516
\(791\) 6.18630e7 3.51552
\(792\) 3.98962e6 0.226005
\(793\) 1.20264e7 0.679131
\(794\) 1.33361e7 0.750718
\(795\) 3.85247e7 2.16183
\(796\) 5.64380e6 0.315710
\(797\) −7.53655e6 −0.420268 −0.210134 0.977673i \(-0.567390\pi\)
−0.210134 + 0.977673i \(0.567390\pi\)
\(798\) 1.32287e7 0.735379
\(799\) 1.63222e7 0.904508
\(800\) −1.80478e6 −0.0997009
\(801\) −1.26423e7 −0.696218
\(802\) −8.62103e6 −0.473285
\(803\) −7.21124e6 −0.394658
\(804\) −1.98857e7 −1.08493
\(805\) 6.25494e7 3.40199
\(806\) 1.00556e6 0.0545217
\(807\) 1.36423e6 0.0737403
\(808\) 8.28630e6 0.446511
\(809\) 2.35347e7 1.26426 0.632131 0.774862i \(-0.282181\pi\)
0.632131 + 0.774862i \(0.282181\pi\)
\(810\) −2.06178e7 −1.10415
\(811\) 5.91709e6 0.315905 0.157952 0.987447i \(-0.449511\pi\)
0.157952 + 0.987447i \(0.449511\pi\)
\(812\) −2.32269e7 −1.23623
\(813\) 2.23373e6 0.118523
\(814\) 2.52975e7 1.33819
\(815\) −8.73028e6 −0.460399
\(816\) −5.02468e6 −0.264170
\(817\) −3.17120e6 −0.166214
\(818\) −1.20543e7 −0.629882
\(819\) −8.34412e6 −0.434681
\(820\) 2.64916e6 0.137586
\(821\) −5.82707e6 −0.301712 −0.150856 0.988556i \(-0.548203\pi\)
−0.150856 + 0.988556i \(0.548203\pi\)
\(822\) −2.39629e7 −1.23697
\(823\) 2.32044e7 1.19418 0.597091 0.802173i \(-0.296323\pi\)
0.597091 + 0.802173i \(0.296323\pi\)
\(824\) 1.07724e7 0.552705
\(825\) 1.84218e7 0.942318
\(826\) −7.60036e6 −0.387600
\(827\) −1.71686e7 −0.872913 −0.436457 0.899725i \(-0.643767\pi\)
−0.436457 + 0.899725i \(0.643767\pi\)
\(828\) −6.40664e6 −0.324754
\(829\) 1.90451e7 0.962490 0.481245 0.876586i \(-0.340185\pi\)
0.481245 + 0.876586i \(0.340185\pi\)
\(830\) 7.81803e6 0.393915
\(831\) −2.42587e7 −1.21861
\(832\) −1.20980e6 −0.0605908
\(833\) 4.82199e7 2.40776
\(834\) −6.98931e6 −0.347952
\(835\) 2.92439e7 1.45151
\(836\) −6.19327e6 −0.306482
\(837\) 2.09498e6 0.103363
\(838\) 9.12518e6 0.448881
\(839\) 2.13728e7 1.04823 0.524115 0.851648i \(-0.324396\pi\)
0.524115 + 0.851648i \(0.324396\pi\)
\(840\) −2.11936e7 −1.03635
\(841\) 1.28734e7 0.627631
\(842\) 7.53846e6 0.366440
\(843\) −3.03033e6 −0.146866
\(844\) −1.87216e7 −0.904663
\(845\) 1.98584e7 0.956758
\(846\) −7.05152e6 −0.338733
\(847\) 3.67596e7 1.76060
\(848\) 7.48260e6 0.357324
\(849\) 4.20515e7 2.00222
\(850\) −7.33953e6 −0.348434
\(851\) −4.06234e7 −1.92288
\(852\) −2.45810e7 −1.16011
\(853\) −3.37158e7 −1.58658 −0.793289 0.608846i \(-0.791633\pi\)
−0.793289 + 0.608846i \(0.791633\pi\)
\(854\) 4.09204e7 1.91997
\(855\) −5.48841e6 −0.256762
\(856\) 6.93907e6 0.323681
\(857\) −8.27844e6 −0.385032 −0.192516 0.981294i \(-0.561665\pi\)
−0.192516 + 0.981294i \(0.561665\pi\)
\(858\) 1.23487e7 0.572670
\(859\) −9.17440e6 −0.424224 −0.212112 0.977245i \(-0.568034\pi\)
−0.212112 + 0.977245i \(0.568034\pi\)
\(860\) 5.08053e6 0.234241
\(861\) 1.12183e7 0.515726
\(862\) −1.00713e7 −0.461654
\(863\) −5.97748e6 −0.273207 −0.136603 0.990626i \(-0.543619\pi\)
−0.136603 + 0.990626i \(0.543619\pi\)
\(864\) −2.52051e6 −0.114869
\(865\) −4.22104e7 −1.91813
\(866\) −1.04375e7 −0.472937
\(867\) 6.33482e6 0.286211
\(868\) 3.42145e6 0.154138
\(869\) −2.75264e7 −1.23652
\(870\) 3.04621e7 1.36446
\(871\) −1.94712e7 −0.869655
\(872\) 1.26662e7 0.564100
\(873\) −552531. −0.0245370
\(874\) 9.94532e6 0.440393
\(875\) 2.39322e7 1.05673
\(876\) −3.92365e6 −0.172755
\(877\) −1.47797e7 −0.648885 −0.324442 0.945905i \(-0.605177\pi\)
−0.324442 + 0.945905i \(0.605177\pi\)
\(878\) 384763. 0.0168445
\(879\) −7.75863e6 −0.338698
\(880\) 9.92217e6 0.431916
\(881\) −3.67113e6 −0.159353 −0.0796764 0.996821i \(-0.525389\pi\)
−0.0796764 + 0.996821i \(0.525389\pi\)
\(882\) −2.08319e7 −0.901692
\(883\) 2.03832e7 0.879772 0.439886 0.898054i \(-0.355019\pi\)
0.439886 + 0.898054i \(0.355019\pi\)
\(884\) −4.91993e6 −0.211752
\(885\) 9.96789e6 0.427804
\(886\) −2.85805e6 −0.122316
\(887\) −3.63778e7 −1.55248 −0.776242 0.630435i \(-0.782877\pi\)
−0.776242 + 0.630435i \(0.782877\pi\)
\(888\) 1.37644e7 0.585768
\(889\) 6.49443e7 2.75605
\(890\) −3.14413e7 −1.33053
\(891\) 4.08755e7 1.72492
\(892\) 4.28008e6 0.180111
\(893\) 1.09464e7 0.459349
\(894\) 1.21237e6 0.0507329
\(895\) 5.34376e7 2.22992
\(896\) −4.11640e6 −0.171296
\(897\) −1.98299e7 −0.822887
\(898\) −1.92334e6 −0.0795913
\(899\) −4.91774e6 −0.202939
\(900\) 3.17082e6 0.130487
\(901\) 3.04296e7 1.24878
\(902\) −5.25205e6 −0.214938
\(903\) 2.15144e7 0.878031
\(904\) −1.57584e7 −0.641345
\(905\) 3.10333e7 1.25952
\(906\) 1.92890e7 0.780709
\(907\) −1.80791e7 −0.729726 −0.364863 0.931061i \(-0.618884\pi\)
−0.364863 + 0.931061i \(0.618884\pi\)
\(908\) −1.27275e7 −0.512305
\(909\) −1.45582e7 −0.584385
\(910\) −2.07518e7 −0.830714
\(911\) −2.82325e7 −1.12708 −0.563538 0.826090i \(-0.690560\pi\)
−0.563538 + 0.826090i \(0.690560\pi\)
\(912\) −3.36977e6 −0.134157
\(913\) −1.54995e7 −0.615378
\(914\) 2.33363e7 0.923987
\(915\) −5.36671e7 −2.11912
\(916\) 4.06768e6 0.160180
\(917\) 3.34806e7 1.31483
\(918\) −1.02502e7 −0.401445
\(919\) −6.71231e6 −0.262170 −0.131085 0.991371i \(-0.541846\pi\)
−0.131085 + 0.991371i \(0.541846\pi\)
\(920\) −1.59333e7 −0.620634
\(921\) 1.06571e7 0.413989
\(922\) 1.01853e7 0.394591
\(923\) −2.40686e7 −0.929921
\(924\) 4.20171e7 1.61900
\(925\) 2.01056e7 0.772615
\(926\) −8.84986e6 −0.339163
\(927\) −1.89260e7 −0.723370
\(928\) 5.91661e6 0.225529
\(929\) 3.88845e7 1.47821 0.739106 0.673589i \(-0.235248\pi\)
0.739106 + 0.673589i \(0.235248\pi\)
\(930\) −4.48724e6 −0.170126
\(931\) 3.23384e7 1.22277
\(932\) −1.05546e7 −0.398018
\(933\) 4.75758e7 1.78930
\(934\) 1.54721e7 0.580340
\(935\) 4.03507e7 1.50946
\(936\) 2.12551e6 0.0793000
\(937\) −1.84069e7 −0.684906 −0.342453 0.939535i \(-0.611258\pi\)
−0.342453 + 0.939535i \(0.611258\pi\)
\(938\) −6.62515e7 −2.45860
\(939\) 3.98860e7 1.47624
\(940\) −1.75371e7 −0.647348
\(941\) −3.29379e7 −1.21261 −0.606307 0.795231i \(-0.707350\pi\)
−0.606307 + 0.795231i \(0.707350\pi\)
\(942\) −2.53946e7 −0.932425
\(943\) 8.43388e6 0.308851
\(944\) 1.93605e6 0.0707109
\(945\) −4.32343e7 −1.57489
\(946\) −1.00724e7 −0.365934
\(947\) −2.32660e7 −0.843038 −0.421519 0.906820i \(-0.638503\pi\)
−0.421519 + 0.906820i \(0.638503\pi\)
\(948\) −1.49772e7 −0.541263
\(949\) −3.84185e6 −0.138476
\(950\) −4.92221e6 −0.176950
\(951\) 1.40223e7 0.502767
\(952\) −1.67403e7 −0.598646
\(953\) 2.06940e7 0.738095 0.369047 0.929411i \(-0.379684\pi\)
0.369047 + 0.929411i \(0.379684\pi\)
\(954\) −1.31462e7 −0.467659
\(955\) 1.60315e7 0.568807
\(956\) 467545. 0.0165455
\(957\) −6.03923e7 −2.13158
\(958\) −3.48573e6 −0.122710
\(959\) −7.98348e7 −2.80315
\(960\) 5.39867e6 0.189064
\(961\) −2.79047e7 −0.974697
\(962\) 1.34775e7 0.469538
\(963\) −1.21913e7 −0.423627
\(964\) 1.08974e7 0.377686
\(965\) −2.96406e7 −1.02463
\(966\) −6.74722e7 −2.32639
\(967\) 2.38531e7 0.820311 0.410156 0.912016i \(-0.365474\pi\)
0.410156 + 0.912016i \(0.365474\pi\)
\(968\) −9.36381e6 −0.321192
\(969\) −1.37039e7 −0.468852
\(970\) −1.37414e6 −0.0468923
\(971\) 4.65256e7 1.58360 0.791798 0.610783i \(-0.209145\pi\)
0.791798 + 0.610783i \(0.209145\pi\)
\(972\) 1.26704e7 0.430155
\(973\) −2.32856e7 −0.788507
\(974\) 3.44275e7 1.16281
\(975\) 9.81438e6 0.330637
\(976\) −1.04237e7 −0.350265
\(977\) −3.63182e7 −1.21727 −0.608637 0.793449i \(-0.708283\pi\)
−0.608637 + 0.793449i \(0.708283\pi\)
\(978\) 9.41737e6 0.314835
\(979\) 6.23337e7 2.07858
\(980\) −5.18089e7 −1.72321
\(981\) −2.22533e7 −0.738282
\(982\) 2.25934e7 0.747658
\(983\) 3.93404e6 0.129854 0.0649270 0.997890i \(-0.479319\pi\)
0.0649270 + 0.997890i \(0.479319\pi\)
\(984\) −2.85765e6 −0.0940853
\(985\) −2.11912e7 −0.695929
\(986\) 2.40612e7 0.788179
\(987\) −7.42638e7 −2.42652
\(988\) −3.29952e6 −0.107537
\(989\) 1.61744e7 0.525822
\(990\) −1.74323e7 −0.565284
\(991\) 1.59324e7 0.515344 0.257672 0.966232i \(-0.417045\pi\)
0.257672 + 0.966232i \(0.417045\pi\)
\(992\) −871550. −0.0281198
\(993\) −4.32356e7 −1.39145
\(994\) −8.18943e7 −2.62898
\(995\) −2.46600e7 −0.789653
\(996\) −8.43333e6 −0.269371
\(997\) 2.15385e7 0.686244 0.343122 0.939291i \(-0.388516\pi\)
0.343122 + 0.939291i \(0.388516\pi\)
\(998\) −19636.7 −0.000624083 0
\(999\) 2.80790e7 0.890160
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.c.1.7 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.c.1.7 30 1.1 even 1 trivial