Properties

Label 538.8.a.d.1.15
Level 538538
Weight 88
Character 538.1
Self dual yes
Analytic conductor 168.063168.063
Analytic rank 00
Dimension 4343
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,8,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 538=2269 538 = 2 \cdot 269
Weight: k k == 8 8
Character orbit: [χ][\chi] == 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 168.063143710168.063143710
Analytic rank: 00
Dimension: 4343
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.15
Character χ\chi == 538.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+8.00000q230.6882q3+64.0000q4+83.2051q5245.506q6+52.0613q7+512.000q81245.23q9+665.641q103837.92q111964.05q121081.04q13+416.491q142553.42q15+4096.00q169440.56q179961.85q1844568.8q19+5325.12q201597.67q2130703.3q2219134.4q2315712.4q2471201.9q258648.32q26+105329.q27+3331.92q28+244569.q2920427.3q30+110258.q31+32768.0q32+117779.q3375524.5q34+4331.77q3579694.8q36186269.q37356550.q38+33175.2q39+42601.0q40+524744.q4112781.4q42+115417.q43245627.q44103610.q45153075.q46+732548.q47125699.q48820833.q49569615.q50+289714.q5169186.6q521.50227e6q53+842633.q54319334.q55+26655.4q56+1.36774e6q57+1.95655e6q581.28519e6q59163419.q60+626022.q61+882061.q6264828.4q63+262144.q6489948.0q65+942231.q66+3.20742e6q67604196.q68+587202.q69+34654.1q70+180373.q71637558.q72+3.64626e6q731.49015e6q74+2.18506e6q752.85240e6q76199807.q77+265402.q781.76484e6q79+340808.q80509047.q81+4.19795e6q825.34284e6q83102251.q84785502.q85+923332.q867.50540e6q871.96501e6q884.36967e6q89828877.q9056280.4q911.22460e6q923.38361e6q93+5.86038e6q943.70835e6q951.00559e6q96+5.98187e6q976.56666e6q98+4.77909e6q99+O(q100)q+8.00000 q^{2} -30.6882 q^{3} +64.0000 q^{4} +83.2051 q^{5} -245.506 q^{6} +52.0613 q^{7} +512.000 q^{8} -1245.23 q^{9} +665.641 q^{10} -3837.92 q^{11} -1964.05 q^{12} -1081.04 q^{13} +416.491 q^{14} -2553.42 q^{15} +4096.00 q^{16} -9440.56 q^{17} -9961.85 q^{18} -44568.8 q^{19} +5325.12 q^{20} -1597.67 q^{21} -30703.3 q^{22} -19134.4 q^{23} -15712.4 q^{24} -71201.9 q^{25} -8648.32 q^{26} +105329. q^{27} +3331.92 q^{28} +244569. q^{29} -20427.3 q^{30} +110258. q^{31} +32768.0 q^{32} +117779. q^{33} -75524.5 q^{34} +4331.77 q^{35} -79694.8 q^{36} -186269. q^{37} -356550. q^{38} +33175.2 q^{39} +42601.0 q^{40} +524744. q^{41} -12781.4 q^{42} +115417. q^{43} -245627. q^{44} -103610. q^{45} -153075. q^{46} +732548. q^{47} -125699. q^{48} -820833. q^{49} -569615. q^{50} +289714. q^{51} -69186.6 q^{52} -1.50227e6 q^{53} +842633. q^{54} -319334. q^{55} +26655.4 q^{56} +1.36774e6 q^{57} +1.95655e6 q^{58} -1.28519e6 q^{59} -163419. q^{60} +626022. q^{61} +882061. q^{62} -64828.4 q^{63} +262144. q^{64} -89948.0 q^{65} +942231. q^{66} +3.20742e6 q^{67} -604196. q^{68} +587202. q^{69} +34654.1 q^{70} +180373. q^{71} -637558. q^{72} +3.64626e6 q^{73} -1.49015e6 q^{74} +2.18506e6 q^{75} -2.85240e6 q^{76} -199807. q^{77} +265402. q^{78} -1.76484e6 q^{79} +340808. q^{80} -509047. q^{81} +4.19795e6 q^{82} -5.34284e6 q^{83} -102251. q^{84} -785502. q^{85} +923332. q^{86} -7.50540e6 q^{87} -1.96501e6 q^{88} -4.36967e6 q^{89} -828877. q^{90} -56280.4 q^{91} -1.22460e6 q^{92} -3.38361e6 q^{93} +5.86038e6 q^{94} -3.70835e6 q^{95} -1.00559e6 q^{96} +5.98187e6 q^{97} -6.56666e6 q^{98} +4.77909e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 43q+344q2+123q3+2752q4+1249q5+984q6+2292q7+22016q8+38034q9+9992q10+9236q11+7872q12+20734q13+18336q14+45412q15+176128q16++81437781q99+O(q100) 43 q + 344 q^{2} + 123 q^{3} + 2752 q^{4} + 1249 q^{5} + 984 q^{6} + 2292 q^{7} + 22016 q^{8} + 38034 q^{9} + 9992 q^{10} + 9236 q^{11} + 7872 q^{12} + 20734 q^{13} + 18336 q^{14} + 45412 q^{15} + 176128 q^{16}+ \cdots + 81437781 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 8.00000 0.707107
33 −30.6882 −0.656217 −0.328109 0.944640i 0.606411π-0.606411\pi
−0.328109 + 0.944640i 0.606411π0.606411\pi
44 64.0000 0.500000
55 83.2051 0.297684 0.148842 0.988861i 0.452445π-0.452445\pi
0.148842 + 0.988861i 0.452445π0.452445\pi
66 −245.506 −0.464016
77 52.0613 0.0573683 0.0286842 0.999589i 0.490868π-0.490868\pi
0.0286842 + 0.999589i 0.490868π0.490868\pi
88 512.000 0.353553
99 −1245.23 −0.569379
1010 665.641 0.210494
1111 −3837.92 −0.869403 −0.434701 0.900575i 0.643146π-0.643146\pi
−0.434701 + 0.900575i 0.643146π0.643146\pi
1212 −1964.05 −0.328109
1313 −1081.04 −0.136471 −0.0682355 0.997669i 0.521737π-0.521737\pi
−0.0682355 + 0.997669i 0.521737π0.521737\pi
1414 416.491 0.0405655
1515 −2553.42 −0.195345
1616 4096.00 0.250000
1717 −9440.56 −0.466043 −0.233022 0.972472i 0.574861π-0.574861\pi
−0.233022 + 0.972472i 0.574861π0.574861\pi
1818 −9961.85 −0.402612
1919 −44568.8 −1.49071 −0.745355 0.666668i 0.767720π-0.767720\pi
−0.745355 + 0.666668i 0.767720π0.767720\pi
2020 5325.12 0.148842
2121 −1597.67 −0.0376461
2222 −30703.3 −0.614761
2323 −19134.4 −0.327920 −0.163960 0.986467i 0.552427π-0.552427\pi
−0.163960 + 0.986467i 0.552427π0.552427\pi
2424 −15712.4 −0.232008
2525 −71201.9 −0.911385
2626 −8648.32 −0.0964995
2727 105329. 1.02985
2828 3331.92 0.0286842
2929 244569. 1.86212 0.931062 0.364861i 0.118884π-0.118884\pi
0.931062 + 0.364861i 0.118884π0.118884\pi
3030 −20427.3 −0.138130
3131 110258. 0.664726 0.332363 0.943152i 0.392154π-0.392154\pi
0.332363 + 0.943152i 0.392154π0.392154\pi
3232 32768.0 0.176777
3333 117779. 0.570517
3434 −75524.5 −0.329542
3535 4331.77 0.0170776
3636 −79694.8 −0.284689
3737 −186269. −0.604552 −0.302276 0.953220i 0.597746π-0.597746\pi
−0.302276 + 0.953220i 0.597746π0.597746\pi
3838 −356550. −1.05409
3939 33175.2 0.0895546
4040 42601.0 0.105247
4141 524744. 1.18906 0.594530 0.804073i 0.297338π-0.297338\pi
0.594530 + 0.804073i 0.297338π0.297338\pi
4242 −12781.4 −0.0266198
4343 115417. 0.221375 0.110687 0.993855i 0.464695π-0.464695\pi
0.110687 + 0.993855i 0.464695π0.464695\pi
4444 −245627. −0.434701
4545 −103610. −0.169495
4646 −153075. −0.231874
4747 732548. 1.02919 0.514593 0.857435i 0.327943π-0.327943\pi
0.514593 + 0.857435i 0.327943π0.327943\pi
4848 −125699. −0.164054
4949 −820833. −0.996709
5050 −569615. −0.644446
5151 289714. 0.305826
5252 −69186.6 −0.0682355
5353 −1.50227e6 −1.38606 −0.693032 0.720907i 0.743726π-0.743726\pi
−0.693032 + 0.720907i 0.743726π0.743726\pi
5454 842633. 0.728216
5555 −319334. −0.258807
5656 26655.4 0.0202828
5757 1.36774e6 0.978230
5858 1.95655e6 1.31672
5959 −1.28519e6 −0.814676 −0.407338 0.913277i 0.633543π-0.633543\pi
−0.407338 + 0.913277i 0.633543π0.633543\pi
6060 −163419. −0.0976725
6161 626022. 0.353130 0.176565 0.984289i 0.443501π-0.443501\pi
0.176565 + 0.984289i 0.443501π0.443501\pi
6262 882061. 0.470032
6363 −64828.4 −0.0326643
6464 262144. 0.125000
6565 −89948.0 −0.0406251
6666 942231. 0.403417
6767 3.20742e6 1.30285 0.651424 0.758714i 0.274172π-0.274172\pi
0.651424 + 0.758714i 0.274172π0.274172\pi
6868 −604196. −0.233022
6969 587202. 0.215187
7070 34654.1 0.0120757
7171 180373. 0.0598092 0.0299046 0.999553i 0.490480π-0.490480\pi
0.0299046 + 0.999553i 0.490480π0.490480\pi
7272 −637558. −0.201306
7373 3.64626e6 1.09703 0.548514 0.836142i 0.315194π-0.315194\pi
0.548514 + 0.836142i 0.315194π0.315194\pi
7474 −1.49015e6 −0.427483
7575 2.18506e6 0.598066
7676 −2.85240e6 −0.745355
7777 −199807. −0.0498762
7878 265402. 0.0633247
7979 −1.76484e6 −0.402728 −0.201364 0.979517i 0.564537π-0.564537\pi
−0.201364 + 0.979517i 0.564537π0.564537\pi
8080 340808. 0.0744209
8181 −509047. −0.106429
8282 4.19795e6 0.840792
8383 −5.34284e6 −1.02565 −0.512824 0.858494i 0.671401π-0.671401\pi
−0.512824 + 0.858494i 0.671401π0.671401\pi
8484 −102251. −0.0188230
8585 −785502. −0.138733
8686 923332. 0.156536
8787 −7.50540e6 −1.22196
8888 −1.96501e6 −0.307380
8989 −4.36967e6 −0.657027 −0.328513 0.944499i 0.606548π-0.606548\pi
−0.328513 + 0.944499i 0.606548π0.606548\pi
9090 −828877. −0.119851
9191 −56280.4 −0.00782911
9292 −1.22460e6 −0.163960
9393 −3.38361e6 −0.436205
9494 5.86038e6 0.727744
9595 −3.70835e6 −0.443760
9696 −1.00559e6 −0.116004
9797 5.98187e6 0.665482 0.332741 0.943018i 0.392027π-0.392027\pi
0.332741 + 0.943018i 0.392027π0.392027\pi
9898 −6.56666e6 −0.704780
9999 4.77909e6 0.495019
100100 −4.55692e6 −0.455692
101101 1.76372e7 1.70335 0.851677 0.524067i 0.175586π-0.175586\pi
0.851677 + 0.524067i 0.175586π0.175586\pi
102102 2.31771e6 0.216251
103103 1.22480e7 1.10442 0.552212 0.833704i 0.313784π-0.313784\pi
0.552212 + 0.833704i 0.313784π0.313784\pi
104104 −553493. −0.0482498
105105 −132934. −0.0112066
106106 −1.20182e7 −0.980095
107107 −1.38174e6 −0.109039 −0.0545197 0.998513i 0.517363π-0.517363\pi
−0.0545197 + 0.998513i 0.517363π0.517363\pi
108108 6.74107e6 0.514927
109109 2.16241e7 1.59936 0.799679 0.600428i 0.205003π-0.205003\pi
0.799679 + 0.600428i 0.205003π0.205003\pi
110110 −2.55467e6 −0.183004
111111 5.71626e6 0.396718
112112 213243. 0.0143421
113113 −1.28922e7 −0.840526 −0.420263 0.907402i 0.638062π-0.638062\pi
−0.420263 + 0.907402i 0.638062π0.638062\pi
114114 1.09419e7 0.691713
115115 −1.59208e6 −0.0976164
116116 1.56524e7 0.931062
117117 1.34615e6 0.0777037
118118 −1.02815e7 −0.576063
119119 −491488. −0.0267361
120120 −1.30735e6 −0.0690649
121121 −4.75758e6 −0.244139
122122 5.00818e6 0.249701
123123 −1.61035e7 −0.780282
124124 7.05649e6 0.332363
125125 −1.24248e7 −0.568988
126126 −518627. −0.0230971
127127 2.73535e6 0.118495 0.0592474 0.998243i 0.481130π-0.481130\pi
0.0592474 + 0.998243i 0.481130π0.481130\pi
128128 2.09715e6 0.0883883
129129 −3.54193e6 −0.145270
130130 −719584. −0.0287263
131131 −2.89537e7 −1.12527 −0.562633 0.826707i 0.690211π-0.690211\pi
−0.562633 + 0.826707i 0.690211π0.690211\pi
132132 7.53785e6 0.285259
133133 −2.32031e6 −0.0855195
134134 2.56593e7 0.921253
135135 8.76392e6 0.306570
136136 −4.83356e6 −0.164771
137137 3.26149e7 1.08366 0.541831 0.840488i 0.317731π-0.317731\pi
0.541831 + 0.840488i 0.317731π0.317731\pi
138138 4.69761e6 0.152160
139139 1.45295e7 0.458878 0.229439 0.973323i 0.426311π-0.426311\pi
0.229439 + 0.973323i 0.426311π0.426311\pi
140140 277233. 0.00853880
141141 −2.24806e7 −0.675369
142142 1.44299e6 0.0422915
143143 4.14894e6 0.118648
144144 −5.10047e6 −0.142345
145145 2.03494e7 0.554324
146146 2.91701e7 0.775716
147147 2.51899e7 0.654058
148148 −1.19212e7 −0.302276
149149 1.05026e7 0.260102 0.130051 0.991507i 0.458486π-0.458486\pi
0.130051 + 0.991507i 0.458486π0.458486\pi
150150 1.74805e7 0.422897
151151 6.76564e6 0.159915 0.0799575 0.996798i 0.474522π-0.474522\pi
0.0799575 + 0.996798i 0.474522π0.474522\pi
152152 −2.28192e7 −0.527046
153153 1.17557e7 0.265355
154154 −1.59846e6 −0.0352678
155155 9.17400e6 0.197878
156156 2.12321e6 0.0447773
157157 2.51127e7 0.517899 0.258949 0.965891i 0.416624π-0.416624\pi
0.258949 + 0.965891i 0.416624π0.416624\pi
158158 −1.41188e7 −0.284771
159159 4.61021e7 0.909559
160160 2.72646e6 0.0526235
161161 −996163. −0.0188122
162162 −4.07237e6 −0.0752567
163163 −3.22845e7 −0.583899 −0.291949 0.956434i 0.594304π-0.594304\pi
−0.291949 + 0.956434i 0.594304π0.594304\pi
164164 3.35836e7 0.594530
165165 9.79980e6 0.169834
166166 −4.27427e7 −0.725243
167167 1.62219e7 0.269521 0.134761 0.990878i 0.456973π-0.456973\pi
0.134761 + 0.990878i 0.456973π0.456973\pi
168168 −818007. −0.0133099
169169 −6.15799e7 −0.981376
170170 −6.28402e6 −0.0980994
171171 5.54985e7 0.848779
172172 7.38666e6 0.110687
173173 −1.30689e7 −0.191902 −0.0959508 0.995386i 0.530589π-0.530589\pi
−0.0959508 + 0.995386i 0.530589π0.530589\pi
174174 −6.00432e7 −0.864055
175175 −3.70687e6 −0.0522846
176176 −1.57201e7 −0.217351
177177 3.94402e7 0.534605
178178 −3.49573e7 −0.464588
179179 −4.71894e7 −0.614977 −0.307488 0.951552i 0.599488π-0.599488\pi
−0.307488 + 0.951552i 0.599488π0.599488\pi
180180 −6.63101e6 −0.0847473
181181 1.12895e8 1.41514 0.707570 0.706643i 0.249791π-0.249791\pi
0.707570 + 0.706643i 0.249791π0.249791\pi
182182 −450243. −0.00553601
183183 −1.92115e7 −0.231730
184184 −9.79682e6 −0.115937
185185 −1.54985e7 −0.179965
186186 −2.70689e7 −0.308443
187187 3.62321e7 0.405179
188188 4.68831e7 0.514593
189189 5.48358e6 0.0590810
190190 −2.96668e7 −0.313786
191191 1.71596e8 1.78193 0.890963 0.454076i 0.150031π-0.150031\pi
0.890963 + 0.454076i 0.150031π0.150031\pi
192192 −8.04474e6 −0.0820272
193193 1.62248e8 1.62453 0.812267 0.583286i 0.198233π-0.198233\pi
0.812267 + 0.583286i 0.198233π0.198233\pi
194194 4.78550e7 0.470567
195195 2.76035e6 0.0266589
196196 −5.25333e7 −0.498354
197197 6.05360e7 0.564134 0.282067 0.959395i 0.408980π-0.408980\pi
0.282067 + 0.959395i 0.408980π0.408980\pi
198198 3.82327e7 0.350032
199199 −4.99433e7 −0.449253 −0.224627 0.974445i 0.572116π-0.572116\pi
−0.224627 + 0.974445i 0.572116π0.572116\pi
200200 −3.64554e7 −0.322223
201201 −9.84301e7 −0.854952
202202 1.41098e8 1.20445
203203 1.27326e7 0.106827
204204 1.85417e7 0.152913
205205 4.36613e7 0.353964
206206 9.79842e7 0.780945
207207 2.38268e7 0.186711
208208 −4.42794e6 −0.0341177
209209 1.71051e8 1.29603
210210 −1.06347e6 −0.00792428
211211 1.25518e8 0.919849 0.459924 0.887958i 0.347877π-0.347877\pi
0.459924 + 0.887958i 0.347877π0.347877\pi
212212 −9.61455e7 −0.693032
213213 −5.53534e6 −0.0392478
214214 −1.10539e7 −0.0771024
215215 9.60324e6 0.0658997
216216 5.39285e7 0.364108
217217 5.74016e6 0.0381342
218218 1.72993e8 1.13092
219219 −1.11897e8 −0.719888
220220 −2.04374e7 −0.129403
221221 1.02056e7 0.0636014
222222 4.57301e7 0.280522
223223 2.28390e8 1.37915 0.689573 0.724216i 0.257798π-0.257798\pi
0.689573 + 0.724216i 0.257798π0.257798\pi
224224 1.70595e6 0.0101414
225225 8.86629e7 0.518923
226226 −1.03137e8 −0.594342
227227 9.28596e7 0.526910 0.263455 0.964672i 0.415138π-0.415138\pi
0.263455 + 0.964672i 0.415138π0.415138\pi
228228 8.75352e7 0.489115
229229 −657437. −0.00361768 −0.00180884 0.999998i 0.500576π-0.500576\pi
−0.00180884 + 0.999998i 0.500576π0.500576\pi
230230 −1.27366e7 −0.0690252
231231 6.13173e6 0.0327296
232232 1.25219e8 0.658360
233233 2.47255e8 1.28056 0.640280 0.768141i 0.278818π-0.278818\pi
0.640280 + 0.768141i 0.278818π0.278818\pi
234234 1.07692e7 0.0549448
235235 6.09517e7 0.306372
236236 −8.22521e7 −0.407338
237237 5.41600e7 0.264277
238238 −3.93190e6 −0.0189053
239239 7.58737e7 0.359500 0.179750 0.983712i 0.442471π-0.442471\pi
0.179750 + 0.983712i 0.442471π0.442471\pi
240240 −1.04588e7 −0.0488363
241241 −1.61173e8 −0.741709 −0.370855 0.928691i 0.620935π-0.620935\pi
−0.370855 + 0.928691i 0.620935π0.620935\pi
242242 −3.80606e7 −0.172632
243243 −2.14733e8 −0.960013
244244 4.00654e7 0.176565
245245 −6.82974e7 −0.296704
246246 −1.28828e8 −0.551743
247247 4.81807e7 0.203439
248248 5.64519e7 0.235016
249249 1.63962e8 0.673048
250250 −9.93981e7 −0.402335
251251 8.90517e7 0.355455 0.177727 0.984080i 0.443125π-0.443125\pi
0.177727 + 0.984080i 0.443125π0.443125\pi
252252 −4.14902e6 −0.0163322
253253 7.34363e7 0.285095
254254 2.18828e7 0.0837884
255255 2.41057e7 0.0910393
256256 1.67772e7 0.0625000
257257 4.34365e8 1.59621 0.798103 0.602521i 0.205837π-0.205837\pi
0.798103 + 0.602521i 0.205837π0.205837\pi
258258 −2.83354e7 −0.102721
259259 −9.69739e6 −0.0346821
260260 −5.75667e6 −0.0203126
261261 −3.04545e8 −1.06025
262262 −2.31630e8 −0.795683
263263 −3.06516e8 −1.03898 −0.519491 0.854476i 0.673879π-0.673879\pi
−0.519491 + 0.854476i 0.673879π0.673879\pi
264264 6.03028e7 0.201708
265265 −1.24997e8 −0.412609
266266 −1.85625e7 −0.0604714
267267 1.34097e8 0.431152
268268 2.05275e8 0.651424
269269 1.94651e7 0.0609711
270270 7.01114e7 0.216778
271271 −4.75607e7 −0.145163 −0.0725815 0.997362i 0.523124π-0.523124\pi
−0.0725815 + 0.997362i 0.523124π0.523124\pi
272272 −3.86685e7 −0.116511
273273 1.72715e6 0.00513760
274274 2.60919e8 0.766265
275275 2.73267e8 0.792360
276276 3.75809e7 0.107593
277277 −2.40498e8 −0.679880 −0.339940 0.940447i 0.610407π-0.610407\pi
−0.339940 + 0.940447i 0.610407π0.610407\pi
278278 1.16236e8 0.324476
279279 −1.37296e8 −0.378481
280280 2.21786e6 0.00603784
281281 2.86704e8 0.770834 0.385417 0.922742i 0.374058π-0.374058\pi
0.385417 + 0.922742i 0.374058π0.374058\pi
282282 −1.79845e8 −0.477558
283283 1.20164e8 0.315153 0.157576 0.987507i 0.449632π-0.449632\pi
0.157576 + 0.987507i 0.449632π0.449632\pi
284284 1.15439e7 0.0299046
285285 1.13803e8 0.291203
286286 3.31915e7 0.0838970
287287 2.73189e7 0.0682144
288288 −4.08037e7 −0.100653
289289 −3.21215e8 −0.782804
290290 1.62795e8 0.391966
291291 −1.83573e8 −0.436701
292292 2.33361e8 0.548514
293293 1.91042e7 0.0443704 0.0221852 0.999754i 0.492938π-0.492938\pi
0.0221852 + 0.999754i 0.492938π0.492938\pi
294294 2.01519e8 0.462489
295295 −1.06934e8 −0.242516
296296 −9.53696e7 −0.213741
297297 −4.04244e8 −0.895358
298298 8.40206e7 0.183920
299299 2.06851e7 0.0447515
300300 1.39844e8 0.299033
301301 6.00874e6 0.0126999
302302 5.41251e7 0.113077
303303 −5.41255e8 −1.11777
304304 −1.82554e8 −0.372678
305305 5.20882e7 0.105121
306306 9.40454e7 0.187634
307307 9.02524e8 1.78022 0.890112 0.455743i 0.150626π-0.150626\pi
0.890112 + 0.455743i 0.150626π0.150626\pi
308308 −1.27876e7 −0.0249381
309309 −3.75870e8 −0.724742
310310 7.33920e7 0.139921
311311 3.73390e8 0.703885 0.351942 0.936022i 0.385521π-0.385521\pi
0.351942 + 0.936022i 0.385521π0.385521\pi
312312 1.69857e7 0.0316623
313313 −2.03764e8 −0.375597 −0.187799 0.982208i 0.560135π-0.560135\pi
−0.187799 + 0.982208i 0.560135π0.560135\pi
314314 2.00902e8 0.366210
315315 −5.39405e6 −0.00972362
316316 −1.12950e8 −0.201364
317317 −5.55363e8 −0.979196 −0.489598 0.871948i 0.662856π-0.662856\pi
−0.489598 + 0.871948i 0.662856π0.662856\pi
318318 3.68817e8 0.643156
319319 −9.38635e8 −1.61894
320320 2.18117e7 0.0372104
321321 4.24032e7 0.0715535
322322 −7.96931e6 −0.0133022
323323 4.20754e8 0.694736
324324 −3.25790e7 −0.0532145
325325 7.69721e7 0.124377
326326 −2.58276e8 −0.412879
327327 −6.63606e8 −1.04953
328328 2.68669e8 0.420396
329329 3.81374e7 0.0590426
330330 7.83984e7 0.120090
331331 6.72541e8 1.01934 0.509672 0.860369i 0.329767π-0.329767\pi
0.509672 + 0.860369i 0.329767π0.329767\pi
332332 −3.41942e8 −0.512824
333333 2.31948e8 0.344219
334334 1.29775e8 0.190580
335335 2.66874e8 0.387836
336336 −6.54406e6 −0.00941152
337337 −6.08364e8 −0.865883 −0.432941 0.901422i 0.642524π-0.642524\pi
−0.432941 + 0.901422i 0.642524π0.642524\pi
338338 −4.92639e8 −0.693937
339339 3.95638e8 0.551568
340340 −5.02721e7 −0.0693667
341341 −4.23160e8 −0.577915
342342 4.43988e8 0.600177
343343 −8.56084e7 −0.114548
344344 5.90932e7 0.0782678
345345 4.88582e7 0.0640576
346346 −1.04551e8 −0.135695
347347 −1.33198e9 −1.71137 −0.855685 0.517498i 0.826864π-0.826864\pi
−0.855685 + 0.517498i 0.826864π0.826864\pi
348348 −4.80345e8 −0.610979
349349 2.81327e8 0.354260 0.177130 0.984187i 0.443319π-0.443319\pi
0.177130 + 0.984187i 0.443319π0.443319\pi
350350 −2.96549e7 −0.0369708
351351 −1.13865e8 −0.140545
352352 −1.25761e8 −0.153690
353353 −8.79638e8 −1.06437 −0.532185 0.846628i 0.678629π-0.678629\pi
−0.532185 + 0.846628i 0.678629π0.678629\pi
354354 3.15522e8 0.378023
355355 1.50080e7 0.0178042
356356 −2.79659e8 −0.328513
357357 1.50829e7 0.0175447
358358 −3.77515e8 −0.434854
359359 3.46684e8 0.395461 0.197730 0.980256i 0.436643π-0.436643\pi
0.197730 + 0.980256i 0.436643π0.436643\pi
360360 −5.30481e7 −0.0599254
361361 1.09250e9 1.22222
362362 9.03160e8 1.00066
363363 1.46002e8 0.160208
364364 −3.60195e6 −0.00391455
365365 3.03387e8 0.326567
366366 −1.53692e8 −0.163858
367367 −1.24208e9 −1.31165 −0.655825 0.754913i 0.727679π-0.727679\pi
−0.655825 + 0.754913i 0.727679π0.727679\pi
368368 −7.83746e7 −0.0819800
369369 −6.53427e8 −0.677026
370370 −1.23988e8 −0.127255
371371 −7.82103e7 −0.0795162
372372 −2.16551e8 −0.218102
373373 5.36462e8 0.535251 0.267626 0.963523i 0.413761π-0.413761\pi
0.267626 + 0.963523i 0.413761π0.413761\pi
374374 2.89856e8 0.286505
375375 3.81294e8 0.373380
376376 3.75065e8 0.363872
377377 −2.64389e8 −0.254126
378378 4.38686e7 0.0417765
379379 1.48299e9 1.39927 0.699635 0.714501i 0.253346π-0.253346\pi
0.699635 + 0.714501i 0.253346π0.253346\pi
380380 −2.37334e8 −0.221880
381381 −8.39430e7 −0.0777583
382382 1.37277e9 1.26001
383383 −9.32604e8 −0.848206 −0.424103 0.905614i 0.639411π-0.639411\pi
−0.424103 + 0.905614i 0.639411π0.639411\pi
384384 −6.43579e7 −0.0580020
385385 −1.66250e7 −0.0148473
386386 1.29798e9 1.14872
387387 −1.43720e8 −0.126046
388388 3.82840e8 0.332741
389389 5.62634e8 0.484621 0.242310 0.970199i 0.422095π-0.422095\pi
0.242310 + 0.970199i 0.422095π0.422095\pi
390390 2.20828e7 0.0188507
391391 1.80640e8 0.152825
392392 −4.20266e8 −0.352390
393393 8.88539e8 0.738419
394394 4.84288e8 0.398903
395395 −1.46844e8 −0.119885
396396 3.05862e8 0.247510
397397 1.41339e9 1.13369 0.566847 0.823823i 0.308163π-0.308163\pi
0.566847 + 0.823823i 0.308163π0.308163\pi
398398 −3.99546e8 −0.317670
399399 7.12063e7 0.0561194
400400 −2.91643e8 −0.227846
401401 6.23105e8 0.482565 0.241283 0.970455i 0.422432π-0.422432\pi
0.241283 + 0.970455i 0.422432π0.422432\pi
402402 −7.87440e8 −0.604542
403403 −1.19193e8 −0.0907158
404404 1.12878e9 0.851677
405405 −4.23553e7 −0.0316822
406406 1.01861e8 0.0755380
407407 7.14883e8 0.525599
408408 1.48334e8 0.108126
409409 −2.71308e7 −0.0196079 −0.00980396 0.999952i 0.503121π-0.503121\pi
−0.00980396 + 0.999952i 0.503121π0.503121\pi
410410 3.49291e8 0.250290
411411 −1.00089e9 −0.711118
412412 7.83873e8 0.552212
413413 −6.69086e7 −0.0467366
414414 1.90614e8 0.132024
415415 −4.44551e8 −0.305319
416416 −3.54235e7 −0.0241249
417417 −4.45884e8 −0.301124
418418 1.36841e9 0.916430
419419 −7.21149e8 −0.478934 −0.239467 0.970904i 0.576973π-0.576973\pi
−0.239467 + 0.970904i 0.576973π0.576973\pi
420420 −8.50780e6 −0.00560331
421421 −1.75591e9 −1.14687 −0.573436 0.819250i 0.694390π-0.694390\pi
−0.573436 + 0.819250i 0.694390π0.694390\pi
422422 1.00414e9 0.650431
423423 −9.12192e8 −0.585996
424424 −7.69164e8 −0.490048
425425 6.72186e8 0.424745
426426 −4.42827e7 −0.0277524
427427 3.25915e7 0.0202585
428428 −8.84314e7 −0.0545197
429429 −1.27324e8 −0.0778590
430430 7.68259e7 0.0465981
431431 −2.22271e9 −1.33725 −0.668624 0.743601i 0.733116π-0.733116\pi
−0.668624 + 0.743601i 0.733116π0.733116\pi
432432 4.31428e8 0.257463
433433 5.79957e8 0.343311 0.171656 0.985157i 0.445088π-0.445088\pi
0.171656 + 0.985157i 0.445088π0.445088\pi
434434 4.59213e7 0.0269650
435435 −6.24487e8 −0.363757
436436 1.38394e9 0.799679
437437 8.52798e8 0.488834
438438 −8.95178e8 −0.509038
439439 5.14841e8 0.290434 0.145217 0.989400i 0.453612π-0.453612\pi
0.145217 + 0.989400i 0.453612π0.453612\pi
440440 −1.63499e8 −0.0915020
441441 1.02213e9 0.567505
442442 8.16450e7 0.0449730
443443 7.20660e7 0.0393838 0.0196919 0.999806i 0.493731π-0.493731\pi
0.0196919 + 0.999806i 0.493731π0.493731\pi
444444 3.65841e8 0.198359
445445 −3.63578e8 −0.195586
446446 1.82712e9 0.975203
447447 −3.22306e8 −0.170683
448448 1.36476e7 0.00717104
449449 −4.13225e8 −0.215439 −0.107719 0.994181i 0.534355π-0.534355\pi
−0.107719 + 0.994181i 0.534355π0.534355\pi
450450 7.09303e8 0.366934
451451 −2.01392e9 −1.03377
452452 −8.25099e8 −0.420263
453453 −2.07626e8 −0.104939
454454 7.42877e8 0.372581
455455 −4.68281e6 −0.00233060
456456 7.00282e8 0.345856
457457 8.02923e8 0.393520 0.196760 0.980452i 0.436958π-0.436958\pi
0.196760 + 0.980452i 0.436958π0.436958\pi
458458 −5.25949e6 −0.00255808
459459 −9.94366e8 −0.479956
460460 −1.01893e8 −0.0488082
461461 9.14016e8 0.434511 0.217255 0.976115i 0.430290π-0.430290\pi
0.217255 + 0.976115i 0.430290π0.430290\pi
462462 4.90538e7 0.0231433
463463 1.10558e9 0.517676 0.258838 0.965921i 0.416660π-0.416660\pi
0.258838 + 0.965921i 0.416660π0.416660\pi
464464 1.00175e9 0.465531
465465 −2.81534e8 −0.129851
466466 1.97804e9 0.905493
467467 2.67619e9 1.21593 0.607964 0.793965i 0.291987π-0.291987\pi
0.607964 + 0.793965i 0.291987π0.291987\pi
468468 8.61533e7 0.0388518
469469 1.66982e8 0.0747422
470470 4.87614e8 0.216637
471471 −7.70665e8 −0.339854
472472 −6.58017e8 −0.288031
473473 −4.42959e8 −0.192464
474474 4.33280e8 0.186872
475475 3.17338e9 1.35861
476476 −3.14552e7 −0.0133681
477477 1.87068e9 0.789196
478478 6.06990e8 0.254205
479479 3.33992e9 1.38855 0.694276 0.719708i 0.255725π-0.255725\pi
0.694276 + 0.719708i 0.255725π0.255725\pi
480480 −8.36704e7 −0.0345325
481481 2.01364e8 0.0825038
482482 −1.28939e9 −0.524468
483483 3.05705e7 0.0123449
484484 −3.04485e8 −0.122069
485485 4.97722e8 0.198103
486486 −1.71787e9 −0.678832
487487 −2.92405e9 −1.14718 −0.573592 0.819141i 0.694451π-0.694451\pi
−0.573592 + 0.819141i 0.694451π0.694451\pi
488488 3.20523e8 0.124850
489489 9.90755e8 0.383164
490490 −5.46380e8 −0.209801
491491 −3.92040e9 −1.49467 −0.747334 0.664449i 0.768666π-0.768666\pi
−0.747334 + 0.664449i 0.768666π0.768666\pi
492492 −1.03062e9 −0.390141
493493 −2.30887e9 −0.867830
494494 3.85445e8 0.143853
495495 3.97645e8 0.147359
496496 4.51615e8 0.166182
497497 9.39047e6 0.00343115
498498 1.31170e9 0.475917
499499 −3.15074e9 −1.13517 −0.567584 0.823315i 0.692122π-0.692122\pi
−0.567584 + 0.823315i 0.692122π0.692122\pi
500500 −7.95184e8 −0.284494
501501 −4.97820e8 −0.176864
502502 7.12414e8 0.251344
503503 −1.53067e9 −0.536283 −0.268141 0.963380i 0.586409π-0.586409\pi
−0.268141 + 0.963380i 0.586409π0.586409\pi
504504 −3.31921e7 −0.0115486
505505 1.46751e9 0.507061
506506 5.87490e8 0.201592
507507 1.88978e9 0.643996
508508 1.75062e8 0.0592474
509509 −5.17782e8 −0.174034 −0.0870171 0.996207i 0.527733π-0.527733\pi
−0.0870171 + 0.996207i 0.527733π0.527733\pi
510510 1.92845e8 0.0643745
511511 1.89829e8 0.0629346
512512 1.34218e8 0.0441942
513513 −4.69439e9 −1.53521
514514 3.47492e9 1.12869
515515 1.01910e9 0.328769
516516 −2.26684e8 −0.0726350
517517 −2.81146e9 −0.894777
518518 −7.75792e7 −0.0245240
519519 4.01063e8 0.125929
520520 −4.60534e7 −0.0143632
521521 2.67486e9 0.828646 0.414323 0.910130i 0.364018π-0.364018\pi
0.414323 + 0.910130i 0.364018π0.364018\pi
522522 −2.43636e9 −0.749713
523523 3.78021e9 1.15547 0.577737 0.816223i 0.303936π-0.303936\pi
0.577737 + 0.816223i 0.303936π0.303936\pi
524524 −1.85304e9 −0.562633
525525 1.13757e8 0.0343101
526526 −2.45213e9 −0.734672
527527 −1.04089e9 −0.309791
528528 4.82422e8 0.142629
529529 −3.03870e9 −0.892468
530530 −9.99974e8 −0.291758
531531 1.60036e9 0.463859
532532 −1.48500e8 −0.0427598
533533 −5.67269e8 −0.162272
534534 1.07278e9 0.304871
535535 −1.14968e8 −0.0324592
536536 1.64220e9 0.460626
537537 1.44816e9 0.403558
538538 1.55721e8 0.0431131
539539 3.15029e9 0.866541
540540 5.60891e8 0.153285
541541 −2.72844e9 −0.740840 −0.370420 0.928864i 0.620786π-0.620786\pi
−0.370420 + 0.928864i 0.620786π0.620786\pi
542542 −3.80486e8 −0.102646
543543 −3.46455e9 −0.928640
544544 −3.09348e8 −0.0823856
545545 1.79924e9 0.476102
546546 1.38172e7 0.00363283
547547 −1.60315e9 −0.418813 −0.209406 0.977829i 0.567153π-0.567153\pi
−0.209406 + 0.977829i 0.567153π0.567153\pi
548548 2.08735e9 0.541831
549549 −7.79542e8 −0.201065
550550 2.18614e9 0.560283
551551 −1.09001e10 −2.77589
552552 3.00647e8 0.0760800
553553 −9.18801e7 −0.0231038
554554 −1.92398e9 −0.480748
555555 4.75622e8 0.118096
556556 9.29885e8 0.229439
557557 −2.71661e9 −0.666092 −0.333046 0.942911i 0.608076π-0.608076\pi
−0.333046 + 0.942911i 0.608076π0.608076\pi
558558 −1.09837e9 −0.267626
559559 −1.24770e8 −0.0302112
560560 1.77429e7 0.00426940
561561 −1.11190e9 −0.265886
562562 2.29363e9 0.545062
563563 −3.84047e9 −0.906996 −0.453498 0.891257i 0.649824π-0.649824\pi
−0.453498 + 0.891257i 0.649824π0.649824\pi
564564 −1.43876e9 −0.337685
565565 −1.07269e9 −0.250211
566566 9.61310e8 0.222847
567567 −2.65016e7 −0.00610565
568568 9.23511e7 0.0211457
569569 5.37996e9 1.22429 0.612147 0.790744i 0.290306π-0.290306\pi
0.612147 + 0.790744i 0.290306π0.290306\pi
570570 9.10422e8 0.205912
571571 4.87473e9 1.09578 0.547891 0.836550i 0.315431π-0.315431\pi
0.547891 + 0.836550i 0.315431π0.315431\pi
572572 2.65532e8 0.0593241
573573 −5.26597e9 −1.16933
574574 2.18551e8 0.0482348
575575 1.36241e9 0.298861
576576 −3.26430e8 −0.0711724
577577 −3.54747e9 −0.768783 −0.384392 0.923170i 0.625589π-0.625589\pi
−0.384392 + 0.923170i 0.625589π0.625589\pi
578578 −2.56972e9 −0.553526
579579 −4.97910e9 −1.06605
580580 1.30236e9 0.277162
581581 −2.78155e8 −0.0588397
582582 −1.46859e9 −0.308794
583583 5.76560e9 1.20505
584584 1.86688e9 0.387858
585585 1.12006e8 0.0231311
586586 1.52834e8 0.0313746
587587 −3.62471e9 −0.739674 −0.369837 0.929097i 0.620586π-0.620586\pi
−0.369837 + 0.929097i 0.620586π0.620586\pi
588588 1.61215e9 0.327029
589589 −4.91405e9 −0.990914
590590 −8.55474e8 −0.171484
591591 −1.85774e9 −0.370194
592592 −7.62956e8 −0.151138
593593 3.98268e9 0.784303 0.392152 0.919901i 0.371731π-0.371731\pi
0.392152 + 0.919901i 0.371731π0.371731\pi
594594 −3.23396e9 −0.633113
595595 −4.08943e7 −0.00795890
596596 6.72165e8 0.130051
597597 1.53267e9 0.294808
598598 1.65481e8 0.0316441
599599 −6.29296e9 −1.19636 −0.598179 0.801363i 0.704109π-0.704109\pi
−0.598179 + 0.801363i 0.704109π0.704109\pi
600600 1.11875e9 0.211448
601601 −3.86453e9 −0.726165 −0.363083 0.931757i 0.618276π-0.618276\pi
−0.363083 + 0.931757i 0.618276π0.618276\pi
602602 4.80699e7 0.00898019
603603 −3.99398e9 −0.741814
604604 4.33001e8 0.0799575
605605 −3.95854e8 −0.0726761
606606 −4.33004e9 −0.790383
607607 −7.70046e9 −1.39751 −0.698757 0.715359i 0.746263π-0.746263\pi
−0.698757 + 0.715359i 0.746263π0.746263\pi
608608 −1.46043e9 −0.263523
609609 −3.90741e8 −0.0701017
610610 4.16706e8 0.0743319
611611 −7.91914e8 −0.140454
612612 7.52363e8 0.132678
613613 4.32229e9 0.757883 0.378941 0.925421i 0.376288π-0.376288\pi
0.378941 + 0.925421i 0.376288π0.376288\pi
614614 7.22019e9 1.25881
615615 −1.33989e9 −0.232277
616616 −1.02301e8 −0.0176339
617617 2.91845e9 0.500213 0.250106 0.968218i 0.419534π-0.419534\pi
0.250106 + 0.968218i 0.419534π0.419534\pi
618618 −3.00696e9 −0.512470
619619 −2.10474e9 −0.356682 −0.178341 0.983969i 0.557073π-0.557073\pi
−0.178341 + 0.983969i 0.557073π0.557073\pi
620620 5.87136e8 0.0989390
621621 −2.01541e9 −0.337710
622622 2.98712e9 0.497722
623623 −2.27491e8 −0.0376925
624624 1.35886e8 0.0223886
625625 4.52885e9 0.742006
626626 −1.63011e9 −0.265587
627627 −5.24926e9 −0.850476
628628 1.60721e9 0.258949
629629 1.75848e9 0.281748
630630 −4.31524e7 −0.00687564
631631 4.14441e9 0.656690 0.328345 0.944558i 0.393509π-0.393509\pi
0.328345 + 0.944558i 0.393509π0.393509\pi
632632 −9.03600e8 −0.142386
633633 −3.85192e9 −0.603621
634634 −4.44291e9 −0.692396
635635 2.27595e8 0.0352739
636636 2.95054e9 0.454780
637637 8.87353e8 0.136022
638638 −7.50908e9 −1.14476
639639 −2.24607e8 −0.0340541
640640 1.74494e8 0.0263118
641641 3.10919e9 0.466277 0.233139 0.972444i 0.425100π-0.425100\pi
0.233139 + 0.972444i 0.425100π0.425100\pi
642642 3.39225e8 0.0505960
643643 −4.39613e9 −0.652127 −0.326063 0.945348i 0.605722π-0.605722\pi
−0.326063 + 0.945348i 0.605722π0.605722\pi
644644 −6.37545e7 −0.00940611
645645 −2.94707e8 −0.0432445
646646 3.36603e9 0.491252
647647 −1.69017e9 −0.245338 −0.122669 0.992448i 0.539145π-0.539145\pi
−0.122669 + 0.992448i 0.539145π0.539145\pi
648648 −2.60632e8 −0.0376283
649649 4.93245e9 0.708282
650650 6.15777e8 0.0879482
651651 −1.76155e8 −0.0250243
652652 −2.06621e9 −0.291949
653653 1.37462e9 0.193191 0.0965954 0.995324i 0.469205π-0.469205\pi
0.0965954 + 0.995324i 0.469205π0.469205\pi
654654 −5.30885e9 −0.742127
655655 −2.40910e9 −0.334973
656656 2.14935e9 0.297265
657657 −4.54044e9 −0.624624
658658 3.05099e8 0.0417494
659659 1.27626e10 1.73716 0.868580 0.495549i 0.165033π-0.165033\pi
0.868580 + 0.495549i 0.165033π0.165033\pi
660660 6.27187e8 0.0849168
661661 −4.64993e8 −0.0626241 −0.0313120 0.999510i 0.509969π-0.509969\pi
−0.0313120 + 0.999510i 0.509969π0.509969\pi
662662 5.38033e9 0.720785
663663 −3.13193e8 −0.0417363
664664 −2.73553e9 −0.362622
665665 −1.93062e8 −0.0254578
666666 1.85558e9 0.243400
667667 −4.67969e9 −0.610628
668668 1.03820e9 0.134761
669669 −7.00889e9 −0.905019
670670 2.13499e9 0.274242
671671 −2.40262e9 −0.307013
672672 −5.23525e7 −0.00665495
673673 2.14210e9 0.270886 0.135443 0.990785i 0.456754π-0.456754\pi
0.135443 + 0.990785i 0.456754π0.456754\pi
674674 −4.86691e9 −0.612272
675675 −7.49964e9 −0.938593
676676 −3.94111e9 −0.490688
677677 −1.19723e10 −1.48292 −0.741459 0.670998i 0.765866π-0.765866\pi
−0.741459 + 0.670998i 0.765866π0.765866\pi
678678 3.16510e9 0.390017
679679 3.11424e8 0.0381776
680680 −4.02177e8 −0.0490497
681681 −2.84970e9 −0.345767
682682 −3.38528e9 −0.408647
683683 −1.20127e10 −1.44268 −0.721338 0.692583i 0.756473π-0.756473\pi
−0.721338 + 0.692583i 0.756473π0.756473\pi
684684 3.55190e9 0.424389
685685 2.71372e9 0.322588
686686 −6.84867e8 −0.0809975
687687 2.01756e7 0.00237398
688688 4.72746e8 0.0553437
689689 1.62402e9 0.189157
690690 3.90865e8 0.0452955
691691 −1.31370e10 −1.51469 −0.757344 0.653016i 0.773503π-0.773503\pi
−0.757344 + 0.653016i 0.773503π0.773503\pi
692692 −8.36412e8 −0.0959508
693693 2.48806e8 0.0283984
694694 −1.06558e10 −1.21012
695695 1.20892e9 0.136601
696696 −3.84276e9 −0.432027
697697 −4.95387e9 −0.554154
698698 2.25061e9 0.250499
699699 −7.58784e9 −0.840326
700700 −2.37239e8 −0.0261423
701701 1.14660e10 1.25718 0.628592 0.777735i 0.283632π-0.283632\pi
0.628592 + 0.777735i 0.283632π0.283632\pi
702702 −9.10921e8 −0.0993804
703703 8.30177e9 0.901212
704704 −1.00609e9 −0.108675
705705 −1.87050e9 −0.201046
706706 −7.03711e9 −0.752623
707707 9.18216e8 0.0977186
708708 2.52417e9 0.267302
709709 −2.03335e9 −0.214265 −0.107132 0.994245i 0.534167π-0.534167\pi
−0.107132 + 0.994245i 0.534167π0.534167\pi
710710 1.20064e8 0.0125895
711711 2.19764e9 0.229305
712712 −2.23727e9 −0.232294
713713 −2.10972e9 −0.217977
714714 1.20663e8 0.0124060
715715 3.45213e8 0.0353196
716716 −3.02012e9 −0.307488
717717 −2.32843e9 −0.235910
718718 2.77347e9 0.279633
719719 −2.42465e9 −0.243275 −0.121638 0.992575i 0.538815π-0.538815\pi
−0.121638 + 0.992575i 0.538815π0.538815\pi
720720 −4.24385e8 −0.0423737
721721 6.37648e8 0.0633589
722722 8.74004e9 0.864238
723723 4.94613e9 0.486723
724724 7.22528e9 0.707570
725725 −1.74138e10 −1.69711
726726 1.16801e9 0.113284
727727 −8.54709e9 −0.824988 −0.412494 0.910960i 0.635342π-0.635342\pi
−0.412494 + 0.910960i 0.635342π0.635342\pi
728728 −2.88156e7 −0.00276801
729729 7.70307e9 0.736406
730730 2.42710e9 0.230918
731731 −1.08960e9 −0.103170
732732 −1.22954e9 −0.115865
733733 −5.99505e9 −0.562249 −0.281125 0.959671i 0.590707π-0.590707\pi
−0.281125 + 0.959671i 0.590707π0.590707\pi
734734 −9.93663e9 −0.927477
735735 2.09593e9 0.194702
736736 −6.26997e8 −0.0579686
737737 −1.23098e10 −1.13270
738738 −5.22742e9 −0.478729
739739 −6.68559e9 −0.609374 −0.304687 0.952453i 0.598552π-0.598552\pi
−0.304687 + 0.952453i 0.598552π0.598552\pi
740740 −9.91904e8 −0.0899826
741741 −1.47858e9 −0.133500
742742 −6.25683e8 −0.0562264
743743 −5.08996e9 −0.455254 −0.227627 0.973748i 0.573097π-0.573097\pi
−0.227627 + 0.973748i 0.573097π0.573097\pi
744744 −1.73241e9 −0.154222
745745 8.73867e8 0.0774281
746746 4.29169e9 0.378480
747747 6.65307e9 0.583983
748748 2.31885e9 0.202590
749749 −7.19352e7 −0.00625540
750750 3.05035e9 0.264019
751751 1.23238e10 1.06171 0.530855 0.847463i 0.321871π-0.321871\pi
0.530855 + 0.847463i 0.321871π0.321871\pi
752752 3.00052e9 0.257296
753753 −2.73284e9 −0.233256
754754 −2.11511e9 −0.179694
755755 5.62935e8 0.0476041
756756 3.50949e8 0.0295405
757757 −4.05811e9 −0.340007 −0.170004 0.985443i 0.554378π-0.554378\pi
−0.170004 + 0.985443i 0.554378π0.554378\pi
758758 1.18639e10 0.989433
759759 −2.25363e9 −0.187084
760760 −1.89867e9 −0.156893
761761 2.00401e10 1.64836 0.824181 0.566326i 0.191636π-0.191636\pi
0.824181 + 0.566326i 0.191636π0.191636\pi
762762 −6.71544e8 −0.0549834
763763 1.12578e9 0.0917524
764764 1.09821e10 0.890963
765765 9.78132e8 0.0789919
766766 −7.46083e9 −0.599772
767767 1.38934e9 0.111180
768768 −5.14863e8 −0.0410136
769769 −1.28676e10 −1.02037 −0.510183 0.860066i 0.670422π-0.670422\pi
−0.510183 + 0.860066i 0.670422π0.670422\pi
770770 −1.33000e8 −0.0104986
771771 −1.33299e10 −1.04746
772772 1.03839e10 0.812267
773773 5.38091e9 0.419013 0.209507 0.977807i 0.432814π-0.432814\pi
0.209507 + 0.977807i 0.432814π0.432814\pi
774774 −1.14976e9 −0.0891281
775775 −7.85056e9 −0.605821
776776 3.06272e9 0.235283
777777 2.97596e8 0.0227590
778778 4.50107e9 0.342679
779779 −2.33872e10 −1.77254
780780 1.76662e8 0.0133295
781781 −6.92257e8 −0.0519983
782782 1.44512e9 0.108064
783783 2.57603e10 1.91771
784784 −3.36213e9 −0.249177
785785 2.08951e9 0.154170
786786 7.10831e9 0.522141
787787 −1.99654e10 −1.46004 −0.730022 0.683424i 0.760490π-0.760490\pi
−0.730022 + 0.683424i 0.760490π0.760490\pi
788788 3.87431e9 0.282067
789789 9.40645e9 0.681799
790790 −1.17475e9 −0.0847718
791791 −6.71183e8 −0.0482196
792792 2.44690e9 0.175016
793793 −6.76755e8 −0.0481920
794794 1.13071e10 0.801643
795795 3.83593e9 0.270761
796796 −3.19637e9 −0.224627
797797 −6.19138e9 −0.433195 −0.216597 0.976261i 0.569496π-0.569496\pi
−0.216597 + 0.976261i 0.569496π0.569496\pi
798798 5.69650e8 0.0396824
799799 −6.91566e9 −0.479645
800800 −2.33314e9 −0.161112
801801 5.44125e9 0.374097
802802 4.98484e9 0.341225
803803 −1.39940e10 −0.953759
804804 −6.29952e9 −0.427476
805805 −8.28858e7 −0.00560009
806806 −9.53544e8 −0.0641458
807807 −5.97350e8 −0.0400103
808808 9.03025e9 0.602227
809809 2.91328e10 1.93447 0.967236 0.253879i 0.0817066π-0.0817066\pi
0.967236 + 0.253879i 0.0817066π0.0817066\pi
810810 −3.38842e8 −0.0224027
811811 2.57994e10 1.69838 0.849192 0.528084i 0.177089π-0.177089\pi
0.849192 + 0.528084i 0.177089π0.177089\pi
812812 8.14886e8 0.0534134
813813 1.45956e9 0.0952585
814814 5.71907e9 0.371655
815815 −2.68623e9 −0.173817
816816 1.18667e9 0.0764564
817817 −5.14397e9 −0.330006
818818 −2.17047e8 −0.0138649
819819 7.00821e7 0.00445773
820820 2.79433e9 0.176982
821821 1.95341e10 1.23195 0.615974 0.787766i 0.288762π-0.288762\pi
0.615974 + 0.787766i 0.288762π0.288762\pi
822822 −8.00715e9 −0.502836
823823 9.86458e9 0.616849 0.308425 0.951249i 0.400198π-0.400198\pi
0.308425 + 0.951249i 0.400198π0.400198\pi
824824 6.27099e9 0.390473
825825 −8.38608e9 −0.519961
826826 −5.35269e8 −0.0330478
827827 1.98710e10 1.22166 0.610829 0.791763i 0.290836π-0.290836\pi
0.610829 + 0.791763i 0.290836π0.290836\pi
828828 1.52491e9 0.0933553
829829 1.48223e10 0.903595 0.451797 0.892121i 0.350783π-0.350783\pi
0.451797 + 0.892121i 0.350783π0.350783\pi
830830 −3.55641e9 −0.215893
831831 7.38046e9 0.446149
832832 −2.83388e8 −0.0170589
833833 7.74912e9 0.464510
834834 −3.56707e9 −0.212927
835835 1.34974e9 0.0802320
836836 1.09473e10 0.648014
837837 1.16133e10 0.684571
838838 −5.76919e9 −0.338658
839839 −2.39548e10 −1.40032 −0.700158 0.713988i 0.746887π-0.746887\pi
−0.700158 + 0.713988i 0.746887π0.746887\pi
840840 −6.80624e7 −0.00396214
841841 4.25642e10 2.46750
842842 −1.40473e10 −0.810961
843843 −8.79843e9 −0.505835
844844 8.03313e9 0.459924
845845 −5.12376e9 −0.292139
846846 −7.29753e9 −0.414362
847847 −2.47686e8 −0.0140058
848848 −6.15331e9 −0.346516
849849 −3.68762e9 −0.206809
850850 5.37749e9 0.300340
851851 3.56414e9 0.198245
852852 −3.54262e8 −0.0196239
853853 1.06594e10 0.588044 0.294022 0.955799i 0.405006π-0.405006\pi
0.294022 + 0.955799i 0.405006π0.405006\pi
854854 2.60732e8 0.0143249
855855 4.61775e9 0.252667
856856 −7.07451e8 −0.0385512
857857 2.69908e10 1.46482 0.732408 0.680866i 0.238396π-0.238396\pi
0.732408 + 0.680866i 0.238396π0.238396\pi
858858 −1.01859e9 −0.0550546
859859 −1.65620e10 −0.891529 −0.445765 0.895150i 0.647068π-0.647068\pi
−0.445765 + 0.895150i 0.647068π0.647068\pi
860860 6.14607e8 0.0329498
861861 −8.38368e8 −0.0447635
862862 −1.77817e10 −0.945577
863863 −3.22162e10 −1.70623 −0.853113 0.521727i 0.825288π-0.825288\pi
−0.853113 + 0.521727i 0.825288π0.825288\pi
864864 3.45143e9 0.182054
865865 −1.08740e9 −0.0571260
866866 4.63966e9 0.242758
867867 9.85751e9 0.513689
868868 3.67370e8 0.0190671
869869 6.77332e9 0.350133
870870 −4.99590e9 −0.257215
871871 −3.46735e9 −0.177801
872872 1.10715e10 0.565458
873873 −7.44882e9 −0.378911
874874 6.82238e9 0.345658
875875 −6.46849e8 −0.0326419
876876 −7.16143e9 −0.359944
877877 8.42384e9 0.421708 0.210854 0.977518i 0.432376π-0.432376\pi
0.210854 + 0.977518i 0.432376π0.432376\pi
878878 4.11873e9 0.205368
879879 −5.86276e8 −0.0291166
880880 −1.30799e9 −0.0647017
881881 −2.22287e9 −0.109521 −0.0547607 0.998500i 0.517440π-0.517440\pi
−0.0547607 + 0.998500i 0.517440π0.517440\pi
882882 8.17701e9 0.401287
883883 2.41821e10 1.18204 0.591019 0.806658i 0.298726π-0.298726\pi
0.591019 + 0.806658i 0.298726π0.298726\pi
884884 6.53160e8 0.0318007
885885 3.28162e9 0.159143
886886 5.76528e8 0.0278485
887887 1.10381e10 0.531080 0.265540 0.964100i 0.414450π-0.414450\pi
0.265540 + 0.964100i 0.414450π0.414450\pi
888888 2.92672e9 0.140261
889889 1.42406e8 0.00679784
890890 −2.90863e9 −0.138300
891891 1.95368e9 0.0925296
892892 1.46170e10 0.689573
893893 −3.26488e10 −1.53422
894894 −2.57844e9 −0.120691
895895 −3.92640e9 −0.183068
896896 1.09181e8 0.00507069
897897 −6.34789e8 −0.0293667
898898 −3.30580e9 −0.152338
899899 2.69656e10 1.23780
900900 5.67442e9 0.259462
901901 1.41823e10 0.645966
902902 −1.61114e10 −0.730987
903903 −1.84398e8 −0.00833390
904904 −6.60079e9 −0.297171
905905 9.39343e9 0.421264
906906 −1.66100e9 −0.0742031
907907 −7.07922e9 −0.315036 −0.157518 0.987516i 0.550349π-0.550349\pi
−0.157518 + 0.987516i 0.550349π0.550349\pi
908908 5.94301e9 0.263455
909909 −2.19624e10 −0.969854
910910 −3.74625e7 −0.00164798
911911 2.21745e10 0.971714 0.485857 0.874038i 0.338508π-0.338508\pi
0.485857 + 0.874038i 0.338508π0.338508\pi
912912 5.60225e9 0.244557
913913 2.05054e10 0.891702
914914 6.42338e9 0.278261
915915 −1.59850e9 −0.0689823
916916 −4.20760e7 −0.00180884
917917 −1.50737e9 −0.0645546
918918 −7.95493e9 −0.339380
919919 −4.55583e9 −0.193626 −0.0968129 0.995303i 0.530865π-0.530865\pi
−0.0968129 + 0.995303i 0.530865π0.530865\pi
920920 −8.15145e8 −0.0345126
921921 −2.76969e10 −1.16821
922922 7.31213e9 0.307245
923923 −1.94991e8 −0.00816222
924924 3.92430e8 0.0163648
925925 1.32627e10 0.550979
926926 8.84467e9 0.366052
927927 −1.52516e10 −0.628835
928928 8.01404e9 0.329180
929929 1.42435e9 0.0582858 0.0291429 0.999575i 0.490722π-0.490722\pi
0.0291429 + 0.999575i 0.490722π0.490722\pi
930930 −2.25227e9 −0.0918185
931931 3.65835e10 1.48580
932932 1.58244e10 0.640280
933933 −1.14587e10 −0.461901
934934 2.14095e10 0.859791
935935 3.01469e9 0.120615
936936 6.89226e8 0.0274724
937937 −8.18650e9 −0.325094 −0.162547 0.986701i 0.551971π-0.551971\pi
−0.162547 + 0.986701i 0.551971π0.551971\pi
938938 1.33586e9 0.0528507
939939 6.25316e9 0.246473
940940 3.90091e9 0.153186
941941 1.51235e10 0.591682 0.295841 0.955237i 0.404400π-0.404400\pi
0.295841 + 0.955237i 0.404400π0.404400\pi
942942 −6.16532e9 −0.240313
943943 −1.00407e10 −0.389917
944944 −5.26413e9 −0.203669
945945 4.56261e8 0.0175874
946946 −3.54367e9 −0.136093
947947 −2.38606e10 −0.912972 −0.456486 0.889731i 0.650892π-0.650892\pi
−0.456486 + 0.889731i 0.650892π0.650892\pi
948948 3.46624e9 0.132138
949949 −3.94175e9 −0.149712
950950 2.53871e10 0.960682
951951 1.70431e10 0.642566
952952 −2.51642e8 −0.00945265
953953 1.92117e10 0.719019 0.359510 0.933141i 0.382944π-0.382944\pi
0.359510 + 0.933141i 0.382944π0.382944\pi
954954 1.49654e10 0.558046
955955 1.42776e10 0.530450
956956 4.85592e9 0.179750
957957 2.88051e10 1.06237
958958 2.67194e10 0.981855
959959 1.69797e9 0.0621678
960960 −6.69363e8 −0.0244181
961961 −1.53559e10 −0.558139
962962 1.61091e9 0.0583390
963963 1.72059e9 0.0620847
964964 −1.03151e10 −0.370855
965965 1.34999e10 0.483597
966966 2.44564e8 0.00872916
967967 1.57165e10 0.558938 0.279469 0.960155i 0.409842π-0.409842\pi
0.279469 + 0.960155i 0.409842π0.409842\pi
968968 −2.43588e9 −0.0863161
969969 −1.29122e10 −0.455898
970970 3.98178e9 0.140080
971971 2.09123e10 0.733050 0.366525 0.930408i 0.380547π-0.380547\pi
0.366525 + 0.930408i 0.380547π0.380547\pi
972972 −1.37429e10 −0.480007
973973 7.56423e8 0.0263251
974974 −2.33924e10 −0.811182
975975 −2.36214e9 −0.0816187
976976 2.56419e9 0.0882826
977977 −2.93381e10 −1.00647 −0.503234 0.864150i 0.667857π-0.667857\pi
−0.503234 + 0.864150i 0.667857π0.667857\pi
978978 7.92604e9 0.270938
979979 1.67704e10 0.571221
980980 −4.37104e9 −0.148352
981981 −2.69270e10 −0.910640
982982 −3.13632e10 −1.05689
983983 −3.12054e10 −1.04783 −0.523917 0.851769i 0.675530π-0.675530\pi
−0.523917 + 0.851769i 0.675530π0.675530\pi
984984 −8.24497e9 −0.275871
985985 5.03690e9 0.167933
986986 −1.84709e10 −0.613649
987987 −1.17037e9 −0.0387448
988988 3.08356e9 0.101719
989989 −2.20843e9 −0.0725932
990990 3.18116e9 0.104199
991991 1.38167e10 0.450969 0.225485 0.974247i 0.427603π-0.427603\pi
0.225485 + 0.974247i 0.427603π0.427603\pi
992992 3.61292e9 0.117508
993993 −2.06391e10 −0.668911
994994 7.51238e7 0.00242619
995995 −4.15554e9 −0.133735
996996 1.04936e10 0.336524
997997 1.70801e9 0.0545832 0.0272916 0.999628i 0.491312π-0.491312\pi
0.0272916 + 0.999628i 0.491312π0.491312\pi
998998 −2.52059e10 −0.802685
999999 −1.96195e10 −0.622600
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.8.a.d.1.15 43
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.8.a.d.1.15 43 1.1 even 1 trivial