Properties

Label 538.6.a.d.1.6
Level $538$
Weight $6$
Character 538.1
Self dual yes
Analytic conductor $86.286$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,6,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.2864950594\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -18.1958 q^{3} +16.0000 q^{4} +98.2549 q^{5} -72.7833 q^{6} -6.69779 q^{7} +64.0000 q^{8} +88.0879 q^{9} +393.020 q^{10} +188.510 q^{11} -291.133 q^{12} +852.913 q^{13} -26.7911 q^{14} -1787.83 q^{15} +256.000 q^{16} +1882.50 q^{17} +352.352 q^{18} -2701.87 q^{19} +1572.08 q^{20} +121.872 q^{21} +754.040 q^{22} -152.822 q^{23} -1164.53 q^{24} +6529.03 q^{25} +3411.65 q^{26} +2818.75 q^{27} -107.165 q^{28} -555.148 q^{29} -7151.32 q^{30} +5531.42 q^{31} +1024.00 q^{32} -3430.10 q^{33} +7530.00 q^{34} -658.090 q^{35} +1409.41 q^{36} -10815.9 q^{37} -10807.5 q^{38} -15519.5 q^{39} +6288.31 q^{40} +13451.6 q^{41} +487.487 q^{42} +1969.54 q^{43} +3016.16 q^{44} +8655.07 q^{45} -611.287 q^{46} -14628.4 q^{47} -4658.13 q^{48} -16762.1 q^{49} +26116.1 q^{50} -34253.6 q^{51} +13646.6 q^{52} -19648.9 q^{53} +11275.0 q^{54} +18522.0 q^{55} -428.658 q^{56} +49162.7 q^{57} -2220.59 q^{58} +2743.24 q^{59} -28605.3 q^{60} +8168.00 q^{61} +22125.7 q^{62} -589.994 q^{63} +4096.00 q^{64} +83802.9 q^{65} -13720.4 q^{66} -43649.2 q^{67} +30120.0 q^{68} +2780.72 q^{69} -2632.36 q^{70} +25434.6 q^{71} +5637.63 q^{72} +29732.4 q^{73} -43263.4 q^{74} -118801. q^{75} -43229.9 q^{76} -1262.60 q^{77} -62077.8 q^{78} +60105.0 q^{79} +25153.3 q^{80} -72694.9 q^{81} +53806.3 q^{82} -14875.8 q^{83} +1949.95 q^{84} +184965. q^{85} +7878.15 q^{86} +10101.4 q^{87} +12064.6 q^{88} +101711. q^{89} +34620.3 q^{90} -5712.63 q^{91} -2445.15 q^{92} -100649. q^{93} -58513.6 q^{94} -265472. q^{95} -18632.5 q^{96} +167113. q^{97} -67048.6 q^{98} +16605.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 128 q^{2} + 32 q^{3} + 512 q^{4} + 214 q^{5} + 128 q^{6} + 428 q^{7} + 2048 q^{8} + 3196 q^{9} + 856 q^{10} + 1357 q^{11} + 512 q^{12} + 1747 q^{13} + 1712 q^{14} + 2728 q^{15} + 8192 q^{16} + 3766 q^{17}+ \cdots + 338392 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −18.1958 −1.16726 −0.583631 0.812019i \(-0.698369\pi\)
−0.583631 + 0.812019i \(0.698369\pi\)
\(4\) 16.0000 0.500000
\(5\) 98.2549 1.75764 0.878819 0.477156i \(-0.158332\pi\)
0.878819 + 0.477156i \(0.158332\pi\)
\(6\) −72.7833 −0.825379
\(7\) −6.69779 −0.0516638 −0.0258319 0.999666i \(-0.508223\pi\)
−0.0258319 + 0.999666i \(0.508223\pi\)
\(8\) 64.0000 0.353553
\(9\) 88.0879 0.362502
\(10\) 393.020 1.24284
\(11\) 188.510 0.469735 0.234867 0.972027i \(-0.424534\pi\)
0.234867 + 0.972027i \(0.424534\pi\)
\(12\) −291.133 −0.583631
\(13\) 852.913 1.39974 0.699869 0.714272i \(-0.253242\pi\)
0.699869 + 0.714272i \(0.253242\pi\)
\(14\) −26.7911 −0.0365318
\(15\) −1787.83 −2.05162
\(16\) 256.000 0.250000
\(17\) 1882.50 1.57984 0.789919 0.613211i \(-0.210122\pi\)
0.789919 + 0.613211i \(0.210122\pi\)
\(18\) 352.352 0.256327
\(19\) −2701.87 −1.71704 −0.858519 0.512782i \(-0.828615\pi\)
−0.858519 + 0.512782i \(0.828615\pi\)
\(20\) 1572.08 0.878819
\(21\) 121.872 0.0603052
\(22\) 754.040 0.332153
\(23\) −152.822 −0.0602373 −0.0301187 0.999546i \(-0.509589\pi\)
−0.0301187 + 0.999546i \(0.509589\pi\)
\(24\) −1164.53 −0.412690
\(25\) 6529.03 2.08929
\(26\) 3411.65 0.989764
\(27\) 2818.75 0.744128
\(28\) −107.165 −0.0258319
\(29\) −555.148 −0.122578 −0.0612892 0.998120i \(-0.519521\pi\)
−0.0612892 + 0.998120i \(0.519521\pi\)
\(30\) −7151.32 −1.45072
\(31\) 5531.42 1.03379 0.516895 0.856049i \(-0.327088\pi\)
0.516895 + 0.856049i \(0.327088\pi\)
\(32\) 1024.00 0.176777
\(33\) −3430.10 −0.548304
\(34\) 7530.00 1.11711
\(35\) −658.090 −0.0908062
\(36\) 1409.41 0.181251
\(37\) −10815.9 −1.29884 −0.649421 0.760429i \(-0.724989\pi\)
−0.649421 + 0.760429i \(0.724989\pi\)
\(38\) −10807.5 −1.21413
\(39\) −15519.5 −1.63386
\(40\) 6288.31 0.621419
\(41\) 13451.6 1.24972 0.624861 0.780736i \(-0.285155\pi\)
0.624861 + 0.780736i \(0.285155\pi\)
\(42\) 487.487 0.0426422
\(43\) 1969.54 0.162440 0.0812200 0.996696i \(-0.474118\pi\)
0.0812200 + 0.996696i \(0.474118\pi\)
\(44\) 3016.16 0.234867
\(45\) 8655.07 0.637147
\(46\) −611.287 −0.0425942
\(47\) −14628.4 −0.965944 −0.482972 0.875636i \(-0.660443\pi\)
−0.482972 + 0.875636i \(0.660443\pi\)
\(48\) −4658.13 −0.291816
\(49\) −16762.1 −0.997331
\(50\) 26116.1 1.47735
\(51\) −34253.6 −1.84409
\(52\) 13646.6 0.699869
\(53\) −19648.9 −0.960834 −0.480417 0.877040i \(-0.659515\pi\)
−0.480417 + 0.877040i \(0.659515\pi\)
\(54\) 11275.0 0.526178
\(55\) 18522.0 0.825624
\(56\) −428.658 −0.0182659
\(57\) 49162.7 2.00423
\(58\) −2220.59 −0.0866760
\(59\) 2743.24 0.102597 0.0512985 0.998683i \(-0.483664\pi\)
0.0512985 + 0.998683i \(0.483664\pi\)
\(60\) −28605.3 −1.02581
\(61\) 8168.00 0.281055 0.140527 0.990077i \(-0.455120\pi\)
0.140527 + 0.990077i \(0.455120\pi\)
\(62\) 22125.7 0.731000
\(63\) −589.994 −0.0187282
\(64\) 4096.00 0.125000
\(65\) 83802.9 2.46023
\(66\) −13720.4 −0.387709
\(67\) −43649.2 −1.18792 −0.593962 0.804493i \(-0.702437\pi\)
−0.593962 + 0.804493i \(0.702437\pi\)
\(68\) 30120.0 0.789919
\(69\) 2780.72 0.0703128
\(70\) −2632.36 −0.0642097
\(71\) 25434.6 0.598797 0.299399 0.954128i \(-0.403214\pi\)
0.299399 + 0.954128i \(0.403214\pi\)
\(72\) 5637.63 0.128164
\(73\) 29732.4 0.653014 0.326507 0.945195i \(-0.394128\pi\)
0.326507 + 0.945195i \(0.394128\pi\)
\(74\) −43263.4 −0.918421
\(75\) −118801. −2.43875
\(76\) −43229.9 −0.858519
\(77\) −1262.60 −0.0242683
\(78\) −62077.8 −1.15531
\(79\) 60105.0 1.08353 0.541767 0.840529i \(-0.317756\pi\)
0.541767 + 0.840529i \(0.317756\pi\)
\(80\) 25153.3 0.439409
\(81\) −72694.9 −1.23109
\(82\) 53806.3 0.883688
\(83\) −14875.8 −0.237020 −0.118510 0.992953i \(-0.537812\pi\)
−0.118510 + 0.992953i \(0.537812\pi\)
\(84\) 1949.95 0.0301526
\(85\) 184965. 2.77678
\(86\) 7878.15 0.114862
\(87\) 10101.4 0.143081
\(88\) 12064.6 0.166076
\(89\) 101711. 1.36111 0.680557 0.732695i \(-0.261738\pi\)
0.680557 + 0.732695i \(0.261738\pi\)
\(90\) 34620.3 0.450531
\(91\) −5712.63 −0.0723157
\(92\) −2445.15 −0.0301187
\(93\) −100649. −1.20670
\(94\) −58513.6 −0.683026
\(95\) −265472. −3.01793
\(96\) −18632.5 −0.206345
\(97\) 167113. 1.80335 0.901677 0.432410i \(-0.142337\pi\)
0.901677 + 0.432410i \(0.142337\pi\)
\(98\) −67048.6 −0.705219
\(99\) 16605.5 0.170280
\(100\) 104464. 1.04464
\(101\) 148740. 1.45086 0.725430 0.688296i \(-0.241641\pi\)
0.725430 + 0.688296i \(0.241641\pi\)
\(102\) −137015. −1.30397
\(103\) 39062.2 0.362797 0.181399 0.983410i \(-0.441938\pi\)
0.181399 + 0.983410i \(0.441938\pi\)
\(104\) 54586.5 0.494882
\(105\) 11974.5 0.105995
\(106\) −78595.5 −0.679412
\(107\) −176687. −1.49192 −0.745961 0.665990i \(-0.768009\pi\)
−0.745961 + 0.665990i \(0.768009\pi\)
\(108\) 45100.0 0.372064
\(109\) −115518. −0.931290 −0.465645 0.884972i \(-0.654178\pi\)
−0.465645 + 0.884972i \(0.654178\pi\)
\(110\) 74088.2 0.583804
\(111\) 196803. 1.51609
\(112\) −1714.63 −0.0129159
\(113\) 55408.6 0.408208 0.204104 0.978949i \(-0.434572\pi\)
0.204104 + 0.978949i \(0.434572\pi\)
\(114\) 196651. 1.41721
\(115\) −15015.5 −0.105875
\(116\) −8882.37 −0.0612892
\(117\) 75131.4 0.507407
\(118\) 10973.0 0.0725470
\(119\) −12608.6 −0.0816204
\(120\) −114421. −0.725359
\(121\) −125515. −0.779349
\(122\) 32672.0 0.198736
\(123\) −244763. −1.45875
\(124\) 88502.7 0.516895
\(125\) 334463. 1.91458
\(126\) −2359.98 −0.0132428
\(127\) 290356. 1.59743 0.798716 0.601709i \(-0.205513\pi\)
0.798716 + 0.601709i \(0.205513\pi\)
\(128\) 16384.0 0.0883883
\(129\) −35837.3 −0.189610
\(130\) 335212. 1.73965
\(131\) −261528. −1.33150 −0.665749 0.746176i \(-0.731888\pi\)
−0.665749 + 0.746176i \(0.731888\pi\)
\(132\) −54881.5 −0.274152
\(133\) 18096.5 0.0887086
\(134\) −174597. −0.839989
\(135\) 276956. 1.30791
\(136\) 120480. 0.558557
\(137\) 399036. 1.81640 0.908199 0.418539i \(-0.137458\pi\)
0.908199 + 0.418539i \(0.137458\pi\)
\(138\) 11122.9 0.0497186
\(139\) 260034. 1.14155 0.570773 0.821108i \(-0.306644\pi\)
0.570773 + 0.821108i \(0.306644\pi\)
\(140\) −10529.4 −0.0454031
\(141\) 266176. 1.12751
\(142\) 101739. 0.423414
\(143\) 160783. 0.657506
\(144\) 22550.5 0.0906255
\(145\) −54546.0 −0.215448
\(146\) 118930. 0.461751
\(147\) 305001. 1.16415
\(148\) −173054. −0.649421
\(149\) 443725. 1.63738 0.818688 0.574238i \(-0.194702\pi\)
0.818688 + 0.574238i \(0.194702\pi\)
\(150\) −475204. −1.72446
\(151\) −307787. −1.09852 −0.549261 0.835651i \(-0.685091\pi\)
−0.549261 + 0.835651i \(0.685091\pi\)
\(152\) −172919. −0.607064
\(153\) 165826. 0.572695
\(154\) −5050.40 −0.0171603
\(155\) 543489. 1.81703
\(156\) −248311. −0.816931
\(157\) 287204. 0.929911 0.464956 0.885334i \(-0.346070\pi\)
0.464956 + 0.885334i \(0.346070\pi\)
\(158\) 240420. 0.766174
\(159\) 357528. 1.12155
\(160\) 100613. 0.310709
\(161\) 1023.57 0.00311209
\(162\) −290780. −0.870515
\(163\) 320561. 0.945022 0.472511 0.881325i \(-0.343348\pi\)
0.472511 + 0.881325i \(0.343348\pi\)
\(164\) 215225. 0.624861
\(165\) −337024. −0.963720
\(166\) −59503.1 −0.167598
\(167\) 559212. 1.55162 0.775810 0.630966i \(-0.217341\pi\)
0.775810 + 0.630966i \(0.217341\pi\)
\(168\) 7799.79 0.0213211
\(169\) 356168. 0.959265
\(170\) 739860. 1.96348
\(171\) −238002. −0.622429
\(172\) 31512.6 0.0812200
\(173\) −9563.14 −0.0242932 −0.0121466 0.999926i \(-0.503866\pi\)
−0.0121466 + 0.999926i \(0.503866\pi\)
\(174\) 40405.5 0.101174
\(175\) −43730.0 −0.107941
\(176\) 48258.6 0.117434
\(177\) −49915.6 −0.119758
\(178\) 406846. 0.962453
\(179\) 352738. 0.822849 0.411425 0.911444i \(-0.365031\pi\)
0.411425 + 0.911444i \(0.365031\pi\)
\(180\) 138481. 0.318573
\(181\) −344177. −0.780882 −0.390441 0.920628i \(-0.627677\pi\)
−0.390441 + 0.920628i \(0.627677\pi\)
\(182\) −22850.5 −0.0511349
\(183\) −148623. −0.328065
\(184\) −9780.59 −0.0212971
\(185\) −1.06271e6 −2.28289
\(186\) −402595. −0.853269
\(187\) 354870. 0.742106
\(188\) −234054. −0.482972
\(189\) −18879.4 −0.0384444
\(190\) −1.06189e6 −2.13400
\(191\) −693367. −1.37524 −0.687622 0.726069i \(-0.741345\pi\)
−0.687622 + 0.726069i \(0.741345\pi\)
\(192\) −74530.1 −0.145908
\(193\) −975351. −1.88481 −0.942405 0.334473i \(-0.891442\pi\)
−0.942405 + 0.334473i \(0.891442\pi\)
\(194\) 668452. 1.27516
\(195\) −1.52486e6 −2.87174
\(196\) −268194. −0.498665
\(197\) −510402. −0.937015 −0.468507 0.883460i \(-0.655208\pi\)
−0.468507 + 0.883460i \(0.655208\pi\)
\(198\) 66421.9 0.120406
\(199\) 713458. 1.27713 0.638566 0.769567i \(-0.279528\pi\)
0.638566 + 0.769567i \(0.279528\pi\)
\(200\) 417858. 0.738675
\(201\) 794232. 1.38662
\(202\) 594962. 1.02591
\(203\) 3718.26 0.00633286
\(204\) −548058. −0.922043
\(205\) 1.32168e6 2.19656
\(206\) 156249. 0.256536
\(207\) −13461.8 −0.0218361
\(208\) 218346. 0.349934
\(209\) −509329. −0.806553
\(210\) 47898.0 0.0749495
\(211\) 647710. 1.00155 0.500777 0.865576i \(-0.333048\pi\)
0.500777 + 0.865576i \(0.333048\pi\)
\(212\) −314382. −0.480417
\(213\) −462804. −0.698954
\(214\) −706750. −1.05495
\(215\) 193517. 0.285511
\(216\) 180400. 0.263089
\(217\) −37048.3 −0.0534095
\(218\) −462073. −0.658521
\(219\) −541005. −0.762239
\(220\) 296353. 0.412812
\(221\) 1.60561e6 2.21136
\(222\) 787214. 1.07204
\(223\) −40632.0 −0.0547149 −0.0273575 0.999626i \(-0.508709\pi\)
−0.0273575 + 0.999626i \(0.508709\pi\)
\(224\) −6858.53 −0.00913295
\(225\) 575129. 0.757371
\(226\) 221635. 0.288647
\(227\) −1.48719e6 −1.91558 −0.957791 0.287466i \(-0.907187\pi\)
−0.957791 + 0.287466i \(0.907187\pi\)
\(228\) 786603. 1.00212
\(229\) −1.32028e6 −1.66371 −0.831853 0.554996i \(-0.812720\pi\)
−0.831853 + 0.554996i \(0.812720\pi\)
\(230\) −60062.0 −0.0748652
\(231\) 22974.0 0.0283275
\(232\) −35529.5 −0.0433380
\(233\) −1.06045e6 −1.27968 −0.639841 0.768507i \(-0.721000\pi\)
−0.639841 + 0.768507i \(0.721000\pi\)
\(234\) 300526. 0.358791
\(235\) −1.43731e6 −1.69778
\(236\) 43891.9 0.0512985
\(237\) −1.09366e6 −1.26477
\(238\) −50434.3 −0.0577144
\(239\) 696059. 0.788227 0.394114 0.919062i \(-0.371052\pi\)
0.394114 + 0.919062i \(0.371052\pi\)
\(240\) −457684. −0.512906
\(241\) 542190. 0.601324 0.300662 0.953731i \(-0.402792\pi\)
0.300662 + 0.953731i \(0.402792\pi\)
\(242\) −502060. −0.551083
\(243\) 637786. 0.692882
\(244\) 130688. 0.140527
\(245\) −1.64696e6 −1.75295
\(246\) −979050. −1.03150
\(247\) −2.30446e6 −2.40340
\(248\) 354011. 0.365500
\(249\) 270677. 0.276664
\(250\) 1.33785e6 1.35381
\(251\) 596895. 0.598017 0.299008 0.954250i \(-0.403344\pi\)
0.299008 + 0.954250i \(0.403344\pi\)
\(252\) −9439.91 −0.00936411
\(253\) −28808.4 −0.0282956
\(254\) 1.16143e6 1.12955
\(255\) −3.36559e6 −3.24124
\(256\) 65536.0 0.0625000
\(257\) 183594. 0.173391 0.0866953 0.996235i \(-0.472369\pi\)
0.0866953 + 0.996235i \(0.472369\pi\)
\(258\) −143349. −0.134075
\(259\) 72442.3 0.0671031
\(260\) 1.34085e6 1.23012
\(261\) −48901.8 −0.0444349
\(262\) −1.04611e6 −0.941511
\(263\) −1.80420e6 −1.60841 −0.804204 0.594354i \(-0.797408\pi\)
−0.804204 + 0.594354i \(0.797408\pi\)
\(264\) −219526. −0.193855
\(265\) −1.93060e6 −1.68880
\(266\) 72386.1 0.0627265
\(267\) −1.85072e6 −1.58878
\(268\) −698386. −0.593962
\(269\) −72361.0 −0.0609711
\(270\) 1.10783e6 0.924830
\(271\) 2.04446e6 1.69104 0.845522 0.533940i \(-0.179289\pi\)
0.845522 + 0.533940i \(0.179289\pi\)
\(272\) 481920. 0.394960
\(273\) 103946. 0.0844114
\(274\) 1.59615e6 1.28439
\(275\) 1.23079e6 0.981412
\(276\) 44491.5 0.0351564
\(277\) 1.76364e6 1.38105 0.690526 0.723307i \(-0.257379\pi\)
0.690526 + 0.723307i \(0.257379\pi\)
\(278\) 1.04014e6 0.807195
\(279\) 487251. 0.374751
\(280\) −42117.8 −0.0321048
\(281\) −1.53263e6 −1.15790 −0.578949 0.815364i \(-0.696537\pi\)
−0.578949 + 0.815364i \(0.696537\pi\)
\(282\) 1.06470e6 0.797270
\(283\) −1.54923e6 −1.14987 −0.574937 0.818197i \(-0.694974\pi\)
−0.574937 + 0.818197i \(0.694974\pi\)
\(284\) 406954. 0.299399
\(285\) 4.83047e6 3.52272
\(286\) 643131. 0.464927
\(287\) −90095.8 −0.0645654
\(288\) 90202.1 0.0640819
\(289\) 2.12395e6 1.49589
\(290\) −218184. −0.152345
\(291\) −3.04076e6 −2.10499
\(292\) 475718. 0.326507
\(293\) −489212. −0.332911 −0.166456 0.986049i \(-0.553232\pi\)
−0.166456 + 0.986049i \(0.553232\pi\)
\(294\) 1.22000e6 0.823176
\(295\) 269537. 0.180328
\(296\) −692215. −0.459210
\(297\) 531363. 0.349543
\(298\) 1.77490e6 1.15780
\(299\) −130344. −0.0843164
\(300\) −1.90082e6 −1.21937
\(301\) −13191.5 −0.00839226
\(302\) −1.23115e6 −0.776772
\(303\) −2.70645e6 −1.69354
\(304\) −691678. −0.429259
\(305\) 802546. 0.493992
\(306\) 663302. 0.404956
\(307\) 1.95849e6 1.18597 0.592986 0.805213i \(-0.297949\pi\)
0.592986 + 0.805213i \(0.297949\pi\)
\(308\) −20201.6 −0.0121341
\(309\) −710770. −0.423480
\(310\) 2.17396e6 1.28483
\(311\) −1.17428e6 −0.688447 −0.344224 0.938888i \(-0.611858\pi\)
−0.344224 + 0.938888i \(0.611858\pi\)
\(312\) −993246. −0.577657
\(313\) 1.49631e6 0.863299 0.431650 0.902041i \(-0.357932\pi\)
0.431650 + 0.902041i \(0.357932\pi\)
\(314\) 1.14882e6 0.657547
\(315\) −57969.8 −0.0329174
\(316\) 961679. 0.541767
\(317\) −1.34767e6 −0.753243 −0.376621 0.926367i \(-0.622914\pi\)
−0.376621 + 0.926367i \(0.622914\pi\)
\(318\) 1.43011e6 0.793052
\(319\) −104651. −0.0575793
\(320\) 402452. 0.219705
\(321\) 3.21497e6 1.74146
\(322\) 4094.27 0.00220058
\(323\) −5.08626e6 −2.71264
\(324\) −1.16312e6 −0.615547
\(325\) 5.56870e6 2.92446
\(326\) 1.28225e6 0.668232
\(327\) 2.10195e6 1.08706
\(328\) 860901. 0.441844
\(329\) 97977.8 0.0499043
\(330\) −1.34810e6 −0.681453
\(331\) 459267. 0.230407 0.115203 0.993342i \(-0.463248\pi\)
0.115203 + 0.993342i \(0.463248\pi\)
\(332\) −238012. −0.118510
\(333\) −952747. −0.470833
\(334\) 2.23685e6 1.09716
\(335\) −4.28874e6 −2.08794
\(336\) 31199.2 0.0150763
\(337\) −2.22881e6 −1.06905 −0.534524 0.845153i \(-0.679509\pi\)
−0.534524 + 0.845153i \(0.679509\pi\)
\(338\) 1.42467e6 0.678303
\(339\) −1.00821e6 −0.476486
\(340\) 2.95944e6 1.38839
\(341\) 1.04273e6 0.485607
\(342\) −952007. −0.440124
\(343\) 224839. 0.103190
\(344\) 126050. 0.0574312
\(345\) 273219. 0.123584
\(346\) −38252.6 −0.0171779
\(347\) −3.50477e6 −1.56256 −0.781279 0.624182i \(-0.785432\pi\)
−0.781279 + 0.624182i \(0.785432\pi\)
\(348\) 161622. 0.0715406
\(349\) −3.43667e6 −1.51034 −0.755169 0.655530i \(-0.772445\pi\)
−0.755169 + 0.655530i \(0.772445\pi\)
\(350\) −174920. −0.0763255
\(351\) 2.40415e6 1.04158
\(352\) 193034. 0.0830382
\(353\) 112627. 0.0481069 0.0240534 0.999711i \(-0.492343\pi\)
0.0240534 + 0.999711i \(0.492343\pi\)
\(354\) −199662. −0.0846814
\(355\) 2.49908e6 1.05247
\(356\) 1.62738e6 0.680557
\(357\) 229424. 0.0952725
\(358\) 1.41095e6 0.581842
\(359\) 242975. 0.0995007 0.0497503 0.998762i \(-0.484157\pi\)
0.0497503 + 0.998762i \(0.484157\pi\)
\(360\) 553925. 0.225265
\(361\) 4.82398e6 1.94822
\(362\) −1.37671e6 −0.552167
\(363\) 2.28385e6 0.909705
\(364\) −91402.1 −0.0361579
\(365\) 2.92135e6 1.14776
\(366\) −594494. −0.231977
\(367\) 2.44928e6 0.949233 0.474616 0.880193i \(-0.342587\pi\)
0.474616 + 0.880193i \(0.342587\pi\)
\(368\) −39122.4 −0.0150593
\(369\) 1.18492e6 0.453027
\(370\) −4.25084e6 −1.61425
\(371\) 131604. 0.0496403
\(372\) −1.61038e6 −0.603352
\(373\) 395676. 0.147254 0.0736271 0.997286i \(-0.476543\pi\)
0.0736271 + 0.997286i \(0.476543\pi\)
\(374\) 1.41948e6 0.524748
\(375\) −6.08582e6 −2.23481
\(376\) −936217. −0.341513
\(377\) −473493. −0.171578
\(378\) −75517.6 −0.0271843
\(379\) −3.35732e6 −1.20059 −0.600294 0.799779i \(-0.704950\pi\)
−0.600294 + 0.799779i \(0.704950\pi\)
\(380\) −4.24755e6 −1.50896
\(381\) −5.28327e6 −1.86462
\(382\) −2.77347e6 −0.972444
\(383\) 591636. 0.206090 0.103045 0.994677i \(-0.467141\pi\)
0.103045 + 0.994677i \(0.467141\pi\)
\(384\) −298120. −0.103172
\(385\) −124057. −0.0426548
\(386\) −3.90140e6 −1.33276
\(387\) 173492. 0.0588848
\(388\) 2.67381e6 0.901677
\(389\) −1.30912e6 −0.438637 −0.219318 0.975653i \(-0.570383\pi\)
−0.219318 + 0.975653i \(0.570383\pi\)
\(390\) −6.09945e6 −2.03062
\(391\) −287687. −0.0951653
\(392\) −1.07278e6 −0.352610
\(393\) 4.75872e6 1.55421
\(394\) −2.04161e6 −0.662569
\(395\) 5.90561e6 1.90446
\(396\) 265687. 0.0851399
\(397\) −855682. −0.272481 −0.136240 0.990676i \(-0.543502\pi\)
−0.136240 + 0.990676i \(0.543502\pi\)
\(398\) 2.85383e6 0.903069
\(399\) −329281. −0.103546
\(400\) 1.67143e6 0.522322
\(401\) −4.84841e6 −1.50570 −0.752850 0.658192i \(-0.771322\pi\)
−0.752850 + 0.658192i \(0.771322\pi\)
\(402\) 3.17693e6 0.980488
\(403\) 4.71782e6 1.44703
\(404\) 2.37985e6 0.725430
\(405\) −7.14263e6 −2.16382
\(406\) 14873.0 0.00447801
\(407\) −2.03890e6 −0.610112
\(408\) −2.19223e6 −0.651983
\(409\) 1.15066e6 0.340125 0.170063 0.985433i \(-0.445603\pi\)
0.170063 + 0.985433i \(0.445603\pi\)
\(410\) 5.28674e6 1.55320
\(411\) −7.26079e6 −2.12021
\(412\) 624996. 0.181399
\(413\) −18373.7 −0.00530055
\(414\) −53847.0 −0.0154405
\(415\) −1.46162e6 −0.416595
\(416\) 873383. 0.247441
\(417\) −4.73153e6 −1.33248
\(418\) −2.03732e6 −0.570319
\(419\) −1.30593e6 −0.363401 −0.181700 0.983354i \(-0.558160\pi\)
−0.181700 + 0.983354i \(0.558160\pi\)
\(420\) 191592. 0.0529973
\(421\) 705974. 0.194126 0.0970629 0.995278i \(-0.469055\pi\)
0.0970629 + 0.995278i \(0.469055\pi\)
\(422\) 2.59084e6 0.708205
\(423\) −1.28859e6 −0.350157
\(424\) −1.25753e6 −0.339706
\(425\) 1.22909e7 3.30074
\(426\) −1.85122e6 −0.494235
\(427\) −54707.5 −0.0145204
\(428\) −2.82700e6 −0.745961
\(429\) −2.92557e6 −0.767482
\(430\) 774067. 0.201886
\(431\) 2.42803e6 0.629596 0.314798 0.949159i \(-0.398063\pi\)
0.314798 + 0.949159i \(0.398063\pi\)
\(432\) 721601. 0.186032
\(433\) −1.09578e6 −0.280868 −0.140434 0.990090i \(-0.544850\pi\)
−0.140434 + 0.990090i \(0.544850\pi\)
\(434\) −148193. −0.0377662
\(435\) 992510. 0.251485
\(436\) −1.84829e6 −0.465645
\(437\) 412904. 0.103430
\(438\) −2.16402e6 −0.538985
\(439\) −1.39084e6 −0.344441 −0.172221 0.985058i \(-0.555094\pi\)
−0.172221 + 0.985058i \(0.555094\pi\)
\(440\) 1.18541e6 0.291902
\(441\) −1.47654e6 −0.361534
\(442\) 6.42244e6 1.56367
\(443\) −4.64211e6 −1.12384 −0.561922 0.827190i \(-0.689938\pi\)
−0.561922 + 0.827190i \(0.689938\pi\)
\(444\) 3.14885e6 0.758045
\(445\) 9.99364e6 2.39235
\(446\) −162528. −0.0386893
\(447\) −8.07395e6 −1.91125
\(448\) −27434.1 −0.00645797
\(449\) −6.03036e6 −1.41165 −0.705825 0.708386i \(-0.749424\pi\)
−0.705825 + 0.708386i \(0.749424\pi\)
\(450\) 2.30051e6 0.535542
\(451\) 2.53576e6 0.587039
\(452\) 886538. 0.204104
\(453\) 5.60045e6 1.28226
\(454\) −5.94874e6 −1.35452
\(455\) −561294. −0.127105
\(456\) 3.14641e6 0.708604
\(457\) −1.79510e6 −0.402067 −0.201033 0.979584i \(-0.564430\pi\)
−0.201033 + 0.979584i \(0.564430\pi\)
\(458\) −5.28111e6 −1.17642
\(459\) 5.30630e6 1.17560
\(460\) −240248. −0.0529377
\(461\) 7.32753e6 1.60585 0.802926 0.596079i \(-0.203275\pi\)
0.802926 + 0.596079i \(0.203275\pi\)
\(462\) 91896.2 0.0200305
\(463\) −1.83154e6 −0.397067 −0.198534 0.980094i \(-0.563618\pi\)
−0.198534 + 0.980094i \(0.563618\pi\)
\(464\) −142118. −0.0306446
\(465\) −9.88923e6 −2.12095
\(466\) −4.24182e6 −0.904872
\(467\) −4.25111e6 −0.902008 −0.451004 0.892522i \(-0.648934\pi\)
−0.451004 + 0.892522i \(0.648934\pi\)
\(468\) 1.20210e6 0.253704
\(469\) 292353. 0.0613727
\(470\) −5.74925e6 −1.20051
\(471\) −5.22592e6 −1.08545
\(472\) 175568. 0.0362735
\(473\) 371277. 0.0763037
\(474\) −4.37464e6 −0.894326
\(475\) −1.76406e7 −3.58739
\(476\) −201737. −0.0408102
\(477\) −1.73083e6 −0.348304
\(478\) 2.78424e6 0.557361
\(479\) −1.77463e6 −0.353402 −0.176701 0.984265i \(-0.556543\pi\)
−0.176701 + 0.984265i \(0.556543\pi\)
\(480\) −1.83074e6 −0.362679
\(481\) −9.22499e6 −1.81804
\(482\) 2.16876e6 0.425201
\(483\) −18624.7 −0.00363262
\(484\) −2.00824e6 −0.389675
\(485\) 1.64197e7 3.16964
\(486\) 2.55115e6 0.489942
\(487\) −2.50288e6 −0.478210 −0.239105 0.970994i \(-0.576854\pi\)
−0.239105 + 0.970994i \(0.576854\pi\)
\(488\) 522752. 0.0993679
\(489\) −5.83288e6 −1.10309
\(490\) −6.58785e6 −1.23952
\(491\) 6.26595e6 1.17296 0.586480 0.809963i \(-0.300513\pi\)
0.586480 + 0.809963i \(0.300513\pi\)
\(492\) −3.91620e6 −0.729377
\(493\) −1.04507e6 −0.193654
\(494\) −9.21783e6 −1.69946
\(495\) 1.63157e6 0.299290
\(496\) 1.41604e6 0.258447
\(497\) −170356. −0.0309361
\(498\) 1.08271e6 0.195631
\(499\) 3.40011e6 0.611282 0.305641 0.952147i \(-0.401129\pi\)
0.305641 + 0.952147i \(0.401129\pi\)
\(500\) 5.35140e6 0.957288
\(501\) −1.01753e7 −1.81115
\(502\) 2.38758e6 0.422862
\(503\) −1.46365e6 −0.257939 −0.128970 0.991649i \(-0.541167\pi\)
−0.128970 + 0.991649i \(0.541167\pi\)
\(504\) −37759.6 −0.00662142
\(505\) 1.46145e7 2.55009
\(506\) −115234. −0.0200080
\(507\) −6.48078e6 −1.11971
\(508\) 4.64570e6 0.798716
\(509\) 1.75009e6 0.299410 0.149705 0.988731i \(-0.452168\pi\)
0.149705 + 0.988731i \(0.452168\pi\)
\(510\) −1.34624e7 −2.29190
\(511\) −199141. −0.0337372
\(512\) 262144. 0.0441942
\(513\) −7.61589e6 −1.27770
\(514\) 734376. 0.122606
\(515\) 3.83806e6 0.637666
\(516\) −573397. −0.0948050
\(517\) −2.75760e6 −0.453738
\(518\) 289769. 0.0474491
\(519\) 174009. 0.0283566
\(520\) 5.36339e6 0.869823
\(521\) 5.22622e6 0.843515 0.421758 0.906709i \(-0.361413\pi\)
0.421758 + 0.906709i \(0.361413\pi\)
\(522\) −195607. −0.0314202
\(523\) 7.95580e6 1.27183 0.635916 0.771758i \(-0.280622\pi\)
0.635916 + 0.771758i \(0.280622\pi\)
\(524\) −4.18445e6 −0.665749
\(525\) 795704. 0.125995
\(526\) −7.21681e6 −1.13732
\(527\) 1.04129e7 1.63322
\(528\) −878105. −0.137076
\(529\) −6.41299e6 −0.996371
\(530\) −7.72240e6 −1.19416
\(531\) 241647. 0.0371916
\(532\) 289544. 0.0443543
\(533\) 1.14730e7 1.74928
\(534\) −7.40289e6 −1.12344
\(535\) −1.73604e7 −2.62226
\(536\) −2.79355e6 −0.419995
\(537\) −6.41836e6 −0.960481
\(538\) −289444. −0.0431131
\(539\) −3.15983e6 −0.468481
\(540\) 4.43130e6 0.653953
\(541\) 4.56097e6 0.669983 0.334992 0.942221i \(-0.391266\pi\)
0.334992 + 0.942221i \(0.391266\pi\)
\(542\) 8.17783e6 1.19575
\(543\) 6.26258e6 0.911494
\(544\) 1.92768e6 0.279279
\(545\) −1.13502e7 −1.63687
\(546\) 415784. 0.0596879
\(547\) 1.03097e7 1.47326 0.736628 0.676298i \(-0.236417\pi\)
0.736628 + 0.676298i \(0.236417\pi\)
\(548\) 6.38458e6 0.908199
\(549\) 719502. 0.101883
\(550\) 4.92315e6 0.693963
\(551\) 1.49994e6 0.210472
\(552\) 177966. 0.0248593
\(553\) −402570. −0.0559795
\(554\) 7.05455e6 0.976551
\(555\) 1.93369e7 2.66474
\(556\) 4.16055e6 0.570773
\(557\) 5.28602e6 0.721923 0.360962 0.932581i \(-0.382449\pi\)
0.360962 + 0.932581i \(0.382449\pi\)
\(558\) 1.94901e6 0.264989
\(559\) 1.67984e6 0.227373
\(560\) −168471. −0.0227015
\(561\) −6.45716e6 −0.866232
\(562\) −6.13050e6 −0.818758
\(563\) 4.39048e6 0.583769 0.291885 0.956454i \(-0.405718\pi\)
0.291885 + 0.956454i \(0.405718\pi\)
\(564\) 4.25881e6 0.563755
\(565\) 5.44417e6 0.717481
\(566\) −6.19693e6 −0.813084
\(567\) 486895. 0.0636030
\(568\) 1.62782e6 0.211707
\(569\) −7.77570e6 −1.00684 −0.503418 0.864043i \(-0.667924\pi\)
−0.503418 + 0.864043i \(0.667924\pi\)
\(570\) 1.93219e7 2.49094
\(571\) 899436. 0.115446 0.0577232 0.998333i \(-0.481616\pi\)
0.0577232 + 0.998333i \(0.481616\pi\)
\(572\) 2.57252e6 0.328753
\(573\) 1.26164e7 1.60527
\(574\) −360383. −0.0456546
\(575\) −997778. −0.125853
\(576\) 360808. 0.0453127
\(577\) 7.40039e6 0.925369 0.462685 0.886523i \(-0.346886\pi\)
0.462685 + 0.886523i \(0.346886\pi\)
\(578\) 8.49581e6 1.05775
\(579\) 1.77473e7 2.20007
\(580\) −872736. −0.107724
\(581\) 99634.7 0.0122453
\(582\) −1.21630e7 −1.48845
\(583\) −3.70401e6 −0.451337
\(584\) 1.90287e6 0.230875
\(585\) 7.38203e6 0.891838
\(586\) −1.95685e6 −0.235404
\(587\) −4.52261e6 −0.541744 −0.270872 0.962615i \(-0.587312\pi\)
−0.270872 + 0.962615i \(0.587312\pi\)
\(588\) 4.88001e6 0.582073
\(589\) −1.49452e7 −1.77506
\(590\) 1.07815e6 0.127511
\(591\) 9.28718e6 1.09374
\(592\) −2.76886e6 −0.324711
\(593\) −5.04734e6 −0.589421 −0.294710 0.955587i \(-0.595223\pi\)
−0.294710 + 0.955587i \(0.595223\pi\)
\(594\) 2.12545e6 0.247164
\(595\) −1.23886e6 −0.143459
\(596\) 7.09960e6 0.818688
\(597\) −1.29820e7 −1.49075
\(598\) −521375. −0.0596207
\(599\) −675662. −0.0769418 −0.0384709 0.999260i \(-0.512249\pi\)
−0.0384709 + 0.999260i \(0.512249\pi\)
\(600\) −7.60327e6 −0.862228
\(601\) 8.86478e6 1.00111 0.500555 0.865705i \(-0.333129\pi\)
0.500555 + 0.865705i \(0.333129\pi\)
\(602\) −52766.1 −0.00593423
\(603\) −3.84496e6 −0.430625
\(604\) −4.92460e6 −0.549261
\(605\) −1.23325e7 −1.36981
\(606\) −1.08258e7 −1.19751
\(607\) −9.16793e6 −1.00995 −0.504974 0.863134i \(-0.668498\pi\)
−0.504974 + 0.863134i \(0.668498\pi\)
\(608\) −2.76671e6 −0.303532
\(609\) −67656.8 −0.00739211
\(610\) 3.21018e6 0.349305
\(611\) −1.24768e7 −1.35207
\(612\) 2.65321e6 0.286347
\(613\) −3.32092e6 −0.356949 −0.178475 0.983944i \(-0.557116\pi\)
−0.178475 + 0.983944i \(0.557116\pi\)
\(614\) 7.83394e6 0.838609
\(615\) −2.40491e7 −2.56396
\(616\) −80806.4 −0.00858013
\(617\) −8.84235e6 −0.935093 −0.467547 0.883968i \(-0.654862\pi\)
−0.467547 + 0.883968i \(0.654862\pi\)
\(618\) −2.84308e6 −0.299445
\(619\) −1.30506e7 −1.36900 −0.684498 0.729015i \(-0.739979\pi\)
−0.684498 + 0.729015i \(0.739979\pi\)
\(620\) 8.69583e6 0.908514
\(621\) −430767. −0.0448243
\(622\) −4.69712e6 −0.486806
\(623\) −681241. −0.0703203
\(624\) −3.97298e6 −0.408465
\(625\) 1.24594e7 1.27584
\(626\) 5.98525e6 0.610445
\(627\) 9.26766e6 0.941459
\(628\) 4.59527e6 0.464956
\(629\) −2.03609e7 −2.05196
\(630\) −231879. −0.0232761
\(631\) −1.85585e7 −1.85554 −0.927768 0.373158i \(-0.878275\pi\)
−0.927768 + 0.373158i \(0.878275\pi\)
\(632\) 3.84672e6 0.383087
\(633\) −1.17856e7 −1.16908
\(634\) −5.39068e6 −0.532623
\(635\) 2.85290e7 2.80771
\(636\) 5.72044e6 0.560773
\(637\) −1.42967e7 −1.39600
\(638\) −418604. −0.0407147
\(639\) 2.24049e6 0.217065
\(640\) 1.60981e6 0.155355
\(641\) −4.61135e6 −0.443285 −0.221643 0.975128i \(-0.571142\pi\)
−0.221643 + 0.975128i \(0.571142\pi\)
\(642\) 1.28599e7 1.23140
\(643\) 3.32909e6 0.317539 0.158770 0.987316i \(-0.449247\pi\)
0.158770 + 0.987316i \(0.449247\pi\)
\(644\) 16377.1 0.00155604
\(645\) −3.52119e6 −0.333266
\(646\) −2.03451e7 −1.91813
\(647\) 1.13166e7 1.06281 0.531405 0.847118i \(-0.321664\pi\)
0.531405 + 0.847118i \(0.321664\pi\)
\(648\) −4.65247e6 −0.435258
\(649\) 517129. 0.0481934
\(650\) 2.22748e7 2.06790
\(651\) 674124. 0.0623429
\(652\) 5.12898e6 0.472511
\(653\) −9.62890e6 −0.883678 −0.441839 0.897094i \(-0.645674\pi\)
−0.441839 + 0.897094i \(0.645674\pi\)
\(654\) 8.40781e6 0.768667
\(655\) −2.56964e7 −2.34029
\(656\) 3.44361e6 0.312431
\(657\) 2.61907e6 0.236719
\(658\) 391911. 0.0352877
\(659\) 7.26685e6 0.651828 0.325914 0.945399i \(-0.394328\pi\)
0.325914 + 0.945399i \(0.394328\pi\)
\(660\) −5.39238e6 −0.481860
\(661\) 1.73222e7 1.54205 0.771027 0.636803i \(-0.219743\pi\)
0.771027 + 0.636803i \(0.219743\pi\)
\(662\) 1.83707e6 0.162922
\(663\) −2.92154e7 −2.58124
\(664\) −952050. −0.0837991
\(665\) 1.77807e6 0.155918
\(666\) −3.81099e6 −0.332929
\(667\) 84838.7 0.00738379
\(668\) 8.94740e6 0.775810
\(669\) 739332. 0.0638667
\(670\) −1.71550e7 −1.47640
\(671\) 1.53975e6 0.132021
\(672\) 124797. 0.0106606
\(673\) 7.30322e6 0.621551 0.310775 0.950483i \(-0.399411\pi\)
0.310775 + 0.950483i \(0.399411\pi\)
\(674\) −8.91522e6 −0.755932
\(675\) 1.84037e7 1.55470
\(676\) 5.69869e6 0.479632
\(677\) 3.01057e6 0.252451 0.126225 0.992002i \(-0.459714\pi\)
0.126225 + 0.992002i \(0.459714\pi\)
\(678\) −4.03282e6 −0.336926
\(679\) −1.11929e6 −0.0931681
\(680\) 1.18378e7 0.981741
\(681\) 2.70606e7 2.23599
\(682\) 4.17091e6 0.343376
\(683\) −1.38406e7 −1.13528 −0.567638 0.823278i \(-0.692143\pi\)
−0.567638 + 0.823278i \(0.692143\pi\)
\(684\) −3.80803e6 −0.311215
\(685\) 3.92073e7 3.19257
\(686\) 899356. 0.0729661
\(687\) 2.40235e7 1.94198
\(688\) 504201. 0.0406100
\(689\) −1.67588e7 −1.34491
\(690\) 1.09288e6 0.0873873
\(691\) 1.97940e7 1.57703 0.788513 0.615018i \(-0.210851\pi\)
0.788513 + 0.615018i \(0.210851\pi\)
\(692\) −153010. −0.0121466
\(693\) −111220. −0.00879730
\(694\) −1.40191e7 −1.10490
\(695\) 2.55496e7 2.00642
\(696\) 646488. 0.0505868
\(697\) 2.53226e7 1.97436
\(698\) −1.37467e7 −1.06797
\(699\) 1.92958e7 1.49372
\(700\) −699681. −0.0539703
\(701\) −1.99103e6 −0.153033 −0.0765163 0.997068i \(-0.524380\pi\)
−0.0765163 + 0.997068i \(0.524380\pi\)
\(702\) 9.61661e6 0.736511
\(703\) 2.92230e7 2.23016
\(704\) 772137. 0.0587169
\(705\) 2.61531e7 1.98175
\(706\) 450510. 0.0340167
\(707\) −996232. −0.0749569
\(708\) −798649. −0.0598788
\(709\) 1.91599e6 0.143146 0.0715729 0.997435i \(-0.477198\pi\)
0.0715729 + 0.997435i \(0.477198\pi\)
\(710\) 9.99632e6 0.744208
\(711\) 5.29452e6 0.392783
\(712\) 6.50953e6 0.481227
\(713\) −845321. −0.0622727
\(714\) 917694. 0.0673678
\(715\) 1.57977e7 1.15566
\(716\) 5.64381e6 0.411425
\(717\) −1.26654e7 −0.920068
\(718\) 971901. 0.0703576
\(719\) −1.49892e7 −1.08133 −0.540664 0.841239i \(-0.681827\pi\)
−0.540664 + 0.841239i \(0.681827\pi\)
\(720\) 2.21570e6 0.159287
\(721\) −261631. −0.0187435
\(722\) 1.92959e7 1.37760
\(723\) −9.86559e6 −0.701904
\(724\) −5.50683e6 −0.390441
\(725\) −3.62458e6 −0.256102
\(726\) 9.13539e6 0.643259
\(727\) 4.60476e6 0.323125 0.161563 0.986862i \(-0.448347\pi\)
0.161563 + 0.986862i \(0.448347\pi\)
\(728\) −365608. −0.0255675
\(729\) 6.05981e6 0.422319
\(730\) 1.16854e7 0.811591
\(731\) 3.70765e6 0.256629
\(732\) −2.37797e6 −0.164032
\(733\) −1.20784e7 −0.830326 −0.415163 0.909747i \(-0.636275\pi\)
−0.415163 + 0.909747i \(0.636275\pi\)
\(734\) 9.79711e6 0.671209
\(735\) 2.99678e7 2.04615
\(736\) −156490. −0.0106486
\(737\) −8.22831e6 −0.558010
\(738\) 4.73969e6 0.320338
\(739\) −2.62178e7 −1.76598 −0.882990 0.469392i \(-0.844473\pi\)
−0.882990 + 0.469392i \(0.844473\pi\)
\(740\) −1.70034e7 −1.14145
\(741\) 4.19315e7 2.80540
\(742\) 526416. 0.0351010
\(743\) 1.03711e7 0.689212 0.344606 0.938747i \(-0.388013\pi\)
0.344606 + 0.938747i \(0.388013\pi\)
\(744\) −6.44152e6 −0.426634
\(745\) 4.35982e7 2.87791
\(746\) 1.58270e6 0.104124
\(747\) −1.31038e6 −0.0859201
\(748\) 5.67793e6 0.371053
\(749\) 1.18341e6 0.0770783
\(750\) −2.43433e7 −1.58025
\(751\) 4.82274e6 0.312028 0.156014 0.987755i \(-0.450135\pi\)
0.156014 + 0.987755i \(0.450135\pi\)
\(752\) −3.74487e6 −0.241486
\(753\) −1.08610e7 −0.698043
\(754\) −1.89397e6 −0.121324
\(755\) −3.02416e7 −1.93080
\(756\) −302070. −0.0192222
\(757\) 3.06239e6 0.194232 0.0971161 0.995273i \(-0.469038\pi\)
0.0971161 + 0.995273i \(0.469038\pi\)
\(758\) −1.34293e7 −0.848944
\(759\) 524193. 0.0330284
\(760\) −1.69902e7 −1.06700
\(761\) −5.74996e6 −0.359918 −0.179959 0.983674i \(-0.557596\pi\)
−0.179959 + 0.983674i \(0.557596\pi\)
\(762\) −2.11331e7 −1.31849
\(763\) 773717. 0.0481139
\(764\) −1.10939e7 −0.687622
\(765\) 1.62932e7 1.00659
\(766\) 2.36654e6 0.145728
\(767\) 2.33975e6 0.143609
\(768\) −1.19248e6 −0.0729539
\(769\) 2.45008e7 1.49405 0.747023 0.664799i \(-0.231483\pi\)
0.747023 + 0.664799i \(0.231483\pi\)
\(770\) −496227. −0.0301615
\(771\) −3.34064e6 −0.202392
\(772\) −1.56056e7 −0.942405
\(773\) −2.23920e7 −1.34786 −0.673929 0.738796i \(-0.735395\pi\)
−0.673929 + 0.738796i \(0.735395\pi\)
\(774\) 693970. 0.0416378
\(775\) 3.61148e7 2.15989
\(776\) 1.06952e7 0.637582
\(777\) −1.31815e6 −0.0783270
\(778\) −5.23648e6 −0.310163
\(779\) −3.63444e7 −2.14582
\(780\) −2.43978e7 −1.43587
\(781\) 4.79469e6 0.281276
\(782\) −1.15075e6 −0.0672920
\(783\) −1.56482e6 −0.0912140
\(784\) −4.29111e6 −0.249333
\(785\) 2.82192e7 1.63445
\(786\) 1.90349e7 1.09899
\(787\) −2.40101e7 −1.38184 −0.690920 0.722931i \(-0.742794\pi\)
−0.690920 + 0.722931i \(0.742794\pi\)
\(788\) −8.16643e6 −0.468507
\(789\) 3.28290e7 1.87743
\(790\) 2.36224e7 1.34666
\(791\) −371115. −0.0210896
\(792\) 1.06275e6 0.0602030
\(793\) 6.96659e6 0.393403
\(794\) −3.42273e6 −0.192673
\(795\) 3.51288e7 1.97127
\(796\) 1.14153e7 0.638566
\(797\) 1.79372e7 1.00025 0.500126 0.865953i \(-0.333287\pi\)
0.500126 + 0.865953i \(0.333287\pi\)
\(798\) −1.31712e6 −0.0732183
\(799\) −2.75380e7 −1.52604
\(800\) 6.68573e6 0.369338
\(801\) 8.95955e6 0.493406
\(802\) −1.93936e7 −1.06469
\(803\) 5.60486e6 0.306744
\(804\) 1.27077e7 0.693310
\(805\) 100571. 0.00546992
\(806\) 1.88713e7 1.02321
\(807\) 1.31667e6 0.0711693
\(808\) 9.51939e6 0.512957
\(809\) 5.51022e6 0.296004 0.148002 0.988987i \(-0.452716\pi\)
0.148002 + 0.988987i \(0.452716\pi\)
\(810\) −2.85705e7 −1.53005
\(811\) −2.32833e7 −1.24306 −0.621532 0.783389i \(-0.713489\pi\)
−0.621532 + 0.783389i \(0.713489\pi\)
\(812\) 59492.2 0.00316643
\(813\) −3.72006e7 −1.97389
\(814\) −8.15559e6 −0.431414
\(815\) 3.14967e7 1.66101
\(816\) −8.76893e6 −0.461022
\(817\) −5.32142e6 −0.278916
\(818\) 4.60264e6 0.240505
\(819\) −503214. −0.0262146
\(820\) 2.11469e7 1.09828
\(821\) 481660. 0.0249392 0.0124696 0.999922i \(-0.496031\pi\)
0.0124696 + 0.999922i \(0.496031\pi\)
\(822\) −2.90432e7 −1.49922
\(823\) −2.57350e7 −1.32442 −0.662208 0.749320i \(-0.730381\pi\)
−0.662208 + 0.749320i \(0.730381\pi\)
\(824\) 2.49998e6 0.128268
\(825\) −2.23952e7 −1.14557
\(826\) −73494.7 −0.00374805
\(827\) 5.72236e6 0.290945 0.145473 0.989362i \(-0.453530\pi\)
0.145473 + 0.989362i \(0.453530\pi\)
\(828\) −215388. −0.0109181
\(829\) −2.46281e7 −1.24464 −0.622320 0.782763i \(-0.713810\pi\)
−0.622320 + 0.782763i \(0.713810\pi\)
\(830\) −5.84647e6 −0.294577
\(831\) −3.20909e7 −1.61205
\(832\) 3.49353e6 0.174967
\(833\) −3.15547e7 −1.57562
\(834\) −1.89261e7 −0.942208
\(835\) 5.49454e7 2.72719
\(836\) −8.14926e6 −0.403276
\(837\) 1.55917e7 0.769272
\(838\) −5.22373e6 −0.256963
\(839\) −2.81029e7 −1.37831 −0.689154 0.724615i \(-0.742017\pi\)
−0.689154 + 0.724615i \(0.742017\pi\)
\(840\) 766368. 0.0374748
\(841\) −2.02030e7 −0.984975
\(842\) 2.82389e6 0.137268
\(843\) 2.78874e7 1.35157
\(844\) 1.03634e7 0.500777
\(845\) 3.49953e7 1.68604
\(846\) −5.15434e6 −0.247598
\(847\) 840672. 0.0402641
\(848\) −5.03011e6 −0.240208
\(849\) 2.81896e7 1.34221
\(850\) 4.91636e7 2.33398
\(851\) 1.65290e6 0.0782388
\(852\) −7.40487e6 −0.349477
\(853\) −3.43018e7 −1.61415 −0.807077 0.590446i \(-0.798952\pi\)
−0.807077 + 0.590446i \(0.798952\pi\)
\(854\) −218830. −0.0102674
\(855\) −2.33848e7 −1.09400
\(856\) −1.13080e7 −0.527474
\(857\) 8.82299e6 0.410359 0.205179 0.978724i \(-0.434222\pi\)
0.205179 + 0.978724i \(0.434222\pi\)
\(858\) −1.17023e7 −0.542691
\(859\) 1.13725e7 0.525865 0.262932 0.964814i \(-0.415310\pi\)
0.262932 + 0.964814i \(0.415310\pi\)
\(860\) 3.09627e6 0.142755
\(861\) 1.63937e6 0.0753648
\(862\) 9.71214e6 0.445191
\(863\) −1.38566e7 −0.633329 −0.316665 0.948538i \(-0.602563\pi\)
−0.316665 + 0.948538i \(0.602563\pi\)
\(864\) 2.88640e6 0.131544
\(865\) −939625. −0.0426987
\(866\) −4.38310e6 −0.198603
\(867\) −3.86470e7 −1.74610
\(868\) −592772. −0.0267047
\(869\) 1.13304e7 0.508974
\(870\) 3.97004e6 0.177827
\(871\) −3.72290e7 −1.66278
\(872\) −7.39317e6 −0.329261
\(873\) 1.47206e7 0.653719
\(874\) 1.65162e6 0.0731359
\(875\) −2.24016e6 −0.0989142
\(876\) −8.65609e6 −0.381120
\(877\) −5.33458e6 −0.234208 −0.117104 0.993120i \(-0.537361\pi\)
−0.117104 + 0.993120i \(0.537361\pi\)
\(878\) −5.56335e6 −0.243557
\(879\) 8.90162e6 0.388595
\(880\) 4.74164e6 0.206406
\(881\) 2.23045e7 0.968171 0.484085 0.875021i \(-0.339152\pi\)
0.484085 + 0.875021i \(0.339152\pi\)
\(882\) −5.90617e6 −0.255643
\(883\) 1.38980e7 0.599861 0.299931 0.953961i \(-0.403036\pi\)
0.299931 + 0.953961i \(0.403036\pi\)
\(884\) 2.56898e7 1.10568
\(885\) −4.90445e6 −0.210490
\(886\) −1.85684e7 −0.794678
\(887\) 1.80202e7 0.769045 0.384522 0.923116i \(-0.374366\pi\)
0.384522 + 0.923116i \(0.374366\pi\)
\(888\) 1.25954e7 0.536019
\(889\) −1.94475e6 −0.0825293
\(890\) 3.99746e7 1.69164
\(891\) −1.37037e7 −0.578288
\(892\) −650112. −0.0273575
\(893\) 3.95240e7 1.65856
\(894\) −3.22958e7 −1.35146
\(895\) 3.46583e7 1.44627
\(896\) −109737. −0.00456648
\(897\) 2.37171e6 0.0984194
\(898\) −2.41214e7 −0.998188
\(899\) −3.07076e6 −0.126720
\(900\) 9.20206e6 0.378686
\(901\) −3.69890e7 −1.51796
\(902\) 1.01430e7 0.415099
\(903\) 240031. 0.00979597
\(904\) 3.54615e6 0.144323
\(905\) −3.38171e7 −1.37251
\(906\) 2.24018e7 0.906697
\(907\) −1.88306e7 −0.760056 −0.380028 0.924975i \(-0.624086\pi\)
−0.380028 + 0.924975i \(0.624086\pi\)
\(908\) −2.37950e7 −0.957791
\(909\) 1.31022e7 0.525940
\(910\) −2.24518e6 −0.0898767
\(911\) −2.20487e7 −0.880212 −0.440106 0.897946i \(-0.645059\pi\)
−0.440106 + 0.897946i \(0.645059\pi\)
\(912\) 1.25856e7 0.501058
\(913\) −2.80423e6 −0.111336
\(914\) −7.18040e6 −0.284304
\(915\) −1.46030e7 −0.576619
\(916\) −2.11245e7 −0.831853
\(917\) 1.75166e6 0.0687902
\(918\) 2.12252e7 0.831276
\(919\) −1.98891e7 −0.776829 −0.388415 0.921485i \(-0.626977\pi\)
−0.388415 + 0.921485i \(0.626977\pi\)
\(920\) −960991. −0.0374326
\(921\) −3.56363e7 −1.38434
\(922\) 2.93101e7 1.13551
\(923\) 2.16936e7 0.838159
\(924\) 367585. 0.0141637
\(925\) −7.06170e7 −2.71366
\(926\) −7.32616e6 −0.280769
\(927\) 3.44091e6 0.131515
\(928\) −568472. −0.0216690
\(929\) −1.40360e7 −0.533586 −0.266793 0.963754i \(-0.585964\pi\)
−0.266793 + 0.963754i \(0.585964\pi\)
\(930\) −3.95569e7 −1.49974
\(931\) 4.52891e7 1.71245
\(932\) −1.69673e7 −0.639841
\(933\) 2.13670e7 0.803599
\(934\) −1.70044e7 −0.637816
\(935\) 3.48678e7 1.30435
\(936\) 4.80841e6 0.179396
\(937\) −1.50995e7 −0.561842 −0.280921 0.959731i \(-0.590640\pi\)
−0.280921 + 0.959731i \(0.590640\pi\)
\(938\) 1.16941e6 0.0433970
\(939\) −2.72266e7 −1.00770
\(940\) −2.29970e7 −0.848890
\(941\) −1.21940e6 −0.0448922 −0.0224461 0.999748i \(-0.507145\pi\)
−0.0224461 + 0.999748i \(0.507145\pi\)
\(942\) −2.09037e7 −0.767530
\(943\) −2.05569e6 −0.0752800
\(944\) 702271. 0.0256492
\(945\) −1.85499e6 −0.0675714
\(946\) 1.48511e6 0.0539549
\(947\) −4.48712e6 −0.162590 −0.0812949 0.996690i \(-0.525906\pi\)
−0.0812949 + 0.996690i \(0.525906\pi\)
\(948\) −1.74985e7 −0.632384
\(949\) 2.53592e7 0.914049
\(950\) −7.05622e7 −2.53667
\(951\) 2.45219e7 0.879232
\(952\) −806949. −0.0288572
\(953\) 2.29668e7 0.819160 0.409580 0.912274i \(-0.365675\pi\)
0.409580 + 0.912274i \(0.365675\pi\)
\(954\) −6.92332e6 −0.246288
\(955\) −6.81267e7 −2.41718
\(956\) 1.11370e7 0.394114
\(957\) 1.90421e6 0.0672102
\(958\) −7.09852e6 −0.249893
\(959\) −2.67266e6 −0.0938420
\(960\) −7.32295e6 −0.256453
\(961\) 1.96744e6 0.0687216
\(962\) −3.69000e7 −1.28555
\(963\) −1.55640e7 −0.540824
\(964\) 8.67504e6 0.300662
\(965\) −9.58330e7 −3.31281
\(966\) −74498.6 −0.00256865
\(967\) 3.54355e7 1.21863 0.609315 0.792928i \(-0.291444\pi\)
0.609315 + 0.792928i \(0.291444\pi\)
\(968\) −8.03296e6 −0.275542
\(969\) 9.25488e7 3.16637
\(970\) 6.56787e7 2.24128
\(971\) −5.58806e6 −0.190201 −0.0951005 0.995468i \(-0.530317\pi\)
−0.0951005 + 0.995468i \(0.530317\pi\)
\(972\) 1.02046e7 0.346441
\(973\) −1.74165e6 −0.0589766
\(974\) −1.00115e7 −0.338145
\(975\) −1.01327e8 −3.41361
\(976\) 2.09101e6 0.0702637
\(977\) 3.84626e7 1.28915 0.644573 0.764543i \(-0.277035\pi\)
0.644573 + 0.764543i \(0.277035\pi\)
\(978\) −2.33315e7 −0.780002
\(979\) 1.91736e7 0.639363
\(980\) −2.63514e7 −0.876473
\(981\) −1.01758e7 −0.337594
\(982\) 2.50638e7 0.829408
\(983\) −9.56450e6 −0.315703 −0.157851 0.987463i \(-0.550457\pi\)
−0.157851 + 0.987463i \(0.550457\pi\)
\(984\) −1.56648e7 −0.515748
\(985\) −5.01495e7 −1.64693
\(986\) −4.18027e6 −0.136934
\(987\) −1.78279e6 −0.0582514
\(988\) −3.68713e7 −1.20170
\(989\) −300988. −0.00978495
\(990\) 6.52627e6 0.211630
\(991\) −5.20621e7 −1.68398 −0.841992 0.539490i \(-0.818617\pi\)
−0.841992 + 0.539490i \(0.818617\pi\)
\(992\) 5.66417e6 0.182750
\(993\) −8.35674e6 −0.268945
\(994\) −681423. −0.0218751
\(995\) 7.01008e7 2.24473
\(996\) 4.33083e6 0.138332
\(997\) −3.05250e7 −0.972563 −0.486281 0.873802i \(-0.661647\pi\)
−0.486281 + 0.873802i \(0.661647\pi\)
\(998\) 1.36004e7 0.432241
\(999\) −3.04872e7 −0.966505
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.6.a.d.1.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.6.a.d.1.6 32 1.1 even 1 trivial