Properties

Label 538.8.a.c.1.1
Level $538$
Weight $8$
Character 538.1
Self dual yes
Analytic conductor $168.063$
Analytic rank $1$
Dimension $40$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,8,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.063143710\)
Analytic rank: \(1\)
Dimension: \(40\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -88.0215 q^{3} +64.0000 q^{4} -492.867 q^{5} +704.172 q^{6} +1216.54 q^{7} -512.000 q^{8} +5560.79 q^{9} +3942.93 q^{10} -1443.80 q^{11} -5633.38 q^{12} -7376.30 q^{13} -9732.32 q^{14} +43382.9 q^{15} +4096.00 q^{16} -20695.8 q^{17} -44486.3 q^{18} +12989.6 q^{19} -31543.5 q^{20} -107082. q^{21} +11550.4 q^{22} +35916.4 q^{23} +45067.0 q^{24} +164792. q^{25} +59010.4 q^{26} -296966. q^{27} +77858.6 q^{28} -191838. q^{29} -347063. q^{30} -127665. q^{31} -32768.0 q^{32} +127086. q^{33} +165567. q^{34} -599592. q^{35} +355891. q^{36} -545515. q^{37} -103917. q^{38} +649273. q^{39} +252348. q^{40} +133610. q^{41} +856654. q^{42} -148832. q^{43} -92403.4 q^{44} -2.74073e6 q^{45} -287331. q^{46} +1.15121e6 q^{47} -360536. q^{48} +656426. q^{49} -1.31834e6 q^{50} +1.82168e6 q^{51} -472083. q^{52} -2.07007e6 q^{53} +2.37573e6 q^{54} +711602. q^{55} -622868. q^{56} -1.14336e6 q^{57} +1.53470e6 q^{58} -463944. q^{59} +2.77650e6 q^{60} +3.41230e6 q^{61} +1.02132e6 q^{62} +6.76492e6 q^{63} +262144. q^{64} +3.63553e6 q^{65} -1.01669e6 q^{66} +3.73995e6 q^{67} -1.32453e6 q^{68} -3.16142e6 q^{69} +4.79673e6 q^{70} -1.42078e6 q^{71} -2.84713e6 q^{72} +440582. q^{73} +4.36412e6 q^{74} -1.45053e7 q^{75} +831333. q^{76} -1.75644e6 q^{77} -5.19418e6 q^{78} +2.30629e6 q^{79} -2.01878e6 q^{80} +1.39780e7 q^{81} -1.06888e6 q^{82} +8.55941e6 q^{83} -6.85323e6 q^{84} +1.02003e7 q^{85} +1.19065e6 q^{86} +1.68859e7 q^{87} +739227. q^{88} +5.33157e6 q^{89} +2.19258e7 q^{90} -8.97356e6 q^{91} +2.29865e6 q^{92} +1.12373e7 q^{93} -9.20967e6 q^{94} -6.40213e6 q^{95} +2.88429e6 q^{96} -359524. q^{97} -5.25141e6 q^{98} -8.02869e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 320 q^{2} - 109 q^{3} + 2560 q^{4} - 751 q^{5} + 872 q^{6} - 233 q^{7} - 20480 q^{8} + 29623 q^{9} + 6008 q^{10} - 12977 q^{11} - 6976 q^{12} - 4870 q^{13} + 1864 q^{14} - 9068 q^{15} + 163840 q^{16}+ \cdots + 9909340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −88.0215 −1.88219 −0.941097 0.338136i \(-0.890204\pi\)
−0.941097 + 0.338136i \(0.890204\pi\)
\(4\) 64.0000 0.500000
\(5\) −492.867 −1.76333 −0.881666 0.471873i \(-0.843578\pi\)
−0.881666 + 0.471873i \(0.843578\pi\)
\(6\) 704.172 1.33091
\(7\) 1216.54 1.34055 0.670275 0.742113i \(-0.266176\pi\)
0.670275 + 0.742113i \(0.266176\pi\)
\(8\) −512.000 −0.353553
\(9\) 5560.79 2.54266
\(10\) 3942.93 1.24686
\(11\) −1443.80 −0.327065 −0.163532 0.986538i \(-0.552289\pi\)
−0.163532 + 0.986538i \(0.552289\pi\)
\(12\) −5633.38 −0.941097
\(13\) −7376.30 −0.931186 −0.465593 0.884999i \(-0.654159\pi\)
−0.465593 + 0.884999i \(0.654159\pi\)
\(14\) −9732.32 −0.947912
\(15\) 43382.9 3.31894
\(16\) 4096.00 0.250000
\(17\) −20695.8 −1.02167 −0.510836 0.859678i \(-0.670664\pi\)
−0.510836 + 0.859678i \(0.670664\pi\)
\(18\) −44486.3 −1.79793
\(19\) 12989.6 0.434468 0.217234 0.976120i \(-0.430297\pi\)
0.217234 + 0.976120i \(0.430297\pi\)
\(20\) −31543.5 −0.881666
\(21\) −107082. −2.52318
\(22\) 11550.4 0.231270
\(23\) 35916.4 0.615525 0.307763 0.951463i \(-0.400420\pi\)
0.307763 + 0.951463i \(0.400420\pi\)
\(24\) 45067.0 0.665456
\(25\) 164792. 2.10934
\(26\) 59010.4 0.658448
\(27\) −296966. −2.90358
\(28\) 77858.6 0.670275
\(29\) −191838. −1.46063 −0.730317 0.683108i \(-0.760628\pi\)
−0.730317 + 0.683108i \(0.760628\pi\)
\(30\) −347063. −2.34684
\(31\) −127665. −0.769673 −0.384836 0.922985i \(-0.625742\pi\)
−0.384836 + 0.922985i \(0.625742\pi\)
\(32\) −32768.0 −0.176777
\(33\) 127086. 0.615599
\(34\) 165567. 0.722431
\(35\) −599592. −2.36384
\(36\) 355891. 1.27133
\(37\) −545515. −1.77052 −0.885259 0.465098i \(-0.846019\pi\)
−0.885259 + 0.465098i \(0.846019\pi\)
\(38\) −103917. −0.307215
\(39\) 649273. 1.75267
\(40\) 252348. 0.623432
\(41\) 133610. 0.302757 0.151379 0.988476i \(-0.451629\pi\)
0.151379 + 0.988476i \(0.451629\pi\)
\(42\) 856654. 1.78416
\(43\) −148832. −0.285467 −0.142733 0.989761i \(-0.545589\pi\)
−0.142733 + 0.989761i \(0.545589\pi\)
\(44\) −92403.4 −0.163532
\(45\) −2.74073e6 −4.48355
\(46\) −287331. −0.435242
\(47\) 1.15121e6 1.61738 0.808689 0.588237i \(-0.200178\pi\)
0.808689 + 0.588237i \(0.200178\pi\)
\(48\) −360536. −0.470549
\(49\) 656426. 0.797076
\(50\) −1.31834e6 −1.49153
\(51\) 1.82168e6 1.92299
\(52\) −472083. −0.465593
\(53\) −2.07007e6 −1.90994 −0.954970 0.296703i \(-0.904113\pi\)
−0.954970 + 0.296703i \(0.904113\pi\)
\(54\) 2.37573e6 2.05314
\(55\) 711602. 0.576724
\(56\) −622868. −0.473956
\(57\) −1.14336e6 −0.817753
\(58\) 1.53470e6 1.03282
\(59\) −463944. −0.294092 −0.147046 0.989130i \(-0.546977\pi\)
−0.147046 + 0.989130i \(0.546977\pi\)
\(60\) 2.77650e6 1.65947
\(61\) 3.41230e6 1.92483 0.962417 0.271575i \(-0.0875447\pi\)
0.962417 + 0.271575i \(0.0875447\pi\)
\(62\) 1.02132e6 0.544241
\(63\) 6.76492e6 3.40856
\(64\) 262144. 0.125000
\(65\) 3.63553e6 1.64199
\(66\) −1.01669e6 −0.435294
\(67\) 3.73995e6 1.51916 0.759580 0.650414i \(-0.225404\pi\)
0.759580 + 0.650414i \(0.225404\pi\)
\(68\) −1.32453e6 −0.510836
\(69\) −3.16142e6 −1.15854
\(70\) 4.79673e6 1.67149
\(71\) −1.42078e6 −0.471109 −0.235554 0.971861i \(-0.575691\pi\)
−0.235554 + 0.971861i \(0.575691\pi\)
\(72\) −2.84713e6 −0.898965
\(73\) 440582. 0.132555 0.0662776 0.997801i \(-0.478888\pi\)
0.0662776 + 0.997801i \(0.478888\pi\)
\(74\) 4.36412e6 1.25195
\(75\) −1.45053e7 −3.97019
\(76\) 831333. 0.217234
\(77\) −1.75644e6 −0.438447
\(78\) −5.19418e6 −1.23933
\(79\) 2.30629e6 0.526283 0.263142 0.964757i \(-0.415241\pi\)
0.263142 + 0.964757i \(0.415241\pi\)
\(80\) −2.01878e6 −0.440833
\(81\) 1.39780e7 2.92245
\(82\) −1.06888e6 −0.214082
\(83\) 8.55941e6 1.64312 0.821562 0.570119i \(-0.193103\pi\)
0.821562 + 0.570119i \(0.193103\pi\)
\(84\) −6.85323e6 −1.26159
\(85\) 1.02003e7 1.80155
\(86\) 1.19065e6 0.201855
\(87\) 1.68859e7 2.74920
\(88\) 739227. 0.115635
\(89\) 5.33157e6 0.801660 0.400830 0.916153i \(-0.368722\pi\)
0.400830 + 0.916153i \(0.368722\pi\)
\(90\) 2.19258e7 3.17035
\(91\) −8.97356e6 −1.24830
\(92\) 2.29865e6 0.307763
\(93\) 1.12373e7 1.44867
\(94\) −9.20967e6 −1.14366
\(95\) −6.40213e6 −0.766111
\(96\) 2.88429e6 0.332728
\(97\) −359524. −0.0399970 −0.0199985 0.999800i \(-0.506366\pi\)
−0.0199985 + 0.999800i \(0.506366\pi\)
\(98\) −5.25141e6 −0.563618
\(99\) −8.02869e6 −0.831613
\(100\) 1.05467e7 1.05467
\(101\) −1.14253e7 −1.10342 −0.551710 0.834036i \(-0.686025\pi\)
−0.551710 + 0.834036i \(0.686025\pi\)
\(102\) −1.45734e7 −1.35976
\(103\) −1.77746e6 −0.160276 −0.0801381 0.996784i \(-0.525536\pi\)
−0.0801381 + 0.996784i \(0.525536\pi\)
\(104\) 3.77666e6 0.329224
\(105\) 5.27770e7 4.44920
\(106\) 1.65606e7 1.35053
\(107\) 1.64869e7 1.30106 0.650529 0.759481i \(-0.274547\pi\)
0.650529 + 0.759481i \(0.274547\pi\)
\(108\) −1.90058e7 −1.45179
\(109\) −3.64888e6 −0.269877 −0.134939 0.990854i \(-0.543084\pi\)
−0.134939 + 0.990854i \(0.543084\pi\)
\(110\) −5.69282e6 −0.407805
\(111\) 4.80171e7 3.33246
\(112\) 4.98295e6 0.335138
\(113\) −1.56703e7 −1.02165 −0.510826 0.859684i \(-0.670660\pi\)
−0.510826 + 0.859684i \(0.670660\pi\)
\(114\) 9.14690e6 0.578239
\(115\) −1.77020e7 −1.08538
\(116\) −1.22776e7 −0.730317
\(117\) −4.10180e7 −2.36769
\(118\) 3.71155e6 0.207955
\(119\) −2.51773e7 −1.36960
\(120\) −2.22120e7 −1.17342
\(121\) −1.74026e7 −0.893029
\(122\) −2.72984e7 −1.36106
\(123\) −1.17605e7 −0.569848
\(124\) −8.17056e6 −0.384836
\(125\) −4.27155e7 −1.95614
\(126\) −5.41194e7 −2.41022
\(127\) 5.52370e6 0.239286 0.119643 0.992817i \(-0.461825\pi\)
0.119643 + 0.992817i \(0.461825\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) 1.31004e7 0.537304
\(130\) −2.90842e7 −1.16106
\(131\) 1.34141e7 0.521329 0.260664 0.965429i \(-0.416058\pi\)
0.260664 + 0.965429i \(0.416058\pi\)
\(132\) 8.13349e6 0.307800
\(133\) 1.58023e7 0.582426
\(134\) −2.99196e7 −1.07421
\(135\) 1.46365e8 5.11998
\(136\) 1.05963e7 0.361216
\(137\) −4.37320e7 −1.45304 −0.726520 0.687145i \(-0.758864\pi\)
−0.726520 + 0.687145i \(0.758864\pi\)
\(138\) 2.52914e7 0.819210
\(139\) 3.67585e7 1.16093 0.580466 0.814285i \(-0.302871\pi\)
0.580466 + 0.814285i \(0.302871\pi\)
\(140\) −3.83739e7 −1.18192
\(141\) −1.01331e8 −3.04422
\(142\) 1.13662e7 0.333124
\(143\) 1.06499e7 0.304558
\(144\) 2.27770e7 0.635664
\(145\) 9.45505e7 2.57559
\(146\) −3.52466e6 −0.0937307
\(147\) −5.77797e7 −1.50025
\(148\) −3.49129e7 −0.885259
\(149\) 4.69788e7 1.16346 0.581729 0.813383i \(-0.302377\pi\)
0.581729 + 0.813383i \(0.302377\pi\)
\(150\) 1.16042e8 2.80735
\(151\) 3.19053e7 0.754125 0.377062 0.926188i \(-0.376934\pi\)
0.377062 + 0.926188i \(0.376934\pi\)
\(152\) −6.65067e6 −0.153608
\(153\) −1.15085e8 −2.59776
\(154\) 1.40515e7 0.310029
\(155\) 6.29218e7 1.35719
\(156\) 4.15535e7 0.876337
\(157\) 8.88040e7 1.83140 0.915701 0.401860i \(-0.131636\pi\)
0.915701 + 0.401860i \(0.131636\pi\)
\(158\) −1.84503e7 −0.372139
\(159\) 1.82211e8 3.59488
\(160\) 1.61503e7 0.311716
\(161\) 4.36938e7 0.825143
\(162\) −1.11824e8 −2.06648
\(163\) −3.92694e6 −0.0710227 −0.0355114 0.999369i \(-0.511306\pi\)
−0.0355114 + 0.999369i \(0.511306\pi\)
\(164\) 8.55103e6 0.151379
\(165\) −6.26363e7 −1.08551
\(166\) −6.84753e7 −1.16186
\(167\) 5.56321e7 0.924310 0.462155 0.886799i \(-0.347076\pi\)
0.462155 + 0.886799i \(0.347076\pi\)
\(168\) 5.48258e7 0.892078
\(169\) −8.33878e6 −0.132892
\(170\) −8.16022e7 −1.27389
\(171\) 7.22323e7 1.10470
\(172\) −9.52522e6 −0.142733
\(173\) −1.05245e8 −1.54540 −0.772700 0.634772i \(-0.781094\pi\)
−0.772700 + 0.634772i \(0.781094\pi\)
\(174\) −1.35087e8 −1.94398
\(175\) 2.00477e8 2.82768
\(176\) −5.91382e6 −0.0817661
\(177\) 4.08371e7 0.553539
\(178\) −4.26526e7 −0.566859
\(179\) 1.05662e8 1.37699 0.688497 0.725239i \(-0.258271\pi\)
0.688497 + 0.725239i \(0.258271\pi\)
\(180\) −1.75407e8 −2.24178
\(181\) 3.46559e7 0.434412 0.217206 0.976126i \(-0.430306\pi\)
0.217206 + 0.976126i \(0.430306\pi\)
\(182\) 7.17885e7 0.882683
\(183\) −3.00356e8 −3.62291
\(184\) −1.83892e7 −0.217621
\(185\) 2.68866e8 3.12201
\(186\) −8.98982e7 −1.02437
\(187\) 2.98807e7 0.334153
\(188\) 7.36773e7 0.808689
\(189\) −3.61271e8 −3.89240
\(190\) 5.12170e7 0.541722
\(191\) −2.41672e7 −0.250963 −0.125482 0.992096i \(-0.540048\pi\)
−0.125482 + 0.992096i \(0.540048\pi\)
\(192\) −2.30743e7 −0.235274
\(193\) −1.14144e8 −1.14288 −0.571441 0.820643i \(-0.693615\pi\)
−0.571441 + 0.820643i \(0.693615\pi\)
\(194\) 2.87619e6 0.0282821
\(195\) −3.20005e8 −3.09055
\(196\) 4.20113e7 0.398538
\(197\) −1.35146e8 −1.25943 −0.629714 0.776827i \(-0.716828\pi\)
−0.629714 + 0.776827i \(0.716828\pi\)
\(198\) 6.42295e7 0.588039
\(199\) 8.99524e7 0.809146 0.404573 0.914506i \(-0.367420\pi\)
0.404573 + 0.914506i \(0.367420\pi\)
\(200\) −8.43737e7 −0.745765
\(201\) −3.29196e8 −2.85936
\(202\) 9.14020e7 0.780236
\(203\) −2.33379e8 −1.95805
\(204\) 1.16587e8 0.961493
\(205\) −6.58518e7 −0.533862
\(206\) 1.42197e7 0.113332
\(207\) 1.99724e8 1.56507
\(208\) −3.02133e7 −0.232797
\(209\) −1.87544e7 −0.142099
\(210\) −4.22216e8 −3.14606
\(211\) −1.44727e8 −1.06063 −0.530313 0.847802i \(-0.677926\pi\)
−0.530313 + 0.847802i \(0.677926\pi\)
\(212\) −1.32485e8 −0.954970
\(213\) 1.25059e8 0.886719
\(214\) −1.31895e8 −0.919987
\(215\) 7.33541e7 0.503373
\(216\) 1.52047e8 1.02657
\(217\) −1.55310e8 −1.03179
\(218\) 2.91910e7 0.190832
\(219\) −3.87807e7 −0.249495
\(220\) 4.55425e7 0.288362
\(221\) 1.52658e8 0.951367
\(222\) −3.84136e8 −2.35641
\(223\) −8.28565e7 −0.500333 −0.250167 0.968203i \(-0.580485\pi\)
−0.250167 + 0.968203i \(0.580485\pi\)
\(224\) −3.98636e7 −0.236978
\(225\) 9.16376e8 5.36334
\(226\) 1.25362e8 0.722417
\(227\) −9.69944e7 −0.550372 −0.275186 0.961391i \(-0.588739\pi\)
−0.275186 + 0.961391i \(0.588739\pi\)
\(228\) −7.31752e7 −0.408876
\(229\) 3.39457e8 1.86793 0.933965 0.357365i \(-0.116325\pi\)
0.933965 + 0.357365i \(0.116325\pi\)
\(230\) 1.41616e8 0.767476
\(231\) 1.54605e8 0.825242
\(232\) 9.82210e7 0.516412
\(233\) −1.51498e8 −0.784625 −0.392313 0.919832i \(-0.628325\pi\)
−0.392313 + 0.919832i \(0.628325\pi\)
\(234\) 3.28144e8 1.67421
\(235\) −5.67392e8 −2.85197
\(236\) −2.96924e7 −0.147046
\(237\) −2.03003e8 −0.990568
\(238\) 2.01418e8 0.968455
\(239\) 1.82150e8 0.863051 0.431526 0.902101i \(-0.357975\pi\)
0.431526 + 0.902101i \(0.357975\pi\)
\(240\) 1.77696e8 0.829734
\(241\) 3.25479e8 1.49783 0.748916 0.662664i \(-0.230574\pi\)
0.748916 + 0.662664i \(0.230574\pi\)
\(242\) 1.39221e8 0.631467
\(243\) −5.80898e8 −2.59704
\(244\) 2.18387e8 0.962417
\(245\) −3.23531e8 −1.40551
\(246\) 9.40843e7 0.402944
\(247\) −9.58150e7 −0.404570
\(248\) 6.53645e7 0.272120
\(249\) −7.53412e8 −3.09268
\(250\) 3.41724e8 1.38320
\(251\) −6.16485e7 −0.246073 −0.123037 0.992402i \(-0.539263\pi\)
−0.123037 + 0.992402i \(0.539263\pi\)
\(252\) 4.32955e8 1.70428
\(253\) −5.18562e7 −0.201316
\(254\) −4.41896e7 −0.169201
\(255\) −8.97844e8 −3.39086
\(256\) 1.67772e7 0.0625000
\(257\) 1.87245e8 0.688088 0.344044 0.938953i \(-0.388203\pi\)
0.344044 + 0.938953i \(0.388203\pi\)
\(258\) −1.04803e8 −0.379931
\(259\) −6.63641e8 −2.37347
\(260\) 2.32674e8 0.820996
\(261\) −1.06677e9 −3.71389
\(262\) −1.07313e8 −0.368635
\(263\) 7.30178e7 0.247505 0.123752 0.992313i \(-0.460507\pi\)
0.123752 + 0.992313i \(0.460507\pi\)
\(264\) −6.50679e7 −0.217647
\(265\) 1.02027e9 3.36786
\(266\) −1.26419e8 −0.411837
\(267\) −4.69293e8 −1.50888
\(268\) 2.39357e8 0.759580
\(269\) 1.94651e7 0.0609711
\(270\) −1.17092e9 −3.62037
\(271\) 5.46529e8 1.66809 0.834047 0.551694i \(-0.186018\pi\)
0.834047 + 0.551694i \(0.186018\pi\)
\(272\) −8.47701e7 −0.255418
\(273\) 7.89866e8 2.34955
\(274\) 3.49856e8 1.02745
\(275\) −2.37928e8 −0.689891
\(276\) −2.02331e8 −0.579269
\(277\) −4.40412e7 −0.124503 −0.0622515 0.998060i \(-0.519828\pi\)
−0.0622515 + 0.998060i \(0.519828\pi\)
\(278\) −2.94068e8 −0.820902
\(279\) −7.09919e8 −1.95701
\(280\) 3.06991e8 0.835743
\(281\) −3.22684e8 −0.867573 −0.433786 0.901016i \(-0.642823\pi\)
−0.433786 + 0.901016i \(0.642823\pi\)
\(282\) 8.10649e8 2.15259
\(283\) −2.16450e8 −0.567681 −0.283840 0.958872i \(-0.591609\pi\)
−0.283840 + 0.958872i \(0.591609\pi\)
\(284\) −9.09296e7 −0.235554
\(285\) 5.63525e8 1.44197
\(286\) −8.51993e7 −0.215355
\(287\) 1.62542e8 0.405862
\(288\) −1.82216e8 −0.449483
\(289\) 1.79783e7 0.0438133
\(290\) −7.56404e8 −1.82121
\(291\) 3.16459e7 0.0752821
\(292\) 2.81973e7 0.0662776
\(293\) 1.39158e8 0.323199 0.161600 0.986856i \(-0.448335\pi\)
0.161600 + 0.986856i \(0.448335\pi\)
\(294\) 4.62237e8 1.06084
\(295\) 2.28663e8 0.518583
\(296\) 2.79304e8 0.625973
\(297\) 4.28761e8 0.949659
\(298\) −3.75831e8 −0.822688
\(299\) −2.64930e8 −0.573168
\(300\) −9.28338e8 −1.98510
\(301\) −1.81060e8 −0.382683
\(302\) −2.55242e8 −0.533247
\(303\) 1.00567e9 2.07685
\(304\) 5.32053e7 0.108617
\(305\) −1.68181e9 −3.39412
\(306\) 9.20681e8 1.83689
\(307\) −2.16245e8 −0.426543 −0.213271 0.976993i \(-0.568412\pi\)
−0.213271 + 0.976993i \(0.568412\pi\)
\(308\) −1.12412e8 −0.219223
\(309\) 1.56455e8 0.301671
\(310\) −5.03375e8 −0.959677
\(311\) 6.87655e7 0.129631 0.0648156 0.997897i \(-0.479354\pi\)
0.0648156 + 0.997897i \(0.479354\pi\)
\(312\) −3.32428e8 −0.619664
\(313\) 6.39677e8 1.17911 0.589557 0.807727i \(-0.299302\pi\)
0.589557 + 0.807727i \(0.299302\pi\)
\(314\) −7.10432e8 −1.29500
\(315\) −3.33421e9 −6.01043
\(316\) 1.47603e8 0.263142
\(317\) 6.34709e8 1.11910 0.559548 0.828798i \(-0.310975\pi\)
0.559548 + 0.828798i \(0.310975\pi\)
\(318\) −1.45769e9 −2.54196
\(319\) 2.76976e8 0.477722
\(320\) −1.29202e8 −0.220417
\(321\) −1.45121e9 −2.44884
\(322\) −3.49550e8 −0.583464
\(323\) −2.68830e8 −0.443883
\(324\) 8.94591e8 1.46122
\(325\) −1.21556e9 −1.96419
\(326\) 3.14155e7 0.0502207
\(327\) 3.21180e8 0.507962
\(328\) −6.84082e7 −0.107041
\(329\) 1.40049e9 2.16818
\(330\) 5.01090e8 0.767569
\(331\) 7.05974e8 1.07002 0.535009 0.844847i \(-0.320308\pi\)
0.535009 + 0.844847i \(0.320308\pi\)
\(332\) 5.47802e8 0.821562
\(333\) −3.03349e9 −4.50182
\(334\) −4.45057e8 −0.653586
\(335\) −1.84329e9 −2.67879
\(336\) −4.38607e8 −0.630794
\(337\) 1.21373e9 1.72750 0.863752 0.503918i \(-0.168108\pi\)
0.863752 + 0.503918i \(0.168108\pi\)
\(338\) 6.67103e7 0.0939689
\(339\) 1.37932e9 1.92295
\(340\) 6.52818e8 0.900774
\(341\) 1.84323e8 0.251733
\(342\) −5.77859e8 −0.781143
\(343\) −2.03304e8 −0.272030
\(344\) 7.62018e7 0.100928
\(345\) 1.55816e9 2.04289
\(346\) 8.41961e8 1.09276
\(347\) 3.64471e8 0.468285 0.234142 0.972202i \(-0.424772\pi\)
0.234142 + 0.972202i \(0.424772\pi\)
\(348\) 1.08070e9 1.37460
\(349\) 6.64302e8 0.836521 0.418261 0.908327i \(-0.362640\pi\)
0.418261 + 0.908327i \(0.362640\pi\)
\(350\) −1.60381e9 −1.99947
\(351\) 2.19051e9 2.70378
\(352\) 4.73105e7 0.0578174
\(353\) −9.17247e8 −1.10988 −0.554938 0.831892i \(-0.687258\pi\)
−0.554938 + 0.831892i \(0.687258\pi\)
\(354\) −3.26697e8 −0.391411
\(355\) 7.00253e8 0.830722
\(356\) 3.41220e8 0.400830
\(357\) 2.21614e9 2.57786
\(358\) −8.45294e8 −0.973682
\(359\) 2.74949e8 0.313633 0.156817 0.987628i \(-0.449877\pi\)
0.156817 + 0.987628i \(0.449877\pi\)
\(360\) 1.40325e9 1.58517
\(361\) −7.25143e8 −0.811238
\(362\) −2.77247e8 −0.307176
\(363\) 1.53180e9 1.68085
\(364\) −5.74308e8 −0.624151
\(365\) −2.17148e8 −0.233739
\(366\) 2.40285e9 2.56179
\(367\) 4.28831e8 0.452850 0.226425 0.974029i \(-0.427296\pi\)
0.226425 + 0.974029i \(0.427296\pi\)
\(368\) 1.47114e8 0.153881
\(369\) 7.42976e8 0.769808
\(370\) −2.15093e9 −2.20760
\(371\) −2.51832e9 −2.56037
\(372\) 7.19185e8 0.724337
\(373\) −5.59787e8 −0.558524 −0.279262 0.960215i \(-0.590090\pi\)
−0.279262 + 0.960215i \(0.590090\pi\)
\(374\) −2.39045e8 −0.236282
\(375\) 3.75988e9 3.68184
\(376\) −5.89419e8 −0.571829
\(377\) 1.41505e9 1.36012
\(378\) 2.89017e9 2.75234
\(379\) 1.03619e9 0.977690 0.488845 0.872371i \(-0.337418\pi\)
0.488845 + 0.872371i \(0.337418\pi\)
\(380\) −4.09736e8 −0.383056
\(381\) −4.86205e8 −0.450383
\(382\) 1.93338e8 0.177458
\(383\) 1.72413e8 0.156810 0.0784051 0.996922i \(-0.475017\pi\)
0.0784051 + 0.996922i \(0.475017\pi\)
\(384\) 1.84595e8 0.166364
\(385\) 8.65692e8 0.773127
\(386\) 9.13149e8 0.808139
\(387\) −8.27621e8 −0.725844
\(388\) −2.30096e7 −0.0199985
\(389\) 4.90152e8 0.422189 0.211095 0.977466i \(-0.432297\pi\)
0.211095 + 0.977466i \(0.432297\pi\)
\(390\) 2.56004e9 2.18535
\(391\) −7.43320e8 −0.628865
\(392\) −3.36090e8 −0.281809
\(393\) −1.18073e9 −0.981242
\(394\) 1.08117e9 0.890549
\(395\) −1.13669e9 −0.928013
\(396\) −5.13836e8 −0.415807
\(397\) −5.29097e8 −0.424394 −0.212197 0.977227i \(-0.568062\pi\)
−0.212197 + 0.977227i \(0.568062\pi\)
\(398\) −7.19619e8 −0.572153
\(399\) −1.39095e9 −1.09624
\(400\) 6.74990e8 0.527336
\(401\) −6.62533e8 −0.513100 −0.256550 0.966531i \(-0.582586\pi\)
−0.256550 + 0.966531i \(0.582586\pi\)
\(402\) 2.63357e9 2.02187
\(403\) 9.41695e8 0.716709
\(404\) −7.31216e8 −0.551710
\(405\) −6.88928e9 −5.15325
\(406\) 1.86703e9 1.38455
\(407\) 7.87616e8 0.579074
\(408\) −9.32699e8 −0.679878
\(409\) 9.25060e8 0.668557 0.334278 0.942474i \(-0.391507\pi\)
0.334278 + 0.942474i \(0.391507\pi\)
\(410\) 5.26814e8 0.377497
\(411\) 3.84936e9 2.73490
\(412\) −1.13757e8 −0.0801381
\(413\) −5.64407e8 −0.394246
\(414\) −1.59779e9 −1.10667
\(415\) −4.21865e9 −2.89737
\(416\) 2.41706e8 0.164612
\(417\) −3.23554e9 −2.18510
\(418\) 1.50035e8 0.100479
\(419\) −2.16950e9 −1.44082 −0.720411 0.693547i \(-0.756047\pi\)
−0.720411 + 0.693547i \(0.756047\pi\)
\(420\) 3.37773e9 2.22460
\(421\) −2.53024e9 −1.65263 −0.826314 0.563210i \(-0.809566\pi\)
−0.826314 + 0.563210i \(0.809566\pi\)
\(422\) 1.15782e9 0.749976
\(423\) 6.40163e9 4.11244
\(424\) 1.05988e9 0.675266
\(425\) −3.41051e9 −2.15506
\(426\) −1.00047e9 −0.627005
\(427\) 4.15120e9 2.58034
\(428\) 1.05516e9 0.650529
\(429\) −9.37422e8 −0.573238
\(430\) −5.86833e8 −0.355938
\(431\) −2.79567e9 −1.68196 −0.840979 0.541068i \(-0.818020\pi\)
−0.840979 + 0.541068i \(0.818020\pi\)
\(432\) −1.21637e9 −0.725895
\(433\) 2.94375e9 1.74258 0.871291 0.490767i \(-0.163283\pi\)
0.871291 + 0.490767i \(0.163283\pi\)
\(434\) 1.24248e9 0.729582
\(435\) −8.32248e9 −4.84775
\(436\) −2.33528e8 −0.134939
\(437\) 4.66539e8 0.267426
\(438\) 3.10246e8 0.176419
\(439\) 8.37467e8 0.472435 0.236217 0.971700i \(-0.424092\pi\)
0.236217 + 0.971700i \(0.424092\pi\)
\(440\) −3.64340e8 −0.203903
\(441\) 3.65025e9 2.02669
\(442\) −1.22127e9 −0.672718
\(443\) 1.57930e9 0.863079 0.431539 0.902094i \(-0.357971\pi\)
0.431539 + 0.902094i \(0.357971\pi\)
\(444\) 3.07309e9 1.66623
\(445\) −2.62775e9 −1.41359
\(446\) 6.62852e8 0.353789
\(447\) −4.13515e9 −2.18985
\(448\) 3.18909e8 0.167569
\(449\) 6.12101e8 0.319125 0.159562 0.987188i \(-0.448992\pi\)
0.159562 + 0.987188i \(0.448992\pi\)
\(450\) −7.33101e9 −3.79245
\(451\) −1.92906e8 −0.0990212
\(452\) −1.00290e9 −0.510826
\(453\) −2.80835e9 −1.41941
\(454\) 7.75955e8 0.389171
\(455\) 4.42277e9 2.20117
\(456\) 5.85402e8 0.289119
\(457\) −2.47564e8 −0.121334 −0.0606669 0.998158i \(-0.519323\pi\)
−0.0606669 + 0.998158i \(0.519323\pi\)
\(458\) −2.71566e9 −1.32083
\(459\) 6.14596e9 2.96651
\(460\) −1.13293e9 −0.542688
\(461\) 2.56202e9 1.21795 0.608975 0.793190i \(-0.291581\pi\)
0.608975 + 0.793190i \(0.291581\pi\)
\(462\) −1.23684e9 −0.583534
\(463\) 7.67205e8 0.359235 0.179617 0.983737i \(-0.442514\pi\)
0.179617 + 0.983737i \(0.442514\pi\)
\(464\) −7.85768e8 −0.365159
\(465\) −5.53848e9 −2.55449
\(466\) 1.21199e9 0.554814
\(467\) −2.76961e9 −1.25837 −0.629186 0.777255i \(-0.716612\pi\)
−0.629186 + 0.777255i \(0.716612\pi\)
\(468\) −2.62515e9 −1.18384
\(469\) 4.54979e9 2.03651
\(470\) 4.53914e9 2.01665
\(471\) −7.81666e9 −3.44706
\(472\) 2.37539e8 0.103977
\(473\) 2.14883e8 0.0933660
\(474\) 1.62403e9 0.700437
\(475\) 2.14058e9 0.916441
\(476\) −1.61135e9 −0.684801
\(477\) −1.15112e10 −4.85632
\(478\) −1.45720e9 −0.610269
\(479\) −5.87045e8 −0.244060 −0.122030 0.992526i \(-0.538940\pi\)
−0.122030 + 0.992526i \(0.538940\pi\)
\(480\) −1.42157e9 −0.586711
\(481\) 4.02388e9 1.64868
\(482\) −2.60383e9 −1.05913
\(483\) −3.84599e9 −1.55308
\(484\) −1.11377e9 −0.446514
\(485\) 1.77198e8 0.0705280
\(486\) 4.64718e9 1.83638
\(487\) −1.98955e9 −0.780553 −0.390277 0.920698i \(-0.627621\pi\)
−0.390277 + 0.920698i \(0.627621\pi\)
\(488\) −1.74710e9 −0.680532
\(489\) 3.45655e8 0.133679
\(490\) 2.58825e9 0.993846
\(491\) 5.36482e8 0.204536 0.102268 0.994757i \(-0.467390\pi\)
0.102268 + 0.994757i \(0.467390\pi\)
\(492\) −7.52674e8 −0.284924
\(493\) 3.97024e9 1.49229
\(494\) 7.66520e8 0.286074
\(495\) 3.95707e9 1.46641
\(496\) −5.22916e8 −0.192418
\(497\) −1.72843e9 −0.631545
\(498\) 6.02730e9 2.18685
\(499\) 4.28919e9 1.54534 0.772669 0.634809i \(-0.218921\pi\)
0.772669 + 0.634809i \(0.218921\pi\)
\(500\) −2.73379e9 −0.978071
\(501\) −4.89682e9 −1.73973
\(502\) 4.93188e8 0.174000
\(503\) 1.62102e9 0.567936 0.283968 0.958834i \(-0.408349\pi\)
0.283968 + 0.958834i \(0.408349\pi\)
\(504\) −3.46364e9 −1.20511
\(505\) 5.63112e9 1.94570
\(506\) 4.14850e8 0.142352
\(507\) 7.33992e8 0.250129
\(508\) 3.53517e8 0.119643
\(509\) −1.58823e9 −0.533826 −0.266913 0.963721i \(-0.586004\pi\)
−0.266913 + 0.963721i \(0.586004\pi\)
\(510\) 7.18275e9 2.39770
\(511\) 5.35986e8 0.177697
\(512\) −1.34218e8 −0.0441942
\(513\) −3.85747e9 −1.26151
\(514\) −1.49796e9 −0.486552
\(515\) 8.76049e8 0.282620
\(516\) 8.38424e8 0.268652
\(517\) −1.66212e9 −0.528987
\(518\) 5.30912e9 1.67830
\(519\) 9.26384e9 2.90874
\(520\) −1.86139e9 −0.580532
\(521\) −5.79817e9 −1.79622 −0.898109 0.439772i \(-0.855059\pi\)
−0.898109 + 0.439772i \(0.855059\pi\)
\(522\) 8.53417e9 2.62612
\(523\) −3.48456e9 −1.06510 −0.532552 0.846397i \(-0.678767\pi\)
−0.532552 + 0.846397i \(0.678767\pi\)
\(524\) 8.58502e8 0.260664
\(525\) −1.76463e10 −5.32225
\(526\) −5.84142e8 −0.175012
\(527\) 2.64213e9 0.786353
\(528\) 5.20543e8 0.153900
\(529\) −2.11484e9 −0.621129
\(530\) −8.16215e9 −2.38144
\(531\) −2.57990e9 −0.747776
\(532\) 1.01135e9 0.291213
\(533\) −9.85545e8 −0.281924
\(534\) 3.75434e9 1.06694
\(535\) −8.12586e9 −2.29420
\(536\) −1.91485e9 −0.537104
\(537\) −9.30051e9 −2.59177
\(538\) −1.55721e8 −0.0431131
\(539\) −9.47750e8 −0.260695
\(540\) 9.36734e9 2.55999
\(541\) 6.98788e9 1.89738 0.948692 0.316203i \(-0.102408\pi\)
0.948692 + 0.316203i \(0.102408\pi\)
\(542\) −4.37223e9 −1.17952
\(543\) −3.05046e9 −0.817648
\(544\) 6.78161e8 0.180608
\(545\) 1.79841e9 0.475884
\(546\) −6.31893e9 −1.66138
\(547\) −3.05827e8 −0.0798952 −0.0399476 0.999202i \(-0.512719\pi\)
−0.0399476 + 0.999202i \(0.512719\pi\)
\(548\) −2.79885e9 −0.726520
\(549\) 1.89751e10 4.89419
\(550\) 1.90342e9 0.487827
\(551\) −2.49189e9 −0.634599
\(552\) 1.61865e9 0.409605
\(553\) 2.80570e9 0.705510
\(554\) 3.52329e8 0.0880369
\(555\) −2.36660e10 −5.87624
\(556\) 2.35255e9 0.580466
\(557\) −2.93501e8 −0.0719642 −0.0359821 0.999352i \(-0.511456\pi\)
−0.0359821 + 0.999352i \(0.511456\pi\)
\(558\) 5.67935e9 1.38382
\(559\) 1.09783e9 0.265823
\(560\) −2.45593e9 −0.590959
\(561\) −2.63014e9 −0.628940
\(562\) 2.58148e9 0.613467
\(563\) −1.69684e9 −0.400739 −0.200370 0.979720i \(-0.564214\pi\)
−0.200370 + 0.979720i \(0.564214\pi\)
\(564\) −6.48519e9 −1.52211
\(565\) 7.72337e9 1.80151
\(566\) 1.73160e9 0.401411
\(567\) 1.70048e10 3.91769
\(568\) 7.27437e8 0.166562
\(569\) −6.62911e9 −1.50856 −0.754279 0.656553i \(-0.772014\pi\)
−0.754279 + 0.656553i \(0.772014\pi\)
\(570\) −4.50820e9 −1.01963
\(571\) 8.02130e7 0.0180309 0.00901547 0.999959i \(-0.497130\pi\)
0.00901547 + 0.999959i \(0.497130\pi\)
\(572\) 6.81595e8 0.152279
\(573\) 2.12724e9 0.472362
\(574\) −1.30033e9 −0.286987
\(575\) 5.91876e9 1.29835
\(576\) 1.45773e9 0.317832
\(577\) −3.17118e9 −0.687235 −0.343617 0.939110i \(-0.611652\pi\)
−0.343617 + 0.939110i \(0.611652\pi\)
\(578\) −1.43826e8 −0.0309807
\(579\) 1.00471e10 2.15113
\(580\) 6.05123e9 1.28779
\(581\) 1.04129e10 2.20269
\(582\) −2.53167e8 −0.0532325
\(583\) 2.98877e9 0.624674
\(584\) −2.25578e8 −0.0468653
\(585\) 2.02164e10 4.17502
\(586\) −1.11326e9 −0.228536
\(587\) 6.78270e9 1.38411 0.692053 0.721847i \(-0.256707\pi\)
0.692053 + 0.721847i \(0.256707\pi\)
\(588\) −3.69790e9 −0.750126
\(589\) −1.65832e9 −0.334398
\(590\) −1.82930e9 −0.366693
\(591\) 1.18958e10 2.37049
\(592\) −2.23443e9 −0.442630
\(593\) 3.49852e9 0.688958 0.344479 0.938794i \(-0.388056\pi\)
0.344479 + 0.938794i \(0.388056\pi\)
\(594\) −3.43009e9 −0.671510
\(595\) 1.24090e10 2.41507
\(596\) 3.00665e9 0.581729
\(597\) −7.91775e9 −1.52297
\(598\) 2.11944e9 0.405291
\(599\) 1.88586e9 0.358521 0.179261 0.983802i \(-0.442630\pi\)
0.179261 + 0.983802i \(0.442630\pi\)
\(600\) 7.42670e9 1.40368
\(601\) −8.38929e9 −1.57639 −0.788196 0.615424i \(-0.788985\pi\)
−0.788196 + 0.615424i \(0.788985\pi\)
\(602\) 1.44848e9 0.270597
\(603\) 2.07971e10 3.86270
\(604\) 2.04194e9 0.377062
\(605\) 8.57716e9 1.57471
\(606\) −8.04535e9 −1.46856
\(607\) −6.82124e9 −1.23795 −0.618975 0.785411i \(-0.712452\pi\)
−0.618975 + 0.785411i \(0.712452\pi\)
\(608\) −4.25643e8 −0.0768038
\(609\) 2.05423e10 3.68544
\(610\) 1.34545e10 2.40001
\(611\) −8.49165e9 −1.50608
\(612\) −7.36545e9 −1.29888
\(613\) 3.88964e9 0.682021 0.341010 0.940059i \(-0.389231\pi\)
0.341010 + 0.940059i \(0.389231\pi\)
\(614\) 1.72996e9 0.301611
\(615\) 5.79638e9 1.00483
\(616\) 8.99299e8 0.155014
\(617\) −8.84775e9 −1.51647 −0.758237 0.651979i \(-0.773939\pi\)
−0.758237 + 0.651979i \(0.773939\pi\)
\(618\) −1.25164e9 −0.213314
\(619\) −1.05785e10 −1.79270 −0.896352 0.443342i \(-0.853793\pi\)
−0.896352 + 0.443342i \(0.853793\pi\)
\(620\) 4.02700e9 0.678594
\(621\) −1.06660e10 −1.78723
\(622\) −5.50124e8 −0.0916630
\(623\) 6.48607e9 1.07467
\(624\) 2.65942e9 0.438168
\(625\) 8.17862e9 1.33998
\(626\) −5.11742e9 −0.833759
\(627\) 1.65079e9 0.267458
\(628\) 5.68346e9 0.915701
\(629\) 1.12899e10 1.80889
\(630\) 2.66736e10 4.25001
\(631\) −6.53588e9 −1.03562 −0.517811 0.855495i \(-0.673253\pi\)
−0.517811 + 0.855495i \(0.673253\pi\)
\(632\) −1.18082e9 −0.186069
\(633\) 1.27391e10 1.99631
\(634\) −5.07768e9 −0.791321
\(635\) −2.72245e9 −0.421941
\(636\) 1.16615e10 1.79744
\(637\) −4.84200e9 −0.742226
\(638\) −2.21581e9 −0.337800
\(639\) −7.90064e9 −1.19787
\(640\) 1.03362e9 0.155858
\(641\) 8.51251e9 1.27660 0.638299 0.769788i \(-0.279638\pi\)
0.638299 + 0.769788i \(0.279638\pi\)
\(642\) 1.16096e10 1.73159
\(643\) −2.20248e9 −0.326718 −0.163359 0.986567i \(-0.552233\pi\)
−0.163359 + 0.986567i \(0.552233\pi\)
\(644\) 2.79640e9 0.412571
\(645\) −6.45674e9 −0.947446
\(646\) 2.15064e9 0.313873
\(647\) 7.71884e9 1.12044 0.560218 0.828345i \(-0.310717\pi\)
0.560218 + 0.828345i \(0.310717\pi\)
\(648\) −7.15673e9 −1.03324
\(649\) 6.69844e8 0.0961872
\(650\) 9.72446e9 1.38889
\(651\) 1.36706e10 1.94202
\(652\) −2.51324e8 −0.0355114
\(653\) −3.51568e9 −0.494098 −0.247049 0.969003i \(-0.579461\pi\)
−0.247049 + 0.969003i \(0.579461\pi\)
\(654\) −2.56944e9 −0.359183
\(655\) −6.61136e9 −0.919276
\(656\) 5.47266e8 0.0756893
\(657\) 2.44998e9 0.337042
\(658\) −1.12039e10 −1.53313
\(659\) −7.26535e8 −0.0988912 −0.0494456 0.998777i \(-0.515745\pi\)
−0.0494456 + 0.998777i \(0.515745\pi\)
\(660\) −4.00872e9 −0.542753
\(661\) −2.77604e9 −0.373871 −0.186935 0.982372i \(-0.559855\pi\)
−0.186935 + 0.982372i \(0.559855\pi\)
\(662\) −5.64779e9 −0.756617
\(663\) −1.34372e10 −1.79066
\(664\) −4.38242e9 −0.580932
\(665\) −7.78845e9 −1.02701
\(666\) 2.42680e10 3.18327
\(667\) −6.89014e9 −0.899057
\(668\) 3.56045e9 0.462155
\(669\) 7.29315e9 0.941725
\(670\) 1.47464e10 1.89419
\(671\) −4.92669e9 −0.629545
\(672\) 3.50885e9 0.446039
\(673\) −1.09520e10 −1.38498 −0.692489 0.721429i \(-0.743486\pi\)
−0.692489 + 0.721429i \(0.743486\pi\)
\(674\) −9.70987e9 −1.22153
\(675\) −4.89378e10 −6.12465
\(676\) −5.33682e8 −0.0664461
\(677\) 6.24392e9 0.773388 0.386694 0.922208i \(-0.373617\pi\)
0.386694 + 0.922208i \(0.373617\pi\)
\(678\) −1.10346e10 −1.35973
\(679\) −4.37376e8 −0.0536180
\(680\) −5.22254e9 −0.636943
\(681\) 8.53759e9 1.03591
\(682\) −1.47458e9 −0.178002
\(683\) 1.04305e10 1.25265 0.626326 0.779561i \(-0.284558\pi\)
0.626326 + 0.779561i \(0.284558\pi\)
\(684\) 4.62287e9 0.552351
\(685\) 2.15540e10 2.56219
\(686\) 1.62643e9 0.192354
\(687\) −2.98795e10 −3.51581
\(688\) −6.09614e8 −0.0713667
\(689\) 1.52695e10 1.77851
\(690\) −1.24653e10 −1.44454
\(691\) 1.19753e9 0.138075 0.0690373 0.997614i \(-0.478007\pi\)
0.0690373 + 0.997614i \(0.478007\pi\)
\(692\) −6.73569e9 −0.772700
\(693\) −9.76722e9 −1.11482
\(694\) −2.91577e9 −0.331127
\(695\) −1.81171e10 −2.04711
\(696\) −8.64557e9 −0.971989
\(697\) −2.76516e9 −0.309319
\(698\) −5.31442e9 −0.591510
\(699\) 1.33351e10 1.47682
\(700\) 1.28305e10 1.41384
\(701\) 6.76271e9 0.741495 0.370747 0.928734i \(-0.379102\pi\)
0.370747 + 0.928734i \(0.379102\pi\)
\(702\) −1.75241e10 −1.91186
\(703\) −7.08601e9 −0.769233
\(704\) −3.78484e8 −0.0408831
\(705\) 4.99427e10 5.36797
\(706\) 7.33797e9 0.784801
\(707\) −1.38993e10 −1.47919
\(708\) 2.61357e9 0.276770
\(709\) −1.22972e10 −1.29582 −0.647908 0.761718i \(-0.724356\pi\)
−0.647908 + 0.761718i \(0.724356\pi\)
\(710\) −5.60202e9 −0.587409
\(711\) 1.28248e10 1.33816
\(712\) −2.72976e9 −0.283429
\(713\) −4.58527e9 −0.473753
\(714\) −1.77292e10 −1.82282
\(715\) −5.24899e9 −0.537037
\(716\) 6.76235e9 0.688497
\(717\) −1.60331e10 −1.62443
\(718\) −2.19959e9 −0.221772
\(719\) −1.16208e10 −1.16596 −0.582981 0.812486i \(-0.698114\pi\)
−0.582981 + 0.812486i \(0.698114\pi\)
\(720\) −1.12260e10 −1.12089
\(721\) −2.16235e9 −0.214858
\(722\) 5.80114e9 0.573632
\(723\) −2.86492e10 −2.81921
\(724\) 2.21797e9 0.217206
\(725\) −3.16134e10 −3.08098
\(726\) −1.22544e10 −1.18854
\(727\) 1.00995e10 0.974834 0.487417 0.873169i \(-0.337939\pi\)
0.487417 + 0.873169i \(0.337939\pi\)
\(728\) 4.59446e9 0.441342
\(729\) 2.05617e10 1.96568
\(730\) 1.73719e9 0.165278
\(731\) 3.08019e9 0.291653
\(732\) −1.92228e10 −1.81146
\(733\) −9.18647e9 −0.861559 −0.430779 0.902457i \(-0.641761\pi\)
−0.430779 + 0.902457i \(0.641761\pi\)
\(734\) −3.43065e9 −0.320214
\(735\) 2.84777e10 2.64544
\(736\) −1.17691e9 −0.108810
\(737\) −5.39975e9 −0.496864
\(738\) −5.94381e9 −0.544337
\(739\) 1.13863e10 1.03783 0.518917 0.854824i \(-0.326335\pi\)
0.518917 + 0.854824i \(0.326335\pi\)
\(740\) 1.72074e10 1.56101
\(741\) 8.43378e9 0.761480
\(742\) 2.01466e10 1.81046
\(743\) 1.25954e10 1.12655 0.563274 0.826270i \(-0.309542\pi\)
0.563274 + 0.826270i \(0.309542\pi\)
\(744\) −5.75348e9 −0.512183
\(745\) −2.31543e10 −2.05156
\(746\) 4.47830e9 0.394936
\(747\) 4.75971e10 4.17790
\(748\) 1.91236e9 0.167076
\(749\) 2.00570e10 1.74413
\(750\) −3.00791e10 −2.60345
\(751\) 8.64358e9 0.744653 0.372327 0.928102i \(-0.378560\pi\)
0.372327 + 0.928102i \(0.378560\pi\)
\(752\) 4.71535e9 0.404344
\(753\) 5.42640e9 0.463158
\(754\) −1.13204e10 −0.961752
\(755\) −1.57250e10 −1.32977
\(756\) −2.31214e10 −1.94620
\(757\) 1.65823e9 0.138934 0.0694669 0.997584i \(-0.477870\pi\)
0.0694669 + 0.997584i \(0.477870\pi\)
\(758\) −8.28950e9 −0.691331
\(759\) 4.56447e9 0.378917
\(760\) 3.27789e9 0.270861
\(761\) −7.56528e9 −0.622270 −0.311135 0.950366i \(-0.600709\pi\)
−0.311135 + 0.950366i \(0.600709\pi\)
\(762\) 3.88964e9 0.318469
\(763\) −4.43900e9 −0.361784
\(764\) −1.54670e9 −0.125482
\(765\) 5.67216e10 4.58072
\(766\) −1.37930e9 −0.110882
\(767\) 3.42219e9 0.273855
\(768\) −1.47676e9 −0.117637
\(769\) −9.38451e9 −0.744165 −0.372083 0.928200i \(-0.621356\pi\)
−0.372083 + 0.928200i \(0.621356\pi\)
\(770\) −6.92554e9 −0.546684
\(771\) −1.64816e10 −1.29512
\(772\) −7.30519e9 −0.571441
\(773\) −3.52203e9 −0.274262 −0.137131 0.990553i \(-0.543788\pi\)
−0.137131 + 0.990553i \(0.543788\pi\)
\(774\) 6.62097e9 0.513249
\(775\) −2.10382e10 −1.62350
\(776\) 1.84076e8 0.0141411
\(777\) 5.84147e10 4.46733
\(778\) −3.92122e9 −0.298533
\(779\) 1.73553e9 0.131538
\(780\) −2.04803e10 −1.54527
\(781\) 2.05132e9 0.154083
\(782\) 5.94656e9 0.444674
\(783\) 5.69694e10 4.24107
\(784\) 2.68872e9 0.199269
\(785\) −4.37685e10 −3.22937
\(786\) 9.44583e9 0.693843
\(787\) −7.56382e8 −0.0553133 −0.0276567 0.999617i \(-0.508805\pi\)
−0.0276567 + 0.999617i \(0.508805\pi\)
\(788\) −8.64938e9 −0.629714
\(789\) −6.42714e9 −0.465852
\(790\) 9.09356e9 0.656204
\(791\) −1.90636e10 −1.36958
\(792\) 4.11069e9 0.294020
\(793\) −2.51702e10 −1.79238
\(794\) 4.23278e9 0.300092
\(795\) −8.98056e10 −6.33897
\(796\) 5.75696e9 0.404573
\(797\) −1.21549e10 −0.850449 −0.425224 0.905088i \(-0.639805\pi\)
−0.425224 + 0.905088i \(0.639805\pi\)
\(798\) 1.11276e10 0.775158
\(799\) −2.38252e10 −1.65243
\(800\) −5.39992e9 −0.372883
\(801\) 2.96477e10 2.03835
\(802\) 5.30026e9 0.362817
\(803\) −6.36114e8 −0.0433541
\(804\) −2.10685e10 −1.42968
\(805\) −2.15352e10 −1.45500
\(806\) −7.53356e9 −0.506789
\(807\) −1.71335e9 −0.114759
\(808\) 5.84973e9 0.390118
\(809\) 2.68446e10 1.78253 0.891267 0.453479i \(-0.149817\pi\)
0.891267 + 0.453479i \(0.149817\pi\)
\(810\) 5.51142e10 3.64390
\(811\) 1.04648e9 0.0688904 0.0344452 0.999407i \(-0.489034\pi\)
0.0344452 + 0.999407i \(0.489034\pi\)
\(812\) −1.49362e10 −0.979027
\(813\) −4.81063e10 −3.13968
\(814\) −6.30093e9 −0.409467
\(815\) 1.93546e9 0.125237
\(816\) 7.46159e9 0.480746
\(817\) −1.93326e9 −0.124026
\(818\) −7.40048e9 −0.472741
\(819\) −4.99001e10 −3.17401
\(820\) −4.21451e9 −0.266931
\(821\) 1.64524e10 1.03759 0.518796 0.854898i \(-0.326380\pi\)
0.518796 + 0.854898i \(0.326380\pi\)
\(822\) −3.07949e10 −1.93387
\(823\) 8.77217e9 0.548539 0.274270 0.961653i \(-0.411564\pi\)
0.274270 + 0.961653i \(0.411564\pi\)
\(824\) 9.10058e8 0.0566662
\(825\) 2.09428e10 1.29851
\(826\) 4.51525e9 0.278774
\(827\) −2.81393e10 −1.72999 −0.864995 0.501780i \(-0.832679\pi\)
−0.864995 + 0.501780i \(0.832679\pi\)
\(828\) 1.27823e10 0.782535
\(829\) 9.74747e9 0.594225 0.297113 0.954842i \(-0.403976\pi\)
0.297113 + 0.954842i \(0.403976\pi\)
\(830\) 3.37492e10 2.04875
\(831\) 3.87657e9 0.234339
\(832\) −1.93365e9 −0.116398
\(833\) −1.35853e10 −0.814350
\(834\) 2.58844e10 1.54510
\(835\) −2.74192e10 −1.62987
\(836\) −1.20028e9 −0.0710495
\(837\) 3.79122e10 2.23481
\(838\) 1.73560e10 1.01881
\(839\) 1.63736e10 0.957147 0.478573 0.878048i \(-0.341154\pi\)
0.478573 + 0.878048i \(0.341154\pi\)
\(840\) −2.70218e10 −1.57303
\(841\) 1.95519e10 1.13345
\(842\) 2.02420e10 1.16858
\(843\) 2.84032e10 1.63294
\(844\) −9.26256e9 −0.530313
\(845\) 4.10991e9 0.234333
\(846\) −5.12130e10 −2.90793
\(847\) −2.11710e10 −1.19715
\(848\) −8.47901e9 −0.477485
\(849\) 1.90522e10 1.06849
\(850\) 2.72841e10 1.52385
\(851\) −1.95929e10 −1.08980
\(852\) 8.00377e9 0.443359
\(853\) −5.66702e9 −0.312632 −0.156316 0.987707i \(-0.549962\pi\)
−0.156316 + 0.987707i \(0.549962\pi\)
\(854\) −3.32096e10 −1.82457
\(855\) −3.56009e10 −1.94796
\(856\) −8.44131e9 −0.459993
\(857\) −1.78522e10 −0.968853 −0.484427 0.874832i \(-0.660972\pi\)
−0.484427 + 0.874832i \(0.660972\pi\)
\(858\) 7.49938e9 0.405340
\(859\) −2.90647e10 −1.56455 −0.782274 0.622934i \(-0.785941\pi\)
−0.782274 + 0.622934i \(0.785941\pi\)
\(860\) 4.69466e9 0.251686
\(861\) −1.43072e10 −0.763911
\(862\) 2.23653e10 1.18932
\(863\) −8.87461e9 −0.470015 −0.235007 0.971994i \(-0.575511\pi\)
−0.235007 + 0.971994i \(0.575511\pi\)
\(864\) 9.73099e9 0.513286
\(865\) 5.18718e10 2.72505
\(866\) −2.35500e10 −1.23219
\(867\) −1.58248e9 −0.0824651
\(868\) −9.93981e9 −0.515893
\(869\) −3.32983e9 −0.172129
\(870\) 6.65799e10 3.42788
\(871\) −2.75870e10 −1.41462
\(872\) 1.86822e9 0.0954160
\(873\) −1.99924e9 −0.101699
\(874\) −3.73231e9 −0.189099
\(875\) −5.19651e10 −2.62231
\(876\) −2.48197e9 −0.124747
\(877\) 2.64332e10 1.32328 0.661638 0.749823i \(-0.269861\pi\)
0.661638 + 0.749823i \(0.269861\pi\)
\(878\) −6.69973e9 −0.334062
\(879\) −1.22489e10 −0.608324
\(880\) 2.91472e9 0.144181
\(881\) −4.25046e9 −0.209421 −0.104711 0.994503i \(-0.533392\pi\)
−0.104711 + 0.994503i \(0.533392\pi\)
\(882\) −2.92020e10 −1.43309
\(883\) −3.54534e10 −1.73299 −0.866494 0.499188i \(-0.833632\pi\)
−0.866494 + 0.499188i \(0.833632\pi\)
\(884\) 9.77014e9 0.475683
\(885\) −2.01272e10 −0.976074
\(886\) −1.26344e10 −0.610289
\(887\) −2.11585e10 −1.01801 −0.509006 0.860763i \(-0.669987\pi\)
−0.509006 + 0.860763i \(0.669987\pi\)
\(888\) −2.45847e10 −1.17820
\(889\) 6.71980e9 0.320775
\(890\) 2.10220e10 0.999561
\(891\) −2.01814e10 −0.955829
\(892\) −5.30281e9 −0.250167
\(893\) 1.49537e10 0.702698
\(894\) 3.30812e10 1.54846
\(895\) −5.20771e10 −2.42810
\(896\) −2.55127e9 −0.118489
\(897\) 2.33196e10 1.07881
\(898\) −4.89681e9 −0.225655
\(899\) 2.44910e10 1.12421
\(900\) 5.86481e10 2.68167
\(901\) 4.28418e10 1.95133
\(902\) 1.54325e9 0.0700186
\(903\) 1.59371e10 0.720283
\(904\) 8.02320e9 0.361209
\(905\) −1.70807e10 −0.766013
\(906\) 2.24668e10 1.00367
\(907\) −4.33173e10 −1.92768 −0.963842 0.266474i \(-0.914141\pi\)
−0.963842 + 0.266474i \(0.914141\pi\)
\(908\) −6.20764e9 −0.275186
\(909\) −6.35334e10 −2.80562
\(910\) −3.53821e10 −1.55646
\(911\) 2.50022e10 1.09563 0.547814 0.836600i \(-0.315460\pi\)
0.547814 + 0.836600i \(0.315460\pi\)
\(912\) −4.68321e9 −0.204438
\(913\) −1.23581e10 −0.537408
\(914\) 1.98052e9 0.0857959
\(915\) 1.48036e11 6.38840
\(916\) 2.17252e10 0.933965
\(917\) 1.63188e10 0.698868
\(918\) −4.91677e10 −2.09764
\(919\) −3.83511e10 −1.62995 −0.814974 0.579497i \(-0.803249\pi\)
−0.814974 + 0.579497i \(0.803249\pi\)
\(920\) 9.06343e9 0.383738
\(921\) 1.90343e10 0.802836
\(922\) −2.04962e10 −0.861220
\(923\) 1.04801e10 0.438690
\(924\) 9.89471e9 0.412621
\(925\) −8.98967e10 −3.73463
\(926\) −6.13764e9 −0.254017
\(927\) −9.88407e9 −0.407527
\(928\) 6.28615e9 0.258206
\(929\) −8.93240e9 −0.365522 −0.182761 0.983157i \(-0.558503\pi\)
−0.182761 + 0.983157i \(0.558503\pi\)
\(930\) 4.43078e10 1.80630
\(931\) 8.52670e9 0.346304
\(932\) −9.69590e9 −0.392313
\(933\) −6.05285e9 −0.243991
\(934\) 2.21569e10 0.889804
\(935\) −1.47272e10 −0.589222
\(936\) 2.10012e10 0.837104
\(937\) 2.53768e8 0.0100774 0.00503869 0.999987i \(-0.498396\pi\)
0.00503869 + 0.999987i \(0.498396\pi\)
\(938\) −3.63984e10 −1.44003
\(939\) −5.63054e10 −2.21932
\(940\) −3.63131e10 −1.42599
\(941\) 1.82576e9 0.0714300 0.0357150 0.999362i \(-0.488629\pi\)
0.0357150 + 0.999362i \(0.488629\pi\)
\(942\) 6.25333e10 2.43744
\(943\) 4.79879e9 0.186355
\(944\) −1.90032e9 −0.0735231
\(945\) 1.78059e11 6.86359
\(946\) −1.71907e9 −0.0660198
\(947\) 2.92107e10 1.11768 0.558839 0.829276i \(-0.311247\pi\)
0.558839 + 0.829276i \(0.311247\pi\)
\(948\) −1.29922e10 −0.495284
\(949\) −3.24986e9 −0.123434
\(950\) −1.71247e10 −0.648022
\(951\) −5.58681e10 −2.10636
\(952\) 1.28908e10 0.484228
\(953\) 1.67736e8 0.00627772 0.00313886 0.999995i \(-0.499001\pi\)
0.00313886 + 0.999995i \(0.499001\pi\)
\(954\) 9.20899e10 3.43394
\(955\) 1.19112e10 0.442532
\(956\) 1.16576e10 0.431526
\(957\) −2.43799e10 −0.899166
\(958\) 4.69636e9 0.172577
\(959\) −5.32017e10 −1.94787
\(960\) 1.13726e10 0.414867
\(961\) −1.12143e10 −0.407604
\(962\) −3.21910e10 −1.16579
\(963\) 9.16804e10 3.30814
\(964\) 2.08307e10 0.748916
\(965\) 5.62576e10 2.01528
\(966\) 3.07679e10 1.09819
\(967\) 1.51863e10 0.540080 0.270040 0.962849i \(-0.412963\pi\)
0.270040 + 0.962849i \(0.412963\pi\)
\(968\) 8.91013e9 0.315733
\(969\) 2.36628e10 0.835475
\(970\) −1.41758e9 −0.0498708
\(971\) 4.65394e10 1.63137 0.815687 0.578494i \(-0.196359\pi\)
0.815687 + 0.578494i \(0.196359\pi\)
\(972\) −3.71775e10 −1.29852
\(973\) 4.47182e10 1.55629
\(974\) 1.59164e10 0.551934
\(975\) 1.06995e11 3.69699
\(976\) 1.39768e10 0.481209
\(977\) −4.67271e10 −1.60302 −0.801508 0.597984i \(-0.795969\pi\)
−0.801508 + 0.597984i \(0.795969\pi\)
\(978\) −2.76524e9 −0.0945251
\(979\) −7.69773e9 −0.262194
\(980\) −2.07060e10 −0.702755
\(981\) −2.02906e10 −0.686205
\(982\) −4.29186e9 −0.144629
\(983\) −4.51065e10 −1.51461 −0.757307 0.653059i \(-0.773485\pi\)
−0.757307 + 0.653059i \(0.773485\pi\)
\(984\) 6.02140e9 0.201472
\(985\) 6.66092e10 2.22079
\(986\) −3.17620e10 −1.05521
\(987\) −1.23273e11 −4.08093
\(988\) −6.13216e9 −0.202285
\(989\) −5.34550e9 −0.175712
\(990\) −3.16566e10 −1.03691
\(991\) −2.61054e10 −0.852064 −0.426032 0.904708i \(-0.640089\pi\)
−0.426032 + 0.904708i \(0.640089\pi\)
\(992\) 4.18333e9 0.136060
\(993\) −6.21409e10 −2.01398
\(994\) 1.38274e10 0.446570
\(995\) −4.43345e10 −1.42679
\(996\) −4.82184e10 −1.54634
\(997\) −4.41959e10 −1.41237 −0.706185 0.708027i \(-0.749585\pi\)
−0.706185 + 0.708027i \(0.749585\pi\)
\(998\) −3.43135e10 −1.09272
\(999\) 1.62000e11 5.14084
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.8.a.c.1.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.8.a.c.1.1 40 1.1 even 1 trivial