Properties

Label 538.8.a.d.1.15
Level $538$
Weight $8$
Character 538.1
Self dual yes
Analytic conductor $168.063$
Analytic rank $0$
Dimension $43$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,8,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.063143710\)
Analytic rank: \(0\)
Dimension: \(43\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{2} -30.6882 q^{3} +64.0000 q^{4} +83.2051 q^{5} -245.506 q^{6} +52.0613 q^{7} +512.000 q^{8} -1245.23 q^{9} +665.641 q^{10} -3837.92 q^{11} -1964.05 q^{12} -1081.04 q^{13} +416.491 q^{14} -2553.42 q^{15} +4096.00 q^{16} -9440.56 q^{17} -9961.85 q^{18} -44568.8 q^{19} +5325.12 q^{20} -1597.67 q^{21} -30703.3 q^{22} -19134.4 q^{23} -15712.4 q^{24} -71201.9 q^{25} -8648.32 q^{26} +105329. q^{27} +3331.92 q^{28} +244569. q^{29} -20427.3 q^{30} +110258. q^{31} +32768.0 q^{32} +117779. q^{33} -75524.5 q^{34} +4331.77 q^{35} -79694.8 q^{36} -186269. q^{37} -356550. q^{38} +33175.2 q^{39} +42601.0 q^{40} +524744. q^{41} -12781.4 q^{42} +115417. q^{43} -245627. q^{44} -103610. q^{45} -153075. q^{46} +732548. q^{47} -125699. q^{48} -820833. q^{49} -569615. q^{50} +289714. q^{51} -69186.6 q^{52} -1.50227e6 q^{53} +842633. q^{54} -319334. q^{55} +26655.4 q^{56} +1.36774e6 q^{57} +1.95655e6 q^{58} -1.28519e6 q^{59} -163419. q^{60} +626022. q^{61} +882061. q^{62} -64828.4 q^{63} +262144. q^{64} -89948.0 q^{65} +942231. q^{66} +3.20742e6 q^{67} -604196. q^{68} +587202. q^{69} +34654.1 q^{70} +180373. q^{71} -637558. q^{72} +3.64626e6 q^{73} -1.49015e6 q^{74} +2.18506e6 q^{75} -2.85240e6 q^{76} -199807. q^{77} +265402. q^{78} -1.76484e6 q^{79} +340808. q^{80} -509047. q^{81} +4.19795e6 q^{82} -5.34284e6 q^{83} -102251. q^{84} -785502. q^{85} +923332. q^{86} -7.50540e6 q^{87} -1.96501e6 q^{88} -4.36967e6 q^{89} -828877. q^{90} -56280.4 q^{91} -1.22460e6 q^{92} -3.38361e6 q^{93} +5.86038e6 q^{94} -3.70835e6 q^{95} -1.00559e6 q^{96} +5.98187e6 q^{97} -6.56666e6 q^{98} +4.77909e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 43 q + 344 q^{2} + 123 q^{3} + 2752 q^{4} + 1249 q^{5} + 984 q^{6} + 2292 q^{7} + 22016 q^{8} + 38034 q^{9} + 9992 q^{10} + 9236 q^{11} + 7872 q^{12} + 20734 q^{13} + 18336 q^{14} + 45412 q^{15} + 176128 q^{16}+ \cdots + 81437781 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000 0.707107
\(3\) −30.6882 −0.656217 −0.328109 0.944640i \(-0.606411\pi\)
−0.328109 + 0.944640i \(0.606411\pi\)
\(4\) 64.0000 0.500000
\(5\) 83.2051 0.297684 0.148842 0.988861i \(-0.452445\pi\)
0.148842 + 0.988861i \(0.452445\pi\)
\(6\) −245.506 −0.464016
\(7\) 52.0613 0.0573683 0.0286842 0.999589i \(-0.490868\pi\)
0.0286842 + 0.999589i \(0.490868\pi\)
\(8\) 512.000 0.353553
\(9\) −1245.23 −0.569379
\(10\) 665.641 0.210494
\(11\) −3837.92 −0.869403 −0.434701 0.900575i \(-0.643146\pi\)
−0.434701 + 0.900575i \(0.643146\pi\)
\(12\) −1964.05 −0.328109
\(13\) −1081.04 −0.136471 −0.0682355 0.997669i \(-0.521737\pi\)
−0.0682355 + 0.997669i \(0.521737\pi\)
\(14\) 416.491 0.0405655
\(15\) −2553.42 −0.195345
\(16\) 4096.00 0.250000
\(17\) −9440.56 −0.466043 −0.233022 0.972472i \(-0.574861\pi\)
−0.233022 + 0.972472i \(0.574861\pi\)
\(18\) −9961.85 −0.402612
\(19\) −44568.8 −1.49071 −0.745355 0.666668i \(-0.767720\pi\)
−0.745355 + 0.666668i \(0.767720\pi\)
\(20\) 5325.12 0.148842
\(21\) −1597.67 −0.0376461
\(22\) −30703.3 −0.614761
\(23\) −19134.4 −0.327920 −0.163960 0.986467i \(-0.552427\pi\)
−0.163960 + 0.986467i \(0.552427\pi\)
\(24\) −15712.4 −0.232008
\(25\) −71201.9 −0.911385
\(26\) −8648.32 −0.0964995
\(27\) 105329. 1.02985
\(28\) 3331.92 0.0286842
\(29\) 244569. 1.86212 0.931062 0.364861i \(-0.118884\pi\)
0.931062 + 0.364861i \(0.118884\pi\)
\(30\) −20427.3 −0.138130
\(31\) 110258. 0.664726 0.332363 0.943152i \(-0.392154\pi\)
0.332363 + 0.943152i \(0.392154\pi\)
\(32\) 32768.0 0.176777
\(33\) 117779. 0.570517
\(34\) −75524.5 −0.329542
\(35\) 4331.77 0.0170776
\(36\) −79694.8 −0.284689
\(37\) −186269. −0.604552 −0.302276 0.953220i \(-0.597746\pi\)
−0.302276 + 0.953220i \(0.597746\pi\)
\(38\) −356550. −1.05409
\(39\) 33175.2 0.0895546
\(40\) 42601.0 0.105247
\(41\) 524744. 1.18906 0.594530 0.804073i \(-0.297338\pi\)
0.594530 + 0.804073i \(0.297338\pi\)
\(42\) −12781.4 −0.0266198
\(43\) 115417. 0.221375 0.110687 0.993855i \(-0.464695\pi\)
0.110687 + 0.993855i \(0.464695\pi\)
\(44\) −245627. −0.434701
\(45\) −103610. −0.169495
\(46\) −153075. −0.231874
\(47\) 732548. 1.02919 0.514593 0.857435i \(-0.327943\pi\)
0.514593 + 0.857435i \(0.327943\pi\)
\(48\) −125699. −0.164054
\(49\) −820833. −0.996709
\(50\) −569615. −0.644446
\(51\) 289714. 0.305826
\(52\) −69186.6 −0.0682355
\(53\) −1.50227e6 −1.38606 −0.693032 0.720907i \(-0.743726\pi\)
−0.693032 + 0.720907i \(0.743726\pi\)
\(54\) 842633. 0.728216
\(55\) −319334. −0.258807
\(56\) 26655.4 0.0202828
\(57\) 1.36774e6 0.978230
\(58\) 1.95655e6 1.31672
\(59\) −1.28519e6 −0.814676 −0.407338 0.913277i \(-0.633543\pi\)
−0.407338 + 0.913277i \(0.633543\pi\)
\(60\) −163419. −0.0976725
\(61\) 626022. 0.353130 0.176565 0.984289i \(-0.443501\pi\)
0.176565 + 0.984289i \(0.443501\pi\)
\(62\) 882061. 0.470032
\(63\) −64828.4 −0.0326643
\(64\) 262144. 0.125000
\(65\) −89948.0 −0.0406251
\(66\) 942231. 0.403417
\(67\) 3.20742e6 1.30285 0.651424 0.758714i \(-0.274172\pi\)
0.651424 + 0.758714i \(0.274172\pi\)
\(68\) −604196. −0.233022
\(69\) 587202. 0.215187
\(70\) 34654.1 0.0120757
\(71\) 180373. 0.0598092 0.0299046 0.999553i \(-0.490480\pi\)
0.0299046 + 0.999553i \(0.490480\pi\)
\(72\) −637558. −0.201306
\(73\) 3.64626e6 1.09703 0.548514 0.836142i \(-0.315194\pi\)
0.548514 + 0.836142i \(0.315194\pi\)
\(74\) −1.49015e6 −0.427483
\(75\) 2.18506e6 0.598066
\(76\) −2.85240e6 −0.745355
\(77\) −199807. −0.0498762
\(78\) 265402. 0.0633247
\(79\) −1.76484e6 −0.402728 −0.201364 0.979517i \(-0.564537\pi\)
−0.201364 + 0.979517i \(0.564537\pi\)
\(80\) 340808. 0.0744209
\(81\) −509047. −0.106429
\(82\) 4.19795e6 0.840792
\(83\) −5.34284e6 −1.02565 −0.512824 0.858494i \(-0.671401\pi\)
−0.512824 + 0.858494i \(0.671401\pi\)
\(84\) −102251. −0.0188230
\(85\) −785502. −0.138733
\(86\) 923332. 0.156536
\(87\) −7.50540e6 −1.22196
\(88\) −1.96501e6 −0.307380
\(89\) −4.36967e6 −0.657027 −0.328513 0.944499i \(-0.606548\pi\)
−0.328513 + 0.944499i \(0.606548\pi\)
\(90\) −828877. −0.119851
\(91\) −56280.4 −0.00782911
\(92\) −1.22460e6 −0.163960
\(93\) −3.38361e6 −0.436205
\(94\) 5.86038e6 0.727744
\(95\) −3.70835e6 −0.443760
\(96\) −1.00559e6 −0.116004
\(97\) 5.98187e6 0.665482 0.332741 0.943018i \(-0.392027\pi\)
0.332741 + 0.943018i \(0.392027\pi\)
\(98\) −6.56666e6 −0.704780
\(99\) 4.77909e6 0.495019
\(100\) −4.55692e6 −0.455692
\(101\) 1.76372e7 1.70335 0.851677 0.524067i \(-0.175586\pi\)
0.851677 + 0.524067i \(0.175586\pi\)
\(102\) 2.31771e6 0.216251
\(103\) 1.22480e7 1.10442 0.552212 0.833704i \(-0.313784\pi\)
0.552212 + 0.833704i \(0.313784\pi\)
\(104\) −553493. −0.0482498
\(105\) −132934. −0.0112066
\(106\) −1.20182e7 −0.980095
\(107\) −1.38174e6 −0.109039 −0.0545197 0.998513i \(-0.517363\pi\)
−0.0545197 + 0.998513i \(0.517363\pi\)
\(108\) 6.74107e6 0.514927
\(109\) 2.16241e7 1.59936 0.799679 0.600428i \(-0.205003\pi\)
0.799679 + 0.600428i \(0.205003\pi\)
\(110\) −2.55467e6 −0.183004
\(111\) 5.71626e6 0.396718
\(112\) 213243. 0.0143421
\(113\) −1.28922e7 −0.840526 −0.420263 0.907402i \(-0.638062\pi\)
−0.420263 + 0.907402i \(0.638062\pi\)
\(114\) 1.09419e7 0.691713
\(115\) −1.59208e6 −0.0976164
\(116\) 1.56524e7 0.931062
\(117\) 1.34615e6 0.0777037
\(118\) −1.02815e7 −0.576063
\(119\) −491488. −0.0267361
\(120\) −1.30735e6 −0.0690649
\(121\) −4.75758e6 −0.244139
\(122\) 5.00818e6 0.249701
\(123\) −1.61035e7 −0.780282
\(124\) 7.05649e6 0.332363
\(125\) −1.24248e7 −0.568988
\(126\) −518627. −0.0230971
\(127\) 2.73535e6 0.118495 0.0592474 0.998243i \(-0.481130\pi\)
0.0592474 + 0.998243i \(0.481130\pi\)
\(128\) 2.09715e6 0.0883883
\(129\) −3.54193e6 −0.145270
\(130\) −719584. −0.0287263
\(131\) −2.89537e7 −1.12527 −0.562633 0.826707i \(-0.690211\pi\)
−0.562633 + 0.826707i \(0.690211\pi\)
\(132\) 7.53785e6 0.285259
\(133\) −2.32031e6 −0.0855195
\(134\) 2.56593e7 0.921253
\(135\) 8.76392e6 0.306570
\(136\) −4.83356e6 −0.164771
\(137\) 3.26149e7 1.08366 0.541831 0.840488i \(-0.317731\pi\)
0.541831 + 0.840488i \(0.317731\pi\)
\(138\) 4.69761e6 0.152160
\(139\) 1.45295e7 0.458878 0.229439 0.973323i \(-0.426311\pi\)
0.229439 + 0.973323i \(0.426311\pi\)
\(140\) 277233. 0.00853880
\(141\) −2.24806e7 −0.675369
\(142\) 1.44299e6 0.0422915
\(143\) 4.14894e6 0.118648
\(144\) −5.10047e6 −0.142345
\(145\) 2.03494e7 0.554324
\(146\) 2.91701e7 0.775716
\(147\) 2.51899e7 0.654058
\(148\) −1.19212e7 −0.302276
\(149\) 1.05026e7 0.260102 0.130051 0.991507i \(-0.458486\pi\)
0.130051 + 0.991507i \(0.458486\pi\)
\(150\) 1.74805e7 0.422897
\(151\) 6.76564e6 0.159915 0.0799575 0.996798i \(-0.474522\pi\)
0.0799575 + 0.996798i \(0.474522\pi\)
\(152\) −2.28192e7 −0.527046
\(153\) 1.17557e7 0.265355
\(154\) −1.59846e6 −0.0352678
\(155\) 9.17400e6 0.197878
\(156\) 2.12321e6 0.0447773
\(157\) 2.51127e7 0.517899 0.258949 0.965891i \(-0.416624\pi\)
0.258949 + 0.965891i \(0.416624\pi\)
\(158\) −1.41188e7 −0.284771
\(159\) 4.61021e7 0.909559
\(160\) 2.72646e6 0.0526235
\(161\) −996163. −0.0188122
\(162\) −4.07237e6 −0.0752567
\(163\) −3.22845e7 −0.583899 −0.291949 0.956434i \(-0.594304\pi\)
−0.291949 + 0.956434i \(0.594304\pi\)
\(164\) 3.35836e7 0.594530
\(165\) 9.79980e6 0.169834
\(166\) −4.27427e7 −0.725243
\(167\) 1.62219e7 0.269521 0.134761 0.990878i \(-0.456973\pi\)
0.134761 + 0.990878i \(0.456973\pi\)
\(168\) −818007. −0.0133099
\(169\) −6.15799e7 −0.981376
\(170\) −6.28402e6 −0.0980994
\(171\) 5.54985e7 0.848779
\(172\) 7.38666e6 0.110687
\(173\) −1.30689e7 −0.191902 −0.0959508 0.995386i \(-0.530589\pi\)
−0.0959508 + 0.995386i \(0.530589\pi\)
\(174\) −6.00432e7 −0.864055
\(175\) −3.70687e6 −0.0522846
\(176\) −1.57201e7 −0.217351
\(177\) 3.94402e7 0.534605
\(178\) −3.49573e7 −0.464588
\(179\) −4.71894e7 −0.614977 −0.307488 0.951552i \(-0.599488\pi\)
−0.307488 + 0.951552i \(0.599488\pi\)
\(180\) −6.63101e6 −0.0847473
\(181\) 1.12895e8 1.41514 0.707570 0.706643i \(-0.249791\pi\)
0.707570 + 0.706643i \(0.249791\pi\)
\(182\) −450243. −0.00553601
\(183\) −1.92115e7 −0.231730
\(184\) −9.79682e6 −0.115937
\(185\) −1.54985e7 −0.179965
\(186\) −2.70689e7 −0.308443
\(187\) 3.62321e7 0.405179
\(188\) 4.68831e7 0.514593
\(189\) 5.48358e6 0.0590810
\(190\) −2.96668e7 −0.313786
\(191\) 1.71596e8 1.78193 0.890963 0.454076i \(-0.150031\pi\)
0.890963 + 0.454076i \(0.150031\pi\)
\(192\) −8.04474e6 −0.0820272
\(193\) 1.62248e8 1.62453 0.812267 0.583286i \(-0.198233\pi\)
0.812267 + 0.583286i \(0.198233\pi\)
\(194\) 4.78550e7 0.470567
\(195\) 2.76035e6 0.0266589
\(196\) −5.25333e7 −0.498354
\(197\) 6.05360e7 0.564134 0.282067 0.959395i \(-0.408980\pi\)
0.282067 + 0.959395i \(0.408980\pi\)
\(198\) 3.82327e7 0.350032
\(199\) −4.99433e7 −0.449253 −0.224627 0.974445i \(-0.572116\pi\)
−0.224627 + 0.974445i \(0.572116\pi\)
\(200\) −3.64554e7 −0.322223
\(201\) −9.84301e7 −0.854952
\(202\) 1.41098e8 1.20445
\(203\) 1.27326e7 0.106827
\(204\) 1.85417e7 0.152913
\(205\) 4.36613e7 0.353964
\(206\) 9.79842e7 0.780945
\(207\) 2.38268e7 0.186711
\(208\) −4.42794e6 −0.0341177
\(209\) 1.71051e8 1.29603
\(210\) −1.06347e6 −0.00792428
\(211\) 1.25518e8 0.919849 0.459924 0.887958i \(-0.347877\pi\)
0.459924 + 0.887958i \(0.347877\pi\)
\(212\) −9.61455e7 −0.693032
\(213\) −5.53534e6 −0.0392478
\(214\) −1.10539e7 −0.0771024
\(215\) 9.60324e6 0.0658997
\(216\) 5.39285e7 0.364108
\(217\) 5.74016e6 0.0381342
\(218\) 1.72993e8 1.13092
\(219\) −1.11897e8 −0.719888
\(220\) −2.04374e7 −0.129403
\(221\) 1.02056e7 0.0636014
\(222\) 4.57301e7 0.280522
\(223\) 2.28390e8 1.37915 0.689573 0.724216i \(-0.257798\pi\)
0.689573 + 0.724216i \(0.257798\pi\)
\(224\) 1.70595e6 0.0101414
\(225\) 8.86629e7 0.518923
\(226\) −1.03137e8 −0.594342
\(227\) 9.28596e7 0.526910 0.263455 0.964672i \(-0.415138\pi\)
0.263455 + 0.964672i \(0.415138\pi\)
\(228\) 8.75352e7 0.489115
\(229\) −657437. −0.00361768 −0.00180884 0.999998i \(-0.500576\pi\)
−0.00180884 + 0.999998i \(0.500576\pi\)
\(230\) −1.27366e7 −0.0690252
\(231\) 6.13173e6 0.0327296
\(232\) 1.25219e8 0.658360
\(233\) 2.47255e8 1.28056 0.640280 0.768141i \(-0.278818\pi\)
0.640280 + 0.768141i \(0.278818\pi\)
\(234\) 1.07692e7 0.0549448
\(235\) 6.09517e7 0.306372
\(236\) −8.22521e7 −0.407338
\(237\) 5.41600e7 0.264277
\(238\) −3.93190e6 −0.0189053
\(239\) 7.58737e7 0.359500 0.179750 0.983712i \(-0.442471\pi\)
0.179750 + 0.983712i \(0.442471\pi\)
\(240\) −1.04588e7 −0.0488363
\(241\) −1.61173e8 −0.741709 −0.370855 0.928691i \(-0.620935\pi\)
−0.370855 + 0.928691i \(0.620935\pi\)
\(242\) −3.80606e7 −0.172632
\(243\) −2.14733e8 −0.960013
\(244\) 4.00654e7 0.176565
\(245\) −6.82974e7 −0.296704
\(246\) −1.28828e8 −0.551743
\(247\) 4.81807e7 0.203439
\(248\) 5.64519e7 0.235016
\(249\) 1.63962e8 0.673048
\(250\) −9.93981e7 −0.402335
\(251\) 8.90517e7 0.355455 0.177727 0.984080i \(-0.443125\pi\)
0.177727 + 0.984080i \(0.443125\pi\)
\(252\) −4.14902e6 −0.0163322
\(253\) 7.34363e7 0.285095
\(254\) 2.18828e7 0.0837884
\(255\) 2.41057e7 0.0910393
\(256\) 1.67772e7 0.0625000
\(257\) 4.34365e8 1.59621 0.798103 0.602521i \(-0.205837\pi\)
0.798103 + 0.602521i \(0.205837\pi\)
\(258\) −2.83354e7 −0.102721
\(259\) −9.69739e6 −0.0346821
\(260\) −5.75667e6 −0.0203126
\(261\) −3.04545e8 −1.06025
\(262\) −2.31630e8 −0.795683
\(263\) −3.06516e8 −1.03898 −0.519491 0.854476i \(-0.673879\pi\)
−0.519491 + 0.854476i \(0.673879\pi\)
\(264\) 6.03028e7 0.201708
\(265\) −1.24997e8 −0.412609
\(266\) −1.85625e7 −0.0604714
\(267\) 1.34097e8 0.431152
\(268\) 2.05275e8 0.651424
\(269\) 1.94651e7 0.0609711
\(270\) 7.01114e7 0.216778
\(271\) −4.75607e7 −0.145163 −0.0725815 0.997362i \(-0.523124\pi\)
−0.0725815 + 0.997362i \(0.523124\pi\)
\(272\) −3.86685e7 −0.116511
\(273\) 1.72715e6 0.00513760
\(274\) 2.60919e8 0.766265
\(275\) 2.73267e8 0.792360
\(276\) 3.75809e7 0.107593
\(277\) −2.40498e8 −0.679880 −0.339940 0.940447i \(-0.610407\pi\)
−0.339940 + 0.940447i \(0.610407\pi\)
\(278\) 1.16236e8 0.324476
\(279\) −1.37296e8 −0.378481
\(280\) 2.21786e6 0.00603784
\(281\) 2.86704e8 0.770834 0.385417 0.922742i \(-0.374058\pi\)
0.385417 + 0.922742i \(0.374058\pi\)
\(282\) −1.79845e8 −0.477558
\(283\) 1.20164e8 0.315153 0.157576 0.987507i \(-0.449632\pi\)
0.157576 + 0.987507i \(0.449632\pi\)
\(284\) 1.15439e7 0.0299046
\(285\) 1.13803e8 0.291203
\(286\) 3.31915e7 0.0838970
\(287\) 2.73189e7 0.0682144
\(288\) −4.08037e7 −0.100653
\(289\) −3.21215e8 −0.782804
\(290\) 1.62795e8 0.391966
\(291\) −1.83573e8 −0.436701
\(292\) 2.33361e8 0.548514
\(293\) 1.91042e7 0.0443704 0.0221852 0.999754i \(-0.492938\pi\)
0.0221852 + 0.999754i \(0.492938\pi\)
\(294\) 2.01519e8 0.462489
\(295\) −1.06934e8 −0.242516
\(296\) −9.53696e7 −0.213741
\(297\) −4.04244e8 −0.895358
\(298\) 8.40206e7 0.183920
\(299\) 2.06851e7 0.0447515
\(300\) 1.39844e8 0.299033
\(301\) 6.00874e6 0.0126999
\(302\) 5.41251e7 0.113077
\(303\) −5.41255e8 −1.11777
\(304\) −1.82554e8 −0.372678
\(305\) 5.20882e7 0.105121
\(306\) 9.40454e7 0.187634
\(307\) 9.02524e8 1.78022 0.890112 0.455743i \(-0.150626\pi\)
0.890112 + 0.455743i \(0.150626\pi\)
\(308\) −1.27876e7 −0.0249381
\(309\) −3.75870e8 −0.724742
\(310\) 7.33920e7 0.139921
\(311\) 3.73390e8 0.703885 0.351942 0.936022i \(-0.385521\pi\)
0.351942 + 0.936022i \(0.385521\pi\)
\(312\) 1.69857e7 0.0316623
\(313\) −2.03764e8 −0.375597 −0.187799 0.982208i \(-0.560135\pi\)
−0.187799 + 0.982208i \(0.560135\pi\)
\(314\) 2.00902e8 0.366210
\(315\) −5.39405e6 −0.00972362
\(316\) −1.12950e8 −0.201364
\(317\) −5.55363e8 −0.979196 −0.489598 0.871948i \(-0.662856\pi\)
−0.489598 + 0.871948i \(0.662856\pi\)
\(318\) 3.68817e8 0.643156
\(319\) −9.38635e8 −1.61894
\(320\) 2.18117e7 0.0372104
\(321\) 4.24032e7 0.0715535
\(322\) −7.96931e6 −0.0133022
\(323\) 4.20754e8 0.694736
\(324\) −3.25790e7 −0.0532145
\(325\) 7.69721e7 0.124377
\(326\) −2.58276e8 −0.412879
\(327\) −6.63606e8 −1.04953
\(328\) 2.68669e8 0.420396
\(329\) 3.81374e7 0.0590426
\(330\) 7.83984e7 0.120090
\(331\) 6.72541e8 1.01934 0.509672 0.860369i \(-0.329767\pi\)
0.509672 + 0.860369i \(0.329767\pi\)
\(332\) −3.41942e8 −0.512824
\(333\) 2.31948e8 0.344219
\(334\) 1.29775e8 0.190580
\(335\) 2.66874e8 0.387836
\(336\) −6.54406e6 −0.00941152
\(337\) −6.08364e8 −0.865883 −0.432941 0.901422i \(-0.642524\pi\)
−0.432941 + 0.901422i \(0.642524\pi\)
\(338\) −4.92639e8 −0.693937
\(339\) 3.95638e8 0.551568
\(340\) −5.02721e7 −0.0693667
\(341\) −4.23160e8 −0.577915
\(342\) 4.43988e8 0.600177
\(343\) −8.56084e7 −0.114548
\(344\) 5.90932e7 0.0782678
\(345\) 4.88582e7 0.0640576
\(346\) −1.04551e8 −0.135695
\(347\) −1.33198e9 −1.71137 −0.855685 0.517498i \(-0.826864\pi\)
−0.855685 + 0.517498i \(0.826864\pi\)
\(348\) −4.80345e8 −0.610979
\(349\) 2.81327e8 0.354260 0.177130 0.984187i \(-0.443319\pi\)
0.177130 + 0.984187i \(0.443319\pi\)
\(350\) −2.96549e7 −0.0369708
\(351\) −1.13865e8 −0.140545
\(352\) −1.25761e8 −0.153690
\(353\) −8.79638e8 −1.06437 −0.532185 0.846628i \(-0.678629\pi\)
−0.532185 + 0.846628i \(0.678629\pi\)
\(354\) 3.15522e8 0.378023
\(355\) 1.50080e7 0.0178042
\(356\) −2.79659e8 −0.328513
\(357\) 1.50829e7 0.0175447
\(358\) −3.77515e8 −0.434854
\(359\) 3.46684e8 0.395461 0.197730 0.980256i \(-0.436643\pi\)
0.197730 + 0.980256i \(0.436643\pi\)
\(360\) −5.30481e7 −0.0599254
\(361\) 1.09250e9 1.22222
\(362\) 9.03160e8 1.00066
\(363\) 1.46002e8 0.160208
\(364\) −3.60195e6 −0.00391455
\(365\) 3.03387e8 0.326567
\(366\) −1.53692e8 −0.163858
\(367\) −1.24208e9 −1.31165 −0.655825 0.754913i \(-0.727679\pi\)
−0.655825 + 0.754913i \(0.727679\pi\)
\(368\) −7.83746e7 −0.0819800
\(369\) −6.53427e8 −0.677026
\(370\) −1.23988e8 −0.127255
\(371\) −7.82103e7 −0.0795162
\(372\) −2.16551e8 −0.218102
\(373\) 5.36462e8 0.535251 0.267626 0.963523i \(-0.413761\pi\)
0.267626 + 0.963523i \(0.413761\pi\)
\(374\) 2.89856e8 0.286505
\(375\) 3.81294e8 0.373380
\(376\) 3.75065e8 0.363872
\(377\) −2.64389e8 −0.254126
\(378\) 4.38686e7 0.0417765
\(379\) 1.48299e9 1.39927 0.699635 0.714501i \(-0.253346\pi\)
0.699635 + 0.714501i \(0.253346\pi\)
\(380\) −2.37334e8 −0.221880
\(381\) −8.39430e7 −0.0777583
\(382\) 1.37277e9 1.26001
\(383\) −9.32604e8 −0.848206 −0.424103 0.905614i \(-0.639411\pi\)
−0.424103 + 0.905614i \(0.639411\pi\)
\(384\) −6.43579e7 −0.0580020
\(385\) −1.66250e7 −0.0148473
\(386\) 1.29798e9 1.14872
\(387\) −1.43720e8 −0.126046
\(388\) 3.82840e8 0.332741
\(389\) 5.62634e8 0.484621 0.242310 0.970199i \(-0.422095\pi\)
0.242310 + 0.970199i \(0.422095\pi\)
\(390\) 2.20828e7 0.0188507
\(391\) 1.80640e8 0.152825
\(392\) −4.20266e8 −0.352390
\(393\) 8.88539e8 0.738419
\(394\) 4.84288e8 0.398903
\(395\) −1.46844e8 −0.119885
\(396\) 3.05862e8 0.247510
\(397\) 1.41339e9 1.13369 0.566847 0.823823i \(-0.308163\pi\)
0.566847 + 0.823823i \(0.308163\pi\)
\(398\) −3.99546e8 −0.317670
\(399\) 7.12063e7 0.0561194
\(400\) −2.91643e8 −0.227846
\(401\) 6.23105e8 0.482565 0.241283 0.970455i \(-0.422432\pi\)
0.241283 + 0.970455i \(0.422432\pi\)
\(402\) −7.87440e8 −0.604542
\(403\) −1.19193e8 −0.0907158
\(404\) 1.12878e9 0.851677
\(405\) −4.23553e7 −0.0316822
\(406\) 1.01861e8 0.0755380
\(407\) 7.14883e8 0.525599
\(408\) 1.48334e8 0.108126
\(409\) −2.71308e7 −0.0196079 −0.00980396 0.999952i \(-0.503121\pi\)
−0.00980396 + 0.999952i \(0.503121\pi\)
\(410\) 3.49291e8 0.250290
\(411\) −1.00089e9 −0.711118
\(412\) 7.83873e8 0.552212
\(413\) −6.69086e7 −0.0467366
\(414\) 1.90614e8 0.132024
\(415\) −4.44551e8 −0.305319
\(416\) −3.54235e7 −0.0241249
\(417\) −4.45884e8 −0.301124
\(418\) 1.36841e9 0.916430
\(419\) −7.21149e8 −0.478934 −0.239467 0.970904i \(-0.576973\pi\)
−0.239467 + 0.970904i \(0.576973\pi\)
\(420\) −8.50780e6 −0.00560331
\(421\) −1.75591e9 −1.14687 −0.573436 0.819250i \(-0.694390\pi\)
−0.573436 + 0.819250i \(0.694390\pi\)
\(422\) 1.00414e9 0.650431
\(423\) −9.12192e8 −0.585996
\(424\) −7.69164e8 −0.490048
\(425\) 6.72186e8 0.424745
\(426\) −4.42827e7 −0.0277524
\(427\) 3.25915e7 0.0202585
\(428\) −8.84314e7 −0.0545197
\(429\) −1.27324e8 −0.0778590
\(430\) 7.68259e7 0.0465981
\(431\) −2.22271e9 −1.33725 −0.668624 0.743601i \(-0.733116\pi\)
−0.668624 + 0.743601i \(0.733116\pi\)
\(432\) 4.31428e8 0.257463
\(433\) 5.79957e8 0.343311 0.171656 0.985157i \(-0.445088\pi\)
0.171656 + 0.985157i \(0.445088\pi\)
\(434\) 4.59213e7 0.0269650
\(435\) −6.24487e8 −0.363757
\(436\) 1.38394e9 0.799679
\(437\) 8.52798e8 0.488834
\(438\) −8.95178e8 −0.509038
\(439\) 5.14841e8 0.290434 0.145217 0.989400i \(-0.453612\pi\)
0.145217 + 0.989400i \(0.453612\pi\)
\(440\) −1.63499e8 −0.0915020
\(441\) 1.02213e9 0.567505
\(442\) 8.16450e7 0.0449730
\(443\) 7.20660e7 0.0393838 0.0196919 0.999806i \(-0.493731\pi\)
0.0196919 + 0.999806i \(0.493731\pi\)
\(444\) 3.65841e8 0.198359
\(445\) −3.63578e8 −0.195586
\(446\) 1.82712e9 0.975203
\(447\) −3.22306e8 −0.170683
\(448\) 1.36476e7 0.00717104
\(449\) −4.13225e8 −0.215439 −0.107719 0.994181i \(-0.534355\pi\)
−0.107719 + 0.994181i \(0.534355\pi\)
\(450\) 7.09303e8 0.366934
\(451\) −2.01392e9 −1.03377
\(452\) −8.25099e8 −0.420263
\(453\) −2.07626e8 −0.104939
\(454\) 7.42877e8 0.372581
\(455\) −4.68281e6 −0.00233060
\(456\) 7.00282e8 0.345856
\(457\) 8.02923e8 0.393520 0.196760 0.980452i \(-0.436958\pi\)
0.196760 + 0.980452i \(0.436958\pi\)
\(458\) −5.25949e6 −0.00255808
\(459\) −9.94366e8 −0.479956
\(460\) −1.01893e8 −0.0488082
\(461\) 9.14016e8 0.434511 0.217255 0.976115i \(-0.430290\pi\)
0.217255 + 0.976115i \(0.430290\pi\)
\(462\) 4.90538e7 0.0231433
\(463\) 1.10558e9 0.517676 0.258838 0.965921i \(-0.416660\pi\)
0.258838 + 0.965921i \(0.416660\pi\)
\(464\) 1.00175e9 0.465531
\(465\) −2.81534e8 −0.129851
\(466\) 1.97804e9 0.905493
\(467\) 2.67619e9 1.21593 0.607964 0.793965i \(-0.291987\pi\)
0.607964 + 0.793965i \(0.291987\pi\)
\(468\) 8.61533e7 0.0388518
\(469\) 1.66982e8 0.0747422
\(470\) 4.87614e8 0.216637
\(471\) −7.70665e8 −0.339854
\(472\) −6.58017e8 −0.288031
\(473\) −4.42959e8 −0.192464
\(474\) 4.33280e8 0.186872
\(475\) 3.17338e9 1.35861
\(476\) −3.14552e7 −0.0133681
\(477\) 1.87068e9 0.789196
\(478\) 6.06990e8 0.254205
\(479\) 3.33992e9 1.38855 0.694276 0.719708i \(-0.255725\pi\)
0.694276 + 0.719708i \(0.255725\pi\)
\(480\) −8.36704e7 −0.0345325
\(481\) 2.01364e8 0.0825038
\(482\) −1.28939e9 −0.524468
\(483\) 3.05705e7 0.0123449
\(484\) −3.04485e8 −0.122069
\(485\) 4.97722e8 0.198103
\(486\) −1.71787e9 −0.678832
\(487\) −2.92405e9 −1.14718 −0.573592 0.819141i \(-0.694451\pi\)
−0.573592 + 0.819141i \(0.694451\pi\)
\(488\) 3.20523e8 0.124850
\(489\) 9.90755e8 0.383164
\(490\) −5.46380e8 −0.209801
\(491\) −3.92040e9 −1.49467 −0.747334 0.664449i \(-0.768666\pi\)
−0.747334 + 0.664449i \(0.768666\pi\)
\(492\) −1.03062e9 −0.390141
\(493\) −2.30887e9 −0.867830
\(494\) 3.85445e8 0.143853
\(495\) 3.97645e8 0.147359
\(496\) 4.51615e8 0.166182
\(497\) 9.39047e6 0.00343115
\(498\) 1.31170e9 0.475917
\(499\) −3.15074e9 −1.13517 −0.567584 0.823315i \(-0.692122\pi\)
−0.567584 + 0.823315i \(0.692122\pi\)
\(500\) −7.95184e8 −0.284494
\(501\) −4.97820e8 −0.176864
\(502\) 7.12414e8 0.251344
\(503\) −1.53067e9 −0.536283 −0.268141 0.963380i \(-0.586409\pi\)
−0.268141 + 0.963380i \(0.586409\pi\)
\(504\) −3.31921e7 −0.0115486
\(505\) 1.46751e9 0.507061
\(506\) 5.87490e8 0.201592
\(507\) 1.88978e9 0.643996
\(508\) 1.75062e8 0.0592474
\(509\) −5.17782e8 −0.174034 −0.0870171 0.996207i \(-0.527733\pi\)
−0.0870171 + 0.996207i \(0.527733\pi\)
\(510\) 1.92845e8 0.0643745
\(511\) 1.89829e8 0.0629346
\(512\) 1.34218e8 0.0441942
\(513\) −4.69439e9 −1.53521
\(514\) 3.47492e9 1.12869
\(515\) 1.01910e9 0.328769
\(516\) −2.26684e8 −0.0726350
\(517\) −2.81146e9 −0.894777
\(518\) −7.75792e7 −0.0245240
\(519\) 4.01063e8 0.125929
\(520\) −4.60534e7 −0.0143632
\(521\) 2.67486e9 0.828646 0.414323 0.910130i \(-0.364018\pi\)
0.414323 + 0.910130i \(0.364018\pi\)
\(522\) −2.43636e9 −0.749713
\(523\) 3.78021e9 1.15547 0.577737 0.816223i \(-0.303936\pi\)
0.577737 + 0.816223i \(0.303936\pi\)
\(524\) −1.85304e9 −0.562633
\(525\) 1.13757e8 0.0343101
\(526\) −2.45213e9 −0.734672
\(527\) −1.04089e9 −0.309791
\(528\) 4.82422e8 0.142629
\(529\) −3.03870e9 −0.892468
\(530\) −9.99974e8 −0.291758
\(531\) 1.60036e9 0.463859
\(532\) −1.48500e8 −0.0427598
\(533\) −5.67269e8 −0.162272
\(534\) 1.07278e9 0.304871
\(535\) −1.14968e8 −0.0324592
\(536\) 1.64220e9 0.460626
\(537\) 1.44816e9 0.403558
\(538\) 1.55721e8 0.0431131
\(539\) 3.15029e9 0.866541
\(540\) 5.60891e8 0.153285
\(541\) −2.72844e9 −0.740840 −0.370420 0.928864i \(-0.620786\pi\)
−0.370420 + 0.928864i \(0.620786\pi\)
\(542\) −3.80486e8 −0.102646
\(543\) −3.46455e9 −0.928640
\(544\) −3.09348e8 −0.0823856
\(545\) 1.79924e9 0.476102
\(546\) 1.38172e7 0.00363283
\(547\) −1.60315e9 −0.418813 −0.209406 0.977829i \(-0.567153\pi\)
−0.209406 + 0.977829i \(0.567153\pi\)
\(548\) 2.08735e9 0.541831
\(549\) −7.79542e8 −0.201065
\(550\) 2.18614e9 0.560283
\(551\) −1.09001e10 −2.77589
\(552\) 3.00647e8 0.0760800
\(553\) −9.18801e7 −0.0231038
\(554\) −1.92398e9 −0.480748
\(555\) 4.75622e8 0.118096
\(556\) 9.29885e8 0.229439
\(557\) −2.71661e9 −0.666092 −0.333046 0.942911i \(-0.608076\pi\)
−0.333046 + 0.942911i \(0.608076\pi\)
\(558\) −1.09837e9 −0.267626
\(559\) −1.24770e8 −0.0302112
\(560\) 1.77429e7 0.00426940
\(561\) −1.11190e9 −0.265886
\(562\) 2.29363e9 0.545062
\(563\) −3.84047e9 −0.906996 −0.453498 0.891257i \(-0.649824\pi\)
−0.453498 + 0.891257i \(0.649824\pi\)
\(564\) −1.43876e9 −0.337685
\(565\) −1.07269e9 −0.250211
\(566\) 9.61310e8 0.222847
\(567\) −2.65016e7 −0.00610565
\(568\) 9.23511e7 0.0211457
\(569\) 5.37996e9 1.22429 0.612147 0.790744i \(-0.290306\pi\)
0.612147 + 0.790744i \(0.290306\pi\)
\(570\) 9.10422e8 0.205912
\(571\) 4.87473e9 1.09578 0.547891 0.836550i \(-0.315431\pi\)
0.547891 + 0.836550i \(0.315431\pi\)
\(572\) 2.65532e8 0.0593241
\(573\) −5.26597e9 −1.16933
\(574\) 2.18551e8 0.0482348
\(575\) 1.36241e9 0.298861
\(576\) −3.26430e8 −0.0711724
\(577\) −3.54747e9 −0.768783 −0.384392 0.923170i \(-0.625589\pi\)
−0.384392 + 0.923170i \(0.625589\pi\)
\(578\) −2.56972e9 −0.553526
\(579\) −4.97910e9 −1.06605
\(580\) 1.30236e9 0.277162
\(581\) −2.78155e8 −0.0588397
\(582\) −1.46859e9 −0.308794
\(583\) 5.76560e9 1.20505
\(584\) 1.86688e9 0.387858
\(585\) 1.12006e8 0.0231311
\(586\) 1.52834e8 0.0313746
\(587\) −3.62471e9 −0.739674 −0.369837 0.929097i \(-0.620586\pi\)
−0.369837 + 0.929097i \(0.620586\pi\)
\(588\) 1.61215e9 0.327029
\(589\) −4.91405e9 −0.990914
\(590\) −8.55474e8 −0.171484
\(591\) −1.85774e9 −0.370194
\(592\) −7.62956e8 −0.151138
\(593\) 3.98268e9 0.784303 0.392152 0.919901i \(-0.371731\pi\)
0.392152 + 0.919901i \(0.371731\pi\)
\(594\) −3.23396e9 −0.633113
\(595\) −4.08943e7 −0.00795890
\(596\) 6.72165e8 0.130051
\(597\) 1.53267e9 0.294808
\(598\) 1.65481e8 0.0316441
\(599\) −6.29296e9 −1.19636 −0.598179 0.801363i \(-0.704109\pi\)
−0.598179 + 0.801363i \(0.704109\pi\)
\(600\) 1.11875e9 0.211448
\(601\) −3.86453e9 −0.726165 −0.363083 0.931757i \(-0.618276\pi\)
−0.363083 + 0.931757i \(0.618276\pi\)
\(602\) 4.80699e7 0.00898019
\(603\) −3.99398e9 −0.741814
\(604\) 4.33001e8 0.0799575
\(605\) −3.95854e8 −0.0726761
\(606\) −4.33004e9 −0.790383
\(607\) −7.70046e9 −1.39751 −0.698757 0.715359i \(-0.746263\pi\)
−0.698757 + 0.715359i \(0.746263\pi\)
\(608\) −1.46043e9 −0.263523
\(609\) −3.90741e8 −0.0701017
\(610\) 4.16706e8 0.0743319
\(611\) −7.91914e8 −0.140454
\(612\) 7.52363e8 0.132678
\(613\) 4.32229e9 0.757883 0.378941 0.925421i \(-0.376288\pi\)
0.378941 + 0.925421i \(0.376288\pi\)
\(614\) 7.22019e9 1.25881
\(615\) −1.33989e9 −0.232277
\(616\) −1.02301e8 −0.0176339
\(617\) 2.91845e9 0.500213 0.250106 0.968218i \(-0.419534\pi\)
0.250106 + 0.968218i \(0.419534\pi\)
\(618\) −3.00696e9 −0.512470
\(619\) −2.10474e9 −0.356682 −0.178341 0.983969i \(-0.557073\pi\)
−0.178341 + 0.983969i \(0.557073\pi\)
\(620\) 5.87136e8 0.0989390
\(621\) −2.01541e9 −0.337710
\(622\) 2.98712e9 0.497722
\(623\) −2.27491e8 −0.0376925
\(624\) 1.35886e8 0.0223886
\(625\) 4.52885e9 0.742006
\(626\) −1.63011e9 −0.265587
\(627\) −5.24926e9 −0.850476
\(628\) 1.60721e9 0.258949
\(629\) 1.75848e9 0.281748
\(630\) −4.31524e7 −0.00687564
\(631\) 4.14441e9 0.656690 0.328345 0.944558i \(-0.393509\pi\)
0.328345 + 0.944558i \(0.393509\pi\)
\(632\) −9.03600e8 −0.142386
\(633\) −3.85192e9 −0.603621
\(634\) −4.44291e9 −0.692396
\(635\) 2.27595e8 0.0352739
\(636\) 2.95054e9 0.454780
\(637\) 8.87353e8 0.136022
\(638\) −7.50908e9 −1.14476
\(639\) −2.24607e8 −0.0340541
\(640\) 1.74494e8 0.0263118
\(641\) 3.10919e9 0.466277 0.233139 0.972444i \(-0.425100\pi\)
0.233139 + 0.972444i \(0.425100\pi\)
\(642\) 3.39225e8 0.0505960
\(643\) −4.39613e9 −0.652127 −0.326063 0.945348i \(-0.605722\pi\)
−0.326063 + 0.945348i \(0.605722\pi\)
\(644\) −6.37545e7 −0.00940611
\(645\) −2.94707e8 −0.0432445
\(646\) 3.36603e9 0.491252
\(647\) −1.69017e9 −0.245338 −0.122669 0.992448i \(-0.539145\pi\)
−0.122669 + 0.992448i \(0.539145\pi\)
\(648\) −2.60632e8 −0.0376283
\(649\) 4.93245e9 0.708282
\(650\) 6.15777e8 0.0879482
\(651\) −1.76155e8 −0.0250243
\(652\) −2.06621e9 −0.291949
\(653\) 1.37462e9 0.193191 0.0965954 0.995324i \(-0.469205\pi\)
0.0965954 + 0.995324i \(0.469205\pi\)
\(654\) −5.30885e9 −0.742127
\(655\) −2.40910e9 −0.334973
\(656\) 2.14935e9 0.297265
\(657\) −4.54044e9 −0.624624
\(658\) 3.05099e8 0.0417494
\(659\) 1.27626e10 1.73716 0.868580 0.495549i \(-0.165033\pi\)
0.868580 + 0.495549i \(0.165033\pi\)
\(660\) 6.27187e8 0.0849168
\(661\) −4.64993e8 −0.0626241 −0.0313120 0.999510i \(-0.509969\pi\)
−0.0313120 + 0.999510i \(0.509969\pi\)
\(662\) 5.38033e9 0.720785
\(663\) −3.13193e8 −0.0417363
\(664\) −2.73553e9 −0.362622
\(665\) −1.93062e8 −0.0254578
\(666\) 1.85558e9 0.243400
\(667\) −4.67969e9 −0.610628
\(668\) 1.03820e9 0.134761
\(669\) −7.00889e9 −0.905019
\(670\) 2.13499e9 0.274242
\(671\) −2.40262e9 −0.307013
\(672\) −5.23525e7 −0.00665495
\(673\) 2.14210e9 0.270886 0.135443 0.990785i \(-0.456754\pi\)
0.135443 + 0.990785i \(0.456754\pi\)
\(674\) −4.86691e9 −0.612272
\(675\) −7.49964e9 −0.938593
\(676\) −3.94111e9 −0.490688
\(677\) −1.19723e10 −1.48292 −0.741459 0.670998i \(-0.765866\pi\)
−0.741459 + 0.670998i \(0.765866\pi\)
\(678\) 3.16510e9 0.390017
\(679\) 3.11424e8 0.0381776
\(680\) −4.02177e8 −0.0490497
\(681\) −2.84970e9 −0.345767
\(682\) −3.38528e9 −0.408647
\(683\) −1.20127e10 −1.44268 −0.721338 0.692583i \(-0.756473\pi\)
−0.721338 + 0.692583i \(0.756473\pi\)
\(684\) 3.55190e9 0.424389
\(685\) 2.71372e9 0.322588
\(686\) −6.84867e8 −0.0809975
\(687\) 2.01756e7 0.00237398
\(688\) 4.72746e8 0.0553437
\(689\) 1.62402e9 0.189157
\(690\) 3.90865e8 0.0452955
\(691\) −1.31370e10 −1.51469 −0.757344 0.653016i \(-0.773503\pi\)
−0.757344 + 0.653016i \(0.773503\pi\)
\(692\) −8.36412e8 −0.0959508
\(693\) 2.48806e8 0.0283984
\(694\) −1.06558e10 −1.21012
\(695\) 1.20892e9 0.136601
\(696\) −3.84276e9 −0.432027
\(697\) −4.95387e9 −0.554154
\(698\) 2.25061e9 0.250499
\(699\) −7.58784e9 −0.840326
\(700\) −2.37239e8 −0.0261423
\(701\) 1.14660e10 1.25718 0.628592 0.777735i \(-0.283632\pi\)
0.628592 + 0.777735i \(0.283632\pi\)
\(702\) −9.10921e8 −0.0993804
\(703\) 8.30177e9 0.901212
\(704\) −1.00609e9 −0.108675
\(705\) −1.87050e9 −0.201046
\(706\) −7.03711e9 −0.752623
\(707\) 9.18216e8 0.0977186
\(708\) 2.52417e9 0.267302
\(709\) −2.03335e9 −0.214265 −0.107132 0.994245i \(-0.534167\pi\)
−0.107132 + 0.994245i \(0.534167\pi\)
\(710\) 1.20064e8 0.0125895
\(711\) 2.19764e9 0.229305
\(712\) −2.23727e9 −0.232294
\(713\) −2.10972e9 −0.217977
\(714\) 1.20663e8 0.0124060
\(715\) 3.45213e8 0.0353196
\(716\) −3.02012e9 −0.307488
\(717\) −2.32843e9 −0.235910
\(718\) 2.77347e9 0.279633
\(719\) −2.42465e9 −0.243275 −0.121638 0.992575i \(-0.538815\pi\)
−0.121638 + 0.992575i \(0.538815\pi\)
\(720\) −4.24385e8 −0.0423737
\(721\) 6.37648e8 0.0633589
\(722\) 8.74004e9 0.864238
\(723\) 4.94613e9 0.486723
\(724\) 7.22528e9 0.707570
\(725\) −1.74138e10 −1.69711
\(726\) 1.16801e9 0.113284
\(727\) −8.54709e9 −0.824988 −0.412494 0.910960i \(-0.635342\pi\)
−0.412494 + 0.910960i \(0.635342\pi\)
\(728\) −2.88156e7 −0.00276801
\(729\) 7.70307e9 0.736406
\(730\) 2.42710e9 0.230918
\(731\) −1.08960e9 −0.103170
\(732\) −1.22954e9 −0.115865
\(733\) −5.99505e9 −0.562249 −0.281125 0.959671i \(-0.590707\pi\)
−0.281125 + 0.959671i \(0.590707\pi\)
\(734\) −9.93663e9 −0.927477
\(735\) 2.09593e9 0.194702
\(736\) −6.26997e8 −0.0579686
\(737\) −1.23098e10 −1.13270
\(738\) −5.22742e9 −0.478729
\(739\) −6.68559e9 −0.609374 −0.304687 0.952453i \(-0.598552\pi\)
−0.304687 + 0.952453i \(0.598552\pi\)
\(740\) −9.91904e8 −0.0899826
\(741\) −1.47858e9 −0.133500
\(742\) −6.25683e8 −0.0562264
\(743\) −5.08996e9 −0.455254 −0.227627 0.973748i \(-0.573097\pi\)
−0.227627 + 0.973748i \(0.573097\pi\)
\(744\) −1.73241e9 −0.154222
\(745\) 8.73867e8 0.0774281
\(746\) 4.29169e9 0.378480
\(747\) 6.65307e9 0.583983
\(748\) 2.31885e9 0.202590
\(749\) −7.19352e7 −0.00625540
\(750\) 3.05035e9 0.264019
\(751\) 1.23238e10 1.06171 0.530855 0.847463i \(-0.321871\pi\)
0.530855 + 0.847463i \(0.321871\pi\)
\(752\) 3.00052e9 0.257296
\(753\) −2.73284e9 −0.233256
\(754\) −2.11511e9 −0.179694
\(755\) 5.62935e8 0.0476041
\(756\) 3.50949e8 0.0295405
\(757\) −4.05811e9 −0.340007 −0.170004 0.985443i \(-0.554378\pi\)
−0.170004 + 0.985443i \(0.554378\pi\)
\(758\) 1.18639e10 0.989433
\(759\) −2.25363e9 −0.187084
\(760\) −1.89867e9 −0.156893
\(761\) 2.00401e10 1.64836 0.824181 0.566326i \(-0.191636\pi\)
0.824181 + 0.566326i \(0.191636\pi\)
\(762\) −6.71544e8 −0.0549834
\(763\) 1.12578e9 0.0917524
\(764\) 1.09821e10 0.890963
\(765\) 9.78132e8 0.0789919
\(766\) −7.46083e9 −0.599772
\(767\) 1.38934e9 0.111180
\(768\) −5.14863e8 −0.0410136
\(769\) −1.28676e10 −1.02037 −0.510183 0.860066i \(-0.670422\pi\)
−0.510183 + 0.860066i \(0.670422\pi\)
\(770\) −1.33000e8 −0.0104986
\(771\) −1.33299e10 −1.04746
\(772\) 1.03839e10 0.812267
\(773\) 5.38091e9 0.419013 0.209507 0.977807i \(-0.432814\pi\)
0.209507 + 0.977807i \(0.432814\pi\)
\(774\) −1.14976e9 −0.0891281
\(775\) −7.85056e9 −0.605821
\(776\) 3.06272e9 0.235283
\(777\) 2.97596e8 0.0227590
\(778\) 4.50107e9 0.342679
\(779\) −2.33872e10 −1.77254
\(780\) 1.76662e8 0.0133295
\(781\) −6.92257e8 −0.0519983
\(782\) 1.44512e9 0.108064
\(783\) 2.57603e10 1.91771
\(784\) −3.36213e9 −0.249177
\(785\) 2.08951e9 0.154170
\(786\) 7.10831e9 0.522141
\(787\) −1.99654e10 −1.46004 −0.730022 0.683424i \(-0.760490\pi\)
−0.730022 + 0.683424i \(0.760490\pi\)
\(788\) 3.87431e9 0.282067
\(789\) 9.40645e9 0.681799
\(790\) −1.17475e9 −0.0847718
\(791\) −6.71183e8 −0.0482196
\(792\) 2.44690e9 0.175016
\(793\) −6.76755e8 −0.0481920
\(794\) 1.13071e10 0.801643
\(795\) 3.83593e9 0.270761
\(796\) −3.19637e9 −0.224627
\(797\) −6.19138e9 −0.433195 −0.216597 0.976261i \(-0.569496\pi\)
−0.216597 + 0.976261i \(0.569496\pi\)
\(798\) 5.69650e8 0.0396824
\(799\) −6.91566e9 −0.479645
\(800\) −2.33314e9 −0.161112
\(801\) 5.44125e9 0.374097
\(802\) 4.98484e9 0.341225
\(803\) −1.39940e10 −0.953759
\(804\) −6.29952e9 −0.427476
\(805\) −8.28858e7 −0.00560009
\(806\) −9.53544e8 −0.0641458
\(807\) −5.97350e8 −0.0400103
\(808\) 9.03025e9 0.602227
\(809\) 2.91328e10 1.93447 0.967236 0.253879i \(-0.0817066\pi\)
0.967236 + 0.253879i \(0.0817066\pi\)
\(810\) −3.38842e8 −0.0224027
\(811\) 2.57994e10 1.69838 0.849192 0.528084i \(-0.177089\pi\)
0.849192 + 0.528084i \(0.177089\pi\)
\(812\) 8.14886e8 0.0534134
\(813\) 1.45956e9 0.0952585
\(814\) 5.71907e9 0.371655
\(815\) −2.68623e9 −0.173817
\(816\) 1.18667e9 0.0764564
\(817\) −5.14397e9 −0.330006
\(818\) −2.17047e8 −0.0138649
\(819\) 7.00821e7 0.00445773
\(820\) 2.79433e9 0.176982
\(821\) 1.95341e10 1.23195 0.615974 0.787766i \(-0.288762\pi\)
0.615974 + 0.787766i \(0.288762\pi\)
\(822\) −8.00715e9 −0.502836
\(823\) 9.86458e9 0.616849 0.308425 0.951249i \(-0.400198\pi\)
0.308425 + 0.951249i \(0.400198\pi\)
\(824\) 6.27099e9 0.390473
\(825\) −8.38608e9 −0.519961
\(826\) −5.35269e8 −0.0330478
\(827\) 1.98710e10 1.22166 0.610829 0.791763i \(-0.290836\pi\)
0.610829 + 0.791763i \(0.290836\pi\)
\(828\) 1.52491e9 0.0933553
\(829\) 1.48223e10 0.903595 0.451797 0.892121i \(-0.350783\pi\)
0.451797 + 0.892121i \(0.350783\pi\)
\(830\) −3.55641e9 −0.215893
\(831\) 7.38046e9 0.446149
\(832\) −2.83388e8 −0.0170589
\(833\) 7.74912e9 0.464510
\(834\) −3.56707e9 −0.212927
\(835\) 1.34974e9 0.0802320
\(836\) 1.09473e10 0.648014
\(837\) 1.16133e10 0.684571
\(838\) −5.76919e9 −0.338658
\(839\) −2.39548e10 −1.40032 −0.700158 0.713988i \(-0.746887\pi\)
−0.700158 + 0.713988i \(0.746887\pi\)
\(840\) −6.80624e7 −0.00396214
\(841\) 4.25642e10 2.46750
\(842\) −1.40473e10 −0.810961
\(843\) −8.79843e9 −0.505835
\(844\) 8.03313e9 0.459924
\(845\) −5.12376e9 −0.292139
\(846\) −7.29753e9 −0.414362
\(847\) −2.47686e8 −0.0140058
\(848\) −6.15331e9 −0.346516
\(849\) −3.68762e9 −0.206809
\(850\) 5.37749e9 0.300340
\(851\) 3.56414e9 0.198245
\(852\) −3.54262e8 −0.0196239
\(853\) 1.06594e10 0.588044 0.294022 0.955799i \(-0.405006\pi\)
0.294022 + 0.955799i \(0.405006\pi\)
\(854\) 2.60732e8 0.0143249
\(855\) 4.61775e9 0.252667
\(856\) −7.07451e8 −0.0385512
\(857\) 2.69908e10 1.46482 0.732408 0.680866i \(-0.238396\pi\)
0.732408 + 0.680866i \(0.238396\pi\)
\(858\) −1.01859e9 −0.0550546
\(859\) −1.65620e10 −0.891529 −0.445765 0.895150i \(-0.647068\pi\)
−0.445765 + 0.895150i \(0.647068\pi\)
\(860\) 6.14607e8 0.0329498
\(861\) −8.38368e8 −0.0447635
\(862\) −1.77817e10 −0.945577
\(863\) −3.22162e10 −1.70623 −0.853113 0.521727i \(-0.825288\pi\)
−0.853113 + 0.521727i \(0.825288\pi\)
\(864\) 3.45143e9 0.182054
\(865\) −1.08740e9 −0.0571260
\(866\) 4.63966e9 0.242758
\(867\) 9.85751e9 0.513689
\(868\) 3.67370e8 0.0190671
\(869\) 6.77332e9 0.350133
\(870\) −4.99590e9 −0.257215
\(871\) −3.46735e9 −0.177801
\(872\) 1.10715e10 0.565458
\(873\) −7.44882e9 −0.378911
\(874\) 6.82238e9 0.345658
\(875\) −6.46849e8 −0.0326419
\(876\) −7.16143e9 −0.359944
\(877\) 8.42384e9 0.421708 0.210854 0.977518i \(-0.432376\pi\)
0.210854 + 0.977518i \(0.432376\pi\)
\(878\) 4.11873e9 0.205368
\(879\) −5.86276e8 −0.0291166
\(880\) −1.30799e9 −0.0647017
\(881\) −2.22287e9 −0.109521 −0.0547607 0.998500i \(-0.517440\pi\)
−0.0547607 + 0.998500i \(0.517440\pi\)
\(882\) 8.17701e9 0.401287
\(883\) 2.41821e10 1.18204 0.591019 0.806658i \(-0.298726\pi\)
0.591019 + 0.806658i \(0.298726\pi\)
\(884\) 6.53160e8 0.0318007
\(885\) 3.28162e9 0.159143
\(886\) 5.76528e8 0.0278485
\(887\) 1.10381e10 0.531080 0.265540 0.964100i \(-0.414450\pi\)
0.265540 + 0.964100i \(0.414450\pi\)
\(888\) 2.92672e9 0.140261
\(889\) 1.42406e8 0.00679784
\(890\) −2.90863e9 −0.138300
\(891\) 1.95368e9 0.0925296
\(892\) 1.46170e10 0.689573
\(893\) −3.26488e10 −1.53422
\(894\) −2.57844e9 −0.120691
\(895\) −3.92640e9 −0.183068
\(896\) 1.09181e8 0.00507069
\(897\) −6.34789e8 −0.0293667
\(898\) −3.30580e9 −0.152338
\(899\) 2.69656e10 1.23780
\(900\) 5.67442e9 0.259462
\(901\) 1.41823e10 0.645966
\(902\) −1.61114e10 −0.730987
\(903\) −1.84398e8 −0.00833390
\(904\) −6.60079e9 −0.297171
\(905\) 9.39343e9 0.421264
\(906\) −1.66100e9 −0.0742031
\(907\) −7.07922e9 −0.315036 −0.157518 0.987516i \(-0.550349\pi\)
−0.157518 + 0.987516i \(0.550349\pi\)
\(908\) 5.94301e9 0.263455
\(909\) −2.19624e10 −0.969854
\(910\) −3.74625e7 −0.00164798
\(911\) 2.21745e10 0.971714 0.485857 0.874038i \(-0.338508\pi\)
0.485857 + 0.874038i \(0.338508\pi\)
\(912\) 5.60225e9 0.244557
\(913\) 2.05054e10 0.891702
\(914\) 6.42338e9 0.278261
\(915\) −1.59850e9 −0.0689823
\(916\) −4.20760e7 −0.00180884
\(917\) −1.50737e9 −0.0645546
\(918\) −7.95493e9 −0.339380
\(919\) −4.55583e9 −0.193626 −0.0968129 0.995303i \(-0.530865\pi\)
−0.0968129 + 0.995303i \(0.530865\pi\)
\(920\) −8.15145e8 −0.0345126
\(921\) −2.76969e10 −1.16821
\(922\) 7.31213e9 0.307245
\(923\) −1.94991e8 −0.00816222
\(924\) 3.92430e8 0.0163648
\(925\) 1.32627e10 0.550979
\(926\) 8.84467e9 0.366052
\(927\) −1.52516e10 −0.628835
\(928\) 8.01404e9 0.329180
\(929\) 1.42435e9 0.0582858 0.0291429 0.999575i \(-0.490722\pi\)
0.0291429 + 0.999575i \(0.490722\pi\)
\(930\) −2.25227e9 −0.0918185
\(931\) 3.65835e10 1.48580
\(932\) 1.58244e10 0.640280
\(933\) −1.14587e10 −0.461901
\(934\) 2.14095e10 0.859791
\(935\) 3.01469e9 0.120615
\(936\) 6.89226e8 0.0274724
\(937\) −8.18650e9 −0.325094 −0.162547 0.986701i \(-0.551971\pi\)
−0.162547 + 0.986701i \(0.551971\pi\)
\(938\) 1.33586e9 0.0528507
\(939\) 6.25316e9 0.246473
\(940\) 3.90091e9 0.153186
\(941\) 1.51235e10 0.591682 0.295841 0.955237i \(-0.404400\pi\)
0.295841 + 0.955237i \(0.404400\pi\)
\(942\) −6.16532e9 −0.240313
\(943\) −1.00407e10 −0.389917
\(944\) −5.26413e9 −0.203669
\(945\) 4.56261e8 0.0175874
\(946\) −3.54367e9 −0.136093
\(947\) −2.38606e10 −0.912972 −0.456486 0.889731i \(-0.650892\pi\)
−0.456486 + 0.889731i \(0.650892\pi\)
\(948\) 3.46624e9 0.132138
\(949\) −3.94175e9 −0.149712
\(950\) 2.53871e10 0.960682
\(951\) 1.70431e10 0.642566
\(952\) −2.51642e8 −0.00945265
\(953\) 1.92117e10 0.719019 0.359510 0.933141i \(-0.382944\pi\)
0.359510 + 0.933141i \(0.382944\pi\)
\(954\) 1.49654e10 0.558046
\(955\) 1.42776e10 0.530450
\(956\) 4.85592e9 0.179750
\(957\) 2.88051e10 1.06237
\(958\) 2.67194e10 0.981855
\(959\) 1.69797e9 0.0621678
\(960\) −6.69363e8 −0.0244181
\(961\) −1.53559e10 −0.558139
\(962\) 1.61091e9 0.0583390
\(963\) 1.72059e9 0.0620847
\(964\) −1.03151e10 −0.370855
\(965\) 1.34999e10 0.483597
\(966\) 2.44564e8 0.00872916
\(967\) 1.57165e10 0.558938 0.279469 0.960155i \(-0.409842\pi\)
0.279469 + 0.960155i \(0.409842\pi\)
\(968\) −2.43588e9 −0.0863161
\(969\) −1.29122e10 −0.455898
\(970\) 3.98178e9 0.140080
\(971\) 2.09123e10 0.733050 0.366525 0.930408i \(-0.380547\pi\)
0.366525 + 0.930408i \(0.380547\pi\)
\(972\) −1.37429e10 −0.480007
\(973\) 7.56423e8 0.0263251
\(974\) −2.33924e10 −0.811182
\(975\) −2.36214e9 −0.0816187
\(976\) 2.56419e9 0.0882826
\(977\) −2.93381e10 −1.00647 −0.503234 0.864150i \(-0.667857\pi\)
−0.503234 + 0.864150i \(0.667857\pi\)
\(978\) 7.92604e9 0.270938
\(979\) 1.67704e10 0.571221
\(980\) −4.37104e9 −0.148352
\(981\) −2.69270e10 −0.910640
\(982\) −3.13632e10 −1.05689
\(983\) −3.12054e10 −1.04783 −0.523917 0.851769i \(-0.675530\pi\)
−0.523917 + 0.851769i \(0.675530\pi\)
\(984\) −8.24497e9 −0.275871
\(985\) 5.03690e9 0.167933
\(986\) −1.84709e10 −0.613649
\(987\) −1.17037e9 −0.0387448
\(988\) 3.08356e9 0.101719
\(989\) −2.20843e9 −0.0725932
\(990\) 3.18116e9 0.104199
\(991\) 1.38167e10 0.450969 0.225485 0.974247i \(-0.427603\pi\)
0.225485 + 0.974247i \(0.427603\pi\)
\(992\) 3.61292e9 0.117508
\(993\) −2.06391e10 −0.668911
\(994\) 7.51238e7 0.00242619
\(995\) −4.15554e9 −0.133735
\(996\) 1.04936e10 0.336524
\(997\) 1.70801e9 0.0545832 0.0272916 0.999628i \(-0.491312\pi\)
0.0272916 + 0.999628i \(0.491312\pi\)
\(998\) −2.52059e10 −0.802685
\(999\) −1.96195e10 −0.622600
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.8.a.d.1.15 43
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.8.a.d.1.15 43 1.1 even 1 trivial