Properties

Label 538.6.a.d.1.14
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -5.34471 q^{3} +16.0000 q^{4} -20.8011 q^{5} -21.3788 q^{6} +58.6538 q^{7} +64.0000 q^{8} -214.434 q^{9} -83.2043 q^{10} +437.510 q^{11} -85.5154 q^{12} +221.105 q^{13} +234.615 q^{14} +111.176 q^{15} +256.000 q^{16} +964.999 q^{17} -857.736 q^{18} +1195.72 q^{19} -332.817 q^{20} -313.487 q^{21} +1750.04 q^{22} -4646.53 q^{23} -342.061 q^{24} -2692.32 q^{25} +884.420 q^{26} +2444.85 q^{27} +938.460 q^{28} -8235.32 q^{29} +444.703 q^{30} +7270.22 q^{31} +1024.00 q^{32} -2338.37 q^{33} +3860.00 q^{34} -1220.06 q^{35} -3430.95 q^{36} -8028.54 q^{37} +4782.89 q^{38} -1181.74 q^{39} -1331.27 q^{40} +7530.45 q^{41} -1253.95 q^{42} +20669.1 q^{43} +7000.17 q^{44} +4460.46 q^{45} -18586.1 q^{46} +28906.8 q^{47} -1368.25 q^{48} -13366.7 q^{49} -10769.3 q^{50} -5157.64 q^{51} +3537.68 q^{52} +27887.3 q^{53} +9779.41 q^{54} -9100.68 q^{55} +3753.84 q^{56} -6390.79 q^{57} -32941.3 q^{58} +13306.5 q^{59} +1778.81 q^{60} +28984.5 q^{61} +29080.9 q^{62} -12577.4 q^{63} +4096.00 q^{64} -4599.22 q^{65} -9353.46 q^{66} +11998.6 q^{67} +15440.0 q^{68} +24834.4 q^{69} -4880.25 q^{70} -3848.58 q^{71} -13723.8 q^{72} -83655.9 q^{73} -32114.2 q^{74} +14389.6 q^{75} +19131.6 q^{76} +25661.6 q^{77} -4726.97 q^{78} -8037.48 q^{79} -5325.08 q^{80} +39040.4 q^{81} +30121.8 q^{82} +74025.9 q^{83} -5015.80 q^{84} -20073.0 q^{85} +82676.4 q^{86} +44015.4 q^{87} +28000.7 q^{88} +105411. q^{89} +17841.8 q^{90} +12968.6 q^{91} -74344.5 q^{92} -38857.2 q^{93} +115627. q^{94} -24872.3 q^{95} -5472.98 q^{96} +65941.4 q^{97} -53466.9 q^{98} -93817.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 128 q^{2} + 32 q^{3} + 512 q^{4} + 214 q^{5} + 128 q^{6} + 428 q^{7} + 2048 q^{8} + 3196 q^{9} + 856 q^{10} + 1357 q^{11} + 512 q^{12} + 1747 q^{13} + 1712 q^{14} + 2728 q^{15} + 8192 q^{16} + 3766 q^{17}+ \cdots + 338392 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −5.34471 −0.342863 −0.171432 0.985196i \(-0.554839\pi\)
−0.171432 + 0.985196i \(0.554839\pi\)
\(4\) 16.0000 0.500000
\(5\) −20.8011 −0.372101 −0.186050 0.982540i \(-0.559569\pi\)
−0.186050 + 0.982540i \(0.559569\pi\)
\(6\) −21.3788 −0.242441
\(7\) 58.6538 0.452429 0.226215 0.974077i \(-0.427365\pi\)
0.226215 + 0.974077i \(0.427365\pi\)
\(8\) 64.0000 0.353553
\(9\) −214.434 −0.882445
\(10\) −83.2043 −0.263115
\(11\) 437.510 1.09020 0.545101 0.838371i \(-0.316491\pi\)
0.545101 + 0.838371i \(0.316491\pi\)
\(12\) −85.5154 −0.171432
\(13\) 221.105 0.362861 0.181430 0.983404i \(-0.441927\pi\)
0.181430 + 0.983404i \(0.441927\pi\)
\(14\) 234.615 0.319916
\(15\) 111.176 0.127580
\(16\) 256.000 0.250000
\(17\) 964.999 0.809850 0.404925 0.914350i \(-0.367298\pi\)
0.404925 + 0.914350i \(0.367298\pi\)
\(18\) −857.736 −0.623983
\(19\) 1195.72 0.759882 0.379941 0.925011i \(-0.375944\pi\)
0.379941 + 0.925011i \(0.375944\pi\)
\(20\) −332.817 −0.186050
\(21\) −313.487 −0.155121
\(22\) 1750.04 0.770889
\(23\) −4646.53 −1.83151 −0.915755 0.401737i \(-0.868406\pi\)
−0.915755 + 0.401737i \(0.868406\pi\)
\(24\) −342.061 −0.121220
\(25\) −2692.32 −0.861541
\(26\) 884.420 0.256581
\(27\) 2444.85 0.645421
\(28\) 938.460 0.226215
\(29\) −8235.32 −1.81838 −0.909192 0.416377i \(-0.863299\pi\)
−0.909192 + 0.416377i \(0.863299\pi\)
\(30\) 444.703 0.0902125
\(31\) 7270.22 1.35876 0.679381 0.733786i \(-0.262248\pi\)
0.679381 + 0.733786i \(0.262248\pi\)
\(32\) 1024.00 0.176777
\(33\) −2338.37 −0.373790
\(34\) 3860.00 0.572650
\(35\) −1220.06 −0.168349
\(36\) −3430.95 −0.441222
\(37\) −8028.54 −0.964123 −0.482061 0.876137i \(-0.660112\pi\)
−0.482061 + 0.876137i \(0.660112\pi\)
\(38\) 4782.89 0.537318
\(39\) −1181.74 −0.124412
\(40\) −1331.27 −0.131558
\(41\) 7530.45 0.699618 0.349809 0.936821i \(-0.386246\pi\)
0.349809 + 0.936821i \(0.386246\pi\)
\(42\) −1253.95 −0.109687
\(43\) 20669.1 1.70471 0.852355 0.522964i \(-0.175174\pi\)
0.852355 + 0.522964i \(0.175174\pi\)
\(44\) 7000.17 0.545101
\(45\) 4460.46 0.328359
\(46\) −18586.1 −1.29507
\(47\) 28906.8 1.90877 0.954387 0.298571i \(-0.0965099\pi\)
0.954387 + 0.298571i \(0.0965099\pi\)
\(48\) −1368.25 −0.0857158
\(49\) −13366.7 −0.795308
\(50\) −10769.3 −0.609201
\(51\) −5157.64 −0.277668
\(52\) 3537.68 0.181430
\(53\) 27887.3 1.36370 0.681848 0.731494i \(-0.261177\pi\)
0.681848 + 0.731494i \(0.261177\pi\)
\(54\) 9779.41 0.456382
\(55\) −9100.68 −0.405665
\(56\) 3753.84 0.159958
\(57\) −6390.79 −0.260536
\(58\) −32941.3 −1.28579
\(59\) 13306.5 0.497660 0.248830 0.968547i \(-0.419954\pi\)
0.248830 + 0.968547i \(0.419954\pi\)
\(60\) 1778.81 0.0637899
\(61\) 28984.5 0.997334 0.498667 0.866794i \(-0.333823\pi\)
0.498667 + 0.866794i \(0.333823\pi\)
\(62\) 29080.9 0.960789
\(63\) −12577.4 −0.399244
\(64\) 4096.00 0.125000
\(65\) −4599.22 −0.135021
\(66\) −9353.46 −0.264309
\(67\) 11998.6 0.326545 0.163272 0.986581i \(-0.447795\pi\)
0.163272 + 0.986581i \(0.447795\pi\)
\(68\) 15440.0 0.404925
\(69\) 24834.4 0.627958
\(70\) −4880.25 −0.119041
\(71\) −3848.58 −0.0906056 −0.0453028 0.998973i \(-0.514425\pi\)
−0.0453028 + 0.998973i \(0.514425\pi\)
\(72\) −13723.8 −0.311991
\(73\) −83655.9 −1.83734 −0.918670 0.395025i \(-0.870736\pi\)
−0.918670 + 0.395025i \(0.870736\pi\)
\(74\) −32114.2 −0.681738
\(75\) 14389.6 0.295391
\(76\) 19131.6 0.379941
\(77\) 25661.6 0.493239
\(78\) −4726.97 −0.0879723
\(79\) −8037.48 −0.144895 −0.0724473 0.997372i \(-0.523081\pi\)
−0.0724473 + 0.997372i \(0.523081\pi\)
\(80\) −5325.08 −0.0930252
\(81\) 39040.4 0.661153
\(82\) 30121.8 0.494705
\(83\) 74025.9 1.17947 0.589737 0.807595i \(-0.299231\pi\)
0.589737 + 0.807595i \(0.299231\pi\)
\(84\) −5015.80 −0.0775607
\(85\) −20073.0 −0.301346
\(86\) 82676.4 1.20541
\(87\) 44015.4 0.623457
\(88\) 28000.7 0.385444
\(89\) 105411. 1.41063 0.705314 0.708895i \(-0.250806\pi\)
0.705314 + 0.708895i \(0.250806\pi\)
\(90\) 17841.8 0.232185
\(91\) 12968.6 0.164169
\(92\) −74344.5 −0.915755
\(93\) −38857.2 −0.465870
\(94\) 115627. 1.34971
\(95\) −24872.3 −0.282753
\(96\) −5472.98 −0.0606102
\(97\) 65941.4 0.711588 0.355794 0.934564i \(-0.384210\pi\)
0.355794 + 0.934564i \(0.384210\pi\)
\(98\) −53466.9 −0.562367
\(99\) −93817.1 −0.962042
\(100\) −43077.0 −0.430770
\(101\) −38691.8 −0.377411 −0.188706 0.982034i \(-0.560429\pi\)
−0.188706 + 0.982034i \(0.560429\pi\)
\(102\) −20630.6 −0.196341
\(103\) −63265.7 −0.587591 −0.293796 0.955868i \(-0.594919\pi\)
−0.293796 + 0.955868i \(0.594919\pi\)
\(104\) 14150.7 0.128291
\(105\) 6520.87 0.0577208
\(106\) 111549. 0.964279
\(107\) 15469.0 0.130618 0.0653090 0.997865i \(-0.479197\pi\)
0.0653090 + 0.997865i \(0.479197\pi\)
\(108\) 39117.6 0.322711
\(109\) 216445. 1.74495 0.872473 0.488662i \(-0.162515\pi\)
0.872473 + 0.488662i \(0.162515\pi\)
\(110\) −36402.7 −0.286848
\(111\) 42910.2 0.330562
\(112\) 15015.4 0.113107
\(113\) −26770.5 −0.197224 −0.0986121 0.995126i \(-0.531440\pi\)
−0.0986121 + 0.995126i \(0.531440\pi\)
\(114\) −25563.2 −0.184227
\(115\) 96652.8 0.681506
\(116\) −131765. −0.909192
\(117\) −47412.4 −0.320205
\(118\) 53225.9 0.351899
\(119\) 56600.8 0.366400
\(120\) 7115.25 0.0451063
\(121\) 30364.3 0.188538
\(122\) 115938. 0.705222
\(123\) −40248.1 −0.239873
\(124\) 116323. 0.679381
\(125\) 121006. 0.692681
\(126\) −50309.5 −0.282308
\(127\) 112879. 0.621017 0.310508 0.950571i \(-0.399501\pi\)
0.310508 + 0.950571i \(0.399501\pi\)
\(128\) 16384.0 0.0883883
\(129\) −110470. −0.584482
\(130\) −18396.9 −0.0954742
\(131\) 242147. 1.23282 0.616412 0.787424i \(-0.288586\pi\)
0.616412 + 0.787424i \(0.288586\pi\)
\(132\) −37413.9 −0.186895
\(133\) 70133.6 0.343793
\(134\) 47994.3 0.230902
\(135\) −50855.6 −0.240162
\(136\) 61759.9 0.286325
\(137\) −25756.3 −0.117242 −0.0586208 0.998280i \(-0.518670\pi\)
−0.0586208 + 0.998280i \(0.518670\pi\)
\(138\) 99337.5 0.444033
\(139\) 326208. 1.43205 0.716023 0.698077i \(-0.245961\pi\)
0.716023 + 0.698077i \(0.245961\pi\)
\(140\) −19521.0 −0.0841747
\(141\) −154498. −0.654449
\(142\) −15394.3 −0.0640678
\(143\) 96735.7 0.395591
\(144\) −54895.1 −0.220611
\(145\) 171304. 0.676622
\(146\) −334624. −1.29920
\(147\) 71441.3 0.272682
\(148\) −128457. −0.482061
\(149\) −186110. −0.686760 −0.343380 0.939197i \(-0.611572\pi\)
−0.343380 + 0.939197i \(0.611572\pi\)
\(150\) 57558.6 0.208873
\(151\) 341810. 1.21995 0.609975 0.792421i \(-0.291180\pi\)
0.609975 + 0.792421i \(0.291180\pi\)
\(152\) 76526.2 0.268659
\(153\) −206929. −0.714648
\(154\) 102647. 0.348773
\(155\) −151228. −0.505596
\(156\) −18907.9 −0.0622058
\(157\) −321628. −1.04137 −0.520685 0.853749i \(-0.674323\pi\)
−0.520685 + 0.853749i \(0.674323\pi\)
\(158\) −32149.9 −0.102456
\(159\) −149050. −0.467561
\(160\) −21300.3 −0.0657788
\(161\) −272537. −0.828629
\(162\) 156162. 0.467506
\(163\) 307709. 0.907132 0.453566 0.891223i \(-0.350152\pi\)
0.453566 + 0.891223i \(0.350152\pi\)
\(164\) 120487. 0.349809
\(165\) 48640.5 0.139088
\(166\) 296104. 0.834014
\(167\) 685858. 1.90302 0.951510 0.307619i \(-0.0995323\pi\)
0.951510 + 0.307619i \(0.0995323\pi\)
\(168\) −20063.2 −0.0548437
\(169\) −322406. −0.868332
\(170\) −80292.1 −0.213084
\(171\) −256404. −0.670554
\(172\) 330706. 0.852355
\(173\) −73751.2 −0.187350 −0.0936750 0.995603i \(-0.529861\pi\)
−0.0936750 + 0.995603i \(0.529861\pi\)
\(174\) 176062. 0.440851
\(175\) −157914. −0.389786
\(176\) 112003. 0.272550
\(177\) −71119.2 −0.170629
\(178\) 421645. 0.997464
\(179\) −687827. −1.60453 −0.802263 0.596971i \(-0.796371\pi\)
−0.802263 + 0.596971i \(0.796371\pi\)
\(180\) 71367.3 0.164179
\(181\) 475160. 1.07806 0.539030 0.842286i \(-0.318791\pi\)
0.539030 + 0.842286i \(0.318791\pi\)
\(182\) 51874.6 0.116085
\(183\) −154914. −0.341949
\(184\) −297378. −0.647536
\(185\) 167002. 0.358751
\(186\) −155429. −0.329419
\(187\) 422197. 0.882899
\(188\) 462508. 0.954387
\(189\) 143400. 0.292008
\(190\) −99489.2 −0.199937
\(191\) 563398. 1.11746 0.558729 0.829350i \(-0.311289\pi\)
0.558729 + 0.829350i \(0.311289\pi\)
\(192\) −21891.9 −0.0428579
\(193\) −986404. −1.90617 −0.953085 0.302703i \(-0.902111\pi\)
−0.953085 + 0.302703i \(0.902111\pi\)
\(194\) 263766. 0.503169
\(195\) 24581.5 0.0462937
\(196\) −213868. −0.397654
\(197\) 422267. 0.775214 0.387607 0.921825i \(-0.373302\pi\)
0.387607 + 0.921825i \(0.373302\pi\)
\(198\) −375268. −0.680267
\(199\) 632544. 1.13229 0.566146 0.824305i \(-0.308434\pi\)
0.566146 + 0.824305i \(0.308434\pi\)
\(200\) −172308. −0.304601
\(201\) −64129.0 −0.111960
\(202\) −154767. −0.266870
\(203\) −483033. −0.822690
\(204\) −82522.3 −0.138834
\(205\) −156641. −0.260329
\(206\) −253063. −0.415490
\(207\) 996375. 1.61621
\(208\) 56602.9 0.0907152
\(209\) 523141. 0.828424
\(210\) 26083.5 0.0408148
\(211\) −939638. −1.45296 −0.726482 0.687186i \(-0.758846\pi\)
−0.726482 + 0.687186i \(0.758846\pi\)
\(212\) 446198. 0.681848
\(213\) 20569.6 0.0310653
\(214\) 61876.0 0.0923609
\(215\) −429940. −0.634324
\(216\) 156471. 0.228191
\(217\) 426426. 0.614744
\(218\) 865781. 1.23386
\(219\) 447117. 0.629957
\(220\) −145611. −0.202832
\(221\) 213366. 0.293863
\(222\) 171641. 0.233743
\(223\) 242211. 0.326161 0.163081 0.986613i \(-0.447857\pi\)
0.163081 + 0.986613i \(0.447857\pi\)
\(224\) 60061.5 0.0799790
\(225\) 577324. 0.760262
\(226\) −107082. −0.139459
\(227\) 1.20145e6 1.54754 0.773770 0.633466i \(-0.218368\pi\)
0.773770 + 0.633466i \(0.218368\pi\)
\(228\) −102253. −0.130268
\(229\) −281461. −0.354674 −0.177337 0.984150i \(-0.556748\pi\)
−0.177337 + 0.984150i \(0.556748\pi\)
\(230\) 386611. 0.481898
\(231\) −137154. −0.169114
\(232\) −527061. −0.642896
\(233\) −312879. −0.377561 −0.188780 0.982019i \(-0.560453\pi\)
−0.188780 + 0.982019i \(0.560453\pi\)
\(234\) −189650. −0.226419
\(235\) −601292. −0.710257
\(236\) 212903. 0.248830
\(237\) 42958.0 0.0496790
\(238\) 226403. 0.259084
\(239\) −942502. −1.06730 −0.533651 0.845705i \(-0.679181\pi\)
−0.533651 + 0.845705i \(0.679181\pi\)
\(240\) 28461.0 0.0318949
\(241\) −1.41608e6 −1.57052 −0.785262 0.619164i \(-0.787472\pi\)
−0.785262 + 0.619164i \(0.787472\pi\)
\(242\) 121457. 0.133317
\(243\) −802759. −0.872107
\(244\) 463751. 0.498667
\(245\) 278042. 0.295935
\(246\) −160992. −0.169616
\(247\) 264380. 0.275732
\(248\) 465294. 0.480395
\(249\) −395647. −0.404399
\(250\) 484026. 0.489800
\(251\) −869964. −0.871600 −0.435800 0.900044i \(-0.643534\pi\)
−0.435800 + 0.900044i \(0.643534\pi\)
\(252\) −201238. −0.199622
\(253\) −2.03291e6 −1.99671
\(254\) 451515. 0.439125
\(255\) 107284. 0.103320
\(256\) 65536.0 0.0625000
\(257\) −367903. −0.347456 −0.173728 0.984794i \(-0.555581\pi\)
−0.173728 + 0.984794i \(0.555581\pi\)
\(258\) −441881. −0.413292
\(259\) −470904. −0.436197
\(260\) −73587.5 −0.0675104
\(261\) 1.76593e6 1.60462
\(262\) 968589. 0.871738
\(263\) −1.26334e6 −1.12624 −0.563120 0.826375i \(-0.690399\pi\)
−0.563120 + 0.826375i \(0.690399\pi\)
\(264\) −149655. −0.132155
\(265\) −580087. −0.507432
\(266\) 280534. 0.243098
\(267\) −563393. −0.483653
\(268\) 191977. 0.163272
\(269\) −72361.0 −0.0609711
\(270\) −203422. −0.169820
\(271\) 1.68321e6 1.39224 0.696121 0.717924i \(-0.254908\pi\)
0.696121 + 0.717924i \(0.254908\pi\)
\(272\) 247040. 0.202463
\(273\) −69313.6 −0.0562875
\(274\) −103025. −0.0829023
\(275\) −1.17792e6 −0.939253
\(276\) 397350. 0.313979
\(277\) 44585.7 0.0349137 0.0174569 0.999848i \(-0.494443\pi\)
0.0174569 + 0.999848i \(0.494443\pi\)
\(278\) 1.30483e6 1.01261
\(279\) −1.55898e6 −1.19903
\(280\) −78083.9 −0.0595205
\(281\) −1.27218e6 −0.961129 −0.480564 0.876959i \(-0.659568\pi\)
−0.480564 + 0.876959i \(0.659568\pi\)
\(282\) −617993. −0.462765
\(283\) 437086. 0.324415 0.162208 0.986757i \(-0.448139\pi\)
0.162208 + 0.986757i \(0.448139\pi\)
\(284\) −61577.3 −0.0453028
\(285\) 132935. 0.0969456
\(286\) 386943. 0.279725
\(287\) 441689. 0.316528
\(288\) −219580. −0.155996
\(289\) −488634. −0.344143
\(290\) 685214. 0.478444
\(291\) −352438. −0.243978
\(292\) −1.33849e6 −0.918670
\(293\) 53466.0 0.0363838 0.0181919 0.999835i \(-0.494209\pi\)
0.0181919 + 0.999835i \(0.494209\pi\)
\(294\) 285765. 0.192815
\(295\) −276789. −0.185180
\(296\) −513827. −0.340869
\(297\) 1.06965e6 0.703639
\(298\) −744442. −0.485613
\(299\) −1.02737e6 −0.664583
\(300\) 230234. 0.147695
\(301\) 1.21232e6 0.771261
\(302\) 1.36724e6 0.862634
\(303\) 206796. 0.129401
\(304\) 306105. 0.189971
\(305\) −602908. −0.371109
\(306\) −827715. −0.505332
\(307\) −964446. −0.584026 −0.292013 0.956414i \(-0.594325\pi\)
−0.292013 + 0.956414i \(0.594325\pi\)
\(308\) 410586. 0.246619
\(309\) 338137. 0.201464
\(310\) −604913. −0.357511
\(311\) −1.69214e6 −0.992054 −0.496027 0.868307i \(-0.665208\pi\)
−0.496027 + 0.868307i \(0.665208\pi\)
\(312\) −75631.5 −0.0439862
\(313\) −91145.2 −0.0525864 −0.0262932 0.999654i \(-0.508370\pi\)
−0.0262932 + 0.999654i \(0.508370\pi\)
\(314\) −1.28651e6 −0.736359
\(315\) 261623. 0.148559
\(316\) −128600. −0.0724473
\(317\) 983171. 0.549517 0.274758 0.961513i \(-0.411402\pi\)
0.274758 + 0.961513i \(0.411402\pi\)
\(318\) −596199. −0.330616
\(319\) −3.60304e6 −1.98240
\(320\) −85201.2 −0.0465126
\(321\) −82677.4 −0.0447841
\(322\) −1.09015e6 −0.585929
\(323\) 1.15387e6 0.615391
\(324\) 624647. 0.330577
\(325\) −595284. −0.312619
\(326\) 1.23083e6 0.641439
\(327\) −1.15684e6 −0.598278
\(328\) 481949. 0.247352
\(329\) 1.69549e6 0.863586
\(330\) 194562. 0.0983498
\(331\) 3.05149e6 1.53088 0.765441 0.643506i \(-0.222521\pi\)
0.765441 + 0.643506i \(0.222521\pi\)
\(332\) 1.18441e6 0.589737
\(333\) 1.72159e6 0.850785
\(334\) 2.74343e6 1.34564
\(335\) −249583. −0.121508
\(336\) −80252.8 −0.0387804
\(337\) −708465. −0.339816 −0.169908 0.985460i \(-0.554347\pi\)
−0.169908 + 0.985460i \(0.554347\pi\)
\(338\) −1.28962e6 −0.614003
\(339\) 143080. 0.0676209
\(340\) −321168. −0.150673
\(341\) 3.18080e6 1.48132
\(342\) −1.02561e6 −0.474153
\(343\) −1.76980e6 −0.812250
\(344\) 1.32282e6 0.602706
\(345\) −516581. −0.233664
\(346\) −295005. −0.132477
\(347\) −769245. −0.342958 −0.171479 0.985188i \(-0.554855\pi\)
−0.171479 + 0.985188i \(0.554855\pi\)
\(348\) 704247. 0.311729
\(349\) 2.76692e6 1.21600 0.607999 0.793938i \(-0.291972\pi\)
0.607999 + 0.793938i \(0.291972\pi\)
\(350\) −631658. −0.275621
\(351\) 540569. 0.234198
\(352\) 448011. 0.192722
\(353\) 2.36767e6 1.01131 0.505654 0.862736i \(-0.331251\pi\)
0.505654 + 0.862736i \(0.331251\pi\)
\(354\) −284477. −0.120653
\(355\) 80054.7 0.0337144
\(356\) 1.68658e6 0.705314
\(357\) −302515. −0.125625
\(358\) −2.75131e6 −1.13457
\(359\) 497978. 0.203927 0.101963 0.994788i \(-0.467488\pi\)
0.101963 + 0.994788i \(0.467488\pi\)
\(360\) 285469. 0.116092
\(361\) −1.04635e6 −0.422579
\(362\) 1.90064e6 0.762304
\(363\) −162288. −0.0646429
\(364\) 207498. 0.0820844
\(365\) 1.74013e6 0.683676
\(366\) −619654. −0.241795
\(367\) 1.08168e6 0.419211 0.209606 0.977786i \(-0.432782\pi\)
0.209606 + 0.977786i \(0.432782\pi\)
\(368\) −1.18951e6 −0.457877
\(369\) −1.61478e6 −0.617374
\(370\) 668009. 0.253675
\(371\) 1.63570e6 0.616976
\(372\) −621715. −0.232935
\(373\) 1.40354e6 0.522340 0.261170 0.965293i \(-0.415892\pi\)
0.261170 + 0.965293i \(0.415892\pi\)
\(374\) 1.68879e6 0.624304
\(375\) −646744. −0.237495
\(376\) 1.85003e6 0.674854
\(377\) −1.82087e6 −0.659820
\(378\) 573599. 0.206481
\(379\) 3.50396e6 1.25303 0.626514 0.779410i \(-0.284481\pi\)
0.626514 + 0.779410i \(0.284481\pi\)
\(380\) −397957. −0.141376
\(381\) −603305. −0.212924
\(382\) 2.25359e6 0.790163
\(383\) 3.63459e6 1.26607 0.633035 0.774123i \(-0.281809\pi\)
0.633035 + 0.774123i \(0.281809\pi\)
\(384\) −87567.7 −0.0303051
\(385\) −533789. −0.183535
\(386\) −3.94562e6 −1.34787
\(387\) −4.43216e6 −1.50431
\(388\) 1.05506e6 0.355794
\(389\) −2.96417e6 −0.993182 −0.496591 0.867985i \(-0.665415\pi\)
−0.496591 + 0.867985i \(0.665415\pi\)
\(390\) 98326.0 0.0327346
\(391\) −4.48390e6 −1.48325
\(392\) −855471. −0.281184
\(393\) −1.29421e6 −0.422690
\(394\) 1.68907e6 0.548159
\(395\) 167188. 0.0539154
\(396\) −1.50107e6 −0.481021
\(397\) −411048. −0.130893 −0.0654465 0.997856i \(-0.520847\pi\)
−0.0654465 + 0.997856i \(0.520847\pi\)
\(398\) 2.53018e6 0.800651
\(399\) −374844. −0.117874
\(400\) −689233. −0.215385
\(401\) 2.22970e6 0.692445 0.346222 0.938153i \(-0.387464\pi\)
0.346222 + 0.938153i \(0.387464\pi\)
\(402\) −256516. −0.0791679
\(403\) 1.60748e6 0.493041
\(404\) −619068. −0.188706
\(405\) −812083. −0.246016
\(406\) −1.93213e6 −0.581730
\(407\) −3.51257e6 −1.05109
\(408\) −330089. −0.0981704
\(409\) −4.98395e6 −1.47321 −0.736607 0.676321i \(-0.763573\pi\)
−0.736607 + 0.676321i \(0.763573\pi\)
\(410\) −626565. −0.184080
\(411\) 137660. 0.0401979
\(412\) −1.01225e6 −0.293796
\(413\) 780474. 0.225156
\(414\) 3.98550e6 1.14283
\(415\) −1.53982e6 −0.438884
\(416\) 226411. 0.0641453
\(417\) −1.74348e6 −0.490996
\(418\) 2.09256e6 0.585785
\(419\) 2.54581e6 0.708421 0.354210 0.935166i \(-0.384750\pi\)
0.354210 + 0.935166i \(0.384750\pi\)
\(420\) 104334. 0.0288604
\(421\) −3.41803e6 −0.939875 −0.469938 0.882700i \(-0.655724\pi\)
−0.469938 + 0.882700i \(0.655724\pi\)
\(422\) −3.75855e6 −1.02740
\(423\) −6.19859e6 −1.68439
\(424\) 1.78479e6 0.482139
\(425\) −2.59808e6 −0.697719
\(426\) 82278.2 0.0219665
\(427\) 1.70005e6 0.451223
\(428\) 247504. 0.0653090
\(429\) −517024. −0.135634
\(430\) −1.71976e6 −0.448535
\(431\) −5.53488e6 −1.43521 −0.717604 0.696451i \(-0.754761\pi\)
−0.717604 + 0.696451i \(0.754761\pi\)
\(432\) 625882. 0.161355
\(433\) −1.70429e6 −0.436842 −0.218421 0.975855i \(-0.570091\pi\)
−0.218421 + 0.975855i \(0.570091\pi\)
\(434\) 1.70570e6 0.434689
\(435\) −915568. −0.231989
\(436\) 3.46313e6 0.872473
\(437\) −5.55596e6 −1.39173
\(438\) 1.78847e6 0.445447
\(439\) −7.12110e6 −1.76354 −0.881770 0.471679i \(-0.843648\pi\)
−0.881770 + 0.471679i \(0.843648\pi\)
\(440\) −582444. −0.143424
\(441\) 2.86628e6 0.701815
\(442\) 853464. 0.207792
\(443\) −1.80503e6 −0.436994 −0.218497 0.975838i \(-0.570115\pi\)
−0.218497 + 0.975838i \(0.570115\pi\)
\(444\) 686564. 0.165281
\(445\) −2.19267e6 −0.524896
\(446\) 968846. 0.230631
\(447\) 994706. 0.235465
\(448\) 240246. 0.0565537
\(449\) 5.07667e6 1.18840 0.594200 0.804317i \(-0.297469\pi\)
0.594200 + 0.804317i \(0.297469\pi\)
\(450\) 2.30930e6 0.537587
\(451\) 3.29465e6 0.762724
\(452\) −428328. −0.0986121
\(453\) −1.82687e6 −0.418276
\(454\) 4.80581e6 1.09428
\(455\) −269762. −0.0610874
\(456\) −409011. −0.0921133
\(457\) −5.40205e6 −1.20995 −0.604976 0.796244i \(-0.706817\pi\)
−0.604976 + 0.796244i \(0.706817\pi\)
\(458\) −1.12584e6 −0.250793
\(459\) 2.35928e6 0.522694
\(460\) 1.54645e6 0.340753
\(461\) 1.34662e6 0.295116 0.147558 0.989053i \(-0.452859\pi\)
0.147558 + 0.989053i \(0.452859\pi\)
\(462\) −548616. −0.119581
\(463\) 2.67519e6 0.579966 0.289983 0.957032i \(-0.406350\pi\)
0.289983 + 0.957032i \(0.406350\pi\)
\(464\) −2.10824e6 −0.454596
\(465\) 808272. 0.173350
\(466\) −1.25152e6 −0.266976
\(467\) −2.93662e6 −0.623096 −0.311548 0.950230i \(-0.600848\pi\)
−0.311548 + 0.950230i \(0.600848\pi\)
\(468\) −758599. −0.160102
\(469\) 703762. 0.147739
\(470\) −2.40517e6 −0.502227
\(471\) 1.71901e6 0.357047
\(472\) 851614. 0.175949
\(473\) 9.04294e6 1.85848
\(474\) 171832. 0.0351284
\(475\) −3.21926e6 −0.654670
\(476\) 905613. 0.183200
\(477\) −5.98000e6 −1.20339
\(478\) −3.77001e6 −0.754697
\(479\) 3.23315e6 0.643854 0.321927 0.946764i \(-0.395669\pi\)
0.321927 + 0.946764i \(0.395669\pi\)
\(480\) 113844. 0.0225531
\(481\) −1.77515e6 −0.349842
\(482\) −5.66431e6 −1.11053
\(483\) 1.45663e6 0.284106
\(484\) 485828. 0.0942691
\(485\) −1.37165e6 −0.264783
\(486\) −3.21104e6 −0.616672
\(487\) −2.29425e6 −0.438347 −0.219174 0.975686i \(-0.570336\pi\)
−0.219174 + 0.975686i \(0.570336\pi\)
\(488\) 1.85501e6 0.352611
\(489\) −1.64461e6 −0.311022
\(490\) 1.11217e6 0.209257
\(491\) −8.92130e6 −1.67003 −0.835016 0.550226i \(-0.814541\pi\)
−0.835016 + 0.550226i \(0.814541\pi\)
\(492\) −643969. −0.119937
\(493\) −7.94708e6 −1.47262
\(494\) 1.05752e6 0.194972
\(495\) 1.95150e6 0.357977
\(496\) 1.86118e6 0.339690
\(497\) −225734. −0.0409926
\(498\) −1.58259e6 −0.285953
\(499\) −6.96412e6 −1.25203 −0.626016 0.779811i \(-0.715315\pi\)
−0.626016 + 0.779811i \(0.715315\pi\)
\(500\) 1.93610e6 0.346341
\(501\) −3.66571e6 −0.652476
\(502\) −3.47986e6 −0.616314
\(503\) −1.82337e6 −0.321333 −0.160666 0.987009i \(-0.551364\pi\)
−0.160666 + 0.987009i \(0.551364\pi\)
\(504\) −804951. −0.141154
\(505\) 804830. 0.140435
\(506\) −8.13162e6 −1.41189
\(507\) 1.72316e6 0.297719
\(508\) 1.80606e6 0.310508
\(509\) 551249. 0.0943090 0.0471545 0.998888i \(-0.484985\pi\)
0.0471545 + 0.998888i \(0.484985\pi\)
\(510\) 429138. 0.0730586
\(511\) −4.90674e6 −0.831267
\(512\) 262144. 0.0441942
\(513\) 2.92336e6 0.490444
\(514\) −1.47161e6 −0.245689
\(515\) 1.31600e6 0.218643
\(516\) −1.76753e6 −0.292241
\(517\) 1.26470e7 2.08095
\(518\) −1.88362e6 −0.308438
\(519\) 394179. 0.0642355
\(520\) −294350. −0.0477371
\(521\) −6.58558e6 −1.06292 −0.531459 0.847084i \(-0.678356\pi\)
−0.531459 + 0.847084i \(0.678356\pi\)
\(522\) 7.06373e6 1.13464
\(523\) 4.56933e6 0.730463 0.365232 0.930917i \(-0.380990\pi\)
0.365232 + 0.930917i \(0.380990\pi\)
\(524\) 3.87435e6 0.616412
\(525\) 844007. 0.133643
\(526\) −5.05336e6 −0.796372
\(527\) 7.01575e6 1.10039
\(528\) −598622. −0.0934475
\(529\) 1.51539e7 2.35443
\(530\) −2.32035e6 −0.358809
\(531\) −2.85336e6 −0.439157
\(532\) 1.12214e6 0.171897
\(533\) 1.66502e6 0.253864
\(534\) −2.25357e6 −0.341994
\(535\) −321772. −0.0486031
\(536\) 767909. 0.115451
\(537\) 3.67624e6 0.550133
\(538\) −289444. −0.0431131
\(539\) −5.84808e6 −0.867045
\(540\) −813689. −0.120081
\(541\) 1.19493e7 1.75529 0.877647 0.479308i \(-0.159112\pi\)
0.877647 + 0.479308i \(0.159112\pi\)
\(542\) 6.73284e6 0.984464
\(543\) −2.53959e6 −0.369628
\(544\) 988159. 0.143163
\(545\) −4.50230e6 −0.649296
\(546\) −277254. −0.0398013
\(547\) −1.00960e7 −1.44272 −0.721359 0.692561i \(-0.756482\pi\)
−0.721359 + 0.692561i \(0.756482\pi\)
\(548\) −412101. −0.0586208
\(549\) −6.21525e6 −0.880092
\(550\) −4.71166e6 −0.664152
\(551\) −9.84716e6 −1.38176
\(552\) 1.58940e6 0.222017
\(553\) −471428. −0.0655546
\(554\) 178343. 0.0246877
\(555\) −892579. −0.123003
\(556\) 5.21932e6 0.716023
\(557\) 9.43144e6 1.28807 0.644036 0.764995i \(-0.277259\pi\)
0.644036 + 0.764995i \(0.277259\pi\)
\(558\) −6.23593e6 −0.847844
\(559\) 4.57004e6 0.618572
\(560\) −312336. −0.0420873
\(561\) −2.25652e6 −0.302714
\(562\) −5.08871e6 −0.679621
\(563\) −9.12331e6 −1.21306 −0.606529 0.795062i \(-0.707439\pi\)
−0.606529 + 0.795062i \(0.707439\pi\)
\(564\) −2.47197e6 −0.327224
\(565\) 556855. 0.0733873
\(566\) 1.74834e6 0.229396
\(567\) 2.28987e6 0.299125
\(568\) −246309. −0.0320339
\(569\) 8.40861e6 1.08879 0.544394 0.838830i \(-0.316760\pi\)
0.544394 + 0.838830i \(0.316760\pi\)
\(570\) 531741. 0.0685509
\(571\) −511522. −0.0656559 −0.0328279 0.999461i \(-0.510451\pi\)
−0.0328279 + 0.999461i \(0.510451\pi\)
\(572\) 1.54777e6 0.197796
\(573\) −3.01120e6 −0.383136
\(574\) 1.76676e6 0.223819
\(575\) 1.25099e7 1.57792
\(576\) −878322. −0.110306
\(577\) −1.17483e7 −1.46905 −0.734523 0.678583i \(-0.762594\pi\)
−0.734523 + 0.678583i \(0.762594\pi\)
\(578\) −1.95453e6 −0.243346
\(579\) 5.27204e6 0.653556
\(580\) 2.74086e6 0.338311
\(581\) 4.34190e6 0.533629
\(582\) −1.40975e6 −0.172518
\(583\) 1.22010e7 1.48670
\(584\) −5.35398e6 −0.649598
\(585\) 986230. 0.119148
\(586\) 213864. 0.0257272
\(587\) −4.34766e6 −0.520787 −0.260394 0.965503i \(-0.583852\pi\)
−0.260394 + 0.965503i \(0.583852\pi\)
\(588\) 1.14306e6 0.136341
\(589\) 8.69316e6 1.03250
\(590\) −1.10716e6 −0.130942
\(591\) −2.25690e6 −0.265793
\(592\) −2.05531e6 −0.241031
\(593\) −4.76066e6 −0.555944 −0.277972 0.960589i \(-0.589662\pi\)
−0.277972 + 0.960589i \(0.589662\pi\)
\(594\) 4.27859e6 0.497548
\(595\) −1.17736e6 −0.136338
\(596\) −2.97777e6 −0.343380
\(597\) −3.38077e6 −0.388221
\(598\) −4.10948e6 −0.469931
\(599\) −1.10166e7 −1.25452 −0.627262 0.778808i \(-0.715825\pi\)
−0.627262 + 0.778808i \(0.715825\pi\)
\(600\) 920937. 0.104436
\(601\) 2.19510e6 0.247895 0.123948 0.992289i \(-0.460445\pi\)
0.123948 + 0.992289i \(0.460445\pi\)
\(602\) 4.84928e6 0.545364
\(603\) −2.57291e6 −0.288158
\(604\) 5.46895e6 0.609975
\(605\) −631610. −0.0701553
\(606\) 827185. 0.0915000
\(607\) 5.96464e6 0.657072 0.328536 0.944492i \(-0.393445\pi\)
0.328536 + 0.944492i \(0.393445\pi\)
\(608\) 1.22442e6 0.134329
\(609\) 2.58167e6 0.282070
\(610\) −2.41163e6 −0.262414
\(611\) 6.39143e6 0.692620
\(612\) −3.31086e6 −0.357324
\(613\) −1.35062e7 −1.45171 −0.725857 0.687845i \(-0.758557\pi\)
−0.725857 + 0.687845i \(0.758557\pi\)
\(614\) −3.85779e6 −0.412969
\(615\) 837203. 0.0892571
\(616\) 1.64234e6 0.174386
\(617\) 8.32419e6 0.880297 0.440148 0.897925i \(-0.354926\pi\)
0.440148 + 0.897925i \(0.354926\pi\)
\(618\) 1.35255e6 0.142456
\(619\) −209491. −0.0219754 −0.0109877 0.999940i \(-0.503498\pi\)
−0.0109877 + 0.999940i \(0.503498\pi\)
\(620\) −2.41965e6 −0.252798
\(621\) −1.13601e7 −1.18210
\(622\) −6.76856e6 −0.701488
\(623\) 6.18277e6 0.638209
\(624\) −302526. −0.0311029
\(625\) 5.89642e6 0.603794
\(626\) −364581. −0.0371842
\(627\) −2.79604e6 −0.284036
\(628\) −5.14605e6 −0.520685
\(629\) −7.74754e6 −0.780795
\(630\) 1.04649e6 0.105047
\(631\) 2.74375e6 0.274329 0.137164 0.990548i \(-0.456201\pi\)
0.137164 + 0.990548i \(0.456201\pi\)
\(632\) −514399. −0.0512280
\(633\) 5.02209e6 0.498168
\(634\) 3.93268e6 0.388567
\(635\) −2.34800e6 −0.231081
\(636\) −2.38480e6 −0.233781
\(637\) −2.95545e6 −0.288586
\(638\) −1.44122e7 −1.40177
\(639\) 825267. 0.0799544
\(640\) −340805. −0.0328894
\(641\) 1.64669e7 1.58295 0.791476 0.611200i \(-0.209313\pi\)
0.791476 + 0.611200i \(0.209313\pi\)
\(642\) −330710. −0.0316672
\(643\) 1.65608e7 1.57963 0.789813 0.613347i \(-0.210177\pi\)
0.789813 + 0.613347i \(0.210177\pi\)
\(644\) −4.36058e6 −0.414314
\(645\) 2.29790e6 0.217486
\(646\) 4.61548e6 0.435147
\(647\) −6.94675e6 −0.652410 −0.326205 0.945299i \(-0.605770\pi\)
−0.326205 + 0.945299i \(0.605770\pi\)
\(648\) 2.49859e6 0.233753
\(649\) 5.82172e6 0.542549
\(650\) −2.38114e6 −0.221055
\(651\) −2.27912e6 −0.210773
\(652\) 4.92334e6 0.453566
\(653\) 6.91120e6 0.634264 0.317132 0.948381i \(-0.397280\pi\)
0.317132 + 0.948381i \(0.397280\pi\)
\(654\) −4.62735e6 −0.423047
\(655\) −5.03692e6 −0.458735
\(656\) 1.92779e6 0.174905
\(657\) 1.79387e7 1.62135
\(658\) 6.78196e6 0.610647
\(659\) 8.97537e6 0.805080 0.402540 0.915402i \(-0.368127\pi\)
0.402540 + 0.915402i \(0.368127\pi\)
\(660\) 778248. 0.0695438
\(661\) 1.07922e7 0.960743 0.480372 0.877065i \(-0.340502\pi\)
0.480372 + 0.877065i \(0.340502\pi\)
\(662\) 1.22060e7 1.08250
\(663\) −1.14038e6 −0.100755
\(664\) 4.73766e6 0.417007
\(665\) −1.45885e6 −0.127926
\(666\) 6.88637e6 0.601596
\(667\) 3.82657e7 3.33039
\(668\) 1.09737e7 0.951510
\(669\) −1.29455e6 −0.111829
\(670\) −998334. −0.0859189
\(671\) 1.26810e7 1.08729
\(672\) −321011. −0.0274219
\(673\) −1.36372e7 −1.16061 −0.580306 0.814399i \(-0.697067\pi\)
−0.580306 + 0.814399i \(0.697067\pi\)
\(674\) −2.83386e6 −0.240286
\(675\) −6.58231e6 −0.556057
\(676\) −5.15849e6 −0.434166
\(677\) 4.41430e6 0.370160 0.185080 0.982723i \(-0.440746\pi\)
0.185080 + 0.982723i \(0.440746\pi\)
\(678\) 572322. 0.0478152
\(679\) 3.86771e6 0.321943
\(680\) −1.28467e6 −0.106542
\(681\) −6.42142e6 −0.530595
\(682\) 1.27232e7 1.04745
\(683\) 1.69116e7 1.38718 0.693590 0.720370i \(-0.256028\pi\)
0.693590 + 0.720370i \(0.256028\pi\)
\(684\) −4.10246e6 −0.335277
\(685\) 535758. 0.0436257
\(686\) −7.07921e6 −0.574347
\(687\) 1.50433e6 0.121605
\(688\) 5.29129e6 0.426177
\(689\) 6.16603e6 0.494832
\(690\) −2.06633e6 −0.165225
\(691\) 1.14843e7 0.914972 0.457486 0.889217i \(-0.348750\pi\)
0.457486 + 0.889217i \(0.348750\pi\)
\(692\) −1.18002e6 −0.0936750
\(693\) −5.50273e6 −0.435256
\(694\) −3.07698e6 −0.242508
\(695\) −6.78547e6 −0.532866
\(696\) 2.81699e6 0.220425
\(697\) 7.26687e6 0.566586
\(698\) 1.10677e7 0.859840
\(699\) 1.67225e6 0.129452
\(700\) −2.52663e6 −0.194893
\(701\) 3.62485e6 0.278609 0.139305 0.990250i \(-0.455513\pi\)
0.139305 + 0.990250i \(0.455513\pi\)
\(702\) 2.16228e6 0.165603
\(703\) −9.59991e6 −0.732620
\(704\) 1.79204e6 0.136275
\(705\) 3.21373e6 0.243521
\(706\) 9.47067e6 0.715103
\(707\) −2.26942e6 −0.170752
\(708\) −1.13791e6 −0.0853147
\(709\) −1.34016e7 −1.00125 −0.500624 0.865665i \(-0.666896\pi\)
−0.500624 + 0.865665i \(0.666896\pi\)
\(710\) 320219. 0.0238397
\(711\) 1.72351e6 0.127861
\(712\) 6.74633e6 0.498732
\(713\) −3.37813e7 −2.48858
\(714\) −1.21006e6 −0.0888304
\(715\) −2.01221e6 −0.147200
\(716\) −1.10052e7 −0.802263
\(717\) 5.03740e6 0.365939
\(718\) 1.99191e6 0.144198
\(719\) 1.85603e7 1.33895 0.669473 0.742837i \(-0.266520\pi\)
0.669473 + 0.742837i \(0.266520\pi\)
\(720\) 1.14188e6 0.0820896
\(721\) −3.71077e6 −0.265844
\(722\) −4.18539e6 −0.298808
\(723\) 7.56853e6 0.538475
\(724\) 7.60256e6 0.539030
\(725\) 2.21721e7 1.56661
\(726\) −649153. −0.0457094
\(727\) −2.19304e7 −1.53890 −0.769449 0.638708i \(-0.779469\pi\)
−0.769449 + 0.638708i \(0.779469\pi\)
\(728\) 829993. 0.0580425
\(729\) −5.19631e6 −0.362140
\(730\) 6.96053e6 0.483432
\(731\) 1.99457e7 1.38056
\(732\) −2.47862e6 −0.170975
\(733\) −779053. −0.0535559 −0.0267779 0.999641i \(-0.508525\pi\)
−0.0267779 + 0.999641i \(0.508525\pi\)
\(734\) 4.32671e6 0.296427
\(735\) −1.48606e6 −0.101465
\(736\) −4.75805e6 −0.323768
\(737\) 5.24950e6 0.356000
\(738\) −6.45914e6 −0.436550
\(739\) −2.05306e7 −1.38290 −0.691448 0.722426i \(-0.743027\pi\)
−0.691448 + 0.722426i \(0.743027\pi\)
\(740\) 2.67204e6 0.179375
\(741\) −1.41304e6 −0.0945382
\(742\) 6.54279e6 0.436268
\(743\) −2.79721e6 −0.185889 −0.0929443 0.995671i \(-0.529628\pi\)
−0.0929443 + 0.995671i \(0.529628\pi\)
\(744\) −2.48686e6 −0.164710
\(745\) 3.87130e6 0.255544
\(746\) 5.61416e6 0.369350
\(747\) −1.58737e7 −1.04082
\(748\) 6.75515e6 0.441450
\(749\) 907316. 0.0590954
\(750\) −2.58698e6 −0.167934
\(751\) 6.59049e6 0.426401 0.213200 0.977008i \(-0.431611\pi\)
0.213200 + 0.977008i \(0.431611\pi\)
\(752\) 7.40013e6 0.477194
\(753\) 4.64971e6 0.298840
\(754\) −7.28348e6 −0.466563
\(755\) −7.11001e6 −0.453944
\(756\) 2.29440e6 0.146004
\(757\) 2.13801e7 1.35603 0.678015 0.735048i \(-0.262840\pi\)
0.678015 + 0.735048i \(0.262840\pi\)
\(758\) 1.40158e7 0.886025
\(759\) 1.08653e7 0.684600
\(760\) −1.59183e6 −0.0999683
\(761\) 2.25310e7 1.41032 0.705162 0.709046i \(-0.250874\pi\)
0.705162 + 0.709046i \(0.250874\pi\)
\(762\) −2.41322e6 −0.150560
\(763\) 1.26953e7 0.789465
\(764\) 9.01436e6 0.558729
\(765\) 4.30434e6 0.265921
\(766\) 1.45383e7 0.895247
\(767\) 2.94213e6 0.180581
\(768\) −350271. −0.0214290
\(769\) 2.53420e7 1.54534 0.772672 0.634805i \(-0.218920\pi\)
0.772672 + 0.634805i \(0.218920\pi\)
\(770\) −2.13516e6 −0.129779
\(771\) 1.96633e6 0.119130
\(772\) −1.57825e7 −0.953085
\(773\) −2.09446e7 −1.26074 −0.630368 0.776296i \(-0.717096\pi\)
−0.630368 + 0.776296i \(0.717096\pi\)
\(774\) −1.77286e7 −1.06371
\(775\) −1.95737e7 −1.17063
\(776\) 4.22025e6 0.251584
\(777\) 2.51685e6 0.149556
\(778\) −1.18567e7 −0.702286
\(779\) 9.00432e6 0.531627
\(780\) 393304. 0.0231469
\(781\) −1.68379e6 −0.0987783
\(782\) −1.79356e7 −1.04881
\(783\) −2.01341e7 −1.17362
\(784\) −3.42188e6 −0.198827
\(785\) 6.69021e6 0.387495
\(786\) −5.17683e6 −0.298887
\(787\) −2.21871e7 −1.27692 −0.638460 0.769655i \(-0.720428\pi\)
−0.638460 + 0.769655i \(0.720428\pi\)
\(788\) 6.75628e6 0.387607
\(789\) 6.75219e6 0.386147
\(790\) 668753. 0.0381240
\(791\) −1.57019e6 −0.0892300
\(792\) −6.00430e6 −0.340133
\(793\) 6.40861e6 0.361893
\(794\) −1.64419e6 −0.0925554
\(795\) 3.10040e6 0.173980
\(796\) 1.01207e7 0.566146
\(797\) −1.28661e6 −0.0717466 −0.0358733 0.999356i \(-0.511421\pi\)
−0.0358733 + 0.999356i \(0.511421\pi\)
\(798\) −1.49938e6 −0.0833495
\(799\) 2.78950e7 1.54582
\(800\) −2.75693e6 −0.152300
\(801\) −2.26038e7 −1.24480
\(802\) 8.91879e6 0.489632
\(803\) −3.66003e7 −2.00307
\(804\) −1.02606e6 −0.0559801
\(805\) 5.66905e6 0.308334
\(806\) 6.42993e6 0.348633
\(807\) 386749. 0.0209047
\(808\) −2.47627e6 −0.133435
\(809\) 2.09774e7 1.12689 0.563443 0.826155i \(-0.309476\pi\)
0.563443 + 0.826155i \(0.309476\pi\)
\(810\) −3.24833e6 −0.173959
\(811\) 1.50740e7 0.804781 0.402391 0.915468i \(-0.368179\pi\)
0.402391 + 0.915468i \(0.368179\pi\)
\(812\) −7.72852e6 −0.411345
\(813\) −8.99627e6 −0.477349
\(814\) −1.40503e7 −0.743231
\(815\) −6.40067e6 −0.337545
\(816\) −1.32036e6 −0.0694170
\(817\) 2.47145e7 1.29538
\(818\) −1.99358e7 −1.04172
\(819\) −2.78092e6 −0.144870
\(820\) −2.50626e6 −0.130164
\(821\) 2.21213e7 1.14539 0.572695 0.819769i \(-0.305898\pi\)
0.572695 + 0.819769i \(0.305898\pi\)
\(822\) 550640. 0.0284242
\(823\) 2.43064e6 0.125090 0.0625449 0.998042i \(-0.480078\pi\)
0.0625449 + 0.998042i \(0.480078\pi\)
\(824\) −4.04901e6 −0.207745
\(825\) 6.29562e6 0.322035
\(826\) 3.12190e6 0.159209
\(827\) −2.47959e7 −1.26071 −0.630356 0.776306i \(-0.717091\pi\)
−0.630356 + 0.776306i \(0.717091\pi\)
\(828\) 1.59420e7 0.808103
\(829\) −1.31507e7 −0.664603 −0.332302 0.943173i \(-0.607825\pi\)
−0.332302 + 0.943173i \(0.607825\pi\)
\(830\) −6.15927e6 −0.310338
\(831\) −238298. −0.0119706
\(832\) 905646. 0.0453576
\(833\) −1.28989e7 −0.644080
\(834\) −6.97394e6 −0.347187
\(835\) −1.42666e7 −0.708115
\(836\) 8.37025e6 0.414212
\(837\) 1.77746e7 0.876974
\(838\) 1.01832e7 0.500929
\(839\) −2.46911e7 −1.21097 −0.605487 0.795855i \(-0.707022\pi\)
−0.605487 + 0.795855i \(0.707022\pi\)
\(840\) 417336. 0.0204074
\(841\) 4.73094e7 2.30652
\(842\) −1.36721e7 −0.664592
\(843\) 6.79942e6 0.329536
\(844\) −1.50342e7 −0.726482
\(845\) 6.70638e6 0.323107
\(846\) −2.47944e7 −1.19104
\(847\) 1.78098e6 0.0853002
\(848\) 7.13916e6 0.340924
\(849\) −2.33610e6 −0.111230
\(850\) −1.03923e7 −0.493362
\(851\) 3.73049e7 1.76580
\(852\) 329113. 0.0155327
\(853\) −1.80848e7 −0.851022 −0.425511 0.904953i \(-0.639906\pi\)
−0.425511 + 0.904953i \(0.639906\pi\)
\(854\) 6.80019e6 0.319063
\(855\) 5.33347e6 0.249514
\(856\) 990017. 0.0461804
\(857\) 1.02834e7 0.478281 0.239141 0.970985i \(-0.423134\pi\)
0.239141 + 0.970985i \(0.423134\pi\)
\(858\) −2.06810e6 −0.0959075
\(859\) −9.38414e6 −0.433922 −0.216961 0.976180i \(-0.569614\pi\)
−0.216961 + 0.976180i \(0.569614\pi\)
\(860\) −6.87903e6 −0.317162
\(861\) −2.36070e6 −0.108526
\(862\) −2.21395e7 −1.01485
\(863\) 6.41955e6 0.293412 0.146706 0.989180i \(-0.453133\pi\)
0.146706 + 0.989180i \(0.453133\pi\)
\(864\) 2.50353e6 0.114095
\(865\) 1.53410e6 0.0697131
\(866\) −6.81717e6 −0.308894
\(867\) 2.61161e6 0.117994
\(868\) 6.82281e6 0.307372
\(869\) −3.51648e6 −0.157964
\(870\) −3.66227e6 −0.164041
\(871\) 2.65295e6 0.118490
\(872\) 1.38525e7 0.616932
\(873\) −1.41401e7 −0.627937
\(874\) −2.22238e7 −0.984103
\(875\) 7.09748e6 0.313389
\(876\) 7.15387e6 0.314978
\(877\) −7.90128e6 −0.346895 −0.173448 0.984843i \(-0.555491\pi\)
−0.173448 + 0.984843i \(0.555491\pi\)
\(878\) −2.84844e7 −1.24701
\(879\) −285760. −0.0124747
\(880\) −2.32978e6 −0.101416
\(881\) −4.99225e6 −0.216699 −0.108349 0.994113i \(-0.534557\pi\)
−0.108349 + 0.994113i \(0.534557\pi\)
\(882\) 1.14651e7 0.496258
\(883\) 5.81865e6 0.251143 0.125571 0.992085i \(-0.459924\pi\)
0.125571 + 0.992085i \(0.459924\pi\)
\(884\) 3.41386e6 0.146931
\(885\) 1.47936e6 0.0634914
\(886\) −7.22012e6 −0.309001
\(887\) 1.65122e7 0.704685 0.352342 0.935871i \(-0.385385\pi\)
0.352342 + 0.935871i \(0.385385\pi\)
\(888\) 2.74625e6 0.116871
\(889\) 6.62077e6 0.280966
\(890\) −8.77068e6 −0.371157
\(891\) 1.70806e7 0.720790
\(892\) 3.87538e6 0.163081
\(893\) 3.45645e7 1.45044
\(894\) 3.97882e6 0.166499
\(895\) 1.43075e7 0.597045
\(896\) 960983. 0.0399895
\(897\) 5.49100e6 0.227861
\(898\) 2.03067e7 0.840326
\(899\) −5.98726e7 −2.47075
\(900\) 9.23719e6 0.380131
\(901\) 2.69113e7 1.10439
\(902\) 1.31786e7 0.539328
\(903\) −6.47950e6 −0.264437
\(904\) −1.71331e6 −0.0697293
\(905\) −9.88384e6 −0.401147
\(906\) −7.30749e6 −0.295766
\(907\) −4.30350e7 −1.73701 −0.868507 0.495677i \(-0.834920\pi\)
−0.868507 + 0.495677i \(0.834920\pi\)
\(908\) 1.92232e7 0.773770
\(909\) 8.29683e6 0.333045
\(910\) −1.07905e6 −0.0431953
\(911\) −2.78893e6 −0.111337 −0.0556687 0.998449i \(-0.517729\pi\)
−0.0556687 + 0.998449i \(0.517729\pi\)
\(912\) −1.63604e6 −0.0651339
\(913\) 3.23871e7 1.28586
\(914\) −2.16082e7 −0.855565
\(915\) 3.22237e6 0.127240
\(916\) −4.50338e6 −0.177337
\(917\) 1.42028e7 0.557766
\(918\) 9.43712e6 0.369601
\(919\) −3.29514e7 −1.28702 −0.643509 0.765438i \(-0.722522\pi\)
−0.643509 + 0.765438i \(0.722522\pi\)
\(920\) 6.18578e6 0.240949
\(921\) 5.15469e6 0.200241
\(922\) 5.38648e6 0.208679
\(923\) −850941. −0.0328772
\(924\) −2.19446e6 −0.0845568
\(925\) 2.16154e7 0.830631
\(926\) 1.07008e7 0.410098
\(927\) 1.35663e7 0.518517
\(928\) −8.43297e6 −0.321448
\(929\) −8.55328e6 −0.325157 −0.162579 0.986696i \(-0.551981\pi\)
−0.162579 + 0.986696i \(0.551981\pi\)
\(930\) 3.23309e6 0.122577
\(931\) −1.59829e7 −0.604340
\(932\) −5.00607e6 −0.188780
\(933\) 9.04400e6 0.340139
\(934\) −1.17465e7 −0.440596
\(935\) −8.78215e6 −0.328528
\(936\) −3.03440e6 −0.113209
\(937\) −3.22959e7 −1.20171 −0.600854 0.799359i \(-0.705173\pi\)
−0.600854 + 0.799359i \(0.705173\pi\)
\(938\) 2.81505e6 0.104467
\(939\) 487145. 0.0180299
\(940\) −9.62067e6 −0.355128
\(941\) −2.88955e7 −1.06379 −0.531896 0.846810i \(-0.678520\pi\)
−0.531896 + 0.846810i \(0.678520\pi\)
\(942\) 6.87604e6 0.252471
\(943\) −3.49905e7 −1.28136
\(944\) 3.40646e6 0.124415
\(945\) −2.98287e6 −0.108656
\(946\) 3.61718e7 1.31414
\(947\) 4.43561e7 1.60723 0.803616 0.595148i \(-0.202906\pi\)
0.803616 + 0.595148i \(0.202906\pi\)
\(948\) 687328. 0.0248395
\(949\) −1.84967e7 −0.666699
\(950\) −1.28770e7 −0.462921
\(951\) −5.25476e6 −0.188409
\(952\) 3.62245e6 0.129542
\(953\) −1.95319e7 −0.696647 −0.348324 0.937374i \(-0.613249\pi\)
−0.348324 + 0.937374i \(0.613249\pi\)
\(954\) −2.39200e7 −0.850922
\(955\) −1.17193e7 −0.415807
\(956\) −1.50800e7 −0.533651
\(957\) 1.92572e7 0.679694
\(958\) 1.29326e7 0.455274
\(959\) −1.51070e6 −0.0530435
\(960\) 455376. 0.0159475
\(961\) 2.42269e7 0.846233
\(962\) −7.10060e6 −0.247376
\(963\) −3.31708e6 −0.115263
\(964\) −2.26572e7 −0.785262
\(965\) 2.05183e7 0.709288
\(966\) 5.82652e6 0.200894
\(967\) −3.76088e7 −1.29337 −0.646686 0.762756i \(-0.723846\pi\)
−0.646686 + 0.762756i \(0.723846\pi\)
\(968\) 1.94331e6 0.0666583
\(969\) −6.16711e6 −0.210995
\(970\) −5.48661e6 −0.187230
\(971\) 5.93287e6 0.201937 0.100969 0.994890i \(-0.467806\pi\)
0.100969 + 0.994890i \(0.467806\pi\)
\(972\) −1.28441e7 −0.436053
\(973\) 1.91333e7 0.647900
\(974\) −9.17700e6 −0.309958
\(975\) 3.18162e6 0.107186
\(976\) 7.42002e6 0.249333
\(977\) 1.21591e7 0.407536 0.203768 0.979019i \(-0.434681\pi\)
0.203768 + 0.979019i \(0.434681\pi\)
\(978\) −6.57845e6 −0.219926
\(979\) 4.61186e7 1.53787
\(980\) 4.44868e6 0.147967
\(981\) −4.64133e7 −1.53982
\(982\) −3.56852e7 −1.18089
\(983\) 1.40827e7 0.464838 0.232419 0.972616i \(-0.425336\pi\)
0.232419 + 0.972616i \(0.425336\pi\)
\(984\) −2.57588e6 −0.0848081
\(985\) −8.78361e6 −0.288458
\(986\) −3.17883e7 −1.04130
\(987\) −9.06190e6 −0.296092
\(988\) 4.23008e6 0.137866
\(989\) −9.60396e7 −3.12219
\(990\) 7.80599e6 0.253128
\(991\) 2.48259e7 0.803010 0.401505 0.915857i \(-0.368487\pi\)
0.401505 + 0.915857i \(0.368487\pi\)
\(992\) 7.44470e6 0.240197
\(993\) −1.63093e7 −0.524884
\(994\) −902935. −0.0289862
\(995\) −1.31576e7 −0.421327
\(996\) −6.33035e6 −0.202199
\(997\) 5.19041e7 1.65373 0.826863 0.562404i \(-0.190123\pi\)
0.826863 + 0.562404i \(0.190123\pi\)
\(998\) −2.78565e7 −0.885320
\(999\) −1.96286e7 −0.622265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.d.1.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.d.1.14 32 1.1 even 1 trivial