Properties

Label 538.6.a.d.1.11
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -7.35365 q^{3} +16.0000 q^{4} +78.1821 q^{5} -29.4146 q^{6} +209.235 q^{7} +64.0000 q^{8} -188.924 q^{9} +312.729 q^{10} +531.909 q^{11} -117.658 q^{12} +134.764 q^{13} +836.940 q^{14} -574.924 q^{15} +256.000 q^{16} +79.7966 q^{17} -755.695 q^{18} +2330.32 q^{19} +1250.91 q^{20} -1538.64 q^{21} +2127.63 q^{22} -281.583 q^{23} -470.634 q^{24} +2987.45 q^{25} +539.056 q^{26} +3176.22 q^{27} +3347.76 q^{28} +2779.11 q^{29} -2299.70 q^{30} -2442.38 q^{31} +1024.00 q^{32} -3911.47 q^{33} +319.186 q^{34} +16358.4 q^{35} -3022.78 q^{36} -10682.2 q^{37} +9321.29 q^{38} -991.008 q^{39} +5003.66 q^{40} -10311.9 q^{41} -6154.56 q^{42} +1275.58 q^{43} +8510.54 q^{44} -14770.5 q^{45} -1126.33 q^{46} -9613.12 q^{47} -1882.53 q^{48} +26972.3 q^{49} +11949.8 q^{50} -586.796 q^{51} +2156.23 q^{52} -10078.2 q^{53} +12704.9 q^{54} +41585.7 q^{55} +13391.0 q^{56} -17136.4 q^{57} +11116.4 q^{58} -19428.6 q^{59} -9198.78 q^{60} -39178.8 q^{61} -9769.52 q^{62} -39529.5 q^{63} +4096.00 q^{64} +10536.1 q^{65} -15645.9 q^{66} +31478.4 q^{67} +1276.75 q^{68} +2070.66 q^{69} +65433.8 q^{70} +48906.4 q^{71} -12091.1 q^{72} +940.198 q^{73} -42728.9 q^{74} -21968.6 q^{75} +37285.1 q^{76} +111294. q^{77} -3964.03 q^{78} -75460.1 q^{79} +20014.6 q^{80} +22551.7 q^{81} -41247.5 q^{82} -37665.2 q^{83} -24618.2 q^{84} +6238.67 q^{85} +5102.31 q^{86} -20436.6 q^{87} +34042.1 q^{88} -104482. q^{89} -59081.9 q^{90} +28197.4 q^{91} -4505.33 q^{92} +17960.4 q^{93} -38452.5 q^{94} +182190. q^{95} -7530.14 q^{96} -86520.0 q^{97} +107889. q^{98} -100490. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 128 q^{2} + 32 q^{3} + 512 q^{4} + 214 q^{5} + 128 q^{6} + 428 q^{7} + 2048 q^{8} + 3196 q^{9} + 856 q^{10} + 1357 q^{11} + 512 q^{12} + 1747 q^{13} + 1712 q^{14} + 2728 q^{15} + 8192 q^{16} + 3766 q^{17}+ \cdots + 338392 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −7.35365 −0.471737 −0.235868 0.971785i \(-0.575793\pi\)
−0.235868 + 0.971785i \(0.575793\pi\)
\(4\) 16.0000 0.500000
\(5\) 78.1821 1.39856 0.699282 0.714846i \(-0.253503\pi\)
0.699282 + 0.714846i \(0.253503\pi\)
\(6\) −29.4146 −0.333568
\(7\) 209.235 1.61395 0.806973 0.590588i \(-0.201104\pi\)
0.806973 + 0.590588i \(0.201104\pi\)
\(8\) 64.0000 0.353553
\(9\) −188.924 −0.777464
\(10\) 312.729 0.988935
\(11\) 531.909 1.32543 0.662713 0.748874i \(-0.269405\pi\)
0.662713 + 0.748874i \(0.269405\pi\)
\(12\) −117.658 −0.235868
\(13\) 134.764 0.221165 0.110582 0.993867i \(-0.464728\pi\)
0.110582 + 0.993867i \(0.464728\pi\)
\(14\) 836.940 1.14123
\(15\) −574.924 −0.659754
\(16\) 256.000 0.250000
\(17\) 79.7966 0.0669672 0.0334836 0.999439i \(-0.489340\pi\)
0.0334836 + 0.999439i \(0.489340\pi\)
\(18\) −755.695 −0.549750
\(19\) 2330.32 1.48092 0.740461 0.672100i \(-0.234607\pi\)
0.740461 + 0.672100i \(0.234607\pi\)
\(20\) 1250.91 0.699282
\(21\) −1538.64 −0.761358
\(22\) 2127.63 0.937217
\(23\) −281.583 −0.110991 −0.0554954 0.998459i \(-0.517674\pi\)
−0.0554954 + 0.998459i \(0.517674\pi\)
\(24\) −470.634 −0.166784
\(25\) 2987.45 0.955983
\(26\) 539.056 0.156387
\(27\) 3176.22 0.838495
\(28\) 3347.76 0.806973
\(29\) 2779.11 0.613635 0.306817 0.951768i \(-0.400736\pi\)
0.306817 + 0.951768i \(0.400736\pi\)
\(30\) −2299.70 −0.466517
\(31\) −2442.38 −0.456467 −0.228233 0.973606i \(-0.573295\pi\)
−0.228233 + 0.973606i \(0.573295\pi\)
\(32\) 1024.00 0.176777
\(33\) −3911.47 −0.625252
\(34\) 319.186 0.0473529
\(35\) 16358.4 2.25721
\(36\) −3022.78 −0.388732
\(37\) −10682.2 −1.28279 −0.641397 0.767209i \(-0.721645\pi\)
−0.641397 + 0.767209i \(0.721645\pi\)
\(38\) 9321.29 1.04717
\(39\) −991.008 −0.104332
\(40\) 5003.66 0.494467
\(41\) −10311.9 −0.958027 −0.479013 0.877808i \(-0.659005\pi\)
−0.479013 + 0.877808i \(0.659005\pi\)
\(42\) −6154.56 −0.538361
\(43\) 1275.58 0.105205 0.0526024 0.998616i \(-0.483248\pi\)
0.0526024 + 0.998616i \(0.483248\pi\)
\(44\) 8510.54 0.662713
\(45\) −14770.5 −1.08733
\(46\) −1126.33 −0.0784824
\(47\) −9613.12 −0.634775 −0.317387 0.948296i \(-0.602806\pi\)
−0.317387 + 0.948296i \(0.602806\pi\)
\(48\) −1882.53 −0.117934
\(49\) 26972.3 1.60482
\(50\) 11949.8 0.675982
\(51\) −586.796 −0.0315909
\(52\) 2156.23 0.110582
\(53\) −10078.2 −0.492828 −0.246414 0.969165i \(-0.579252\pi\)
−0.246414 + 0.969165i \(0.579252\pi\)
\(54\) 12704.9 0.592906
\(55\) 41585.7 1.85369
\(56\) 13391.0 0.570616
\(57\) −17136.4 −0.698605
\(58\) 11116.4 0.433905
\(59\) −19428.6 −0.726627 −0.363314 0.931667i \(-0.618355\pi\)
−0.363314 + 0.931667i \(0.618355\pi\)
\(60\) −9198.78 −0.329877
\(61\) −39178.8 −1.34811 −0.674056 0.738680i \(-0.735449\pi\)
−0.674056 + 0.738680i \(0.735449\pi\)
\(62\) −9769.52 −0.322771
\(63\) −39529.5 −1.25479
\(64\) 4096.00 0.125000
\(65\) 10536.1 0.309313
\(66\) −15645.9 −0.442120
\(67\) 31478.4 0.856694 0.428347 0.903614i \(-0.359096\pi\)
0.428347 + 0.903614i \(0.359096\pi\)
\(68\) 1276.75 0.0334836
\(69\) 2070.66 0.0523585
\(70\) 65433.8 1.59609
\(71\) 48906.4 1.15138 0.575692 0.817667i \(-0.304733\pi\)
0.575692 + 0.817667i \(0.304733\pi\)
\(72\) −12091.1 −0.274875
\(73\) 940.198 0.0206496 0.0103248 0.999947i \(-0.496713\pi\)
0.0103248 + 0.999947i \(0.496713\pi\)
\(74\) −42728.9 −0.907073
\(75\) −21968.6 −0.450972
\(76\) 37285.1 0.740461
\(77\) 111294. 2.13917
\(78\) −3964.03 −0.0737735
\(79\) −75460.1 −1.36035 −0.680174 0.733051i \(-0.738096\pi\)
−0.680174 + 0.733051i \(0.738096\pi\)
\(80\) 20014.6 0.349641
\(81\) 22551.7 0.381915
\(82\) −41247.5 −0.677427
\(83\) −37665.2 −0.600130 −0.300065 0.953919i \(-0.597008\pi\)
−0.300065 + 0.953919i \(0.597008\pi\)
\(84\) −24618.2 −0.380679
\(85\) 6238.67 0.0936579
\(86\) 5102.31 0.0743910
\(87\) −20436.6 −0.289474
\(88\) 34042.1 0.468609
\(89\) −104482. −1.39819 −0.699094 0.715030i \(-0.746413\pi\)
−0.699094 + 0.715030i \(0.746413\pi\)
\(90\) −59081.9 −0.768861
\(91\) 28197.4 0.356948
\(92\) −4505.33 −0.0554954
\(93\) 17960.4 0.215332
\(94\) −38452.5 −0.448854
\(95\) 182190. 2.07116
\(96\) −7530.14 −0.0833921
\(97\) −86520.0 −0.933657 −0.466828 0.884348i \(-0.654603\pi\)
−0.466828 + 0.884348i \(0.654603\pi\)
\(98\) 107889. 1.13478
\(99\) −100490. −1.03047
\(100\) 47799.2 0.477992
\(101\) 165927. 1.61850 0.809252 0.587462i \(-0.199873\pi\)
0.809252 + 0.587462i \(0.199873\pi\)
\(102\) −2347.18 −0.0223381
\(103\) 192819. 1.79084 0.895420 0.445222i \(-0.146875\pi\)
0.895420 + 0.445222i \(0.146875\pi\)
\(104\) 8624.90 0.0781935
\(105\) −120294. −1.06481
\(106\) −40313.0 −0.348482
\(107\) 79542.2 0.671643 0.335821 0.941926i \(-0.390986\pi\)
0.335821 + 0.941926i \(0.390986\pi\)
\(108\) 50819.5 0.419248
\(109\) −52730.5 −0.425104 −0.212552 0.977150i \(-0.568178\pi\)
−0.212552 + 0.977150i \(0.568178\pi\)
\(110\) 166343. 1.31076
\(111\) 78553.3 0.605141
\(112\) 53564.2 0.403487
\(113\) 59186.6 0.436041 0.218021 0.975944i \(-0.430040\pi\)
0.218021 + 0.975944i \(0.430040\pi\)
\(114\) −68545.5 −0.493988
\(115\) −22014.8 −0.155228
\(116\) 44465.7 0.306817
\(117\) −25460.2 −0.171948
\(118\) −77714.5 −0.513803
\(119\) 16696.2 0.108081
\(120\) −36795.1 −0.233258
\(121\) 121876. 0.756752
\(122\) −156715. −0.953260
\(123\) 75829.8 0.451936
\(124\) −39078.1 −0.228233
\(125\) −10754.1 −0.0615603
\(126\) −158118. −0.887268
\(127\) 165139. 0.908531 0.454266 0.890866i \(-0.349902\pi\)
0.454266 + 0.890866i \(0.349902\pi\)
\(128\) 16384.0 0.0883883
\(129\) −9380.14 −0.0496290
\(130\) 42144.6 0.218717
\(131\) 384523. 1.95769 0.978846 0.204597i \(-0.0655884\pi\)
0.978846 + 0.204597i \(0.0655884\pi\)
\(132\) −62583.5 −0.312626
\(133\) 487585. 2.39013
\(134\) 125914. 0.605774
\(135\) 248323. 1.17269
\(136\) 5106.98 0.0236765
\(137\) −357282. −1.62633 −0.813166 0.582032i \(-0.802258\pi\)
−0.813166 + 0.582032i \(0.802258\pi\)
\(138\) 8282.66 0.0370230
\(139\) −22344.9 −0.0980940 −0.0490470 0.998796i \(-0.515618\pi\)
−0.0490470 + 0.998796i \(0.515618\pi\)
\(140\) 261735. 1.12860
\(141\) 70691.5 0.299447
\(142\) 195626. 0.814151
\(143\) 71682.2 0.293137
\(144\) −48364.5 −0.194366
\(145\) 217276. 0.858208
\(146\) 3760.79 0.0146015
\(147\) −198345. −0.757055
\(148\) −170915. −0.641397
\(149\) 174005. 0.642089 0.321044 0.947064i \(-0.395966\pi\)
0.321044 + 0.947064i \(0.395966\pi\)
\(150\) −87874.6 −0.318886
\(151\) 91029.4 0.324892 0.162446 0.986717i \(-0.448062\pi\)
0.162446 + 0.986717i \(0.448062\pi\)
\(152\) 149141. 0.523585
\(153\) −15075.5 −0.0520646
\(154\) 445175. 1.51262
\(155\) −190951. −0.638398
\(156\) −15856.1 −0.0521658
\(157\) −30654.0 −0.0992517 −0.0496258 0.998768i \(-0.515803\pi\)
−0.0496258 + 0.998768i \(0.515803\pi\)
\(158\) −301840. −0.961911
\(159\) 74111.8 0.232485
\(160\) 80058.5 0.247234
\(161\) −58917.1 −0.179133
\(162\) 90206.9 0.270055
\(163\) 285164. 0.840670 0.420335 0.907369i \(-0.361913\pi\)
0.420335 + 0.907369i \(0.361913\pi\)
\(164\) −164990. −0.479013
\(165\) −305807. −0.874455
\(166\) −150661. −0.424356
\(167\) 75380.3 0.209154 0.104577 0.994517i \(-0.466651\pi\)
0.104577 + 0.994517i \(0.466651\pi\)
\(168\) −98473.0 −0.269181
\(169\) −353132. −0.951086
\(170\) 24954.7 0.0662262
\(171\) −440253. −1.15136
\(172\) 20409.2 0.0526024
\(173\) 261395. 0.664022 0.332011 0.943275i \(-0.392273\pi\)
0.332011 + 0.943275i \(0.392273\pi\)
\(174\) −81746.3 −0.204689
\(175\) 625079. 1.54291
\(176\) 136169. 0.331356
\(177\) 142871. 0.342777
\(178\) −417927. −0.988668
\(179\) 21388.2 0.0498933 0.0249467 0.999689i \(-0.492058\pi\)
0.0249467 + 0.999689i \(0.492058\pi\)
\(180\) −236328. −0.543667
\(181\) 606702. 1.37651 0.688255 0.725469i \(-0.258377\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(182\) 112789. 0.252400
\(183\) 288107. 0.635954
\(184\) −18021.3 −0.0392412
\(185\) −835159. −1.79407
\(186\) 71841.7 0.152263
\(187\) 42444.5 0.0887600
\(188\) −153810. −0.317387
\(189\) 664576. 1.35329
\(190\) 728758. 1.46453
\(191\) −777092. −1.54131 −0.770654 0.637254i \(-0.780070\pi\)
−0.770654 + 0.637254i \(0.780070\pi\)
\(192\) −30120.5 −0.0589671
\(193\) −501121. −0.968389 −0.484194 0.874960i \(-0.660887\pi\)
−0.484194 + 0.874960i \(0.660887\pi\)
\(194\) −346080. −0.660195
\(195\) −77479.1 −0.145914
\(196\) 431556. 0.802412
\(197\) 150209. 0.275760 0.137880 0.990449i \(-0.455971\pi\)
0.137880 + 0.990449i \(0.455971\pi\)
\(198\) −401961. −0.728653
\(199\) −107859. −0.193074 −0.0965369 0.995329i \(-0.530777\pi\)
−0.0965369 + 0.995329i \(0.530777\pi\)
\(200\) 191197. 0.337991
\(201\) −231481. −0.404134
\(202\) 663708. 1.14445
\(203\) 581486. 0.990374
\(204\) −9388.74 −0.0157954
\(205\) −806204. −1.33986
\(206\) 771276. 1.26632
\(207\) 53197.8 0.0862915
\(208\) 34499.6 0.0552912
\(209\) 1.23952e6 1.96285
\(210\) −481177. −0.752933
\(211\) 745813. 1.15325 0.576626 0.817008i \(-0.304369\pi\)
0.576626 + 0.817008i \(0.304369\pi\)
\(212\) −161252. −0.246414
\(213\) −359641. −0.543150
\(214\) 318169. 0.474923
\(215\) 99727.3 0.147136
\(216\) 203278. 0.296453
\(217\) −511032. −0.736713
\(218\) −210922. −0.300594
\(219\) −6913.88 −0.00974119
\(220\) 665372. 0.926847
\(221\) 10753.7 0.0148108
\(222\) 314213. 0.427900
\(223\) −813088. −1.09490 −0.547451 0.836838i \(-0.684402\pi\)
−0.547451 + 0.836838i \(0.684402\pi\)
\(224\) 214257. 0.285308
\(225\) −564400. −0.743243
\(226\) 236747. 0.308328
\(227\) −92029.3 −0.118539 −0.0592696 0.998242i \(-0.518877\pi\)
−0.0592696 + 0.998242i \(0.518877\pi\)
\(228\) −274182. −0.349302
\(229\) 403346. 0.508263 0.254132 0.967170i \(-0.418210\pi\)
0.254132 + 0.967170i \(0.418210\pi\)
\(230\) −88059.1 −0.109763
\(231\) −818416. −1.00912
\(232\) 177863. 0.216953
\(233\) −775722. −0.936087 −0.468043 0.883705i \(-0.655041\pi\)
−0.468043 + 0.883705i \(0.655041\pi\)
\(234\) −101841. −0.121585
\(235\) −751574. −0.887774
\(236\) −310858. −0.363314
\(237\) 554907. 0.641726
\(238\) 66784.9 0.0764251
\(239\) −1.66853e6 −1.88946 −0.944731 0.327845i \(-0.893677\pi\)
−0.944731 + 0.327845i \(0.893677\pi\)
\(240\) −147181. −0.164939
\(241\) −758105. −0.840788 −0.420394 0.907342i \(-0.638108\pi\)
−0.420394 + 0.907342i \(0.638108\pi\)
\(242\) 487503. 0.535105
\(243\) −937658. −1.01866
\(244\) −626860. −0.674056
\(245\) 2.10875e6 2.24445
\(246\) 303319. 0.319567
\(247\) 314044. 0.327528
\(248\) −156312. −0.161385
\(249\) 276977. 0.283104
\(250\) −43016.6 −0.0435297
\(251\) 39153.1 0.0392267 0.0196134 0.999808i \(-0.493756\pi\)
0.0196134 + 0.999808i \(0.493756\pi\)
\(252\) −632472. −0.627393
\(253\) −149777. −0.147110
\(254\) 660555. 0.642428
\(255\) −45877.0 −0.0441819
\(256\) 65536.0 0.0625000
\(257\) 952241. 0.899320 0.449660 0.893200i \(-0.351545\pi\)
0.449660 + 0.893200i \(0.351545\pi\)
\(258\) −37520.6 −0.0350930
\(259\) −2.23509e6 −2.07036
\(260\) 168578. 0.154657
\(261\) −525039. −0.477079
\(262\) 1.53809e6 1.38430
\(263\) −434832. −0.387644 −0.193822 0.981037i \(-0.562088\pi\)
−0.193822 + 0.981037i \(0.562088\pi\)
\(264\) −250334. −0.221060
\(265\) −787938. −0.689251
\(266\) 1.95034e6 1.69008
\(267\) 768322. 0.659577
\(268\) 503654. 0.428347
\(269\) −72361.0 −0.0609711
\(270\) 993294. 0.829217
\(271\) −1.88741e6 −1.56114 −0.780571 0.625067i \(-0.785072\pi\)
−0.780571 + 0.625067i \(0.785072\pi\)
\(272\) 20427.9 0.0167418
\(273\) −207354. −0.168386
\(274\) −1.42913e6 −1.14999
\(275\) 1.58905e6 1.26708
\(276\) 33130.6 0.0261792
\(277\) −785236. −0.614895 −0.307447 0.951565i \(-0.599475\pi\)
−0.307447 + 0.951565i \(0.599475\pi\)
\(278\) −89379.8 −0.0693629
\(279\) 461424. 0.354887
\(280\) 1.04694e6 0.798044
\(281\) 263295. 0.198919 0.0994597 0.995042i \(-0.468289\pi\)
0.0994597 + 0.995042i \(0.468289\pi\)
\(282\) 282766. 0.211741
\(283\) −897989. −0.666507 −0.333254 0.942837i \(-0.608147\pi\)
−0.333254 + 0.942837i \(0.608147\pi\)
\(284\) 782503. 0.575692
\(285\) −1.33976e6 −0.977044
\(286\) 286729. 0.207279
\(287\) −2.15760e6 −1.54620
\(288\) −193458. −0.137438
\(289\) −1.41349e6 −0.995515
\(290\) 869106. 0.606845
\(291\) 636238. 0.440440
\(292\) 15043.2 0.0103248
\(293\) 1.33088e6 0.905669 0.452835 0.891595i \(-0.350413\pi\)
0.452835 + 0.891595i \(0.350413\pi\)
\(294\) −793379. −0.535318
\(295\) −1.51897e6 −1.01624
\(296\) −683662. −0.453536
\(297\) 1.68946e6 1.11136
\(298\) 696018. 0.454025
\(299\) −37947.3 −0.0245473
\(300\) −351498. −0.225486
\(301\) 266895. 0.169795
\(302\) 364118. 0.229733
\(303\) −1.22017e6 −0.763508
\(304\) 596562. 0.370230
\(305\) −3.06308e6 −1.88542
\(306\) −60301.9 −0.0368152
\(307\) 1.78875e6 1.08319 0.541593 0.840641i \(-0.317822\pi\)
0.541593 + 0.840641i \(0.317822\pi\)
\(308\) 1.78070e6 1.06958
\(309\) −1.41792e6 −0.844805
\(310\) −763802. −0.451416
\(311\) 624672. 0.366227 0.183114 0.983092i \(-0.441382\pi\)
0.183114 + 0.983092i \(0.441382\pi\)
\(312\) −63424.5 −0.0368868
\(313\) 3.23634e6 1.86721 0.933605 0.358304i \(-0.116645\pi\)
0.933605 + 0.358304i \(0.116645\pi\)
\(314\) −122616. −0.0701815
\(315\) −3.09050e6 −1.75490
\(316\) −1.20736e6 −0.680174
\(317\) 328023. 0.183340 0.0916698 0.995789i \(-0.470780\pi\)
0.0916698 + 0.995789i \(0.470780\pi\)
\(318\) 296447. 0.164392
\(319\) 1.47823e6 0.813327
\(320\) 320234. 0.174821
\(321\) −584926. −0.316839
\(322\) −235668. −0.126666
\(323\) 185952. 0.0991731
\(324\) 360827. 0.190958
\(325\) 402601. 0.211430
\(326\) 1.14066e6 0.594444
\(327\) 387762. 0.200537
\(328\) −659959. −0.338714
\(329\) −2.01140e6 −1.02449
\(330\) −1.22323e6 −0.618333
\(331\) −205936. −0.103315 −0.0516573 0.998665i \(-0.516450\pi\)
−0.0516573 + 0.998665i \(0.516450\pi\)
\(332\) −602644. −0.300065
\(333\) 2.01813e6 0.997327
\(334\) 301521. 0.147894
\(335\) 2.46105e6 1.19814
\(336\) −393892. −0.190340
\(337\) −249388. −0.119619 −0.0598095 0.998210i \(-0.519049\pi\)
−0.0598095 + 0.998210i \(0.519049\pi\)
\(338\) −1.41253e6 −0.672519
\(339\) −435238. −0.205697
\(340\) 99818.7 0.0468290
\(341\) −1.29912e6 −0.605013
\(342\) −1.76101e6 −0.814137
\(343\) 2.12693e6 0.976154
\(344\) 81636.9 0.0371955
\(345\) 161889. 0.0732267
\(346\) 1.04558e6 0.469535
\(347\) 2.49739e6 1.11343 0.556715 0.830703i \(-0.312061\pi\)
0.556715 + 0.830703i \(0.312061\pi\)
\(348\) −326985. −0.144737
\(349\) 3.34253e6 1.46896 0.734482 0.678628i \(-0.237425\pi\)
0.734482 + 0.678628i \(0.237425\pi\)
\(350\) 2.50031e6 1.09100
\(351\) 428040. 0.185446
\(352\) 544674. 0.234304
\(353\) −1.57985e6 −0.674807 −0.337404 0.941360i \(-0.609549\pi\)
−0.337404 + 0.941360i \(0.609549\pi\)
\(354\) 571485. 0.242380
\(355\) 3.82361e6 1.61028
\(356\) −1.67171e6 −0.699094
\(357\) −122778. −0.0509860
\(358\) 85552.9 0.0352799
\(359\) 1.59169e6 0.651812 0.325906 0.945402i \(-0.394331\pi\)
0.325906 + 0.945402i \(0.394331\pi\)
\(360\) −945310. −0.384431
\(361\) 2.95430e6 1.19313
\(362\) 2.42681e6 0.973339
\(363\) −896231. −0.356988
\(364\) 451158. 0.178474
\(365\) 73506.7 0.0288798
\(366\) 1.15243e6 0.449688
\(367\) −2.74973e6 −1.06568 −0.532838 0.846217i \(-0.678874\pi\)
−0.532838 + 0.846217i \(0.678874\pi\)
\(368\) −72085.3 −0.0277477
\(369\) 1.94816e6 0.744832
\(370\) −3.34063e6 −1.26860
\(371\) −2.10872e6 −0.795397
\(372\) 287367. 0.107666
\(373\) 5.01138e6 1.86503 0.932514 0.361133i \(-0.117610\pi\)
0.932514 + 0.361133i \(0.117610\pi\)
\(374\) 169778. 0.0627628
\(375\) 79082.2 0.0290403
\(376\) −615240. −0.224427
\(377\) 374524. 0.135714
\(378\) 2.65830e6 0.956918
\(379\) −5.20063e6 −1.85976 −0.929882 0.367858i \(-0.880091\pi\)
−0.929882 + 0.367858i \(0.880091\pi\)
\(380\) 2.91503e6 1.03558
\(381\) −1.21437e6 −0.428588
\(382\) −3.10837e6 −1.08987
\(383\) −4.09569e6 −1.42669 −0.713346 0.700812i \(-0.752821\pi\)
−0.713346 + 0.700812i \(0.752821\pi\)
\(384\) −120482. −0.0416960
\(385\) 8.70119e6 2.99176
\(386\) −2.00449e6 −0.684754
\(387\) −240987. −0.0817930
\(388\) −1.38432e6 −0.466828
\(389\) 2.36100e6 0.791084 0.395542 0.918448i \(-0.370557\pi\)
0.395542 + 0.918448i \(0.370557\pi\)
\(390\) −309917. −0.103177
\(391\) −22469.4 −0.00743275
\(392\) 1.72623e6 0.567391
\(393\) −2.82765e6 −0.923516
\(394\) 600838. 0.194992
\(395\) −5.89963e6 −1.90253
\(396\) −1.60784e6 −0.515235
\(397\) −815197. −0.259589 −0.129794 0.991541i \(-0.541432\pi\)
−0.129794 + 0.991541i \(0.541432\pi\)
\(398\) −431436. −0.136524
\(399\) −3.58553e6 −1.12751
\(400\) 764787. 0.238996
\(401\) −242568. −0.0753307 −0.0376654 0.999290i \(-0.511992\pi\)
−0.0376654 + 0.999290i \(0.511992\pi\)
\(402\) −925924. −0.285766
\(403\) −329145. −0.100954
\(404\) 2.65483e6 0.809252
\(405\) 1.76314e6 0.534133
\(406\) 2.32594e6 0.700300
\(407\) −5.68196e6 −1.70025
\(408\) −37555.0 −0.0111691
\(409\) 516130. 0.152564 0.0762818 0.997086i \(-0.475695\pi\)
0.0762818 + 0.997086i \(0.475695\pi\)
\(410\) −3.22481e6 −0.947426
\(411\) 2.62732e6 0.767201
\(412\) 3.08510e6 0.895420
\(413\) −4.06515e6 −1.17274
\(414\) 212791. 0.0610173
\(415\) −2.94475e6 −0.839321
\(416\) 137998. 0.0390968
\(417\) 164317. 0.0462745
\(418\) 4.95807e6 1.38794
\(419\) −4.83912e6 −1.34658 −0.673288 0.739380i \(-0.735119\pi\)
−0.673288 + 0.739380i \(0.735119\pi\)
\(420\) −1.92471e6 −0.532404
\(421\) 2.58319e6 0.710314 0.355157 0.934807i \(-0.384427\pi\)
0.355157 + 0.934807i \(0.384427\pi\)
\(422\) 2.98325e6 0.815472
\(423\) 1.81615e6 0.493515
\(424\) −645007. −0.174241
\(425\) 238388. 0.0640195
\(426\) −1.43856e6 −0.384065
\(427\) −8.19757e6 −2.17578
\(428\) 1.27268e6 0.335821
\(429\) −527126. −0.138284
\(430\) 398909. 0.104041
\(431\) −5.55939e6 −1.44156 −0.720782 0.693162i \(-0.756217\pi\)
−0.720782 + 0.693162i \(0.756217\pi\)
\(432\) 813111. 0.209624
\(433\) 712137. 0.182534 0.0912670 0.995826i \(-0.470908\pi\)
0.0912670 + 0.995826i \(0.470908\pi\)
\(434\) −2.04413e6 −0.520935
\(435\) −1.59777e6 −0.404848
\(436\) −843688. −0.212552
\(437\) −656180. −0.164369
\(438\) −27655.5 −0.00688806
\(439\) −62771.0 −0.0155452 −0.00777262 0.999970i \(-0.502474\pi\)
−0.00777262 + 0.999970i \(0.502474\pi\)
\(440\) 2.66149e6 0.655379
\(441\) −5.09571e6 −1.24769
\(442\) 43014.9 0.0104728
\(443\) −6.93054e6 −1.67787 −0.838934 0.544233i \(-0.816821\pi\)
−0.838934 + 0.544233i \(0.816821\pi\)
\(444\) 1.25685e6 0.302571
\(445\) −8.16861e6 −1.95546
\(446\) −3.25235e6 −0.774213
\(447\) −1.27957e6 −0.302897
\(448\) 857026. 0.201743
\(449\) 966104. 0.226156 0.113078 0.993586i \(-0.463929\pi\)
0.113078 + 0.993586i \(0.463929\pi\)
\(450\) −2.25760e6 −0.525552
\(451\) −5.48497e6 −1.26979
\(452\) 946986. 0.218021
\(453\) −669398. −0.153264
\(454\) −368117. −0.0838198
\(455\) 2.20453e6 0.499215
\(456\) −1.09673e6 −0.246994
\(457\) −3.27739e6 −0.734069 −0.367035 0.930207i \(-0.619627\pi\)
−0.367035 + 0.930207i \(0.619627\pi\)
\(458\) 1.61338e6 0.359396
\(459\) 253451. 0.0561517
\(460\) −352237. −0.0776140
\(461\) −5.30444e6 −1.16248 −0.581242 0.813730i \(-0.697433\pi\)
−0.581242 + 0.813730i \(0.697433\pi\)
\(462\) −3.27366e6 −0.713558
\(463\) −4.68712e6 −1.01614 −0.508070 0.861316i \(-0.669641\pi\)
−0.508070 + 0.861316i \(0.669641\pi\)
\(464\) 711451. 0.153409
\(465\) 1.40418e6 0.301156
\(466\) −3.10289e6 −0.661913
\(467\) −2.82859e6 −0.600175 −0.300087 0.953912i \(-0.597016\pi\)
−0.300087 + 0.953912i \(0.597016\pi\)
\(468\) −407362. −0.0859738
\(469\) 6.58638e6 1.38266
\(470\) −3.00630e6 −0.627751
\(471\) 225419. 0.0468207
\(472\) −1.24343e6 −0.256902
\(473\) 678490. 0.139441
\(474\) 2.21963e6 0.453769
\(475\) 6.96171e6 1.41574
\(476\) 267140. 0.0540407
\(477\) 1.90402e6 0.383156
\(478\) −6.67411e6 −1.33605
\(479\) −4.26906e6 −0.850146 −0.425073 0.905159i \(-0.639752\pi\)
−0.425073 + 0.905159i \(0.639752\pi\)
\(480\) −588722. −0.116629
\(481\) −1.43958e6 −0.283709
\(482\) −3.03242e6 −0.594527
\(483\) 433255. 0.0845038
\(484\) 1.95001e6 0.378376
\(485\) −6.76432e6 −1.30578
\(486\) −3.75063e6 −0.720301
\(487\) 5.60571e6 1.07105 0.535523 0.844521i \(-0.320115\pi\)
0.535523 + 0.844521i \(0.320115\pi\)
\(488\) −2.50744e6 −0.476630
\(489\) −2.09700e6 −0.396575
\(490\) 8.43500e6 1.58707
\(491\) 8.52761e6 1.59633 0.798167 0.602436i \(-0.205803\pi\)
0.798167 + 0.602436i \(0.205803\pi\)
\(492\) 1.21328e6 0.225968
\(493\) 221763. 0.0410934
\(494\) 1.25618e6 0.231597
\(495\) −7.85654e6 −1.44118
\(496\) −625250. −0.114117
\(497\) 1.02329e7 1.85827
\(498\) 1.10791e6 0.200184
\(499\) −47964.7 −0.00862324 −0.00431162 0.999991i \(-0.501372\pi\)
−0.00431162 + 0.999991i \(0.501372\pi\)
\(500\) −172066. −0.0307801
\(501\) −554320. −0.0986658
\(502\) 156613. 0.0277375
\(503\) −5.81901e6 −1.02549 −0.512743 0.858542i \(-0.671370\pi\)
−0.512743 + 0.858542i \(0.671370\pi\)
\(504\) −2.52989e6 −0.443634
\(505\) 1.29725e7 2.26358
\(506\) −599106. −0.104023
\(507\) 2.59681e6 0.448662
\(508\) 2.64222e6 0.454266
\(509\) −221005. −0.0378102 −0.0189051 0.999821i \(-0.506018\pi\)
−0.0189051 + 0.999821i \(0.506018\pi\)
\(510\) −183508. −0.0312413
\(511\) 196722. 0.0333274
\(512\) 262144. 0.0441942
\(513\) 7.40161e6 1.24175
\(514\) 3.80896e6 0.635915
\(515\) 1.50750e7 2.50461
\(516\) −150082. −0.0248145
\(517\) −5.11330e6 −0.841347
\(518\) −8.94037e6 −1.46397
\(519\) −1.92221e6 −0.313244
\(520\) 674313. 0.109359
\(521\) 1.04061e7 1.67955 0.839777 0.542932i \(-0.182686\pi\)
0.839777 + 0.542932i \(0.182686\pi\)
\(522\) −2.10016e6 −0.337346
\(523\) −5.80345e6 −0.927753 −0.463876 0.885900i \(-0.653542\pi\)
−0.463876 + 0.885900i \(0.653542\pi\)
\(524\) 6.15237e6 0.978846
\(525\) −4.59661e6 −0.727846
\(526\) −1.73933e6 −0.274105
\(527\) −194894. −0.0305683
\(528\) −1.00134e6 −0.156313
\(529\) −6.35705e6 −0.987681
\(530\) −3.15175e6 −0.487374
\(531\) 3.67053e6 0.564927
\(532\) 7.80136e6 1.19506
\(533\) −1.38967e6 −0.211882
\(534\) 3.07329e6 0.466391
\(535\) 6.21878e6 0.939336
\(536\) 2.01462e6 0.302887
\(537\) −157282. −0.0235365
\(538\) −289444. −0.0431131
\(539\) 1.43468e7 2.12707
\(540\) 3.97317e6 0.586345
\(541\) −3.48884e6 −0.512493 −0.256246 0.966612i \(-0.582486\pi\)
−0.256246 + 0.966612i \(0.582486\pi\)
\(542\) −7.54963e6 −1.10389
\(543\) −4.46148e6 −0.649350
\(544\) 81711.7 0.0118382
\(545\) −4.12258e6 −0.594536
\(546\) −829414. −0.119067
\(547\) −6.63506e6 −0.948149 −0.474074 0.880485i \(-0.657217\pi\)
−0.474074 + 0.880485i \(0.657217\pi\)
\(548\) −5.71651e6 −0.813166
\(549\) 7.40180e6 1.04811
\(550\) 6.35620e6 0.895964
\(551\) 6.47621e6 0.908745
\(552\) 132523. 0.0185115
\(553\) −1.57889e7 −2.19553
\(554\) −3.14094e6 −0.434796
\(555\) 6.14146e6 0.846329
\(556\) −357519. −0.0490470
\(557\) −4.70063e6 −0.641975 −0.320988 0.947083i \(-0.604015\pi\)
−0.320988 + 0.947083i \(0.604015\pi\)
\(558\) 1.84570e6 0.250943
\(559\) 171902. 0.0232676
\(560\) 4.18776e6 0.564302
\(561\) −312122. −0.0418714
\(562\) 1.05318e6 0.140657
\(563\) −3.03612e6 −0.403690 −0.201845 0.979417i \(-0.564694\pi\)
−0.201845 + 0.979417i \(0.564694\pi\)
\(564\) 1.13106e6 0.149723
\(565\) 4.62734e6 0.609832
\(566\) −3.59196e6 −0.471292
\(567\) 4.71861e6 0.616391
\(568\) 3.13001e6 0.407076
\(569\) 1.06373e7 1.37737 0.688685 0.725061i \(-0.258188\pi\)
0.688685 + 0.725061i \(0.258188\pi\)
\(570\) −5.35903e6 −0.690875
\(571\) 7.22715e6 0.927635 0.463817 0.885931i \(-0.346479\pi\)
0.463817 + 0.885931i \(0.346479\pi\)
\(572\) 1.14691e6 0.146569
\(573\) 5.71446e6 0.727091
\(574\) −8.63041e6 −1.09333
\(575\) −841215. −0.106105
\(576\) −773832. −0.0971830
\(577\) −1.46098e7 −1.82686 −0.913428 0.407000i \(-0.866575\pi\)
−0.913428 + 0.407000i \(0.866575\pi\)
\(578\) −5.65396e6 −0.703936
\(579\) 3.68507e6 0.456825
\(580\) 3.47642e6 0.429104
\(581\) −7.88089e6 −0.968578
\(582\) 2.54495e6 0.311438
\(583\) −5.36070e6 −0.653206
\(584\) 60172.7 0.00730074
\(585\) −1.99053e6 −0.240480
\(586\) 5.32352e6 0.640405
\(587\) 1.42905e7 1.71180 0.855898 0.517145i \(-0.173005\pi\)
0.855898 + 0.517145i \(0.173005\pi\)
\(588\) −3.17351e6 −0.378527
\(589\) −5.69153e6 −0.675991
\(590\) −6.07588e6 −0.718587
\(591\) −1.10459e6 −0.130086
\(592\) −2.73465e6 −0.320699
\(593\) −1.09071e7 −1.27371 −0.636855 0.770983i \(-0.719765\pi\)
−0.636855 + 0.770983i \(0.719765\pi\)
\(594\) 6.75783e6 0.785852
\(595\) 1.30535e6 0.151159
\(596\) 2.78407e6 0.321044
\(597\) 793157. 0.0910801
\(598\) −151789. −0.0173575
\(599\) −8.01203e6 −0.912380 −0.456190 0.889882i \(-0.650786\pi\)
−0.456190 + 0.889882i \(0.650786\pi\)
\(600\) −1.40599e6 −0.159443
\(601\) 7.55922e6 0.853671 0.426836 0.904329i \(-0.359628\pi\)
0.426836 + 0.904329i \(0.359628\pi\)
\(602\) 1.06758e6 0.120063
\(603\) −5.94702e6 −0.666049
\(604\) 1.45647e6 0.162446
\(605\) 9.52850e6 1.05837
\(606\) −4.88067e6 −0.539881
\(607\) 1.58096e7 1.74161 0.870803 0.491631i \(-0.163599\pi\)
0.870803 + 0.491631i \(0.163599\pi\)
\(608\) 2.38625e6 0.261792
\(609\) −4.27604e6 −0.467196
\(610\) −1.22523e7 −1.33320
\(611\) −1.29550e6 −0.140390
\(612\) −241208. −0.0260323
\(613\) 2.82014e6 0.303123 0.151562 0.988448i \(-0.451570\pi\)
0.151562 + 0.988448i \(0.451570\pi\)
\(614\) 7.15498e6 0.765928
\(615\) 5.92854e6 0.632062
\(616\) 7.12281e6 0.756309
\(617\) −1.25845e7 −1.33084 −0.665418 0.746471i \(-0.731747\pi\)
−0.665418 + 0.746471i \(0.731747\pi\)
\(618\) −5.67169e6 −0.597368
\(619\) 3.84050e6 0.402866 0.201433 0.979502i \(-0.435440\pi\)
0.201433 + 0.979502i \(0.435440\pi\)
\(620\) −3.05521e6 −0.319199
\(621\) −894369. −0.0930653
\(622\) 2.49869e6 0.258962
\(623\) −2.18612e7 −2.25660
\(624\) −253698. −0.0260829
\(625\) −1.01766e7 −1.04208
\(626\) 1.29454e7 1.32032
\(627\) −9.11498e6 −0.925949
\(628\) −490464. −0.0496258
\(629\) −852404. −0.0859051
\(630\) −1.23620e7 −1.24090
\(631\) 5.55681e6 0.555587 0.277793 0.960641i \(-0.410397\pi\)
0.277793 + 0.960641i \(0.410397\pi\)
\(632\) −4.82945e6 −0.480955
\(633\) −5.48445e6 −0.544031
\(634\) 1.31209e6 0.129641
\(635\) 1.29109e7 1.27064
\(636\) 1.18579e6 0.116242
\(637\) 3.63489e6 0.354930
\(638\) 5.91292e6 0.575109
\(639\) −9.23959e6 −0.895160
\(640\) 1.28094e6 0.123617
\(641\) −1.23451e7 −1.18672 −0.593361 0.804936i \(-0.702199\pi\)
−0.593361 + 0.804936i \(0.702199\pi\)
\(642\) −2.33970e6 −0.224039
\(643\) 1.31772e7 1.25689 0.628443 0.777856i \(-0.283693\pi\)
0.628443 + 0.777856i \(0.283693\pi\)
\(644\) −942673. −0.0895667
\(645\) −733360. −0.0694093
\(646\) 743807. 0.0701260
\(647\) −5.15166e6 −0.483823 −0.241912 0.970298i \(-0.577774\pi\)
−0.241912 + 0.970298i \(0.577774\pi\)
\(648\) 1.44331e6 0.135027
\(649\) −1.03342e7 −0.963090
\(650\) 1.61040e6 0.149503
\(651\) 3.75795e6 0.347535
\(652\) 4.56262e6 0.420335
\(653\) 1.47775e7 1.35618 0.678090 0.734979i \(-0.262808\pi\)
0.678090 + 0.734979i \(0.262808\pi\)
\(654\) 1.55105e6 0.141801
\(655\) 3.00629e7 2.73796
\(656\) −2.63984e6 −0.239507
\(657\) −177626. −0.0160543
\(658\) −8.04560e6 −0.724426
\(659\) −4.44211e6 −0.398452 −0.199226 0.979954i \(-0.563843\pi\)
−0.199226 + 0.979954i \(0.563843\pi\)
\(660\) −4.89291e6 −0.437228
\(661\) 1.05777e7 0.941646 0.470823 0.882228i \(-0.343957\pi\)
0.470823 + 0.882228i \(0.343957\pi\)
\(662\) −823744. −0.0730545
\(663\) −79079.1 −0.00698679
\(664\) −2.41058e6 −0.212178
\(665\) 3.81204e7 3.34275
\(666\) 8.07250e6 0.705217
\(667\) −782550. −0.0681079
\(668\) 1.20609e6 0.104577
\(669\) 5.97917e6 0.516506
\(670\) 9.84419e6 0.847214
\(671\) −2.08395e7 −1.78682
\(672\) −1.57557e6 −0.134590
\(673\) 6.91005e6 0.588090 0.294045 0.955792i \(-0.404999\pi\)
0.294045 + 0.955792i \(0.404999\pi\)
\(674\) −997550. −0.0845834
\(675\) 9.48878e6 0.801588
\(676\) −5.65011e6 −0.475543
\(677\) −1.38255e7 −1.15934 −0.579668 0.814853i \(-0.696818\pi\)
−0.579668 + 0.814853i \(0.696818\pi\)
\(678\) −1.74095e6 −0.145450
\(679\) −1.81030e7 −1.50687
\(680\) 399275. 0.0331131
\(681\) 676751. 0.0559193
\(682\) −5.19649e6 −0.427809
\(683\) 9.27782e6 0.761017 0.380508 0.924777i \(-0.375749\pi\)
0.380508 + 0.924777i \(0.375749\pi\)
\(684\) −7.04405e6 −0.575682
\(685\) −2.79330e7 −2.27453
\(686\) 8.50772e6 0.690245
\(687\) −2.96606e6 −0.239767
\(688\) 326548. 0.0263012
\(689\) −1.35818e6 −0.108996
\(690\) 647556. 0.0517791
\(691\) −1.05827e7 −0.843142 −0.421571 0.906795i \(-0.638521\pi\)
−0.421571 + 0.906795i \(0.638521\pi\)
\(692\) 4.18233e6 0.332011
\(693\) −2.10261e7 −1.66313
\(694\) 9.98957e6 0.787314
\(695\) −1.74698e6 −0.137191
\(696\) −1.30794e6 −0.102345
\(697\) −822852. −0.0641563
\(698\) 1.33701e7 1.03871
\(699\) 5.70439e6 0.441587
\(700\) 1.00013e7 0.771453
\(701\) 4.94558e6 0.380122 0.190061 0.981772i \(-0.439131\pi\)
0.190061 + 0.981772i \(0.439131\pi\)
\(702\) 1.71216e6 0.131130
\(703\) −2.48930e7 −1.89972
\(704\) 2.17870e6 0.165678
\(705\) 5.52681e6 0.418795
\(706\) −6.31941e6 −0.477161
\(707\) 3.47177e7 2.61218
\(708\) 2.28594e6 0.171388
\(709\) 2.19381e7 1.63901 0.819507 0.573069i \(-0.194247\pi\)
0.819507 + 0.573069i \(0.194247\pi\)
\(710\) 1.52944e7 1.13864
\(711\) 1.42562e7 1.05762
\(712\) −6.68683e6 −0.494334
\(713\) 687734. 0.0506636
\(714\) −491113. −0.0360525
\(715\) 5.60427e6 0.409972
\(716\) 342212. 0.0249467
\(717\) 1.22698e7 0.891329
\(718\) 6.36676e6 0.460900
\(719\) 2.39359e7 1.72674 0.863370 0.504572i \(-0.168350\pi\)
0.863370 + 0.504572i \(0.168350\pi\)
\(720\) −3.78124e6 −0.271834
\(721\) 4.03445e7 2.89032
\(722\) 1.18172e7 0.843668
\(723\) 5.57484e6 0.396631
\(724\) 9.70724e6 0.688255
\(725\) 8.30243e6 0.586625
\(726\) −3.58492e6 −0.252429
\(727\) 1.37310e7 0.963529 0.481764 0.876301i \(-0.339996\pi\)
0.481764 + 0.876301i \(0.339996\pi\)
\(728\) 1.80463e6 0.126200
\(729\) 1.41514e6 0.0986237
\(730\) 294027. 0.0204211
\(731\) 101787. 0.00704527
\(732\) 4.60971e6 0.317977
\(733\) −8.31377e6 −0.571529 −0.285764 0.958300i \(-0.592247\pi\)
−0.285764 + 0.958300i \(0.592247\pi\)
\(734\) −1.09989e7 −0.753546
\(735\) −1.55070e7 −1.05879
\(736\) −288341. −0.0196206
\(737\) 1.67436e7 1.13548
\(738\) 7.79263e6 0.526675
\(739\) −2.82089e6 −0.190010 −0.0950048 0.995477i \(-0.530287\pi\)
−0.0950048 + 0.995477i \(0.530287\pi\)
\(740\) −1.33625e7 −0.897036
\(741\) −2.30937e6 −0.154507
\(742\) −8.43488e6 −0.562431
\(743\) −1.52816e7 −1.01554 −0.507770 0.861493i \(-0.669530\pi\)
−0.507770 + 0.861493i \(0.669530\pi\)
\(744\) 1.14947e6 0.0761314
\(745\) 1.36041e7 0.898003
\(746\) 2.00455e7 1.31877
\(747\) 7.11586e6 0.466580
\(748\) 679112. 0.0443800
\(749\) 1.66430e7 1.08400
\(750\) 316329. 0.0205346
\(751\) 1.42000e7 0.918734 0.459367 0.888246i \(-0.348076\pi\)
0.459367 + 0.888246i \(0.348076\pi\)
\(752\) −2.46096e6 −0.158694
\(753\) −287918. −0.0185047
\(754\) 1.49809e6 0.0959646
\(755\) 7.11687e6 0.454383
\(756\) 1.06332e7 0.676643
\(757\) −3.14982e7 −1.99777 −0.998887 0.0471662i \(-0.984981\pi\)
−0.998887 + 0.0471662i \(0.984981\pi\)
\(758\) −2.08025e7 −1.31505
\(759\) 1.10140e6 0.0693973
\(760\) 1.16601e7 0.732267
\(761\) 6.36011e6 0.398110 0.199055 0.979988i \(-0.436213\pi\)
0.199055 + 0.979988i \(0.436213\pi\)
\(762\) −4.85749e6 −0.303057
\(763\) −1.10331e7 −0.686096
\(764\) −1.24335e7 −0.770654
\(765\) −1.17863e6 −0.0728157
\(766\) −1.63828e7 −1.00882
\(767\) −2.61828e6 −0.160704
\(768\) −481929. −0.0294836
\(769\) 6.25574e6 0.381472 0.190736 0.981641i \(-0.438913\pi\)
0.190736 + 0.981641i \(0.438913\pi\)
\(770\) 3.48048e7 2.11549
\(771\) −7.00245e6 −0.424242
\(772\) −8.01794e6 −0.484194
\(773\) 5.73127e6 0.344986 0.172493 0.985011i \(-0.444818\pi\)
0.172493 + 0.985011i \(0.444818\pi\)
\(774\) −963947. −0.0578364
\(775\) −7.29649e6 −0.436375
\(776\) −5.53728e6 −0.330097
\(777\) 1.64361e7 0.976666
\(778\) 9.44401e6 0.559381
\(779\) −2.40300e7 −1.41876
\(780\) −1.23967e6 −0.0729572
\(781\) 2.60138e7 1.52607
\(782\) −89877.5 −0.00525574
\(783\) 8.82704e6 0.514530
\(784\) 6.90490e6 0.401206
\(785\) −2.39659e6 −0.138810
\(786\) −1.13106e7 −0.653024
\(787\) 1.01636e7 0.584940 0.292470 0.956275i \(-0.405523\pi\)
0.292470 + 0.956275i \(0.405523\pi\)
\(788\) 2.40335e6 0.137880
\(789\) 3.19761e6 0.182866
\(790\) −2.35985e7 −1.34529
\(791\) 1.23839e7 0.703747
\(792\) −6.43137e6 −0.364326
\(793\) −5.27989e6 −0.298155
\(794\) −3.26079e6 −0.183557
\(795\) 5.79422e6 0.325145
\(796\) −1.72574e6 −0.0965369
\(797\) −6.91836e6 −0.385796 −0.192898 0.981219i \(-0.561789\pi\)
−0.192898 + 0.981219i \(0.561789\pi\)
\(798\) −1.43421e7 −0.797271
\(799\) −767094. −0.0425091
\(800\) 3.05915e6 0.168996
\(801\) 1.97391e7 1.08704
\(802\) −970271. −0.0532669
\(803\) 500099. 0.0273695
\(804\) −3.70370e6 −0.202067
\(805\) −4.60626e6 −0.250530
\(806\) −1.31658e6 −0.0713855
\(807\) 532117. 0.0287623
\(808\) 1.06193e7 0.572227
\(809\) 1.05785e7 0.568269 0.284134 0.958784i \(-0.408294\pi\)
0.284134 + 0.958784i \(0.408294\pi\)
\(810\) 7.05256e6 0.377689
\(811\) 1.51357e7 0.808073 0.404037 0.914743i \(-0.367607\pi\)
0.404037 + 0.914743i \(0.367607\pi\)
\(812\) 9.30378e6 0.495187
\(813\) 1.38793e7 0.736448
\(814\) −2.27278e7 −1.20226
\(815\) 2.22947e7 1.17573
\(816\) −150220. −0.00789772
\(817\) 2.97250e6 0.155800
\(818\) 2.06452e6 0.107879
\(819\) −5.32715e6 −0.277514
\(820\) −1.28993e7 −0.669931
\(821\) 8.18292e6 0.423692 0.211846 0.977303i \(-0.432052\pi\)
0.211846 + 0.977303i \(0.432052\pi\)
\(822\) 1.05093e7 0.542493
\(823\) −1.27321e7 −0.655242 −0.327621 0.944809i \(-0.606247\pi\)
−0.327621 + 0.944809i \(0.606247\pi\)
\(824\) 1.23404e7 0.633158
\(825\) −1.16853e7 −0.597730
\(826\) −1.62606e7 −0.829251
\(827\) 1.47732e7 0.751123 0.375562 0.926797i \(-0.377450\pi\)
0.375562 + 0.926797i \(0.377450\pi\)
\(828\) 851165. 0.0431457
\(829\) −3.08227e7 −1.55770 −0.778850 0.627210i \(-0.784197\pi\)
−0.778850 + 0.627210i \(0.784197\pi\)
\(830\) −1.17790e7 −0.593490
\(831\) 5.77435e6 0.290069
\(832\) 551994. 0.0276456
\(833\) 2.15230e6 0.107471
\(834\) 657268. 0.0327210
\(835\) 5.89340e6 0.292516
\(836\) 1.98323e7 0.981425
\(837\) −7.75753e6 −0.382745
\(838\) −1.93565e7 −0.952174
\(839\) −8.38326e6 −0.411157 −0.205579 0.978641i \(-0.565908\pi\)
−0.205579 + 0.978641i \(0.565908\pi\)
\(840\) −7.69883e6 −0.376467
\(841\) −1.27877e7 −0.623452
\(842\) 1.03327e7 0.502268
\(843\) −1.93618e6 −0.0938376
\(844\) 1.19330e7 0.576626
\(845\) −2.76086e7 −1.33016
\(846\) 7.26459e6 0.348968
\(847\) 2.55007e7 1.22136
\(848\) −2.58003e6 −0.123207
\(849\) 6.60350e6 0.314416
\(850\) 953552. 0.0452686
\(851\) 3.00793e6 0.142378
\(852\) −5.75425e6 −0.271575
\(853\) −2.62065e7 −1.23321 −0.616604 0.787274i \(-0.711492\pi\)
−0.616604 + 0.787274i \(0.711492\pi\)
\(854\) −3.27903e7 −1.53851
\(855\) −3.44200e7 −1.61026
\(856\) 5.09070e6 0.237462
\(857\) 2.91581e7 1.35615 0.678074 0.734994i \(-0.262815\pi\)
0.678074 + 0.734994i \(0.262815\pi\)
\(858\) −2.10850e6 −0.0977813
\(859\) −750586. −0.0347070 −0.0173535 0.999849i \(-0.505524\pi\)
−0.0173535 + 0.999849i \(0.505524\pi\)
\(860\) 1.59564e6 0.0735678
\(861\) 1.58663e7 0.729401
\(862\) −2.22376e7 −1.01934
\(863\) 2.08397e7 0.952500 0.476250 0.879310i \(-0.341996\pi\)
0.476250 + 0.879310i \(0.341996\pi\)
\(864\) 3.25245e6 0.148226
\(865\) 2.04364e7 0.928678
\(866\) 2.84855e6 0.129071
\(867\) 1.03943e7 0.469621
\(868\) −8.17651e6 −0.368357
\(869\) −4.01379e7 −1.80304
\(870\) −6.39110e6 −0.286271
\(871\) 4.24216e6 0.189470
\(872\) −3.37475e6 −0.150297
\(873\) 1.63457e7 0.725885
\(874\) −2.62472e6 −0.116226
\(875\) −2.25014e6 −0.0993550
\(876\) −110622. −0.00487059
\(877\) 2.06088e7 0.904801 0.452400 0.891815i \(-0.350568\pi\)
0.452400 + 0.891815i \(0.350568\pi\)
\(878\) −251084. −0.0109922
\(879\) −9.78682e6 −0.427238
\(880\) 1.06460e7 0.463423
\(881\) −7.52049e6 −0.326442 −0.163221 0.986589i \(-0.552188\pi\)
−0.163221 + 0.986589i \(0.552188\pi\)
\(882\) −2.03828e7 −0.882252
\(883\) −2.85717e7 −1.23320 −0.616602 0.787275i \(-0.711491\pi\)
−0.616602 + 0.787275i \(0.711491\pi\)
\(884\) 172059. 0.00740539
\(885\) 1.11700e7 0.479396
\(886\) −2.77222e7 −1.18643
\(887\) −3.33766e7 −1.42440 −0.712202 0.701975i \(-0.752302\pi\)
−0.712202 + 0.701975i \(0.752302\pi\)
\(888\) 5.02741e6 0.213950
\(889\) 3.45528e7 1.46632
\(890\) −3.26744e7 −1.38272
\(891\) 1.19954e7 0.506200
\(892\) −1.30094e7 −0.547451
\(893\) −2.24017e7 −0.940051
\(894\) −5.11828e6 −0.214180
\(895\) 1.67218e6 0.0697790
\(896\) 3.42811e6 0.142654
\(897\) 279051. 0.0115798
\(898\) 3.86441e6 0.159916
\(899\) −6.78763e6 −0.280104
\(900\) −9.03040e6 −0.371621
\(901\) −804209. −0.0330033
\(902\) −2.19399e7 −0.897879
\(903\) −1.96265e6 −0.0800985
\(904\) 3.78794e6 0.154164
\(905\) 4.74333e7 1.92514
\(906\) −2.67759e6 −0.108374
\(907\) 1.60743e7 0.648803 0.324401 0.945920i \(-0.394837\pi\)
0.324401 + 0.945920i \(0.394837\pi\)
\(908\) −1.47247e6 −0.0592696
\(909\) −3.13476e7 −1.25833
\(910\) 8.81812e6 0.352998
\(911\) 6.00724e6 0.239817 0.119908 0.992785i \(-0.461740\pi\)
0.119908 + 0.992785i \(0.461740\pi\)
\(912\) −4.38691e6 −0.174651
\(913\) −2.00345e7 −0.795428
\(914\) −1.31095e7 −0.519065
\(915\) 2.25248e7 0.889423
\(916\) 6.45353e6 0.254132
\(917\) 8.04557e7 3.15961
\(918\) 1.01380e6 0.0397052
\(919\) 1.61954e7 0.632563 0.316282 0.948665i \(-0.397566\pi\)
0.316282 + 0.948665i \(0.397566\pi\)
\(920\) −1.40895e6 −0.0548814
\(921\) −1.31538e7 −0.510978
\(922\) −2.12178e7 −0.822001
\(923\) 6.59083e6 0.254646
\(924\) −1.30947e7 −0.504562
\(925\) −3.19126e7 −1.22633
\(926\) −1.87485e7 −0.718520
\(927\) −3.64281e7 −1.39231
\(928\) 2.84580e6 0.108476
\(929\) 1.34026e7 0.509508 0.254754 0.967006i \(-0.418005\pi\)
0.254754 + 0.967006i \(0.418005\pi\)
\(930\) 5.61673e6 0.212949
\(931\) 6.28541e7 2.37662
\(932\) −1.24115e7 −0.468043
\(933\) −4.59362e6 −0.172763
\(934\) −1.13144e7 −0.424388
\(935\) 3.31840e6 0.124137
\(936\) −1.62945e6 −0.0607927
\(937\) 2.14662e7 0.798741 0.399371 0.916790i \(-0.369229\pi\)
0.399371 + 0.916790i \(0.369229\pi\)
\(938\) 2.63455e7 0.977687
\(939\) −2.37989e7 −0.880832
\(940\) −1.20252e7 −0.443887
\(941\) 1.80652e7 0.665072 0.332536 0.943091i \(-0.392096\pi\)
0.332536 + 0.943091i \(0.392096\pi\)
\(942\) 901675. 0.0331072
\(943\) 2.90365e6 0.106332
\(944\) −4.97372e6 −0.181657
\(945\) 5.19579e7 1.89266
\(946\) 2.71396e6 0.0985997
\(947\) −3.47075e7 −1.25762 −0.628808 0.777561i \(-0.716457\pi\)
−0.628808 + 0.777561i \(0.716457\pi\)
\(948\) 8.87852e6 0.320863
\(949\) 126705. 0.00456697
\(950\) 2.78469e7 1.00108
\(951\) −2.41217e6 −0.0864880
\(952\) 1.06856e6 0.0382126
\(953\) 1.44089e7 0.513922 0.256961 0.966422i \(-0.417279\pi\)
0.256961 + 0.966422i \(0.417279\pi\)
\(954\) 7.61608e6 0.270932
\(955\) −6.07547e7 −2.15562
\(956\) −2.66964e7 −0.944731
\(957\) −1.08704e7 −0.383676
\(958\) −1.70762e7 −0.601144
\(959\) −7.47558e7 −2.62481
\(960\) −2.35489e6 −0.0824693
\(961\) −2.26639e7 −0.791638
\(962\) −5.75832e6 −0.200612
\(963\) −1.50274e7 −0.522178
\(964\) −1.21297e7 −0.420394
\(965\) −3.91787e7 −1.35435
\(966\) 1.73302e6 0.0597532
\(967\) −5.59960e7 −1.92571 −0.962855 0.270019i \(-0.912970\pi\)
−0.962855 + 0.270019i \(0.912970\pi\)
\(968\) 7.80004e6 0.267552
\(969\) −1.36742e6 −0.0467836
\(970\) −2.70573e7 −0.923325
\(971\) −1.73124e6 −0.0589264 −0.0294632 0.999566i \(-0.509380\pi\)
−0.0294632 + 0.999566i \(0.509380\pi\)
\(972\) −1.50025e7 −0.509329
\(973\) −4.67535e6 −0.158318
\(974\) 2.24228e7 0.757344
\(975\) −2.96058e6 −0.0997392
\(976\) −1.00298e7 −0.337028
\(977\) −2.65121e7 −0.888602 −0.444301 0.895878i \(-0.646548\pi\)
−0.444301 + 0.895878i \(0.646548\pi\)
\(978\) −8.38798e6 −0.280421
\(979\) −5.55747e7 −1.85319
\(980\) 3.37400e7 1.12223
\(981\) 9.96205e6 0.330504
\(982\) 3.41105e7 1.12878
\(983\) −3.12916e7 −1.03287 −0.516433 0.856328i \(-0.672740\pi\)
−0.516433 + 0.856328i \(0.672740\pi\)
\(984\) 4.85311e6 0.159784
\(985\) 1.17437e7 0.385669
\(986\) 887052. 0.0290574
\(987\) 1.47911e7 0.483291
\(988\) 5.02470e6 0.163764
\(989\) −359181. −0.0116768
\(990\) −3.14262e7 −1.01907
\(991\) −7.58503e6 −0.245343 −0.122671 0.992447i \(-0.539146\pi\)
−0.122671 + 0.992447i \(0.539146\pi\)
\(992\) −2.50100e6 −0.0806927
\(993\) 1.51438e6 0.0487373
\(994\) 4.09317e7 1.31400
\(995\) −8.43264e6 −0.270026
\(996\) 4.43163e6 0.141552
\(997\) −4.59581e7 −1.46428 −0.732139 0.681155i \(-0.761478\pi\)
−0.732139 + 0.681155i \(0.761478\pi\)
\(998\) −191859. −0.00609755
\(999\) −3.39290e7 −1.07562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.d.1.11 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.d.1.11 32 1.1 even 1 trivial