Properties

Label 54.9.d.a.35.4
Level $54$
Weight $9$
Character 54.35
Analytic conductor $21.998$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,9,Mod(17,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 9, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.17");
 
S:= CuspForms(chi, 9);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.9984449433\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 150208 x^{14} - 1927740 x^{13} + 8702363206 x^{12} + 239206241152 x^{11} + \cdots + 81\!\cdots\!61 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{36} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.4
Root \(-197.435 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 54.35
Dual form 54.9.d.a.17.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-9.79796 - 5.65685i) q^{2} +(64.0000 + 110.851i) q^{4} +(944.709 - 545.428i) q^{5} +(1250.70 - 2166.27i) q^{7} -1448.15i q^{8} -12341.6 q^{10} +(3212.80 + 1854.91i) q^{11} +(22409.9 + 38815.1i) q^{13} +(-24508.5 + 14150.0i) q^{14} +(-8192.00 + 14189.0i) q^{16} -54543.2i q^{17} +125188. q^{19} +(120923. + 69814.8i) q^{20} +(-20985.9 - 36348.7i) q^{22} +(-266411. + 153812. i) q^{23} +(399671. - 692251. i) q^{25} -507078. i q^{26} +320178. q^{28} +(-400230. - 231073. i) q^{29} +(-140570. - 243475. i) q^{31} +(160530. - 92681.9i) q^{32} +(-308543. + 534412. i) q^{34} -2.72866e6i q^{35} +159985. q^{37} +(-1.22659e6 - 708173. i) q^{38} +(-789864. - 1.36808e6i) q^{40} +(4.49810e6 - 2.59698e6i) q^{41} +(2.49848e6 - 4.32750e6i) q^{43} +474858. i q^{44} +3.48037e6 q^{46} +(306798. + 177130. i) q^{47} +(-246080. - 426223. i) q^{49} +(-7.83192e6 + 4.52176e6i) q^{50} +(-2.86847e6 + 4.96833e6i) q^{52} +958543. i q^{53} +4.04689e6 q^{55} +(-3.13709e6 - 1.81120e6i) q^{56} +(2.61429e6 + 4.52809e6i) q^{58} +(-1.38270e7 + 7.98300e6i) q^{59} +(-5.55708e6 + 9.62514e6i) q^{61} +3.18074e6i q^{62} -2.09715e6 q^{64} +(4.23417e7 + 2.44460e7i) q^{65} +(-1.22942e7 - 2.12942e7i) q^{67} +(6.04618e6 - 3.49076e6i) q^{68} +(-1.54356e7 + 2.67353e7i) q^{70} -1.67264e7i q^{71} +4.77259e6 q^{73} +(-1.56752e6 - 905009. i) q^{74} +(8.01206e6 + 1.38773e7i) q^{76} +(8.03648e6 - 4.63986e6i) q^{77} +(-1.81889e7 + 3.15042e7i) q^{79} +1.78726e7i q^{80} -5.87630e7 q^{82} +(-2.53425e7 - 1.46315e7i) q^{83} +(-2.97494e7 - 5.15274e7i) q^{85} +(-4.89601e7 + 2.82671e7i) q^{86} +(2.68620e6 - 4.65264e6i) q^{88} +6.26485e7i q^{89} +1.12112e8 q^{91} +(-3.41006e7 - 1.96880e7i) q^{92} +(-2.00399e6 - 3.47102e6i) q^{94} +(1.18267e8 - 6.82813e7i) q^{95} +(2.42081e7 - 4.19297e7i) q^{97} +5.56815e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 1024 q^{4} + 882 q^{5} - 1846 q^{7} - 45756 q^{11} - 3370 q^{13} + 94464 q^{14} - 131072 q^{16} + 362180 q^{19} + 112896 q^{20} - 61824 q^{22} - 1311138 q^{23} + 963394 q^{25} - 472576 q^{28} + 2851290 q^{29}+ \cdots - 89415484 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.79796 5.65685i −0.612372 0.353553i
\(3\) 0 0
\(4\) 64.0000 + 110.851i 0.250000 + 0.433013i
\(5\) 944.709 545.428i 1.51153 0.872685i 0.511625 0.859209i \(-0.329044\pi\)
0.999909 0.0134763i \(-0.00428977\pi\)
\(6\) 0 0
\(7\) 1250.70 2166.27i 0.520906 0.902236i −0.478798 0.877925i \(-0.658927\pi\)
0.999704 0.0243111i \(-0.00773922\pi\)
\(8\) 1448.15i 0.353553i
\(9\) 0 0
\(10\) −12341.6 −1.23416
\(11\) 3212.80 + 1854.91i 0.219439 + 0.126693i 0.605690 0.795700i \(-0.292897\pi\)
−0.386252 + 0.922393i \(0.626230\pi\)
\(12\) 0 0
\(13\) 22409.9 + 38815.1i 0.784633 + 1.35902i 0.929218 + 0.369531i \(0.120482\pi\)
−0.144586 + 0.989492i \(0.546185\pi\)
\(14\) −24508.5 + 14150.0i −0.637977 + 0.368336i
\(15\) 0 0
\(16\) −8192.00 + 14189.0i −0.125000 + 0.216506i
\(17\) 54543.2i 0.653048i −0.945189 0.326524i \(-0.894123\pi\)
0.945189 0.326524i \(-0.105877\pi\)
\(18\) 0 0
\(19\) 125188. 0.960616 0.480308 0.877100i \(-0.340525\pi\)
0.480308 + 0.877100i \(0.340525\pi\)
\(20\) 120923. + 69814.8i 0.755767 + 0.436342i
\(21\) 0 0
\(22\) −20985.9 36348.7i −0.0895855 0.155167i
\(23\) −266411. + 153812.i −0.952007 + 0.549642i −0.893704 0.448657i \(-0.851902\pi\)
−0.0583033 + 0.998299i \(0.518569\pi\)
\(24\) 0 0
\(25\) 399671. 692251.i 1.02316 1.77216i
\(26\) 507078.i 1.10964i
\(27\) 0 0
\(28\) 320178. 0.520906
\(29\) −400230. 231073.i −0.565872 0.326706i 0.189627 0.981856i \(-0.439272\pi\)
−0.755499 + 0.655150i \(0.772605\pi\)
\(30\) 0 0
\(31\) −140570. 243475.i −0.152211 0.263638i 0.779829 0.625993i \(-0.215306\pi\)
−0.932040 + 0.362355i \(0.881973\pi\)
\(32\) 160530. 92681.9i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −308543. + 534412.i −0.230887 + 0.399908i
\(35\) 2.72866e6i 1.81835i
\(36\) 0 0
\(37\) 159985. 0.0853633 0.0426816 0.999089i \(-0.486410\pi\)
0.0426816 + 0.999089i \(0.486410\pi\)
\(38\) −1.22659e6 708173.i −0.588255 0.339629i
\(39\) 0 0
\(40\) −789864. 1.36808e6i −0.308541 0.534408i
\(41\) 4.49810e6 2.59698e6i 1.59182 0.919038i 0.598825 0.800880i \(-0.295635\pi\)
0.992995 0.118158i \(-0.0376988\pi\)
\(42\) 0 0
\(43\) 2.49848e6 4.32750e6i 0.730807 1.26580i −0.225731 0.974190i \(-0.572477\pi\)
0.956539 0.291606i \(-0.0941895\pi\)
\(44\) 474858.i 0.126693i
\(45\) 0 0
\(46\) 3.48037e6 0.777311
\(47\) 306798. + 177130.i 0.0628725 + 0.0362995i 0.531107 0.847305i \(-0.321776\pi\)
−0.468234 + 0.883604i \(0.655110\pi\)
\(48\) 0 0
\(49\) −246080. 426223.i −0.0426866 0.0739354i
\(50\) −7.83192e6 + 4.52176e6i −1.25311 + 0.723482i
\(51\) 0 0
\(52\) −2.86847e6 + 4.96833e6i −0.392316 + 0.679512i
\(53\) 958543.i 0.121481i 0.998154 + 0.0607405i \(0.0193462\pi\)
−0.998154 + 0.0607405i \(0.980654\pi\)
\(54\) 0 0
\(55\) 4.04689e6 0.442252
\(56\) −3.13709e6 1.81120e6i −0.318989 0.184168i
\(57\) 0 0
\(58\) 2.61429e6 + 4.52809e6i 0.231016 + 0.400132i
\(59\) −1.38270e7 + 7.98300e6i −1.14109 + 0.658807i −0.946700 0.322118i \(-0.895605\pi\)
−0.194387 + 0.980925i \(0.562272\pi\)
\(60\) 0 0
\(61\) −5.55708e6 + 9.62514e6i −0.401354 + 0.695165i −0.993890 0.110379i \(-0.964793\pi\)
0.592536 + 0.805544i \(0.298127\pi\)
\(62\) 3.18074e6i 0.215259i
\(63\) 0 0
\(64\) −2.09715e6 −0.125000
\(65\) 4.23417e7 + 2.44460e7i 2.37200 + 1.36947i
\(66\) 0 0
\(67\) −1.22942e7 2.12942e7i −0.610102 1.05673i −0.991223 0.132202i \(-0.957795\pi\)
0.381121 0.924525i \(-0.375538\pi\)
\(68\) 6.04618e6 3.49076e6i 0.282778 0.163262i
\(69\) 0 0
\(70\) −1.54356e7 + 2.67353e7i −0.642883 + 1.11351i
\(71\) 1.67264e7i 0.658215i −0.944292 0.329108i \(-0.893252\pi\)
0.944292 0.329108i \(-0.106748\pi\)
\(72\) 0 0
\(73\) 4.77259e6 0.168059 0.0840297 0.996463i \(-0.473221\pi\)
0.0840297 + 0.996463i \(0.473221\pi\)
\(74\) −1.56752e6 905009.i −0.0522741 0.0301805i
\(75\) 0 0
\(76\) 8.01206e6 + 1.38773e7i 0.240154 + 0.415959i
\(77\) 8.03648e6 4.63986e6i 0.228614 0.131990i
\(78\) 0 0
\(79\) −1.81889e7 + 3.15042e7i −0.466981 + 0.808835i −0.999288 0.0377164i \(-0.987992\pi\)
0.532308 + 0.846551i \(0.321325\pi\)
\(80\) 1.78726e7i 0.436342i
\(81\) 0 0
\(82\) −5.87630e7 −1.29972
\(83\) −2.53425e7 1.46315e7i −0.533994 0.308302i 0.208647 0.977991i \(-0.433094\pi\)
−0.742641 + 0.669689i \(0.766427\pi\)
\(84\) 0 0
\(85\) −2.97494e7 5.15274e7i −0.569905 0.987104i
\(86\) −4.89601e7 + 2.82671e7i −0.895052 + 0.516759i
\(87\) 0 0
\(88\) 2.68620e6 4.65264e6i 0.0447927 0.0775833i
\(89\) 6.26485e7i 0.998506i 0.866456 + 0.499253i \(0.166392\pi\)
−0.866456 + 0.499253i \(0.833608\pi\)
\(90\) 0 0
\(91\) 1.12112e8 1.63488
\(92\) −3.41006e7 1.96880e7i −0.476004 0.274821i
\(93\) 0 0
\(94\) −2.00399e6 3.47102e6i −0.0256676 0.0444576i
\(95\) 1.18267e8 6.82813e7i 1.45200 0.838315i
\(96\) 0 0
\(97\) 2.42081e7 4.19297e7i 0.273447 0.473625i −0.696295 0.717756i \(-0.745169\pi\)
0.969742 + 0.244131i \(0.0785027\pi\)
\(98\) 5.56815e6i 0.0603680i
\(99\) 0 0
\(100\) 1.02316e8 1.02316
\(101\) −4.53627e7 2.61902e7i −0.435927 0.251682i 0.265942 0.963989i \(-0.414317\pi\)
−0.701868 + 0.712307i \(0.747651\pi\)
\(102\) 0 0
\(103\) −3.13984e7 5.43835e7i −0.278970 0.483191i 0.692159 0.721745i \(-0.256660\pi\)
−0.971129 + 0.238555i \(0.923326\pi\)
\(104\) 5.62102e7 3.24530e7i 0.480487 0.277410i
\(105\) 0 0
\(106\) 5.42234e6 9.39177e6i 0.0429500 0.0743916i
\(107\) 631989.i 0.00482142i 0.999997 + 0.00241071i \(0.000767353\pi\)
−0.999997 + 0.00241071i \(0.999233\pi\)
\(108\) 0 0
\(109\) 3.60140e7 0.255132 0.127566 0.991830i \(-0.459284\pi\)
0.127566 + 0.991830i \(0.459284\pi\)
\(110\) −3.96512e7 2.28926e7i −0.270823 0.156360i
\(111\) 0 0
\(112\) 2.04914e7 + 3.54921e7i 0.130227 + 0.225559i
\(113\) −8.33220e7 + 4.81060e7i −0.511030 + 0.295043i −0.733257 0.679952i \(-0.762001\pi\)
0.222227 + 0.974995i \(0.428667\pi\)
\(114\) 0 0
\(115\) −1.67787e8 + 2.90616e8i −0.959328 + 1.66160i
\(116\) 5.91547e7i 0.326706i
\(117\) 0 0
\(118\) 1.80635e8 0.931694
\(119\) −1.18155e8 6.82169e7i −0.589203 0.340177i
\(120\) 0 0
\(121\) −1.00298e8 1.73721e8i −0.467898 0.810423i
\(122\) 1.08896e8 6.28712e7i 0.491556 0.283800i
\(123\) 0 0
\(124\) 1.79930e7 3.11648e7i 0.0761057 0.131819i
\(125\) 4.45852e8i 1.82621i
\(126\) 0 0
\(127\) 3.67312e8 1.41195 0.705976 0.708235i \(-0.250508\pi\)
0.705976 + 0.708235i \(0.250508\pi\)
\(128\) 2.05478e7 + 1.18633e7i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −2.76575e8 4.79041e8i −0.968364 1.67726i
\(131\) −2.20534e8 + 1.27325e8i −0.748841 + 0.432343i −0.825275 0.564731i \(-0.808980\pi\)
0.0764341 + 0.997075i \(0.475647\pi\)
\(132\) 0 0
\(133\) 1.56573e8 2.71192e8i 0.500391 0.866702i
\(134\) 2.78187e8i 0.862815i
\(135\) 0 0
\(136\) −7.89870e7 −0.230887
\(137\) 3.69065e8 + 2.13080e8i 1.04766 + 0.604868i 0.921994 0.387205i \(-0.126559\pi\)
0.125668 + 0.992072i \(0.459893\pi\)
\(138\) 0 0
\(139\) 1.03393e8 + 1.79082e8i 0.276969 + 0.479725i 0.970630 0.240577i \(-0.0773366\pi\)
−0.693661 + 0.720302i \(0.744003\pi\)
\(140\) 3.02475e8 1.74634e8i 0.787368 0.454587i
\(141\) 0 0
\(142\) −9.46185e7 + 1.63884e8i −0.232714 + 0.403073i
\(143\) 1.66274e8i 0.397630i
\(144\) 0 0
\(145\) −5.04135e8 −1.14045
\(146\) −4.67616e7 2.69978e7i −0.102915 0.0594180i
\(147\) 0 0
\(148\) 1.02390e7 + 1.77345e7i 0.0213408 + 0.0369634i
\(149\) −5.73316e8 + 3.31004e8i −1.16319 + 0.671565i −0.952065 0.305895i \(-0.901044\pi\)
−0.211120 + 0.977460i \(0.567711\pi\)
\(150\) 0 0
\(151\) −2.17181e8 + 3.76169e8i −0.417749 + 0.723562i −0.995713 0.0925004i \(-0.970514\pi\)
0.577964 + 0.816062i \(0.303847\pi\)
\(152\) 1.81292e8i 0.339629i
\(153\) 0 0
\(154\) −1.04988e8 −0.186663
\(155\) −2.65596e8 1.53342e8i −0.460145 0.265665i
\(156\) 0 0
\(157\) 5.96980e8 + 1.03400e9i 0.982565 + 1.70185i 0.652293 + 0.757967i \(0.273807\pi\)
0.330272 + 0.943886i \(0.392860\pi\)
\(158\) 3.56429e8 2.05784e8i 0.571932 0.330205i
\(159\) 0 0
\(160\) 1.01103e8 1.75115e8i 0.154270 0.267204i
\(161\) 7.69489e8i 1.14525i
\(162\) 0 0
\(163\) −1.10437e9 −1.56446 −0.782232 0.622987i \(-0.785919\pi\)
−0.782232 + 0.622987i \(0.785919\pi\)
\(164\) 5.75757e8 + 3.32414e8i 0.795910 + 0.459519i
\(165\) 0 0
\(166\) 1.65536e8 + 2.86717e8i 0.218002 + 0.377591i
\(167\) −2.37674e8 + 1.37221e8i −0.305573 + 0.176423i −0.644944 0.764230i \(-0.723119\pi\)
0.339371 + 0.940653i \(0.389786\pi\)
\(168\) 0 0
\(169\) −5.96541e8 + 1.03324e9i −0.731297 + 1.26664i
\(170\) 6.73152e8i 0.805967i
\(171\) 0 0
\(172\) 6.39612e8 0.730807
\(173\) 7.56506e8 + 4.36769e8i 0.844555 + 0.487604i 0.858810 0.512294i \(-0.171204\pi\)
−0.0142547 + 0.999898i \(0.504538\pi\)
\(174\) 0 0
\(175\) −9.99734e8 1.73159e9i −1.06594 1.84626i
\(176\) −5.26386e7 + 3.03909e7i −0.0548597 + 0.0316733i
\(177\) 0 0
\(178\) 3.54393e8 6.13827e8i 0.353025 0.611457i
\(179\) 6.23780e8i 0.607602i −0.952736 0.303801i \(-0.901744\pi\)
0.952736 0.303801i \(-0.0982558\pi\)
\(180\) 0 0
\(181\) 1.47088e9 1.37045 0.685227 0.728330i \(-0.259703\pi\)
0.685227 + 0.728330i \(0.259703\pi\)
\(182\) −1.09847e9 6.34200e8i −1.00116 0.578017i
\(183\) 0 0
\(184\) 2.22744e8 + 3.85804e8i 0.194328 + 0.336585i
\(185\) 1.51139e8 8.72601e7i 0.129030 0.0744952i
\(186\) 0 0
\(187\) 1.01173e8 1.75236e8i 0.0827366 0.143304i
\(188\) 4.53452e7i 0.0362995i
\(189\) 0 0
\(190\) −1.54503e9 −1.18556
\(191\) 8.99674e8 + 5.19427e8i 0.676007 + 0.390293i 0.798349 0.602195i \(-0.205707\pi\)
−0.122342 + 0.992488i \(0.539040\pi\)
\(192\) 0 0
\(193\) 1.19815e9 + 2.07527e9i 0.863543 + 1.49570i 0.868487 + 0.495712i \(0.165093\pi\)
−0.00494446 + 0.999988i \(0.501574\pi\)
\(194\) −4.74380e8 + 2.73883e8i −0.334903 + 0.193356i
\(195\) 0 0
\(196\) 3.14982e7 5.45565e7i 0.0213433 0.0369677i
\(197\) 1.61075e9i 1.06945i −0.845025 0.534727i \(-0.820414\pi\)
0.845025 0.534727i \(-0.179586\pi\)
\(198\) 0 0
\(199\) −5.25183e8 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(200\) −1.00249e9 5.78786e8i −0.626554 0.361741i
\(201\) 0 0
\(202\) 2.96308e8 + 5.13221e8i 0.177966 + 0.308247i
\(203\) −1.00113e9 + 5.78004e8i −0.589532 + 0.340367i
\(204\) 0 0
\(205\) 2.83293e9 4.90678e9i 1.60406 2.77831i
\(206\) 7.10464e8i 0.394524i
\(207\) 0 0
\(208\) −7.34327e8 −0.392316
\(209\) 4.02206e8 + 2.32214e8i 0.210796 + 0.121703i
\(210\) 0 0
\(211\) −8.85159e8 1.53314e9i −0.446572 0.773485i 0.551588 0.834117i \(-0.314022\pi\)
−0.998160 + 0.0606312i \(0.980689\pi\)
\(212\) −1.06256e8 + 6.13468e7i −0.0526028 + 0.0303702i
\(213\) 0 0
\(214\) 3.57507e6 6.19220e6i 0.00170463 0.00295250i
\(215\) 5.45097e9i 2.55106i
\(216\) 0 0
\(217\) −7.03243e8 −0.317151
\(218\) −3.52863e8 2.03726e8i −0.156236 0.0902028i
\(219\) 0 0
\(220\) 2.59001e8 + 4.48602e8i 0.110563 + 0.191501i
\(221\) 2.11710e9 1.22231e9i 0.887507 0.512402i
\(222\) 0 0
\(223\) −2.52764e8 + 4.37800e8i −0.102210 + 0.177034i −0.912595 0.408865i \(-0.865925\pi\)
0.810385 + 0.585898i \(0.199258\pi\)
\(224\) 4.63667e8i 0.184168i
\(225\) 0 0
\(226\) 1.08851e9 0.417254
\(227\) −6.53594e8 3.77352e8i −0.246153 0.142116i 0.371849 0.928293i \(-0.378724\pi\)
−0.618001 + 0.786177i \(0.712057\pi\)
\(228\) 0 0
\(229\) −2.78927e8 4.83115e8i −0.101426 0.175675i 0.810847 0.585259i \(-0.199007\pi\)
−0.912272 + 0.409584i \(0.865674\pi\)
\(230\) 3.28794e9 1.89829e9i 1.17493 0.678347i
\(231\) 0 0
\(232\) −3.34630e8 + 5.79595e8i −0.115508 + 0.200066i
\(233\) 3.55157e9i 1.20503i 0.798108 + 0.602514i \(0.205834\pi\)
−0.798108 + 0.602514i \(0.794166\pi\)
\(234\) 0 0
\(235\) 3.86446e8 0.126712
\(236\) −1.76985e9 1.02182e9i −0.570543 0.329403i
\(237\) 0 0
\(238\) 7.71787e8 + 1.33677e9i 0.240541 + 0.416629i
\(239\) −7.71502e8 + 4.45427e8i −0.236453 + 0.136516i −0.613546 0.789659i \(-0.710257\pi\)
0.377092 + 0.926176i \(0.376924\pi\)
\(240\) 0 0
\(241\) 1.71946e9 2.97819e9i 0.509710 0.882844i −0.490227 0.871595i \(-0.663086\pi\)
0.999937 0.0112489i \(-0.00358072\pi\)
\(242\) 2.26949e9i 0.661707i
\(243\) 0 0
\(244\) −1.42261e9 −0.401354
\(245\) −4.64948e8 2.68438e8i −0.129045 0.0745039i
\(246\) 0 0
\(247\) 2.80546e9 + 4.85920e9i 0.753731 + 1.30550i
\(248\) −3.52589e8 + 2.03568e8i −0.0932100 + 0.0538148i
\(249\) 0 0
\(250\) −2.52212e9 + 4.36844e9i −0.645662 + 1.11832i
\(251\) 6.42022e9i 1.61754i 0.588124 + 0.808770i \(0.299867\pi\)
−0.588124 + 0.808770i \(0.700133\pi\)
\(252\) 0 0
\(253\) −1.14123e9 −0.278543
\(254\) −3.59891e9 2.07783e9i −0.864641 0.499201i
\(255\) 0 0
\(256\) −1.34218e8 2.32472e8i −0.0312500 0.0541266i
\(257\) −8.30896e8 + 4.79718e8i −0.190464 + 0.109965i −0.592200 0.805791i \(-0.701740\pi\)
0.401736 + 0.915756i \(0.368407\pi\)
\(258\) 0 0
\(259\) 2.00092e8 3.46570e8i 0.0444663 0.0770178i
\(260\) 6.25817e9i 1.36947i
\(261\) 0 0
\(262\) 2.88104e9 0.611426
\(263\) 2.47754e9 + 1.43041e9i 0.517842 + 0.298976i 0.736051 0.676926i \(-0.236688\pi\)
−0.218209 + 0.975902i \(0.570022\pi\)
\(264\) 0 0
\(265\) 5.22816e8 + 9.05545e8i 0.106015 + 0.183623i
\(266\) −3.06819e9 + 1.77142e9i −0.612851 + 0.353830i
\(267\) 0 0
\(268\) 1.57366e9 2.72566e9i 0.305051 0.528364i
\(269\) 1.20245e9i 0.229646i −0.993386 0.114823i \(-0.963370\pi\)
0.993386 0.114823i \(-0.0366301\pi\)
\(270\) 0 0
\(271\) −8.98794e9 −1.66641 −0.833207 0.552961i \(-0.813498\pi\)
−0.833207 + 0.552961i \(0.813498\pi\)
\(272\) 7.73911e8 + 4.46818e8i 0.141389 + 0.0816309i
\(273\) 0 0
\(274\) −2.41072e9 4.17550e9i −0.427706 0.740809i
\(275\) 2.56813e9 1.48271e9i 0.449041 0.259254i
\(276\) 0 0
\(277\) −8.05272e8 + 1.39477e9i −0.136780 + 0.236911i −0.926276 0.376845i \(-0.877009\pi\)
0.789496 + 0.613756i \(0.210342\pi\)
\(278\) 2.33952e9i 0.391694i
\(279\) 0 0
\(280\) −3.95152e9 −0.642883
\(281\) 1.00668e10 + 5.81207e9i 1.61461 + 0.932193i 0.988284 + 0.152628i \(0.0487736\pi\)
0.626322 + 0.779565i \(0.284560\pi\)
\(282\) 0 0
\(283\) 7.70868e8 + 1.33518e9i 0.120181 + 0.208159i 0.919839 0.392297i \(-0.128319\pi\)
−0.799658 + 0.600455i \(0.794986\pi\)
\(284\) 1.85414e9 1.07049e9i 0.285015 0.164554i
\(285\) 0 0
\(286\) 9.40585e8 1.62914e9i 0.140583 0.243498i
\(287\) 1.29921e10i 1.91493i
\(288\) 0 0
\(289\) 4.00080e9 0.573529
\(290\) 4.93949e9 + 2.85182e9i 0.698378 + 0.403209i
\(291\) 0 0
\(292\) 3.05446e8 + 5.29048e8i 0.0420148 + 0.0727718i
\(293\) −4.98204e9 + 2.87638e9i −0.675984 + 0.390280i −0.798340 0.602207i \(-0.794288\pi\)
0.122356 + 0.992486i \(0.460955\pi\)
\(294\) 0 0
\(295\) −8.70831e9 + 1.50832e10i −1.14986 + 1.99162i
\(296\) 2.31682e8i 0.0301805i
\(297\) 0 0
\(298\) 7.48977e9 0.949737
\(299\) −1.19405e10 6.89383e9i −1.49395 0.862533i
\(300\) 0 0
\(301\) −6.24969e9 1.08248e10i −0.761364 1.31872i
\(302\) 4.25587e9 2.45713e9i 0.511635 0.295393i
\(303\) 0 0
\(304\) −1.02554e9 + 1.77629e9i −0.120077 + 0.207979i
\(305\) 1.21239e10i 1.40102i
\(306\) 0 0
\(307\) −6.49769e9 −0.731486 −0.365743 0.930716i \(-0.619185\pi\)
−0.365743 + 0.930716i \(0.619185\pi\)
\(308\) 1.02867e9 + 5.93902e8i 0.114307 + 0.0659952i
\(309\) 0 0
\(310\) 1.73487e9 + 3.00488e9i 0.187854 + 0.325372i
\(311\) −1.18485e10 + 6.84076e9i −1.26655 + 0.731245i −0.974334 0.225106i \(-0.927727\pi\)
−0.292219 + 0.956351i \(0.594394\pi\)
\(312\) 0 0
\(313\) −3.58243e9 + 6.20496e9i −0.373251 + 0.646489i −0.990064 0.140620i \(-0.955090\pi\)
0.616813 + 0.787110i \(0.288424\pi\)
\(314\) 1.35081e10i 1.38956i
\(315\) 0 0
\(316\) −4.65637e9 −0.466981
\(317\) 9.86964e9 + 5.69824e9i 0.977382 + 0.564292i 0.901479 0.432824i \(-0.142483\pi\)
0.0759031 + 0.997115i \(0.475816\pi\)
\(318\) 0 0
\(319\) −8.57241e8 1.48478e9i −0.0827828 0.143384i
\(320\) −1.98120e9 + 1.14385e9i −0.188942 + 0.109086i
\(321\) 0 0
\(322\) 4.35289e9 7.53943e9i 0.404906 0.701318i
\(323\) 6.82818e9i 0.627328i
\(324\) 0 0
\(325\) 3.58263e10 3.21121
\(326\) 1.08206e10 + 6.24728e9i 0.958035 + 0.553122i
\(327\) 0 0
\(328\) −3.76083e9 6.51395e9i −0.324929 0.562793i
\(329\) 7.67421e8 4.43071e8i 0.0655014 0.0378172i
\(330\) 0 0
\(331\) 8.59454e9 1.48862e10i 0.715996 1.24014i −0.246578 0.969123i \(-0.579306\pi\)
0.962574 0.271018i \(-0.0873604\pi\)
\(332\) 3.74566e9i 0.308302i
\(333\) 0 0
\(334\) 3.10496e9 0.249499
\(335\) −2.32290e10 1.34112e10i −1.84438 1.06485i
\(336\) 0 0
\(337\) 1.61156e9 + 2.79131e9i 0.124947 + 0.216415i 0.921712 0.387874i \(-0.126790\pi\)
−0.796765 + 0.604289i \(0.793457\pi\)
\(338\) 1.16898e10 6.74909e9i 0.895652 0.517105i
\(339\) 0 0
\(340\) 3.80792e9 6.59551e9i 0.284952 0.493552i
\(341\) 1.04298e9i 0.0771364i
\(342\) 0 0
\(343\) 1.31889e10 0.952870
\(344\) −6.26689e9 3.61819e9i −0.447526 0.258379i
\(345\) 0 0
\(346\) −4.94148e9 8.55889e9i −0.344788 0.597191i
\(347\) 2.16831e9 1.25187e9i 0.149556 0.0863461i −0.423355 0.905964i \(-0.639148\pi\)
0.572911 + 0.819618i \(0.305814\pi\)
\(348\) 0 0
\(349\) −8.92317e9 + 1.54554e10i −0.601475 + 1.04178i 0.391123 + 0.920338i \(0.372087\pi\)
−0.992598 + 0.121446i \(0.961247\pi\)
\(350\) 2.26214e10i 1.50746i
\(351\) 0 0
\(352\) 6.87667e8 0.0447927
\(353\) −2.33322e9 1.34709e9i −0.150265 0.0867555i 0.422982 0.906138i \(-0.360983\pi\)
−0.573247 + 0.819382i \(0.694317\pi\)
\(354\) 0 0
\(355\) −9.12302e9 1.58015e10i −0.574414 0.994915i
\(356\) −6.94466e9 + 4.00950e9i −0.432366 + 0.249626i
\(357\) 0 0
\(358\) −3.52863e9 + 6.11177e9i −0.214820 + 0.372079i
\(359\) 4.46773e8i 0.0268973i −0.999910 0.0134487i \(-0.995719\pi\)
0.999910 0.0134487i \(-0.00428097\pi\)
\(360\) 0 0
\(361\) −1.31142e9 −0.0772168
\(362\) −1.44117e10 8.32058e9i −0.839228 0.484529i
\(363\) 0 0
\(364\) 7.17516e9 + 1.24277e10i 0.408720 + 0.707924i
\(365\) 4.50871e9 2.60310e9i 0.254028 0.146663i
\(366\) 0 0
\(367\) −4.50312e9 + 7.79963e9i −0.248227 + 0.429942i −0.963034 0.269380i \(-0.913181\pi\)
0.714807 + 0.699322i \(0.246515\pi\)
\(368\) 5.04012e9i 0.274821i
\(369\) 0 0
\(370\) −1.97447e9 −0.105352
\(371\) 2.07646e9 + 1.19885e9i 0.109605 + 0.0632802i
\(372\) 0 0
\(373\) 3.61769e9 + 6.26602e9i 0.186894 + 0.323710i 0.944213 0.329335i \(-0.106825\pi\)
−0.757319 + 0.653045i \(0.773491\pi\)
\(374\) −1.98257e9 + 1.14464e9i −0.101331 + 0.0585036i
\(375\) 0 0
\(376\) 2.56511e8 4.44291e8i 0.0128338 0.0222288i
\(377\) 2.07133e10i 1.02538i
\(378\) 0 0
\(379\) −2.18940e10 −1.06113 −0.530566 0.847644i \(-0.678020\pi\)
−0.530566 + 0.847644i \(0.678020\pi\)
\(380\) 1.51381e10 + 8.74001e9i 0.726002 + 0.419158i
\(381\) 0 0
\(382\) −5.87664e9 1.01786e10i −0.275979 0.478009i
\(383\) 1.99158e10 1.14984e10i 0.925555 0.534369i 0.0401518 0.999194i \(-0.487216\pi\)
0.885403 + 0.464824i \(0.153883\pi\)
\(384\) 0 0
\(385\) 5.06142e9 8.76664e9i 0.230372 0.399016i
\(386\) 2.71112e10i 1.22123i
\(387\) 0 0
\(388\) 6.19727e9 0.273447
\(389\) 1.71912e10 + 9.92532e9i 0.750770 + 0.433457i 0.825972 0.563711i \(-0.190627\pi\)
−0.0752021 + 0.997168i \(0.523960\pi\)
\(390\) 0 0
\(391\) 8.38941e9 + 1.45309e10i 0.358942 + 0.621706i
\(392\) −6.17236e8 + 3.56362e8i −0.0261401 + 0.0150920i
\(393\) 0 0
\(394\) −9.11175e9 + 1.57820e10i −0.378109 + 0.654904i
\(395\) 3.96830e10i 1.63011i
\(396\) 0 0
\(397\) −2.22799e10 −0.896915 −0.448458 0.893804i \(-0.648026\pi\)
−0.448458 + 0.893804i \(0.648026\pi\)
\(398\) 5.14572e9 + 2.97089e9i 0.205076 + 0.118401i
\(399\) 0 0
\(400\) 6.54821e9 + 1.13418e10i 0.255789 + 0.443040i
\(401\) 2.03685e10 1.17598e10i 0.787738 0.454801i −0.0514274 0.998677i \(-0.516377\pi\)
0.839166 + 0.543876i \(0.183044\pi\)
\(402\) 0 0
\(403\) 6.30033e9 1.09125e10i 0.238860 0.413718i
\(404\) 6.70469e9i 0.251682i
\(405\) 0 0
\(406\) 1.30787e10 0.481351
\(407\) 5.13999e8 + 2.96757e8i 0.0187320 + 0.0108149i
\(408\) 0 0
\(409\) −2.32825e10 4.03265e10i −0.832025 1.44111i −0.896430 0.443186i \(-0.853848\pi\)
0.0644044 0.997924i \(-0.479485\pi\)
\(410\) −5.55139e10 + 3.20510e10i −1.96456 + 1.13424i
\(411\) 0 0
\(412\) 4.01899e9 6.96109e9i 0.139485 0.241595i
\(413\) 3.99372e10i 1.37271i
\(414\) 0 0
\(415\) −3.19217e10 −1.07620
\(416\) 7.19491e9 + 4.15398e9i 0.240244 + 0.138705i
\(417\) 0 0
\(418\) −2.62720e9 4.55044e9i −0.0860573 0.149056i
\(419\) −3.95877e9 + 2.28560e9i −0.128441 + 0.0741556i −0.562844 0.826563i \(-0.690293\pi\)
0.434403 + 0.900719i \(0.356959\pi\)
\(420\) 0 0
\(421\) 6.62653e9 1.14775e10i 0.210939 0.365358i −0.741069 0.671428i \(-0.765681\pi\)
0.952009 + 0.306071i \(0.0990144\pi\)
\(422\) 2.00289e10i 0.631548i
\(423\) 0 0
\(424\) 1.38812e9 0.0429500
\(425\) −3.77576e10 2.17993e10i −1.15731 0.668171i
\(426\) 0 0
\(427\) 1.39004e10 + 2.40762e10i 0.418135 + 0.724231i
\(428\) −7.00568e7 + 4.04473e7i −0.00208773 + 0.00120535i
\(429\) 0 0
\(430\) −3.08354e10 + 5.34084e10i −0.901935 + 1.56220i
\(431\) 2.64178e10i 0.765575i 0.923836 + 0.382787i \(0.125036\pi\)
−0.923836 + 0.382787i \(0.874964\pi\)
\(432\) 0 0
\(433\) 4.70683e10 1.33899 0.669494 0.742817i \(-0.266511\pi\)
0.669494 + 0.742817i \(0.266511\pi\)
\(434\) 6.89035e9 + 3.97814e9i 0.194215 + 0.112130i
\(435\) 0 0
\(436\) 2.30489e9 + 3.99219e9i 0.0637830 + 0.110475i
\(437\) −3.33515e10 + 1.92555e10i −0.914513 + 0.527995i
\(438\) 0 0
\(439\) −1.60624e10 + 2.78209e10i −0.432467 + 0.749055i −0.997085 0.0762974i \(-0.975690\pi\)
0.564618 + 0.825352i \(0.309023\pi\)
\(440\) 5.86052e9i 0.156360i
\(441\) 0 0
\(442\) −2.76576e10 −0.724646
\(443\) 4.36195e10 + 2.51837e10i 1.13257 + 0.653891i 0.944581 0.328279i \(-0.106469\pi\)
0.187992 + 0.982171i \(0.439802\pi\)
\(444\) 0 0
\(445\) 3.41702e10 + 5.91846e10i 0.871381 + 1.50928i
\(446\) 4.95314e9 2.85969e9i 0.125182 0.0722737i
\(447\) 0 0
\(448\) −2.62290e9 + 4.54299e9i −0.0651133 + 0.112780i
\(449\) 2.09633e10i 0.515792i −0.966173 0.257896i \(-0.916971\pi\)
0.966173 0.257896i \(-0.0830293\pi\)
\(450\) 0 0
\(451\) 1.92687e10 0.465743
\(452\) −1.06652e10 6.15757e9i −0.255515 0.147522i
\(453\) 0 0
\(454\) 4.26926e9 + 7.39457e9i 0.100491 + 0.174056i
\(455\) 1.05913e11 6.11489e10i 2.47118 1.42674i
\(456\) 0 0
\(457\) 2.27460e10 3.93972e10i 0.521482 0.903234i −0.478206 0.878248i \(-0.658713\pi\)
0.999688 0.0249858i \(-0.00795405\pi\)
\(458\) 6.31139e9i 0.143438i
\(459\) 0 0
\(460\) −4.29535e10 −0.959328
\(461\) −3.76919e10 2.17614e10i −0.834534 0.481818i 0.0208685 0.999782i \(-0.493357\pi\)
−0.855403 + 0.517964i \(0.826690\pi\)
\(462\) 0 0
\(463\) −1.88669e10 3.26784e10i −0.410560 0.711111i 0.584391 0.811472i \(-0.301333\pi\)
−0.994951 + 0.100361i \(0.968000\pi\)
\(464\) 6.55737e9 3.78590e9i 0.141468 0.0816765i
\(465\) 0 0
\(466\) 2.00907e10 3.47982e10i 0.426042 0.737926i
\(467\) 1.94089e10i 0.408068i 0.978964 + 0.204034i \(0.0654053\pi\)
−0.978964 + 0.204034i \(0.934595\pi\)
\(468\) 0 0
\(469\) −6.15054e10 −1.27122
\(470\) −3.78638e9 2.18607e9i −0.0775949 0.0447994i
\(471\) 0 0
\(472\) 1.15606e10 + 2.00236e10i 0.232923 + 0.403435i
\(473\) 1.60543e10 9.26894e9i 0.320735 0.185176i
\(474\) 0 0
\(475\) 5.00342e10 8.66618e10i 0.982862 1.70237i
\(476\) 1.74635e10i 0.340177i
\(477\) 0 0
\(478\) 1.00789e10 0.193063
\(479\) −1.20390e10 6.95073e9i −0.228691 0.132035i 0.381277 0.924461i \(-0.375484\pi\)
−0.609968 + 0.792426i \(0.708818\pi\)
\(480\) 0 0
\(481\) 3.58524e9 + 6.20981e9i 0.0669788 + 0.116011i
\(482\) −3.36944e10 + 1.94534e10i −0.624265 + 0.360420i
\(483\) 0 0
\(484\) 1.28381e10 2.22363e10i 0.233949 0.405211i
\(485\) 5.28151e10i 0.954534i
\(486\) 0 0
\(487\) 3.69205e10 0.656374 0.328187 0.944613i \(-0.393562\pi\)
0.328187 + 0.944613i \(0.393562\pi\)
\(488\) 1.39387e10 + 8.04751e9i 0.245778 + 0.141900i
\(489\) 0 0
\(490\) 3.03703e9 + 5.26028e9i 0.0526822 + 0.0912483i
\(491\) −5.69924e10 + 3.29046e10i −0.980598 + 0.566149i −0.902451 0.430793i \(-0.858234\pi\)
−0.0781474 + 0.996942i \(0.524900\pi\)
\(492\) 0 0
\(493\) −1.26035e10 + 2.18298e10i −0.213355 + 0.369541i
\(494\) 6.34803e10i 1.06594i
\(495\) 0 0
\(496\) 4.60621e9 0.0761057
\(497\) −3.62338e10 2.09196e10i −0.593865 0.342868i
\(498\) 0 0
\(499\) −4.81781e9 8.34469e9i −0.0777047 0.134589i 0.824555 0.565782i \(-0.191426\pi\)
−0.902259 + 0.431194i \(0.858092\pi\)
\(500\) 4.94232e10 2.85345e10i 0.790771 0.456552i
\(501\) 0 0
\(502\) 3.63183e10 6.29051e10i 0.571887 0.990537i
\(503\) 2.91551e10i 0.455452i −0.973725 0.227726i \(-0.926871\pi\)
0.973725 0.227726i \(-0.0731291\pi\)
\(504\) 0 0
\(505\) −5.71394e10 −0.878558
\(506\) 1.11818e10 + 6.45579e9i 0.170572 + 0.0984798i
\(507\) 0 0
\(508\) 2.35080e10 + 4.07170e10i 0.352988 + 0.611393i
\(509\) −6.14696e10 + 3.54895e10i −0.915776 + 0.528723i −0.882285 0.470716i \(-0.843996\pi\)
−0.0334907 + 0.999439i \(0.510662\pi\)
\(510\) 0 0
\(511\) 5.96906e9 1.03387e10i 0.0875432 0.151629i
\(512\) 3.03700e9i 0.0441942i
\(513\) 0 0
\(514\) 1.08548e10 0.155514
\(515\) −5.93246e10 3.42511e10i −0.843347 0.486906i
\(516\) 0 0
\(517\) 6.57120e8 + 1.13817e9i 0.00919778 + 0.0159310i
\(518\) −3.92099e9 + 2.26378e9i −0.0544598 + 0.0314424i
\(519\) 0 0
\(520\) 3.54015e10 6.13173e10i 0.484182 0.838628i
\(521\) 6.08836e10i 0.826323i −0.910658 0.413161i \(-0.864425\pi\)
0.910658 0.413161i \(-0.135575\pi\)
\(522\) 0 0
\(523\) 2.81890e10 0.376768 0.188384 0.982095i \(-0.439675\pi\)
0.188384 + 0.982095i \(0.439675\pi\)
\(524\) −2.82283e10 1.62976e10i −0.374420 0.216172i
\(525\) 0 0
\(526\) −1.61832e10 2.80301e10i −0.211408 0.366170i
\(527\) −1.32799e10 + 7.66716e9i −0.172168 + 0.0994012i
\(528\) 0 0
\(529\) 8.16093e9 1.41351e10i 0.104212 0.180500i
\(530\) 1.18300e10i 0.149927i
\(531\) 0 0
\(532\) 4.00826e10 0.500391
\(533\) 2.01604e11 + 1.16396e11i 2.49799 + 1.44221i
\(534\) 0 0
\(535\) 3.44705e8 + 5.97046e8i 0.00420758 + 0.00728774i
\(536\) −3.08374e10 + 1.78040e10i −0.373610 + 0.215704i
\(537\) 0 0
\(538\) −6.80210e9 + 1.17816e10i −0.0811921 + 0.140629i
\(539\) 1.82583e9i 0.0216324i
\(540\) 0 0
\(541\) −1.20219e11 −1.40341 −0.701703 0.712470i \(-0.747577\pi\)
−0.701703 + 0.712470i \(0.747577\pi\)
\(542\) 8.80634e10 + 5.08435e10i 1.02047 + 0.589166i
\(543\) 0 0
\(544\) −5.05517e9 8.75580e9i −0.0577218 0.0999771i
\(545\) 3.40227e10 1.96430e10i 0.385641 0.222650i
\(546\) 0 0
\(547\) −6.82534e10 + 1.18218e11i −0.762386 + 1.32049i 0.179231 + 0.983807i \(0.442639\pi\)
−0.941617 + 0.336685i \(0.890694\pi\)
\(548\) 5.45485e10i 0.604868i
\(549\) 0 0
\(550\) −3.35499e10 −0.366640
\(551\) −5.01042e10 2.89277e10i −0.543585 0.313839i
\(552\) 0 0
\(553\) 4.54977e10 + 7.88043e10i 0.486506 + 0.842654i
\(554\) 1.57801e10 9.11062e9i 0.167521 0.0967183i
\(555\) 0 0
\(556\) −1.32343e10 + 2.29225e10i −0.138485 + 0.239862i
\(557\) 1.72931e10i 0.179660i −0.995957 0.0898300i \(-0.971368\pi\)
0.995957 0.0898300i \(-0.0286324\pi\)
\(558\) 0 0
\(559\) 2.23963e11 2.29366
\(560\) 3.87168e10 + 2.23532e10i 0.393684 + 0.227294i
\(561\) 0 0
\(562\) −6.57561e10 1.13893e11i −0.659160 1.14170i
\(563\) −4.39485e10 + 2.53737e10i −0.437432 + 0.252552i −0.702508 0.711676i \(-0.747936\pi\)
0.265076 + 0.964228i \(0.414603\pi\)
\(564\) 0 0
\(565\) −5.24767e10 + 9.08923e10i −0.514959 + 0.891936i
\(566\) 1.74427e10i 0.169961i
\(567\) 0 0
\(568\) −2.42223e10 −0.232714
\(569\) −7.23149e10 4.17510e10i −0.689888 0.398307i 0.113682 0.993517i \(-0.463735\pi\)
−0.803570 + 0.595210i \(0.797069\pi\)
\(570\) 0 0
\(571\) 6.95426e10 + 1.20451e11i 0.654194 + 1.13310i 0.982095 + 0.188385i \(0.0603254\pi\)
−0.327901 + 0.944712i \(0.606341\pi\)
\(572\) −1.84316e10 + 1.06415e10i −0.172179 + 0.0994075i
\(573\) 0 0
\(574\) −7.34946e10 + 1.27296e11i −0.677030 + 1.17265i
\(575\) 2.45897e11i 2.24948i
\(576\) 0 0
\(577\) −1.25735e11 −1.13437 −0.567184 0.823591i \(-0.691967\pi\)
−0.567184 + 0.823591i \(0.691967\pi\)
\(578\) −3.91997e10 2.26319e10i −0.351213 0.202773i
\(579\) 0 0
\(580\) −3.22646e10 5.58840e10i −0.285112 0.493828i
\(581\) −6.33915e10 + 3.65991e10i −0.556322 + 0.321193i
\(582\) 0 0
\(583\) −1.77801e9 + 3.07961e9i −0.0153908 + 0.0266576i
\(584\) 6.91145e9i 0.0594180i
\(585\) 0 0
\(586\) 6.50851e10 0.551939
\(587\) 6.44083e10 + 3.71861e10i 0.542487 + 0.313205i 0.746086 0.665849i \(-0.231931\pi\)
−0.203599 + 0.979054i \(0.565264\pi\)
\(588\) 0 0
\(589\) −1.75978e10 3.04803e10i −0.146217 0.253255i
\(590\) 1.70647e11 9.85232e10i 1.40829 0.813075i
\(591\) 0 0
\(592\) −1.31059e9 + 2.27001e9i −0.0106704 + 0.0184817i
\(593\) 7.64545e10i 0.618279i 0.951017 + 0.309139i \(0.100041\pi\)
−0.951017 + 0.309139i \(0.899959\pi\)
\(594\) 0 0
\(595\) −1.48830e11 −1.18747
\(596\) −7.33844e10 4.23685e10i −0.581593 0.335783i
\(597\) 0 0
\(598\) 7.79948e10 + 1.35091e11i 0.609903 + 1.05638i
\(599\) −6.63143e10 + 3.82866e10i −0.515110 + 0.297399i −0.734932 0.678141i \(-0.762786\pi\)
0.219822 + 0.975540i \(0.429452\pi\)
\(600\) 0 0
\(601\) −2.39823e10 + 4.15386e10i −0.183820 + 0.318386i −0.943178 0.332287i \(-0.892180\pi\)
0.759358 + 0.650673i \(0.225513\pi\)
\(602\) 1.41414e11i 1.07673i
\(603\) 0 0
\(604\) −5.55985e10 −0.417749
\(605\) −1.89505e11 1.09411e11i −1.41449 0.816655i
\(606\) 0 0
\(607\) −1.02320e11 1.77223e11i −0.753710 1.30546i −0.946013 0.324128i \(-0.894929\pi\)
0.192303 0.981336i \(-0.438404\pi\)
\(608\) 2.00965e10 1.16027e10i 0.147064 0.0849073i
\(609\) 0 0
\(610\) 6.85834e10 1.18790e11i 0.495336 0.857946i
\(611\) 1.58778e10i 0.113927i
\(612\) 0 0
\(613\) 4.26255e10 0.301876 0.150938 0.988543i \(-0.451771\pi\)
0.150938 + 0.988543i \(0.451771\pi\)
\(614\) 6.36641e10 + 3.67565e10i 0.447942 + 0.258619i
\(615\) 0 0
\(616\) −6.71924e9 1.16381e10i −0.0466656 0.0808273i
\(617\) 2.80277e9 1.61818e9i 0.0193396 0.0111657i −0.490299 0.871554i \(-0.663112\pi\)
0.509639 + 0.860389i \(0.329779\pi\)
\(618\) 0 0
\(619\) 7.34200e10 1.27167e11i 0.500094 0.866189i −0.499906 0.866080i \(-0.666632\pi\)
1.00000 0.000108934i \(-3.46746e-5\pi\)
\(620\) 3.92556e10i 0.265665i
\(621\) 0 0
\(622\) 1.54789e11 1.03414
\(623\) 1.35713e11 + 7.83542e10i 0.900888 + 0.520128i
\(624\) 0 0
\(625\) −8.70585e10 1.50790e11i −0.570546 0.988215i
\(626\) 7.02011e10 4.05306e10i 0.457137 0.263928i
\(627\) 0 0
\(628\) −7.64135e10 + 1.32352e11i −0.491283 + 0.850926i
\(629\) 8.72607e9i 0.0557463i
\(630\) 0 0
\(631\) 2.39192e11 1.50879 0.754397 0.656419i \(-0.227929\pi\)
0.754397 + 0.656419i \(0.227929\pi\)
\(632\) 4.56229e10 + 2.63404e10i 0.285966 + 0.165103i
\(633\) 0 0
\(634\) −6.44682e10 1.11662e11i −0.399014 0.691113i
\(635\) 3.47003e11 2.00342e11i 2.13422 1.23219i
\(636\) 0 0
\(637\) 1.10292e10 1.91032e10i 0.0669866 0.116024i
\(638\) 1.93971e10i 0.117073i
\(639\) 0 0
\(640\) 2.58823e10 0.154270
\(641\) 7.33197e8 + 4.23311e8i 0.00434299 + 0.00250742i 0.502170 0.864769i \(-0.332535\pi\)
−0.497827 + 0.867276i \(0.665869\pi\)
\(642\) 0 0
\(643\) 5.89225e10 + 1.02057e11i 0.344697 + 0.597033i 0.985299 0.170841i \(-0.0546483\pi\)
−0.640602 + 0.767873i \(0.721315\pi\)
\(644\) −8.52989e10 + 4.92473e10i −0.495906 + 0.286312i
\(645\) 0 0
\(646\) −3.86260e10 + 6.69022e10i −0.221794 + 0.384158i
\(647\) 2.63434e11i 1.50333i −0.659546 0.751665i \(-0.729251\pi\)
0.659546 0.751665i \(-0.270749\pi\)
\(648\) 0 0
\(649\) −5.92311e10 −0.333865
\(650\) −3.51025e11 2.02664e11i −1.96646 1.13534i
\(651\) 0 0
\(652\) −7.06799e10 1.22421e11i −0.391116 0.677433i
\(653\) −1.08870e11 + 6.28559e10i −0.598761 + 0.345695i −0.768554 0.639785i \(-0.779024\pi\)
0.169793 + 0.985480i \(0.445690\pi\)
\(654\) 0 0
\(655\) −1.38893e11 + 2.40570e11i −0.754599 + 1.30700i
\(656\) 8.50979e10i 0.459519i
\(657\) 0 0
\(658\) −1.00256e10 −0.0534816
\(659\) 3.14417e10 + 1.81529e10i 0.166711 + 0.0962506i 0.581034 0.813879i \(-0.302648\pi\)
−0.414323 + 0.910130i \(0.635982\pi\)
\(660\) 0 0
\(661\) −6.52457e10 1.13009e11i −0.341779 0.591979i 0.642984 0.765880i \(-0.277696\pi\)
−0.984763 + 0.173901i \(0.944363\pi\)
\(662\) −1.68418e11 + 9.72361e10i −0.876912 + 0.506286i
\(663\) 0 0
\(664\) −2.11887e10 + 3.66998e10i −0.109001 + 0.188796i
\(665\) 3.41597e11i 1.74673i
\(666\) 0 0
\(667\) 1.42167e11 0.718285
\(668\) −3.04222e10 1.75643e10i −0.152787 0.0882114i
\(669\) 0 0
\(670\) 1.51731e11 + 2.62806e11i 0.752965 + 1.30417i
\(671\) −3.57076e10 + 2.06158e10i −0.176145 + 0.101697i
\(672\) 0 0
\(673\) −1.99070e10 + 3.44799e10i −0.0970388 + 0.168076i −0.910458 0.413602i \(-0.864270\pi\)
0.813419 + 0.581678i \(0.197604\pi\)
\(674\) 3.64655e10i 0.176702i
\(675\) 0 0
\(676\) −1.52715e11 −0.731297
\(677\) 2.31655e11 + 1.33746e11i 1.10277 + 0.636687i 0.936948 0.349468i \(-0.113638\pi\)
0.165826 + 0.986155i \(0.446971\pi\)
\(678\) 0 0
\(679\) −6.05539e10 1.04882e11i −0.284881 0.493428i
\(680\) −7.46197e10 + 4.30817e10i −0.348994 + 0.201492i
\(681\) 0 0
\(682\) −5.90000e9 + 1.02191e10i −0.0272719 + 0.0472362i
\(683\) 3.82963e10i 0.175984i −0.996121 0.0879922i \(-0.971955\pi\)
0.996121 0.0879922i \(-0.0280451\pi\)
\(684\) 0 0
\(685\) 4.64879e11 2.11144
\(686\) −1.29225e11 7.46079e10i −0.583511 0.336890i
\(687\) 0 0
\(688\) 4.09352e10 + 7.09018e10i 0.182702 + 0.316449i
\(689\) −3.72059e10 + 2.14809e10i −0.165096 + 0.0953179i
\(690\) 0 0
\(691\) 2.01386e11 3.48810e11i 0.883316 1.52995i 0.0356843 0.999363i \(-0.488639\pi\)
0.847632 0.530585i \(-0.178028\pi\)
\(692\) 1.11813e11i 0.487604i
\(693\) 0 0
\(694\) −2.83267e10 −0.122112
\(695\) 1.95353e11 + 1.12787e11i 0.837297 + 0.483414i
\(696\) 0 0
\(697\) −1.41648e11 2.45341e11i −0.600175 1.03953i
\(698\) 1.74858e11 1.00954e11i 0.736653 0.425307i
\(699\) 0 0
\(700\) 1.27966e11 2.21644e11i 0.532969 0.923130i
\(701\) 4.49866e11i 1.86299i −0.363750 0.931497i \(-0.618504\pi\)
0.363750 0.931497i \(-0.381496\pi\)
\(702\) 0 0
\(703\) 2.00282e10 0.0820013
\(704\) −6.73774e9 3.89003e9i −0.0274298 0.0158366i
\(705\) 0 0
\(706\) 1.52405e10 + 2.63974e10i 0.0613454 + 0.106253i
\(707\) −1.13470e11 + 6.55119e10i −0.454154 + 0.262206i
\(708\) 0 0
\(709\) 1.26945e11 2.19875e11i 0.502378 0.870145i −0.497618 0.867396i \(-0.665792\pi\)
0.999996 0.00274839i \(-0.000874840\pi\)
\(710\) 2.06430e11i 0.812345i
\(711\) 0 0
\(712\) 9.07247e10 0.353025
\(713\) 7.48989e10 + 4.32429e10i 0.289813 + 0.167323i
\(714\) 0 0
\(715\) 9.06903e10 + 1.57080e11i 0.347006 + 0.601031i
\(716\) 6.91468e10 3.99219e10i 0.263099 0.151901i
\(717\) 0 0
\(718\) −2.52733e9 + 4.37746e9i −0.00950964 + 0.0164712i
\(719\) 5.21386e11i 1.95094i 0.220134 + 0.975470i \(0.429351\pi\)
−0.220134 + 0.975470i \(0.570649\pi\)
\(720\) 0 0
\(721\) −1.57079e11 −0.581269
\(722\) 1.28492e10 + 7.41849e9i 0.0472854 + 0.0273003i
\(723\) 0 0
\(724\) 9.41366e10 + 1.63049e11i 0.342613 + 0.593424i
\(725\) −3.19921e11 + 1.84706e11i −1.15795 + 0.668544i
\(726\) 0 0
\(727\) 2.86428e9 4.96107e9i 0.0102536 0.0177598i −0.860853 0.508854i \(-0.830069\pi\)
0.871107 + 0.491094i \(0.163403\pi\)
\(728\) 1.62355e11i 0.578017i
\(729\) 0 0
\(730\) −5.89015e10 −0.207413
\(731\) −2.36036e11 1.36275e11i −0.826625 0.477252i
\(732\) 0 0
\(733\) 1.60850e11 + 2.78600e11i 0.557192 + 0.965084i 0.997729 + 0.0673502i \(0.0214545\pi\)
−0.440538 + 0.897734i \(0.645212\pi\)
\(734\) 8.82427e10 5.09469e10i 0.304015 0.175523i
\(735\) 0 0
\(736\) −2.85112e10 + 4.93829e10i −0.0971638 + 0.168293i
\(737\) 9.12190e10i 0.309183i
\(738\) 0 0
\(739\) −5.10308e11 −1.71102 −0.855508 0.517789i \(-0.826755\pi\)
−0.855508 + 0.517789i \(0.826755\pi\)
\(740\) 1.93458e10 + 1.11693e10i 0.0645148 + 0.0372476i
\(741\) 0 0
\(742\) −1.35634e10 2.34925e10i −0.0447459 0.0775021i
\(743\) 3.85768e11 2.22723e11i 1.26582 0.730819i 0.291622 0.956533i \(-0.405805\pi\)
0.974194 + 0.225714i \(0.0724716\pi\)
\(744\) 0 0
\(745\) −3.61078e11 + 6.25405e11i −1.17213 + 2.03019i
\(746\) 8.18589e10i 0.264308i
\(747\) 0 0
\(748\) 2.59002e10 0.0827366
\(749\) 1.36906e9 + 7.90426e8i 0.00435005 + 0.00251151i
\(750\) 0 0
\(751\) −2.49914e11 4.32864e11i −0.785654 1.36079i −0.928608 0.371063i \(-0.878993\pi\)
0.142954 0.989729i \(-0.454340\pi\)
\(752\) −5.02657e9 + 2.90209e9i −0.0157181 + 0.00907486i
\(753\) 0 0
\(754\) −1.17172e11 + 2.02948e11i −0.362526 + 0.627913i
\(755\) 4.73828e11i 1.45825i
\(756\) 0 0
\(757\) 4.42799e11 1.34841 0.674207 0.738542i \(-0.264485\pi\)
0.674207 + 0.738542i \(0.264485\pi\)
\(758\) 2.14517e11 + 1.23851e11i 0.649808 + 0.375167i
\(759\) 0 0
\(760\) −9.88819e10 1.71268e11i −0.296389 0.513361i
\(761\) −4.15275e11 + 2.39759e11i −1.23822 + 0.714885i −0.968730 0.248119i \(-0.920188\pi\)
−0.269488 + 0.963004i \(0.586854\pi\)
\(762\) 0 0
\(763\) 4.50425e10 7.80159e10i 0.132900 0.230189i
\(764\) 1.32973e11i 0.390293i
\(765\) 0 0
\(766\) −2.60179e11 −0.755712
\(767\) −6.19721e11 3.57796e11i −1.79067 1.03384i
\(768\) 0 0
\(769\) 1.36289e10 + 2.36059e10i 0.0389722 + 0.0675018i 0.884854 0.465869i \(-0.154258\pi\)
−0.845881 + 0.533371i \(0.820925\pi\)
\(770\) −9.91832e10 + 5.72635e10i −0.282147 + 0.162898i
\(771\) 0 0
\(772\) −1.53364e11 + 2.65634e11i −0.431771 + 0.747850i
\(773\) 2.36838e11i 0.663336i −0.943396 0.331668i \(-0.892389\pi\)
0.943396 0.331668i \(-0.107611\pi\)
\(774\) 0 0
\(775\) −2.24728e11 −0.622945
\(776\) −6.07206e10 3.50571e10i −0.167452 0.0966782i
\(777\) 0 0
\(778\) −1.12292e11 1.94496e11i −0.306501 0.530875i
\(779\) 5.63110e11 3.25112e11i 1.52913 0.882842i
\(780\) 0 0
\(781\) 3.10259e10 5.37385e10i 0.0833913 0.144438i
\(782\) 1.89831e11i 0.507621i
\(783\) 0 0
\(784\) 8.06354e9 0.0213433
\(785\) 1.12795e12 + 6.51220e11i 2.97036 + 1.71494i
\(786\) 0 0
\(787\) 1.75898e11 + 3.04664e11i 0.458523 + 0.794185i 0.998883 0.0472487i \(-0.0150453\pi\)
−0.540360 + 0.841434i \(0.681712\pi\)
\(788\) 1.78553e11 1.03088e11i 0.463087 0.267363i
\(789\) 0 0
\(790\) 2.24481e11 3.88813e11i 0.576330 0.998234i
\(791\) 2.40664e11i 0.614759i
\(792\) 0 0
\(793\) −4.98134e11 −1.25966
\(794\) 2.18298e11 + 1.26034e11i 0.549246 + 0.317107i
\(795\) 0 0
\(796\) −3.36117e10 5.82172e10i −0.0837218 0.145010i
\(797\) 1.21936e11 7.03995e10i 0.302202 0.174476i −0.341230 0.939980i \(-0.610843\pi\)
0.643432 + 0.765504i \(0.277510\pi\)
\(798\) 0 0
\(799\) 9.66122e9 1.67337e10i 0.0237053 0.0410587i
\(800\) 1.48169e11i 0.361741i
\(801\) 0 0
\(802\) −2.66093e11 −0.643186
\(803\) 1.53334e10 + 8.85274e9i 0.0368787 + 0.0212919i
\(804\) 0 0
\(805\) 4.19701e11 + 7.26944e11i 0.999440 + 1.73108i
\(806\) −1.23461e11 + 7.12801e10i −0.292542 + 0.168899i
\(807\) 0 0
\(808\) −3.79274e10 + 6.56922e10i −0.0889832 + 0.154123i
\(809\) 5.70685e10i 0.133230i −0.997779 0.0666151i \(-0.978780\pi\)
0.997779 0.0666151i \(-0.0212199\pi\)
\(810\) 0 0
\(811\) −5.81519e11 −1.34425 −0.672126 0.740437i \(-0.734619\pi\)
−0.672126 + 0.740437i \(0.734619\pi\)
\(812\) −1.28145e11 7.39845e10i −0.294766 0.170183i
\(813\) 0 0
\(814\) −3.35743e9 5.81523e9i −0.00764731 0.0132455i
\(815\) −1.04331e12 + 6.02356e11i −2.36474 + 1.36528i
\(816\) 0 0
\(817\) 3.12781e11 5.41753e11i 0.702025 1.21594i
\(818\) 5.26823e11i 1.17666i
\(819\) 0 0
\(820\) 7.25231e11 1.60406
\(821\) −2.88515e11 1.66574e11i −0.635031 0.366636i 0.147667 0.989037i \(-0.452824\pi\)
−0.782698 + 0.622402i \(0.786157\pi\)
\(822\) 0 0
\(823\) 4.11950e11 + 7.13518e11i 0.897935 + 1.55527i 0.830129 + 0.557571i \(0.188266\pi\)
0.0678057 + 0.997699i \(0.478400\pi\)
\(824\) −7.87558e10 + 4.54697e10i −0.170834 + 0.0986309i
\(825\) 0 0
\(826\) 2.25919e11 3.91303e11i 0.485325 0.840608i
\(827\) 8.92051e11i 1.90708i −0.301274 0.953538i \(-0.597412\pi\)
0.301274 0.953538i \(-0.402588\pi\)
\(828\) 0 0
\(829\) −1.53632e11 −0.325284 −0.162642 0.986685i \(-0.552002\pi\)
−0.162642 + 0.986685i \(0.552002\pi\)
\(830\) 3.12767e11 + 1.80576e11i 0.659036 + 0.380495i
\(831\) 0 0
\(832\) −4.69970e10 8.14011e10i −0.0980791 0.169878i
\(833\) −2.32475e10 + 1.34220e10i −0.0482833 + 0.0278764i
\(834\) 0 0
\(835\) −1.49688e11 + 2.59268e11i −0.307923 + 0.533338i
\(836\) 5.94467e10i 0.121703i
\(837\) 0 0
\(838\) 5.17172e10 0.104872
\(839\) −2.64665e11 1.52805e11i −0.534133 0.308382i 0.208565 0.978009i \(-0.433121\pi\)
−0.742698 + 0.669627i \(0.766454\pi\)
\(840\) 0 0
\(841\) −1.43334e11 2.48261e11i −0.286526 0.496278i
\(842\) −1.29853e11 + 7.49706e10i −0.258347 + 0.149157i
\(843\) 0 0
\(844\) 1.13300e11 1.96242e11i 0.223286 0.386743i
\(845\) 1.30148e12i 2.55277i
\(846\) 0 0
\(847\) −5.01769e11 −0.974923
\(848\) −1.36007e10 7.85239e9i −0.0263014 0.0151851i
\(849\) 0 0
\(850\) 2.46631e11 + 4.27178e11i 0.472468 + 0.818339i
\(851\) −4.26216e10 + 2.46076e10i −0.0812665 + 0.0469192i
\(852\) 0 0
\(853\) −2.22811e11 + 3.85919e11i −0.420862 + 0.728955i −0.996024 0.0890849i \(-0.971606\pi\)
0.575162 + 0.818040i \(0.304939\pi\)
\(854\) 3.14531e11i 0.591332i
\(855\) 0 0
\(856\) 9.15218e8 0.00170463
\(857\) 8.02066e10 + 4.63073e10i 0.148692 + 0.0858472i 0.572500 0.819905i \(-0.305974\pi\)
−0.423808 + 0.905752i \(0.639307\pi\)
\(858\) 0 0
\(859\) 1.29899e11 + 2.24992e11i 0.238580 + 0.413233i 0.960307 0.278945i \(-0.0899847\pi\)
−0.721727 + 0.692178i \(0.756651\pi\)
\(860\) 6.04247e11 3.48862e11i 1.10464 0.637765i
\(861\) 0 0
\(862\) 1.49442e11 2.58841e11i 0.270672 0.468817i
\(863\) 8.28592e10i 0.149382i −0.997207 0.0746909i \(-0.976203\pi\)
0.997207 0.0746909i \(-0.0237970\pi\)
\(864\) 0 0
\(865\) 9.52905e11 1.70210
\(866\) −4.61173e11 2.66259e11i −0.819960 0.473404i
\(867\) 0 0
\(868\) −4.50076e10 7.79554e10i −0.0792878 0.137331i
\(869\) −1.16875e11 + 6.74778e10i −0.204947 + 0.118326i
\(870\) 0 0
\(871\) 5.51025e11 9.54404e11i 0.957412 1.65829i
\(872\) 5.21538e10i 0.0902028i
\(873\) 0 0
\(874\) 4.35703e11 0.746697
\(875\) −9.65834e11 5.57625e11i −1.64767 0.951283i
\(876\) 0 0
\(877\) −1.71742e11 2.97466e11i −0.290321 0.502851i 0.683564 0.729890i \(-0.260429\pi\)
−0.973886 + 0.227039i \(0.927096\pi\)
\(878\) 3.14758e11 1.81726e11i 0.529662 0.305800i
\(879\) 0 0
\(880\) −3.31521e10 + 5.74211e10i −0.0552815 + 0.0957504i
\(881\) 7.74337e11i 1.28537i −0.766132 0.642683i \(-0.777821\pi\)
0.766132 0.642683i \(-0.222179\pi\)
\(882\) 0 0
\(883\) −3.73068e11 −0.613685 −0.306842 0.951760i \(-0.599272\pi\)
−0.306842 + 0.951760i \(0.599272\pi\)
\(884\) 2.70989e11 + 1.56455e11i 0.443754 + 0.256201i
\(885\) 0 0
\(886\) −2.84922e11 4.93499e11i −0.462371 0.800850i
\(887\) 5.41302e11 3.12521e11i 0.874471 0.504876i 0.00563925 0.999984i \(-0.498205\pi\)
0.868831 + 0.495108i \(0.164872\pi\)
\(888\) 0 0
\(889\) 4.59395e11 7.95696e11i 0.735495 1.27391i
\(890\) 7.73184e11i 1.23232i
\(891\) 0 0
\(892\) −6.47075e10 −0.102210
\(893\) 3.84075e10 + 2.21746e10i 0.0603963 + 0.0348698i
\(894\) 0 0
\(895\) −3.40227e11 5.89291e11i −0.530245 0.918412i
\(896\) 5.13981e10 2.96747e10i 0.0797472 0.0460420i
\(897\) 0 0
\(898\) −1.18587e11 + 2.05398e11i −0.182360 + 0.315857i
\(899\) 1.29928e11i 0.198914i
\(900\) 0 0
\(901\) 5.22820e10 0.0793329
\(902\) −1.88794e11 1.09000e11i −0.285208 0.164665i
\(903\) 0 0
\(904\) 6.96649e10 + 1.20663e11i 0.104313 + 0.180676i
\(905\) 1.38956e12 8.02262e11i 2.07149 1.19597i
\(906\) 0 0
\(907\) −4.55030e11 + 7.88136e11i −0.672375 + 1.16459i 0.304854 + 0.952399i \(0.401392\pi\)
−0.977229 + 0.212188i \(0.931941\pi\)
\(908\) 9.66022e10i 0.142116i
\(909\) 0 0
\(910\) −1.38364e12 −2.01771
\(911\) −9.63591e10 5.56330e10i −0.139901 0.0807716i 0.428416 0.903582i \(-0.359072\pi\)
−0.568317 + 0.822810i \(0.692405\pi\)
\(912\) 0 0
\(913\) −5.42802e10 9.40162e10i −0.0781194 0.135307i
\(914\) −4.45728e11 + 2.57341e11i −0.638683 + 0.368744i
\(915\) 0 0
\(916\) 3.57026e10 6.18388e10i 0.0507129 0.0878373i
\(917\) 6.36980e11i 0.900842i
\(918\) 0 0
\(919\) 1.32576e12 1.85867 0.929333 0.369243i \(-0.120383\pi\)
0.929333 + 0.369243i \(0.120383\pi\)
\(920\) 4.20856e11 + 2.42982e11i 0.587466 + 0.339174i
\(921\) 0 0
\(922\) 2.46202e11 + 4.26435e11i 0.340697 + 0.590105i
\(923\) 6.49235e11 3.74836e11i 0.894530 0.516457i
\(924\) 0 0
\(925\) 6.39412e10 1.10749e11i 0.0873401 0.151278i
\(926\) 4.26909e11i 0.580620i
\(927\) 0 0
\(928\) −8.56652e10 −0.115508
\(929\) −1.11339e12 6.42815e11i −1.49480 0.863024i −0.494819 0.868996i \(-0.664766\pi\)
−0.999982 + 0.00597212i \(0.998099\pi\)
\(930\) 0 0
\(931\) −3.08063e10 5.33582e10i −0.0410054 0.0710235i
\(932\) −3.93696e11 + 2.27301e11i −0.521792 + 0.301257i
\(933\) 0 0
\(934\) 1.09793e11 1.90167e11i 0.144274 0.249890i
\(935\) 2.20730e11i 0.288812i
\(936\) 0 0
\(937\) −3.48380e11 −0.451955 −0.225977 0.974133i \(-0.572558\pi\)
−0.225977 + 0.974133i \(0.572558\pi\)
\(938\) 6.02628e11 + 3.47927e11i 0.778462 + 0.449446i
\(939\) 0 0
\(940\) 2.47326e10 + 4.28380e10i 0.0316780 + 0.0548679i
\(941\) −7.29969e11 + 4.21448e11i −0.930992 + 0.537508i −0.887125 0.461529i \(-0.847301\pi\)
−0.0438668 + 0.999037i \(0.513968\pi\)
\(942\) 0 0
\(943\) −7.98895e11 + 1.38373e12i −1.01028 + 1.74986i
\(944\) 2.61587e11i 0.329403i
\(945\) 0 0
\(946\) −2.09732e11 −0.261879
\(947\) −1.07702e12 6.21820e11i −1.33914 0.773152i −0.352459 0.935827i \(-0.614655\pi\)
−0.986680 + 0.162675i \(0.947988\pi\)
\(948\) 0 0
\(949\) 1.06953e11 + 1.85248e11i 0.131865 + 0.228397i
\(950\) −9.80466e11 + 5.66072e11i −1.20376 + 0.694988i
\(951\) 0 0
\(952\) −9.87887e10 + 1.71107e11i −0.120271 + 0.208315i
\(953\) 2.58906e11i 0.313885i 0.987608 + 0.156942i \(0.0501637\pi\)
−0.987608 + 0.156942i \(0.949836\pi\)
\(954\) 0 0
\(955\) 1.13324e12 1.36241
\(956\) −9.87523e10 5.70146e10i −0.118227 0.0682582i
\(957\) 0 0
\(958\) 7.86385e10 + 1.36206e11i 0.0933626 + 0.161709i
\(959\) 9.23177e11 5.32996e11i 1.09147 0.630159i
\(960\) 0 0
\(961\) 3.86925e11 6.70175e11i 0.453663 0.785768i
\(962\) 8.11246e10i 0.0947224i
\(963\) 0 0
\(964\) 4.40181e11 0.509710
\(965\) 2.26382e12 + 1.30701e12i 2.61055 + 1.50720i
\(966\) 0 0
\(967\) −5.06389e11 8.77092e11i −0.579133 1.00309i −0.995579 0.0939280i \(-0.970058\pi\)
0.416446 0.909161i \(-0.363276\pi\)
\(968\) −2.51575e11 + 1.45247e11i −0.286528 + 0.165427i
\(969\) 0 0
\(970\) −2.98767e11 + 5.17480e11i −0.337479 + 0.584530i
\(971\) 6.44723e11i 0.725265i 0.931932 + 0.362632i \(0.118122\pi\)
−0.931932 + 0.362632i \(0.881878\pi\)
\(972\) 0 0
\(973\) 5.17253e11 0.577100
\(974\) −3.61745e11 2.08854e11i −0.401945 0.232063i
\(975\) 0 0
\(976\) −9.10472e10 1.57698e11i −0.100338 0.173791i
\(977\) −1.30863e12 + 7.55535e11i −1.43627 + 0.829233i −0.997588 0.0694077i \(-0.977889\pi\)
−0.438685 + 0.898641i \(0.644556\pi\)
\(978\) 0 0
\(979\) −1.16207e11 + 2.01277e11i −0.126504 + 0.219111i
\(980\) 6.87200e10i 0.0745039i
\(981\) 0 0
\(982\) 7.44546e11 0.800655
\(983\) 9.28316e11 + 5.35963e11i 0.994218 + 0.574012i 0.906532 0.422136i \(-0.138720\pi\)
0.0876854 + 0.996148i \(0.472053\pi\)
\(984\) 0 0
\(985\) −8.78546e11 1.52169e12i −0.933296 1.61652i
\(986\) 2.46976e11 1.42592e11i 0.261305 0.150865i
\(987\) 0 0
\(988\) −3.59099e11 + 6.21977e11i −0.376865 + 0.652750i
\(989\) 1.53719e12i 1.60673i
\(990\) 0 0
\(991\) −8.67927e11 −0.899888 −0.449944 0.893057i \(-0.648556\pi\)
−0.449944 + 0.893057i \(0.648556\pi\)
\(992\) −4.51314e10 2.60567e10i −0.0466050 0.0269074i
\(993\) 0 0
\(994\) 2.36678e11 + 4.09938e11i 0.242445 + 0.419926i
\(995\) −4.96146e11 + 2.86450e11i −0.506194 + 0.292251i
\(996\) 0 0
\(997\) 1.19459e11 2.06909e11i 0.120903 0.209411i −0.799221 0.601037i \(-0.794754\pi\)
0.920124 + 0.391627i \(0.128088\pi\)
\(998\) 1.09015e11i 0.109891i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.9.d.a.35.4 16
3.2 odd 2 18.9.d.a.11.7 yes 16
4.3 odd 2 432.9.q.c.305.8 16
9.2 odd 6 162.9.b.c.161.1 16
9.4 even 3 18.9.d.a.5.7 16
9.5 odd 6 inner 54.9.d.a.17.4 16
9.7 even 3 162.9.b.c.161.16 16
12.11 even 2 144.9.q.b.65.3 16
36.23 even 6 432.9.q.c.17.8 16
36.31 odd 6 144.9.q.b.113.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.9.d.a.5.7 16 9.4 even 3
18.9.d.a.11.7 yes 16 3.2 odd 2
54.9.d.a.17.4 16 9.5 odd 6 inner
54.9.d.a.35.4 16 1.1 even 1 trivial
144.9.q.b.65.3 16 12.11 even 2
144.9.q.b.113.3 16 36.31 odd 6
162.9.b.c.161.1 16 9.2 odd 6
162.9.b.c.161.16 16 9.7 even 3
432.9.q.c.17.8 16 36.23 even 6
432.9.q.c.305.8 16 4.3 odd 2