Properties

Label 543.2.a.d.1.2
Level 543543
Weight 22
Character 543.1
Self dual yes
Analytic conductor 4.3364.336
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [543,2,Mod(1,543)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(543, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("543.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 543=3181 543 = 3 \cdot 181
Weight: k k == 2 2
Character orbit: [χ][\chi] == 543.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.335876829764.33587682976
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x83x76x6+21x5+5x435x3+10x2+4x1 x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.57409-1.57409 of defining polynomial
Character χ\chi == 543.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.57409q21.00000q3+0.477759q4+2.61079q5+1.57409q6+3.43627q7+2.39614q8+1.00000q94.10962q10+0.961440q110.477759q122.19899q135.40900q142.61079q154.72726q16+1.38921q171.57409q181.29785q19+1.24733q203.43627q211.51339q221.03393q232.39614q24+1.81623q25+3.46140q261.00000q27+1.64171q28+10.3621q29+4.10962q30+1.46354q31+2.64885q320.961440q332.18674q34+8.97139q35+0.477759q36+0.102931q37+2.04293q38+2.19899q39+6.25583q40+2.19969q41+5.40900q425.89954q43+0.459336q44+2.61079q45+1.62749q46+4.32862q47+4.72726q48+4.80796q492.85891q501.38921q511.05059q52+9.97667q53+1.57409q54+2.51012q55+8.23380q56+1.29785q5716.3109q58+3.19012q591.24733q607.75991q612.30375q62+3.43627q63+5.28500q645.74110q65+1.51339q66+4.55325q67+0.663707q68+1.03393q6914.1218q7013.5850q71+2.39614q72+1.86716q730.162023q741.81623q750.620058q76+3.30377q773.46140q78+1.27450q7912.3419q80+1.00000q813.46252q82+6.39088q831.64171q84+3.62693q85+9.28640q8610.3621q87+2.30375q88+0.429627q894.10962q907.55632q910.493968q921.46354q936.81364q943.38841q952.64885q96+7.74609q977.56817q98+0.961440q99+O(q100)q-1.57409 q^{2} -1.00000 q^{3} +0.477759 q^{4} +2.61079 q^{5} +1.57409 q^{6} +3.43627 q^{7} +2.39614 q^{8} +1.00000 q^{9} -4.10962 q^{10} +0.961440 q^{11} -0.477759 q^{12} -2.19899 q^{13} -5.40900 q^{14} -2.61079 q^{15} -4.72726 q^{16} +1.38921 q^{17} -1.57409 q^{18} -1.29785 q^{19} +1.24733 q^{20} -3.43627 q^{21} -1.51339 q^{22} -1.03393 q^{23} -2.39614 q^{24} +1.81623 q^{25} +3.46140 q^{26} -1.00000 q^{27} +1.64171 q^{28} +10.3621 q^{29} +4.10962 q^{30} +1.46354 q^{31} +2.64885 q^{32} -0.961440 q^{33} -2.18674 q^{34} +8.97139 q^{35} +0.477759 q^{36} +0.102931 q^{37} +2.04293 q^{38} +2.19899 q^{39} +6.25583 q^{40} +2.19969 q^{41} +5.40900 q^{42} -5.89954 q^{43} +0.459336 q^{44} +2.61079 q^{45} +1.62749 q^{46} +4.32862 q^{47} +4.72726 q^{48} +4.80796 q^{49} -2.85891 q^{50} -1.38921 q^{51} -1.05059 q^{52} +9.97667 q^{53} +1.57409 q^{54} +2.51012 q^{55} +8.23380 q^{56} +1.29785 q^{57} -16.3109 q^{58} +3.19012 q^{59} -1.24733 q^{60} -7.75991 q^{61} -2.30375 q^{62} +3.43627 q^{63} +5.28500 q^{64} -5.74110 q^{65} +1.51339 q^{66} +4.55325 q^{67} +0.663707 q^{68} +1.03393 q^{69} -14.1218 q^{70} -13.5850 q^{71} +2.39614 q^{72} +1.86716 q^{73} -0.162023 q^{74} -1.81623 q^{75} -0.620058 q^{76} +3.30377 q^{77} -3.46140 q^{78} +1.27450 q^{79} -12.3419 q^{80} +1.00000 q^{81} -3.46252 q^{82} +6.39088 q^{83} -1.64171 q^{84} +3.62693 q^{85} +9.28640 q^{86} -10.3621 q^{87} +2.30375 q^{88} +0.429627 q^{89} -4.10962 q^{90} -7.55632 q^{91} -0.493968 q^{92} -1.46354 q^{93} -6.81364 q^{94} -3.38841 q^{95} -2.64885 q^{96} +7.74609 q^{97} -7.56817 q^{98} +0.961440 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+3q28q3+5q4+5q53q63q7+6q8+8q9+2q10+4q115q12+13q13+5q145q15+3q16+27q17+3q1810q19+21q20++4q99+O(q100) 8 q + 3 q^{2} - 8 q^{3} + 5 q^{4} + 5 q^{5} - 3 q^{6} - 3 q^{7} + 6 q^{8} + 8 q^{9} + 2 q^{10} + 4 q^{11} - 5 q^{12} + 13 q^{13} + 5 q^{14} - 5 q^{15} + 3 q^{16} + 27 q^{17} + 3 q^{18} - 10 q^{19} + 21 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.57409 −1.11305 −0.556525 0.830831i 0.687866π-0.687866\pi
−0.556525 + 0.830831i 0.687866π0.687866\pi
33 −1.00000 −0.577350
44 0.477759 0.238880
55 2.61079 1.16758 0.583791 0.811904i 0.301569π-0.301569\pi
0.583791 + 0.811904i 0.301569π0.301569\pi
66 1.57409 0.642620
77 3.43627 1.29879 0.649394 0.760452i 0.275022π-0.275022\pi
0.649394 + 0.760452i 0.275022π0.275022\pi
88 2.39614 0.847165
99 1.00000 0.333333
1010 −4.10962 −1.29958
1111 0.961440 0.289885 0.144942 0.989440i 0.453700π-0.453700\pi
0.144942 + 0.989440i 0.453700π0.453700\pi
1212 −0.477759 −0.137917
1313 −2.19899 −0.609889 −0.304945 0.952370i 0.598638π-0.598638\pi
−0.304945 + 0.952370i 0.598638π0.598638\pi
1414 −5.40900 −1.44562
1515 −2.61079 −0.674103
1616 −4.72726 −1.18182
1717 1.38921 0.336933 0.168466 0.985707i 0.446119π-0.446119\pi
0.168466 + 0.985707i 0.446119π0.446119\pi
1818 −1.57409 −0.371017
1919 −1.29785 −0.297746 −0.148873 0.988856i 0.547565π-0.547565\pi
−0.148873 + 0.988856i 0.547565π0.547565\pi
2020 1.24733 0.278911
2121 −3.43627 −0.749856
2222 −1.51339 −0.322656
2323 −1.03393 −0.215589 −0.107794 0.994173i 0.534379π-0.534379\pi
−0.107794 + 0.994173i 0.534379π0.534379\pi
2424 −2.39614 −0.489111
2525 1.81623 0.363246
2626 3.46140 0.678837
2727 −1.00000 −0.192450
2828 1.64171 0.310254
2929 10.3621 1.92420 0.962099 0.272701i 0.0879171π-0.0879171\pi
0.962099 + 0.272701i 0.0879171π0.0879171\pi
3030 4.10962 0.750310
3131 1.46354 0.262860 0.131430 0.991325i 0.458043π-0.458043\pi
0.131430 + 0.991325i 0.458043π0.458043\pi
3232 2.64885 0.468255
3333 −0.961440 −0.167365
3434 −2.18674 −0.375023
3535 8.97139 1.51644
3636 0.477759 0.0796265
3737 0.102931 0.0169218 0.00846089 0.999964i 0.497307π-0.497307\pi
0.00846089 + 0.999964i 0.497307π0.497307\pi
3838 2.04293 0.331407
3939 2.19899 0.352120
4040 6.25583 0.989134
4141 2.19969 0.343534 0.171767 0.985138i 0.445052π-0.445052\pi
0.171767 + 0.985138i 0.445052π0.445052\pi
4242 5.40900 0.834627
4343 −5.89954 −0.899671 −0.449835 0.893111i 0.648517π-0.648517\pi
−0.449835 + 0.893111i 0.648517π0.648517\pi
4444 0.459336 0.0692476
4545 2.61079 0.389194
4646 1.62749 0.239961
4747 4.32862 0.631394 0.315697 0.948860i 0.397762π-0.397762\pi
0.315697 + 0.948860i 0.397762π0.397762\pi
4848 4.72726 0.682322
4949 4.80796 0.686852
5050 −2.85891 −0.404311
5151 −1.38921 −0.194528
5252 −1.05059 −0.145690
5353 9.97667 1.37040 0.685200 0.728355i 0.259715π-0.259715\pi
0.685200 + 0.728355i 0.259715π0.259715\pi
5454 1.57409 0.214207
5555 2.51012 0.338464
5656 8.23380 1.10029
5757 1.29785 0.171904
5858 −16.3109 −2.14173
5959 3.19012 0.415319 0.207659 0.978201i 0.433415π-0.433415\pi
0.207659 + 0.978201i 0.433415π0.433415\pi
6060 −1.24733 −0.161029
6161 −7.75991 −0.993555 −0.496778 0.867878i 0.665484π-0.665484\pi
−0.496778 + 0.867878i 0.665484π0.665484\pi
6262 −2.30375 −0.292576
6363 3.43627 0.432930
6464 5.28500 0.660625
6565 −5.74110 −0.712095
6666 1.51339 0.186286
6767 4.55325 0.556268 0.278134 0.960542i 0.410284π-0.410284\pi
0.278134 + 0.960542i 0.410284π0.410284\pi
6868 0.663707 0.0804863
6969 1.03393 0.124470
7070 −14.1218 −1.68787
7171 −13.5850 −1.61224 −0.806121 0.591751i 0.798437π-0.798437\pi
−0.806121 + 0.591751i 0.798437π0.798437\pi
7272 2.39614 0.282388
7373 1.86716 0.218535 0.109267 0.994012i 0.465149π-0.465149\pi
0.109267 + 0.994012i 0.465149π0.465149\pi
7474 −0.162023 −0.0188348
7575 −1.81623 −0.209720
7676 −0.620058 −0.0711255
7777 3.30377 0.376499
7878 −3.46140 −0.391927
7979 1.27450 0.143393 0.0716964 0.997427i 0.477159π-0.477159\pi
0.0716964 + 0.997427i 0.477159π0.477159\pi
8080 −12.3419 −1.37987
8181 1.00000 0.111111
8282 −3.46252 −0.382371
8383 6.39088 0.701490 0.350745 0.936471i 0.385928π-0.385928\pi
0.350745 + 0.936471i 0.385928π0.385928\pi
8484 −1.64171 −0.179125
8585 3.62693 0.393396
8686 9.28640 1.00138
8787 −10.3621 −1.11094
8888 2.30375 0.245580
8989 0.429627 0.0455404 0.0227702 0.999741i 0.492751π-0.492751\pi
0.0227702 + 0.999741i 0.492751π0.492751\pi
9090 −4.10962 −0.433192
9191 −7.55632 −0.792118
9292 −0.493968 −0.0514997
9393 −1.46354 −0.151762
9494 −6.81364 −0.702773
9595 −3.38841 −0.347643
9696 −2.64885 −0.270347
9797 7.74609 0.786496 0.393248 0.919432i 0.371351π-0.371351\pi
0.393248 + 0.919432i 0.371351π0.371351\pi
9898 −7.56817 −0.764500
9999 0.961440 0.0966283
100100 0.867720 0.0867720
101101 8.32864 0.828731 0.414365 0.910111i 0.364004π-0.364004\pi
0.414365 + 0.910111i 0.364004π0.364004\pi
102102 2.18674 0.216520
103103 13.5440 1.33453 0.667265 0.744821i 0.267465π-0.267465\pi
0.667265 + 0.744821i 0.267465π0.267465\pi
104104 −5.26909 −0.516677
105105 −8.97139 −0.875518
106106 −15.7042 −1.52532
107107 −11.6097 −1.12235 −0.561175 0.827697i 0.689650π-0.689650\pi
−0.561175 + 0.827697i 0.689650π0.689650\pi
108108 −0.477759 −0.0459724
109109 −4.66299 −0.446633 −0.223317 0.974746i 0.571688π-0.571688\pi
−0.223317 + 0.974746i 0.571688π0.571688\pi
110110 −3.95115 −0.376727
111111 −0.102931 −0.00976980
112112 −16.2442 −1.53493
113113 10.9955 1.03437 0.517187 0.855872i 0.326979π-0.326979\pi
0.517187 + 0.855872i 0.326979π0.326979\pi
114114 −2.04293 −0.191338
115115 −2.69937 −0.251717
116116 4.95060 0.459651
117117 −2.19899 −0.203296
118118 −5.02154 −0.462270
119119 4.77370 0.437604
120120 −6.25583 −0.571077
121121 −10.0756 −0.915967
122122 12.2148 1.10588
123123 −2.19969 −0.198340
124124 0.699221 0.0627919
125125 −8.31216 −0.743462
126126 −5.40900 −0.481872
127127 8.07470 0.716513 0.358257 0.933623i 0.383371π-0.383371\pi
0.358257 + 0.933623i 0.383371π0.383371\pi
128128 −13.6168 −1.20356
129129 5.89954 0.519425
130130 9.03700 0.792598
131131 −18.8695 −1.64864 −0.824320 0.566125i 0.808442π-0.808442\pi
−0.824320 + 0.566125i 0.808442π0.808442\pi
132132 −0.459336 −0.0399801
133133 −4.45975 −0.386710
134134 −7.16723 −0.619154
135135 −2.61079 −0.224701
136136 3.32875 0.285438
137137 17.6058 1.50417 0.752085 0.659067i 0.229048π-0.229048\pi
0.752085 + 0.659067i 0.229048π0.229048\pi
138138 −1.62749 −0.138541
139139 −7.03888 −0.597030 −0.298515 0.954405i 0.596491π-0.596491\pi
−0.298515 + 0.954405i 0.596491π0.596491\pi
140140 4.28616 0.362247
141141 −4.32862 −0.364536
142142 21.3840 1.79451
143143 −2.11419 −0.176798
144144 −4.72726 −0.393939
145145 27.0533 2.24666
146146 −2.93908 −0.243240
147147 −4.80796 −0.396554
148148 0.0491763 0.00404227
149149 −6.74021 −0.552180 −0.276090 0.961132i 0.589039π-0.589039\pi
−0.276090 + 0.961132i 0.589039π0.589039\pi
150150 2.85891 0.233429
151151 3.82904 0.311603 0.155802 0.987788i 0.450204π-0.450204\pi
0.155802 + 0.987788i 0.450204π0.450204\pi
152152 −3.10983 −0.252240
153153 1.38921 0.112311
154154 −5.20043 −0.419062
155155 3.82100 0.306910
156156 1.05059 0.0841142
157157 −2.71018 −0.216296 −0.108148 0.994135i 0.534492π-0.534492\pi
−0.108148 + 0.994135i 0.534492π0.534492\pi
158158 −2.00618 −0.159603
159159 −9.97667 −0.791201
160160 6.91560 0.546726
161161 −3.55285 −0.280004
162162 −1.57409 −0.123672
163163 −24.5296 −1.92131 −0.960654 0.277749i 0.910412π-0.910412\pi
−0.960654 + 0.277749i 0.910412π0.910412\pi
164164 1.05092 0.0820633
165165 −2.51012 −0.195412
166166 −10.0598 −0.780793
167167 −7.97488 −0.617115 −0.308557 0.951206i 0.599846π-0.599846\pi
−0.308557 + 0.951206i 0.599846π0.599846\pi
168168 −8.23380 −0.635252
169169 −8.16445 −0.628035
170170 −5.70912 −0.437870
171171 −1.29785 −0.0992488
172172 −2.81856 −0.214913
173173 23.6725 1.79979 0.899895 0.436107i 0.143643π-0.143643\pi
0.899895 + 0.436107i 0.143643π0.143643\pi
174174 16.3109 1.23653
175175 6.24106 0.471779
176176 −4.54498 −0.342591
177177 −3.19012 −0.239784
178178 −0.676272 −0.0506887
179179 −14.7917 −1.10558 −0.552790 0.833320i 0.686437π-0.686437\pi
−0.552790 + 0.833320i 0.686437π0.686437\pi
180180 1.24733 0.0929704
181181 1.00000 0.0743294
182182 11.8943 0.881666
183183 7.75991 0.573629
184184 −2.47744 −0.182639
185185 0.268732 0.0197576
186186 2.30375 0.168919
187187 1.33564 0.0976717
188188 2.06804 0.150827
189189 −3.43627 −0.249952
190190 5.33366 0.386944
191191 −16.3286 −1.18150 −0.590749 0.806855i 0.701168π-0.701168\pi
−0.590749 + 0.806855i 0.701168π0.701168\pi
192192 −5.28500 −0.381412
193193 21.4797 1.54614 0.773070 0.634321i 0.218720π-0.218720\pi
0.773070 + 0.634321i 0.218720π0.218720\pi
194194 −12.1930 −0.875409
195195 5.74110 0.411128
196196 2.29705 0.164075
197197 −0.649364 −0.0462653 −0.0231326 0.999732i 0.507364π-0.507364\pi
−0.0231326 + 0.999732i 0.507364π0.507364\pi
198198 −1.51339 −0.107552
199199 13.6175 0.965321 0.482661 0.875807i 0.339670π-0.339670\pi
0.482661 + 0.875807i 0.339670π0.339670\pi
200200 4.35195 0.307729
201201 −4.55325 −0.321162
202202 −13.1100 −0.922418
203203 35.6071 2.49913
204204 −0.663707 −0.0464688
205205 5.74294 0.401104
206206 −21.3195 −1.48540
207207 −1.03393 −0.0718629
208208 10.3952 0.720777
209209 −1.24780 −0.0863122
210210 14.1218 0.974495
211211 6.80702 0.468615 0.234307 0.972163i 0.424718π-0.424718\pi
0.234307 + 0.972163i 0.424718π0.424718\pi
212212 4.76644 0.327361
213213 13.5850 0.930828
214214 18.2747 1.24923
215215 −15.4025 −1.05044
216216 −2.39614 −0.163037
217217 5.02913 0.341400
218218 7.33996 0.497125
219219 −1.86716 −0.126171
220220 1.19923 0.0808522
221221 −3.05485 −0.205492
222222 0.162023 0.0108743
223223 −0.115112 −0.00770848 −0.00385424 0.999993i 0.501227π-0.501227\pi
−0.00385424 + 0.999993i 0.501227π0.501227\pi
224224 9.10217 0.608164
225225 1.81623 0.121082
226226 −17.3080 −1.15131
227227 −10.4534 −0.693815 −0.346908 0.937899i 0.612768π-0.612768\pi
−0.346908 + 0.937899i 0.612768π0.612768\pi
228228 0.620058 0.0410643
229229 22.5933 1.49301 0.746504 0.665381i 0.231731π-0.231731\pi
0.746504 + 0.665381i 0.231731π0.231731\pi
230230 4.24905 0.280174
231231 −3.30377 −0.217372
232232 24.8291 1.63011
233233 −8.32806 −0.545590 −0.272795 0.962072i 0.587948π-0.587948\pi
−0.272795 + 0.962072i 0.587948π0.587948\pi
234234 3.46140 0.226279
235235 11.3011 0.737204
236236 1.52411 0.0992112
237237 −1.27450 −0.0827878
238238 −7.51423 −0.487075
239239 4.65178 0.300899 0.150449 0.988618i 0.451928π-0.451928\pi
0.150449 + 0.988618i 0.451928π0.451928\pi
240240 12.3419 0.796666
241241 −15.4970 −0.998251 −0.499125 0.866530i 0.666345π-0.666345\pi
−0.499125 + 0.866530i 0.666345π0.666345\pi
242242 15.8600 1.01952
243243 −1.00000 −0.0641500
244244 −3.70737 −0.237340
245245 12.5526 0.801956
246246 3.46252 0.220762
247247 2.85395 0.181592
248248 3.50686 0.222686
249249 −6.39088 −0.405005
250250 13.0841 0.827510
251251 −22.2885 −1.40684 −0.703420 0.710775i 0.748344π-0.748344\pi
−0.703420 + 0.710775i 0.748344π0.748344\pi
252252 1.64171 0.103418
253253 −0.994058 −0.0624959
254254 −12.7103 −0.797515
255255 −3.62693 −0.227127
256256 10.8640 0.679001
257257 −21.9037 −1.36631 −0.683157 0.730271i 0.739394π-0.739394\pi
−0.683157 + 0.730271i 0.739394π0.739394\pi
258258 −9.28640 −0.578146
259259 0.353700 0.0219778
260260 −2.74286 −0.170105
261261 10.3621 0.641399
262262 29.7023 1.83502
263263 −4.62072 −0.284926 −0.142463 0.989800i 0.545502π-0.545502\pi
−0.142463 + 0.989800i 0.545502π0.545502\pi
264264 −2.30375 −0.141786
265265 26.0470 1.60005
266266 7.02005 0.430427
267267 −0.429627 −0.0262928
268268 2.17536 0.132881
269269 −15.4154 −0.939895 −0.469948 0.882694i 0.655727π-0.655727\pi
−0.469948 + 0.882694i 0.655727π0.655727\pi
270270 4.10962 0.250103
271271 −29.3414 −1.78237 −0.891183 0.453645i 0.850124π-0.850124\pi
−0.891183 + 0.453645i 0.850124π0.850124\pi
272272 −6.56716 −0.398192
273273 7.55632 0.457329
274274 −27.7132 −1.67421
275275 1.74619 0.105299
276276 0.493968 0.0297334
277277 2.86762 0.172299 0.0861493 0.996282i 0.472544π-0.472544\pi
0.0861493 + 0.996282i 0.472544π0.472544\pi
278278 11.0798 0.664524
279279 1.46354 0.0876200
280280 21.4967 1.28468
281281 32.5003 1.93881 0.969404 0.245471i 0.0789426π-0.0789426\pi
0.969404 + 0.245471i 0.0789426π0.0789426\pi
282282 6.81364 0.405746
283283 −20.1377 −1.19706 −0.598532 0.801099i 0.704249π-0.704249\pi
−0.598532 + 0.801099i 0.704249π0.704249\pi
284284 −6.49035 −0.385131
285285 3.38841 0.200712
286286 3.32793 0.196785
287287 7.55875 0.446179
288288 2.64885 0.156085
289289 −15.0701 −0.886476
290290 −42.5844 −2.50064
291291 −7.74609 −0.454084
292292 0.892054 0.0522035
293293 18.9168 1.10513 0.552567 0.833468i 0.313648π-0.313648\pi
0.552567 + 0.833468i 0.313648π0.313648\pi
294294 7.56817 0.441385
295295 8.32875 0.484918
296296 0.246638 0.0143355
297297 −0.961440 −0.0557884
298298 10.6097 0.614603
299299 2.27359 0.131485
300300 −0.867720 −0.0500978
301301 −20.2724 −1.16848
302302 −6.02726 −0.346830
303303 −8.32864 −0.478468
304304 6.13526 0.351881
305305 −20.2595 −1.16006
306306 −2.18674 −0.125008
307307 6.24336 0.356327 0.178164 0.984001i 0.442984π-0.442984\pi
0.178164 + 0.984001i 0.442984π0.442984\pi
308308 1.57840 0.0899380
309309 −13.5440 −0.770491
310310 −6.01460 −0.341607
311311 7.45699 0.422847 0.211424 0.977395i 0.432190π-0.432190\pi
0.211424 + 0.977395i 0.432190π0.432190\pi
312312 5.26909 0.298304
313313 28.5353 1.61291 0.806457 0.591293i 0.201382π-0.201382\pi
0.806457 + 0.591293i 0.201382π0.201382\pi
314314 4.26606 0.240748
315315 8.97139 0.505480
316316 0.608905 0.0342536
317317 9.42774 0.529515 0.264757 0.964315i 0.414708π-0.414708\pi
0.264757 + 0.964315i 0.414708π0.414708\pi
318318 15.7042 0.880646
319319 9.96255 0.557796
320320 13.7980 0.771333
321321 11.6097 0.647989
322322 5.59251 0.311658
323323 −1.80298 −0.100321
324324 0.477759 0.0265422
325325 −3.99386 −0.221540
326326 38.6118 2.13851
327327 4.66299 0.257864
328328 5.27078 0.291030
329329 14.8743 0.820048
330330 3.95115 0.217504
331331 −16.6458 −0.914934 −0.457467 0.889227i 0.651243π-0.651243\pi
−0.457467 + 0.889227i 0.651243π0.651243\pi
332332 3.05330 0.167572
333333 0.102931 0.00564059
334334 12.5532 0.686879
335335 11.8876 0.649489
336336 16.2442 0.886192
337337 −34.6785 −1.88906 −0.944530 0.328426i 0.893482π-0.893482\pi
−0.944530 + 0.328426i 0.893482π0.893482\pi
338338 12.8516 0.699034
339339 −10.9955 −0.597196
340340 1.73280 0.0939743
341341 1.40711 0.0761992
342342 2.04293 0.110469
343343 −7.53243 −0.406713
344344 −14.1361 −0.762169
345345 2.69937 0.145329
346346 −37.2627 −2.00325
347347 −12.1433 −0.651887 −0.325944 0.945389i 0.605682π-0.605682\pi
−0.325944 + 0.945389i 0.605682π0.605682\pi
348348 −4.95060 −0.265380
349349 9.00204 0.481868 0.240934 0.970541i 0.422546π-0.422546\pi
0.240934 + 0.970541i 0.422546π0.422546\pi
350350 −9.82398 −0.525114
351351 2.19899 0.117373
352352 2.54671 0.135740
353353 9.71810 0.517242 0.258621 0.965979i 0.416732π-0.416732\pi
0.258621 + 0.965979i 0.416732π0.416732\pi
354354 5.02154 0.266892
355355 −35.4676 −1.88242
356356 0.205258 0.0108787
357357 −4.77370 −0.252651
358358 23.2834 1.23057
359359 27.7228 1.46315 0.731577 0.681759i 0.238785π-0.238785\pi
0.731577 + 0.681759i 0.238785π0.238785\pi
360360 6.25583 0.329711
361361 −17.3156 −0.911347
362362 −1.57409 −0.0827323
363363 10.0756 0.528834
364364 −3.61010 −0.189221
365365 4.87477 0.255157
366366 −12.2148 −0.638478
367367 7.47223 0.390047 0.195024 0.980799i 0.437522π-0.437522\pi
0.195024 + 0.980799i 0.437522π0.437522\pi
368368 4.88765 0.254786
369369 2.19969 0.114511
370370 −0.423008 −0.0219911
371371 34.2825 1.77986
372372 −0.699221 −0.0362529
373373 −33.2179 −1.71996 −0.859978 0.510331i 0.829523π-0.829523\pi
−0.859978 + 0.510331i 0.829523π0.829523\pi
374374 −2.10242 −0.108713
375375 8.31216 0.429238
376376 10.3720 0.534895
377377 −22.7862 −1.17355
378378 5.40900 0.278209
379379 −4.98384 −0.256003 −0.128001 0.991774i 0.540856π-0.540856\pi
−0.128001 + 0.991774i 0.540856π0.540856\pi
380380 −1.61884 −0.0830448
381381 −8.07470 −0.413679
382382 25.7027 1.31507
383383 −18.1335 −0.926577 −0.463289 0.886207i 0.653331π-0.653331\pi
−0.463289 + 0.886207i 0.653331π0.653331\pi
384384 13.6168 0.694878
385385 8.62545 0.439594
386386 −33.8109 −1.72093
387387 −5.89954 −0.299890
388388 3.70076 0.187878
389389 −26.2513 −1.33099 −0.665496 0.746402i 0.731780π-0.731780\pi
−0.665496 + 0.746402i 0.731780π0.731780\pi
390390 −9.03700 −0.457606
391391 −1.43634 −0.0726389
392392 11.5206 0.581877
393393 18.8695 0.951842
394394 1.02216 0.0514955
395395 3.32746 0.167423
396396 0.459336 0.0230825
397397 −0.305813 −0.0153483 −0.00767416 0.999971i 0.502443π-0.502443\pi
−0.00767416 + 0.999971i 0.502443π0.502443\pi
398398 −21.4352 −1.07445
399399 4.45975 0.223267
400400 −8.58579 −0.429290
401401 −30.9766 −1.54690 −0.773448 0.633860i 0.781469π-0.781469\pi
−0.773448 + 0.633860i 0.781469π0.781469\pi
402402 7.16723 0.357469
403403 −3.21831 −0.160316
404404 3.97908 0.197967
405405 2.61079 0.129731
406406 −56.0487 −2.78165
407407 0.0989621 0.00490537
408408 −3.32875 −0.164797
409409 −4.93720 −0.244129 −0.122065 0.992522i 0.538951π-0.538951\pi
−0.122065 + 0.992522i 0.538951π0.538951\pi
410410 −9.03991 −0.446449
411411 −17.6058 −0.868432
412412 6.47077 0.318792
413413 10.9621 0.539411
414414 1.62749 0.0799870
415415 16.6852 0.819046
416416 −5.82479 −0.285584
417417 7.03888 0.344695
418418 1.96415 0.0960698
419419 −26.3828 −1.28888 −0.644442 0.764653i 0.722910π-0.722910\pi
−0.644442 + 0.764653i 0.722910π0.722910\pi
420420 −4.28616 −0.209143
421421 −18.4529 −0.899337 −0.449668 0.893196i 0.648458π-0.648458\pi
−0.449668 + 0.893196i 0.648458π0.648458\pi
422422 −10.7149 −0.521591
423423 4.32862 0.210465
424424 23.9055 1.16096
425425 2.52312 0.122389
426426 −21.3840 −1.03606
427427 −26.6652 −1.29042
428428 −5.54662 −0.268106
429429 2.11419 0.102074
430430 24.2448 1.16919
431431 41.1292 1.98112 0.990562 0.137066i 0.0437673π-0.0437673\pi
0.990562 + 0.137066i 0.0437673π0.0437673\pi
432432 4.72726 0.227441
433433 −25.8354 −1.24157 −0.620784 0.783982i 0.713186π-0.713186\pi
−0.620784 + 0.783982i 0.713186π0.713186\pi
434434 −7.91630 −0.379995
435435 −27.0533 −1.29711
436436 −2.22778 −0.106692
437437 1.34188 0.0641907
438438 2.93908 0.140435
439439 −12.4780 −0.595542 −0.297771 0.954637i 0.596243π-0.596243\pi
−0.297771 + 0.954637i 0.596243π0.596243\pi
440440 6.01460 0.286735
441441 4.80796 0.228951
442442 4.80861 0.228722
443443 1.99221 0.0946526 0.0473263 0.998879i 0.484930π-0.484930\pi
0.0473263 + 0.998879i 0.484930π0.484930\pi
444444 −0.0491763 −0.00233380
445445 1.12167 0.0531721
446446 0.181197 0.00857992
447447 6.74021 0.318801
448448 18.1607 0.858012
449449 8.59158 0.405462 0.202731 0.979234i 0.435018π-0.435018\pi
0.202731 + 0.979234i 0.435018π0.435018\pi
450450 −2.85891 −0.134770
451451 2.11487 0.0995855
452452 5.25322 0.247091
453453 −3.82904 −0.179904
454454 16.4546 0.772251
455455 −19.7280 −0.924861
456456 3.10983 0.145631
457457 −18.2645 −0.854378 −0.427189 0.904162i 0.640496π-0.640496\pi
−0.427189 + 0.904162i 0.640496π0.640496\pi
458458 −35.5639 −1.66179
459459 −1.38921 −0.0648427
460460 −1.28965 −0.0601301
461461 −9.20255 −0.428605 −0.214303 0.976767i 0.568748π-0.568748\pi
−0.214303 + 0.976767i 0.568748π0.568748\pi
462462 5.20043 0.241946
463463 −7.76606 −0.360919 −0.180460 0.983582i 0.557759π-0.557759\pi
−0.180460 + 0.983582i 0.557759π0.557759\pi
464464 −48.9845 −2.27405
465465 −3.82100 −0.177195
466466 13.1091 0.607268
467467 −8.59615 −0.397782 −0.198891 0.980022i 0.563734π-0.563734\pi
−0.198891 + 0.980022i 0.563734π0.563734\pi
468468 −1.05059 −0.0485634
469469 15.6462 0.722475
470470 −17.7890 −0.820545
471471 2.71018 0.124878
472472 7.64400 0.351844
473473 −5.67205 −0.260801
474474 2.00618 0.0921470
475475 −2.35719 −0.108155
476476 2.28068 0.104535
477477 9.97667 0.456800
478478 −7.32232 −0.334915
479479 21.8628 0.998935 0.499468 0.866333i 0.333529π-0.333529\pi
0.499468 + 0.866333i 0.333529π0.333529\pi
480480 −6.91560 −0.315652
481481 −0.226344 −0.0103204
482482 24.3937 1.11110
483483 3.55285 0.161660
484484 −4.81372 −0.218806
485485 20.2234 0.918298
486486 1.57409 0.0714022
487487 −35.5574 −1.61126 −0.805629 0.592420i 0.798173π-0.798173\pi
−0.805629 + 0.592420i 0.798173π0.798173\pi
488488 −18.5939 −0.841705
489489 24.5296 1.10927
490490 −19.7589 −0.892616
491491 −23.8887 −1.07808 −0.539041 0.842279i 0.681213π-0.681213\pi
−0.539041 + 0.842279i 0.681213π0.681213\pi
492492 −1.05092 −0.0473793
493493 14.3952 0.648325
494494 −4.49237 −0.202121
495495 2.51012 0.112821
496496 −6.91855 −0.310652
497497 −46.6817 −2.09396
498498 10.0598 0.450791
499499 25.1828 1.12734 0.563668 0.826002i 0.309390π-0.309390\pi
0.563668 + 0.826002i 0.309390π0.309390\pi
500500 −3.97121 −0.177598
501501 7.97488 0.356291
502502 35.0841 1.56588
503503 −8.57635 −0.382400 −0.191200 0.981551i 0.561238π-0.561238\pi
−0.191200 + 0.981551i 0.561238π0.561238\pi
504504 8.23380 0.366763
505505 21.7443 0.967610
506506 1.56474 0.0695610
507507 8.16445 0.362596
508508 3.85776 0.171160
509509 2.70721 0.119995 0.0599975 0.998199i 0.480891π-0.480891\pi
0.0599975 + 0.998199i 0.480891π0.480891\pi
510510 5.70912 0.252804
511511 6.41608 0.283831
512512 10.1326 0.447802
513513 1.29785 0.0573013
514514 34.4784 1.52078
515515 35.3605 1.55817
516516 2.81856 0.124080
517517 4.16171 0.183032
518518 −0.556755 −0.0244624
519519 −23.6725 −1.03911
520520 −13.7565 −0.603262
521521 −26.8480 −1.17623 −0.588117 0.808776i 0.700131π-0.700131\pi
−0.588117 + 0.808776i 0.700131π0.700131\pi
522522 −16.3109 −0.713909
523523 −26.7930 −1.17157 −0.585787 0.810465i 0.699215π-0.699215\pi
−0.585787 + 0.810465i 0.699215π0.699215\pi
524524 −9.01509 −0.393826
525525 −6.24106 −0.272382
526526 7.27343 0.317137
527527 2.03317 0.0885662
528528 4.54498 0.197795
529529 −21.9310 −0.953522
530530 −41.0003 −1.78094
531531 3.19012 0.138440
532532 −2.13069 −0.0923770
533533 −4.83710 −0.209518
534534 0.676272 0.0292651
535535 −30.3104 −1.31043
536536 10.9103 0.471251
537537 14.7917 0.638307
538538 24.2653 1.04615
539539 4.62257 0.199108
540540 −1.24733 −0.0536765
541541 −3.30744 −0.142198 −0.0710991 0.997469i 0.522651π-0.522651\pi
−0.0710991 + 0.997469i 0.522651π0.522651\pi
542542 46.1861 1.98386
543543 −1.00000 −0.0429141
544544 3.67981 0.157770
545545 −12.1741 −0.521481
546546 −11.8943 −0.509030
547547 5.26057 0.224926 0.112463 0.993656i 0.464126π-0.464126\pi
0.112463 + 0.993656i 0.464126π0.464126\pi
548548 8.41135 0.359315
549549 −7.75991 −0.331185
550550 −2.74867 −0.117204
551551 −13.4484 −0.572923
552552 2.47744 0.105447
553553 4.37954 0.186237
554554 −4.51389 −0.191777
555555 −0.268732 −0.0114070
556556 −3.36289 −0.142618
557557 −9.12524 −0.386649 −0.193324 0.981135i 0.561927π-0.561927\pi
−0.193324 + 0.981135i 0.561927π0.561927\pi
558558 −2.30375 −0.0975254
559559 12.9730 0.548700
560560 −42.4101 −1.79215
561561 −1.33564 −0.0563908
562562 −51.1585 −2.15799
563563 −8.22149 −0.346495 −0.173247 0.984878i 0.555426π-0.555426\pi
−0.173247 + 0.984878i 0.555426π0.555426\pi
564564 −2.06804 −0.0870801
565565 28.7071 1.20772
566566 31.6986 1.33239
567567 3.43627 0.144310
568568 −32.5516 −1.36583
569569 34.5974 1.45040 0.725198 0.688540i 0.241748π-0.241748\pi
0.725198 + 0.688540i 0.241748π0.241748\pi
570570 −5.33366 −0.223402
571571 −26.2483 −1.09846 −0.549229 0.835672i 0.685078π-0.685078\pi
−0.549229 + 0.835672i 0.685078π0.685078\pi
572572 −1.01008 −0.0422334
573573 16.3286 0.682139
574574 −11.8981 −0.496619
575575 −1.87785 −0.0783117
576576 5.28500 0.220208
577577 −28.7241 −1.19580 −0.597900 0.801570i 0.703998π-0.703998\pi
−0.597900 + 0.801570i 0.703998π0.703998\pi
578578 23.7217 0.986692
579579 −21.4797 −0.892664
580580 12.9250 0.536680
581581 21.9608 0.911087
582582 12.1930 0.505418
583583 9.59197 0.397259
584584 4.47399 0.185135
585585 −5.74110 −0.237365
586586 −29.7768 −1.23007
587587 17.2536 0.712134 0.356067 0.934460i 0.384117π-0.384117\pi
0.356067 + 0.934460i 0.384117π0.384117\pi
588588 −2.29705 −0.0947287
589589 −1.89945 −0.0782656
590590 −13.1102 −0.539738
591591 0.649364 0.0267113
592592 −0.486583 −0.0199984
593593 37.5049 1.54014 0.770072 0.637957i 0.220220π-0.220220\pi
0.770072 + 0.637957i 0.220220π0.220220\pi
594594 1.51339 0.0620952
595595 12.4631 0.510939
596596 −3.22020 −0.131904
597597 −13.6175 −0.557328
598598 −3.57884 −0.146350
599599 28.1640 1.15075 0.575375 0.817890i 0.304856π-0.304856\pi
0.575375 + 0.817890i 0.304856π0.304856\pi
600600 −4.35195 −0.177667
601601 28.6925 1.17039 0.585196 0.810892i 0.301018π-0.301018\pi
0.585196 + 0.810892i 0.301018π0.301018\pi
602602 31.9106 1.30058
603603 4.55325 0.185423
604604 1.82936 0.0744356
605605 −26.3054 −1.06947
606606 13.1100 0.532559
607607 44.1968 1.79389 0.896946 0.442141i 0.145781π-0.145781\pi
0.896946 + 0.442141i 0.145781π0.145781\pi
608608 −3.43780 −0.139421
609609 −35.6071 −1.44287
610610 31.8903 1.29120
611611 −9.51858 −0.385081
612612 0.663707 0.0268288
613613 16.4282 0.663528 0.331764 0.943362i 0.392356π-0.392356\pi
0.331764 + 0.943362i 0.392356π0.392356\pi
614614 −9.82760 −0.396610
615615 −5.74294 −0.231578
616616 7.91630 0.318957
617617 29.6980 1.19560 0.597798 0.801647i 0.296042π-0.296042\pi
0.597798 + 0.801647i 0.296042π0.296042\pi
618618 21.3195 0.857595
619619 22.7157 0.913021 0.456511 0.889718i 0.349099π-0.349099\pi
0.456511 + 0.889718i 0.349099π0.349099\pi
620620 1.82552 0.0733146
621621 1.03393 0.0414901
622622 −11.7380 −0.470650
623623 1.47632 0.0591473
624624 −10.3952 −0.416141
625625 −30.7825 −1.23130
626626 −44.9172 −1.79525
627627 1.24780 0.0498324
628628 −1.29481 −0.0516686
629629 0.142993 0.00570150
630630 −14.1218 −0.562625
631631 36.5102 1.45345 0.726724 0.686930i 0.241042π-0.241042\pi
0.726724 + 0.686930i 0.241042π0.241042\pi
632632 3.05389 0.121477
633633 −6.80702 −0.270555
634634 −14.8401 −0.589376
635635 21.0813 0.836588
636636 −4.76644 −0.189002
637637 −10.5727 −0.418904
638638 −15.6820 −0.620855
639639 −13.5850 −0.537414
640640 −35.5505 −1.40526
641641 3.50020 0.138250 0.0691249 0.997608i 0.477979π-0.477979\pi
0.0691249 + 0.997608i 0.477979π0.477979\pi
642642 −18.2747 −0.721243
643643 46.8651 1.84818 0.924089 0.382177i 0.124825π-0.124825\pi
0.924089 + 0.382177i 0.124825π0.124825\pi
644644 −1.69741 −0.0668872
645645 15.4025 0.606471
646646 2.83805 0.111662
647647 10.0298 0.394310 0.197155 0.980372i 0.436830π-0.436830\pi
0.197155 + 0.980372i 0.436830π0.436830\pi
648648 2.39614 0.0941294
649649 3.06711 0.120395
650650 6.28670 0.246585
651651 −5.02913 −0.197107
652652 −11.7192 −0.458961
653653 −6.80902 −0.266458 −0.133229 0.991085i 0.542535π-0.542535\pi
−0.133229 + 0.991085i 0.542535π0.542535\pi
654654 −7.33996 −0.287015
655655 −49.2644 −1.92492
656656 −10.3985 −0.405995
657657 1.86716 0.0728450
658658 −23.4135 −0.912754
659659 39.5734 1.54156 0.770780 0.637101i 0.219867π-0.219867\pi
0.770780 + 0.637101i 0.219867π0.219867\pi
660660 −1.19923 −0.0466800
661661 −29.3280 −1.14073 −0.570363 0.821393i 0.693198π-0.693198\pi
−0.570363 + 0.821393i 0.693198π0.693198\pi
662662 26.2019 1.01837
663663 3.05485 0.118641
664664 15.3135 0.594277
665665 −11.6435 −0.451515
666666 −0.162023 −0.00627826
667667 −10.7137 −0.414835
668668 −3.81007 −0.147416
669669 0.115112 0.00445049
670670 −18.7121 −0.722913
671671 −7.46069 −0.288017
672672 −9.10217 −0.351124
673673 44.8722 1.72970 0.864848 0.502034i 0.167415π-0.167415\pi
0.864848 + 0.502034i 0.167415π0.167415\pi
674674 54.5871 2.10262
675675 −1.81623 −0.0699067
676676 −3.90064 −0.150025
677677 19.9829 0.768006 0.384003 0.923332i 0.374545π-0.374545\pi
0.384003 + 0.923332i 0.374545π0.374545\pi
678678 17.3080 0.664709
679679 26.6177 1.02149
680680 8.69066 0.333272
681681 10.4534 0.400574
682682 −2.21491 −0.0848135
683683 20.2488 0.774800 0.387400 0.921912i 0.373373π-0.373373\pi
0.387400 + 0.921912i 0.373373π0.373373\pi
684684 −0.620058 −0.0237085
685685 45.9652 1.75624
686686 11.8567 0.452692
687687 −22.5933 −0.861989
688688 27.8887 1.06325
689689 −21.9386 −0.835793
690690 −4.24905 −0.161758
691691 −36.5673 −1.39108 −0.695542 0.718485i 0.744836π-0.744836\pi
−0.695542 + 0.718485i 0.744836π0.744836\pi
692692 11.3098 0.429933
693693 3.30377 0.125500
694694 19.1147 0.725583
695695 −18.3770 −0.697081
696696 −24.8291 −0.941146
697697 3.05584 0.115748
698698 −14.1700 −0.536343
699699 8.32806 0.314996
700700 2.98172 0.112698
701701 −18.3854 −0.694407 −0.347204 0.937790i 0.612869π-0.612869\pi
−0.347204 + 0.937790i 0.612869π0.612869\pi
702702 −3.46140 −0.130642
703703 −0.133589 −0.00503840
704704 5.08121 0.191505
705705 −11.3011 −0.425625
706706 −15.2972 −0.575716
707707 28.6195 1.07635
708708 −1.52411 −0.0572796
709709 −14.3088 −0.537380 −0.268690 0.963227i 0.586591π-0.586591\pi
−0.268690 + 0.963227i 0.586591π0.586591\pi
710710 55.8291 2.09523
711711 1.27450 0.0477976
712712 1.02945 0.0385802
713713 −1.51320 −0.0566696
714714 7.51423 0.281213
715715 −5.51972 −0.206426
716716 −7.06685 −0.264101
717717 −4.65178 −0.173724
718718 −43.6382 −1.62856
719719 −14.5481 −0.542552 −0.271276 0.962502i 0.587446π-0.587446\pi
−0.271276 + 0.962502i 0.587446π0.587446\pi
720720 −12.3419 −0.459955
721721 46.5409 1.73327
722722 27.2563 1.01437
723723 15.4970 0.576340
724724 0.477759 0.0177558
725725 18.8200 0.698957
726726 −15.8600 −0.588618
727727 21.9157 0.812810 0.406405 0.913693i 0.366782π-0.366782\pi
0.406405 + 0.913693i 0.366782π0.366782\pi
728728 −18.1060 −0.671054
729729 1.00000 0.0370370
730730 −7.67333 −0.284003
731731 −8.19569 −0.303129
732732 3.70737 0.137028
733733 −37.9899 −1.40319 −0.701595 0.712576i 0.747528π-0.747528\pi
−0.701595 + 0.712576i 0.747528π0.747528\pi
734734 −11.7620 −0.434142
735735 −12.5526 −0.463009
736736 −2.73872 −0.100950
737737 4.37768 0.161254
738738 −3.46252 −0.127457
739739 49.5268 1.82187 0.910937 0.412545i 0.135360π-0.135360\pi
0.910937 + 0.412545i 0.135360π0.135360\pi
740740 0.128389 0.00471967
741741 −2.85395 −0.104842
742742 −53.9638 −1.98107
743743 24.6189 0.903179 0.451590 0.892226i 0.350857π-0.350857\pi
0.451590 + 0.892226i 0.350857π0.350857\pi
744744 −3.50686 −0.128568
745745 −17.5973 −0.644714
746746 52.2879 1.91440
747747 6.39088 0.233830
748748 0.638114 0.0233318
749749 −39.8940 −1.45769
750750 −13.0841 −0.477763
751751 −19.0575 −0.695418 −0.347709 0.937603i 0.613040π-0.613040\pi
−0.347709 + 0.937603i 0.613040π0.613040\pi
752752 −20.4625 −0.746192
753753 22.2885 0.812239
754754 35.8675 1.30622
755755 9.99683 0.363822
756756 −1.64171 −0.0597084
757757 −5.82521 −0.211721 −0.105860 0.994381i 0.533760π-0.533760\pi
−0.105860 + 0.994381i 0.533760π0.533760\pi
758758 7.84502 0.284944
759759 0.994058 0.0360820
760760 −8.11911 −0.294511
761761 −40.9900 −1.48589 −0.742943 0.669355i 0.766571π-0.766571\pi
−0.742943 + 0.669355i 0.766571π0.766571\pi
762762 12.7103 0.460446
763763 −16.0233 −0.580082
764764 −7.80115 −0.282236
765765 3.62693 0.131132
766766 28.5437 1.03133
767767 −7.01504 −0.253299
768768 −10.8640 −0.392021
769769 1.22318 0.0441088 0.0220544 0.999757i 0.492979π-0.492979\pi
0.0220544 + 0.999757i 0.492979π0.492979\pi
770770 −13.5772 −0.489289
771771 21.9037 0.788842
772772 10.2621 0.369341
773773 −21.7320 −0.781645 −0.390823 0.920466i 0.627809π-0.627809\pi
−0.390823 + 0.920466i 0.627809π0.627809\pi
774774 9.28640 0.333793
775775 2.65813 0.0954828
776776 18.5607 0.666292
777777 −0.353700 −0.0126889
778778 41.3218 1.48146
779779 −2.85487 −0.102286
780780 2.74286 0.0982102
781781 −13.0611 −0.467365
782782 2.26093 0.0808507
783783 −10.3621 −0.370312
784784 −22.7285 −0.811733
785785 −7.07571 −0.252543
786786 −29.7023 −1.05945
787787 −17.8059 −0.634712 −0.317356 0.948307i 0.602795π-0.602795\pi
−0.317356 + 0.948307i 0.602795π0.602795\pi
788788 −0.310239 −0.0110518
789789 4.62072 0.164502
790790 −5.23772 −0.186350
791791 37.7837 1.34343
792792 2.30375 0.0818601
793793 17.0640 0.605959
794794 0.481378 0.0170835
795795 −26.0470 −0.923792
796796 6.50590 0.230595
797797 9.71471 0.344113 0.172056 0.985087i 0.444959π-0.444959\pi
0.172056 + 0.985087i 0.444959π0.444959\pi
798798 −7.02005 −0.248507
799799 6.01336 0.212737
800800 4.81092 0.170092
801801 0.429627 0.0151801
802802 48.7599 1.72177
803803 1.79517 0.0633500
804804 −2.17536 −0.0767190
805805 −9.27576 −0.326927
806806 5.06591 0.178439
807807 15.4154 0.542649
808808 19.9566 0.702072
809809 −29.1858 −1.02612 −0.513060 0.858353i 0.671488π-0.671488\pi
−0.513060 + 0.858353i 0.671488π0.671488\pi
810810 −4.10962 −0.144397
811811 −42.0110 −1.47521 −0.737603 0.675235i 0.764042π-0.764042\pi
−0.737603 + 0.675235i 0.764042π0.764042\pi
812812 17.0116 0.596990
813813 29.3414 1.02905
814814 −0.155775 −0.00545992
815815 −64.0417 −2.24328
816816 6.56716 0.229897
817817 7.65669 0.267874
818818 7.77160 0.271728
819819 −7.55632 −0.264039
820820 2.74374 0.0958156
821821 −2.14389 −0.0748222 −0.0374111 0.999300i 0.511911π-0.511911\pi
−0.0374111 + 0.999300i 0.511911π0.511911\pi
822822 27.7132 0.966608
823823 30.0484 1.04742 0.523711 0.851896i 0.324547π-0.324547\pi
0.523711 + 0.851896i 0.324547π0.324547\pi
824824 32.4534 1.13057
825825 −1.74619 −0.0607947
826826 −17.2554 −0.600392
827827 32.3020 1.12325 0.561625 0.827392i 0.310176π-0.310176\pi
0.561625 + 0.827392i 0.310176π0.310176\pi
828828 −0.493968 −0.0171666
829829 30.2603 1.05098 0.525491 0.850799i 0.323882π-0.323882\pi
0.525491 + 0.850799i 0.323882π0.323882\pi
830830 −26.2641 −0.911639
831831 −2.86762 −0.0994767
832832 −11.6216 −0.402908
833833 6.67927 0.231423
834834 −11.0798 −0.383663
835835 −20.8207 −0.720531
836836 −0.596148 −0.0206182
837837 −1.46354 −0.0505874
838838 41.5289 1.43459
839839 −0.881464 −0.0304315 −0.0152158 0.999884i 0.504844π-0.504844\pi
−0.0152158 + 0.999884i 0.504844π0.504844\pi
840840 −21.4967 −0.741708
841841 78.3735 2.70254
842842 29.0464 1.00101
843843 −32.5003 −1.11937
844844 3.25212 0.111942
845845 −21.3157 −0.733282
846846 −6.81364 −0.234258
847847 −34.6226 −1.18965
848848 −47.1623 −1.61956
849849 20.1377 0.691126
850850 −3.97162 −0.136225
851851 −0.106423 −0.00364814
852852 6.49035 0.222356
853853 −3.10967 −0.106473 −0.0532365 0.998582i 0.516954π-0.516954\pi
−0.0532365 + 0.998582i 0.516954π0.516954\pi
854854 41.9734 1.43630
855855 −3.38841 −0.115881
856856 −27.8184 −0.950815
857857 31.5844 1.07890 0.539451 0.842017i 0.318632π-0.318632\pi
0.539451 + 0.842017i 0.318632π0.318632\pi
858858 −3.32793 −0.113614
859859 −10.4583 −0.356831 −0.178416 0.983955i 0.557097π-0.557097\pi
−0.178416 + 0.983955i 0.557097π0.557097\pi
860860 −7.35866 −0.250928
861861 −7.55875 −0.257601
862862 −64.7411 −2.20509
863863 29.2721 0.996433 0.498217 0.867053i 0.333988π-0.333988\pi
0.498217 + 0.867053i 0.333988π0.333988\pi
864864 −2.64885 −0.0901157
865865 61.8040 2.10140
866866 40.6672 1.38193
867867 15.0701 0.511807
868868 2.40271 0.0815534
869869 1.22536 0.0415674
870870 42.5844 1.44375
871871 −10.0125 −0.339262
872872 −11.1732 −0.378372
873873 7.74609 0.262165
874874 −2.11224 −0.0714475
875875 −28.5628 −0.965600
876876 −0.892054 −0.0301397
877877 −17.6778 −0.596937 −0.298468 0.954419i 0.596476π-0.596476\pi
−0.298468 + 0.954419i 0.596476π0.596476\pi
878878 19.6415 0.662868
879879 −18.9168 −0.638049
880880 −11.8660 −0.400002
881881 −3.04541 −0.102602 −0.0513012 0.998683i 0.516337π-0.516337\pi
−0.0513012 + 0.998683i 0.516337π0.516337\pi
882882 −7.56817 −0.254833
883883 −15.7628 −0.530459 −0.265230 0.964185i 0.585448π-0.585448\pi
−0.265230 + 0.964185i 0.585448π0.585448\pi
884884 −1.45948 −0.0490878
885885 −8.32875 −0.279968
886886 −3.13591 −0.105353
887887 −21.8406 −0.733335 −0.366667 0.930352i 0.619501π-0.619501\pi
−0.366667 + 0.930352i 0.619501π0.619501\pi
888888 −0.246638 −0.00827663
889889 27.7469 0.930600
890890 −1.76560 −0.0591832
891891 0.961440 0.0322094
892892 −0.0549958 −0.00184140
893893 −5.61788 −0.187995
894894 −10.6097 −0.354841
895895 −38.6179 −1.29086
896896 −46.7909 −1.56317
897897 −2.27359 −0.0759130
898898 −13.5239 −0.451299
899899 15.1654 0.505795
900900 0.867720 0.0289240
901901 13.8597 0.461733
902902 −3.32900 −0.110844
903903 20.2724 0.674624
904904 26.3469 0.876286
905905 2.61079 0.0867856
906906 6.02726 0.200242
907907 −44.5734 −1.48003 −0.740017 0.672588i 0.765183π-0.765183\pi
−0.740017 + 0.672588i 0.765183π0.765183\pi
908908 −4.99420 −0.165738
909909 8.32864 0.276244
910910 31.0536 1.02942
911911 −21.3786 −0.708305 −0.354153 0.935188i 0.615231π-0.615231\pi
−0.354153 + 0.935188i 0.615231π0.615231\pi
912912 −6.13526 −0.203159
913913 6.14444 0.203351
914914 28.7500 0.950965
915915 20.2595 0.669759
916916 10.7942 0.356649
917917 −64.8409 −2.14123
918918 2.18674 0.0721732
919919 −45.8883 −1.51371 −0.756857 0.653581i 0.773266π-0.773266\pi
−0.756857 + 0.653581i 0.773266π0.773266\pi
920920 −6.46807 −0.213246
921921 −6.24336 −0.205726
922922 14.4856 0.477059
923923 29.8732 0.983289
924924 −1.57840 −0.0519257
925925 0.186947 0.00614677
926926 12.2245 0.401721
927927 13.5440 0.444843
928928 27.4477 0.901015
929929 9.13738 0.299788 0.149894 0.988702i 0.452107π-0.452107\pi
0.149894 + 0.988702i 0.452107π0.452107\pi
930930 6.01460 0.197227
931931 −6.24000 −0.204508
932932 −3.97881 −0.130330
933933 −7.45699 −0.244131
934934 13.5311 0.442752
935935 3.48708 0.114040
936936 −5.26909 −0.172226
937937 34.6066 1.13055 0.565275 0.824903i 0.308770π-0.308770\pi
0.565275 + 0.824903i 0.308770π0.308770\pi
938938 −24.6286 −0.804151
939939 −28.5353 −0.931216
940940 5.39921 0.176103
941941 15.0445 0.490437 0.245219 0.969468i 0.421140π-0.421140\pi
0.245219 + 0.969468i 0.421140π0.421140\pi
942942 −4.26606 −0.138996
943943 −2.27432 −0.0740621
944944 −15.0806 −0.490830
945945 −8.97139 −0.291839
946946 8.92831 0.290284
947947 20.2433 0.657820 0.328910 0.944361i 0.393319π-0.393319\pi
0.328910 + 0.944361i 0.393319π0.393319\pi
948948 −0.608905 −0.0197763
949949 −4.10587 −0.133282
950950 3.71042 0.120382
951951 −9.42774 −0.305715
952952 11.4385 0.370723
953953 −40.3903 −1.30837 −0.654185 0.756334i 0.726988π-0.726988\pi
−0.654185 + 0.756334i 0.726988π0.726988\pi
954954 −15.7042 −0.508441
955955 −42.6307 −1.37950
956956 2.22243 0.0718785
957957 −9.96255 −0.322044
958958 −34.4140 −1.11186
959959 60.4985 1.95360
960960 −13.7980 −0.445329
961961 −28.8580 −0.930905
962962 0.356286 0.0114871
963963 −11.6097 −0.374116
964964 −7.40384 −0.238462
965965 56.0789 1.80524
966966 −5.59251 −0.179936
967967 −21.2417 −0.683087 −0.341543 0.939866i 0.610950π-0.610950\pi
−0.341543 + 0.939866i 0.610950π0.610950\pi
968968 −24.1427 −0.775975
969969 1.80298 0.0579201
970970 −31.8335 −1.02211
971971 24.9595 0.800990 0.400495 0.916299i 0.368838π-0.368838\pi
0.400495 + 0.916299i 0.368838π0.368838\pi
972972 −0.477759 −0.0153241
973973 −24.1875 −0.775416
974974 55.9705 1.79341
975975 3.99386 0.127906
976976 36.6832 1.17420
977977 −25.7236 −0.822972 −0.411486 0.911416i 0.634990π-0.634990\pi
−0.411486 + 0.911416i 0.634990π0.634990\pi
978978 −38.6118 −1.23467
979979 0.413061 0.0132015
980980 5.99711 0.191571
981981 −4.66299 −0.148878
982982 37.6030 1.19996
983983 −48.1254 −1.53496 −0.767480 0.641073i 0.778490π-0.778490\pi
−0.767480 + 0.641073i 0.778490π0.778490\pi
984984 −5.27078 −0.168026
985985 −1.69535 −0.0540185
986986 −22.6593 −0.721618
987987 −14.8743 −0.473455
988988 1.36350 0.0433787
989989 6.09969 0.193959
990990 −3.95115 −0.125576
991991 12.6416 0.401572 0.200786 0.979635i 0.435650π-0.435650\pi
0.200786 + 0.979635i 0.435650π0.435650\pi
992992 3.87671 0.123086
993993 16.6458 0.528238
994994 73.4812 2.33068
995995 35.5525 1.12709
996996 −3.05330 −0.0967475
997997 34.3583 1.08814 0.544069 0.839041i 0.316883π-0.316883\pi
0.544069 + 0.839041i 0.316883π0.316883\pi
998998 −39.6399 −1.25478
999999 −0.102931 −0.00325660
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 543.2.a.d.1.2 8
3.2 odd 2 1629.2.a.e.1.7 8
4.3 odd 2 8688.2.a.bf.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.d.1.2 8 1.1 even 1 trivial
1629.2.a.e.1.7 8 3.2 odd 2
8688.2.a.bf.1.6 8 4.3 odd 2