Properties

Label 546.4.i.a.79.2
Level $546$
Weight $4$
Character 546.79
Analytic conductor $32.215$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,4,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.2150428631\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(-1.93649 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 546.79
Dual form 546.4.i.a.235.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(3.43649 - 5.95218i) q^{5} -6.00000 q^{6} +(0.809475 + 18.5026i) q^{7} +8.00000 q^{8} +(-4.50000 + 7.79423i) q^{9} +(6.87298 + 11.9044i) q^{10} +(-18.6825 - 32.3590i) q^{11} +(6.00000 - 10.3923i) q^{12} +13.0000 q^{13} +(-32.8569 - 17.1005i) q^{14} +20.6190 q^{15} +(-8.00000 + 13.8564i) q^{16} +(-47.4284 - 82.1484i) q^{17} +(-9.00000 - 15.5885i) q^{18} +(-52.7379 + 91.3447i) q^{19} -27.4919 q^{20} +(-46.8569 + 29.8569i) q^{21} +74.7298 q^{22} +(-18.5474 + 32.1250i) q^{23} +(12.0000 + 20.7846i) q^{24} +(38.8810 + 67.3440i) q^{25} +(-13.0000 + 22.5167i) q^{26} -27.0000 q^{27} +(62.4758 - 39.8092i) q^{28} -57.9839 q^{29} +(-20.6190 + 35.7131i) q^{30} +(-111.571 - 193.246i) q^{31} +(-16.0000 - 27.7128i) q^{32} +(56.0474 - 97.0769i) q^{33} +189.714 q^{34} +(112.912 + 58.7658i) q^{35} +36.0000 q^{36} +(13.7853 - 23.8768i) q^{37} +(-105.476 - 182.689i) q^{38} +(19.5000 + 33.7750i) q^{39} +(27.4919 - 47.6174i) q^{40} +137.446 q^{41} +(-4.85685 - 111.015i) q^{42} -495.044 q^{43} +(-74.7298 + 129.436i) q^{44} +(30.9284 + 53.5696i) q^{45} +(-37.0948 - 64.2500i) q^{46} +(-232.611 + 402.894i) q^{47} -48.0000 q^{48} +(-341.690 + 29.9547i) q^{49} -155.524 q^{50} +(142.285 - 246.445i) q^{51} +(-26.0000 - 45.0333i) q^{52} +(-136.292 - 236.065i) q^{53} +(27.0000 - 46.7654i) q^{54} -256.808 q^{55} +(6.47580 + 148.020i) q^{56} -316.427 q^{57} +(57.9839 - 100.431i) q^{58} +(-144.191 - 249.745i) q^{59} +(-41.2379 - 71.4261i) q^{60} +(-99.3800 + 172.131i) q^{61} +446.282 q^{62} +(-147.856 - 76.9523i) q^{63} +64.0000 q^{64} +(44.6744 - 77.3783i) q^{65} +(112.095 + 194.154i) q^{66} +(-103.690 - 179.595i) q^{67} +(-189.714 + 328.594i) q^{68} -111.284 q^{69} +(-214.698 + 136.804i) q^{70} -141.444 q^{71} +(-36.0000 + 62.3538i) q^{72} +(-162.737 - 281.869i) q^{73} +(27.5706 + 47.7536i) q^{74} +(-116.643 + 202.032i) q^{75} +421.903 q^{76} +(583.601 - 371.867i) q^{77} -78.0000 q^{78} +(529.855 - 917.735i) q^{79} +(54.9839 + 95.2349i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-137.446 + 238.063i) q^{82} -849.520 q^{83} +(197.141 + 102.603i) q^{84} -651.950 q^{85} +(495.044 - 857.442i) q^{86} +(-86.9758 - 150.647i) q^{87} +(-149.460 - 258.872i) q^{88} +(692.114 - 1198.78i) q^{89} -123.714 q^{90} +(10.5232 + 240.533i) q^{91} +148.379 q^{92} +(334.712 - 579.738i) q^{93} +(-465.222 - 805.788i) q^{94} +(362.467 + 627.811i) q^{95} +(48.0000 - 83.1384i) q^{96} +150.434 q^{97} +(289.806 - 621.778i) q^{98} +336.284 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 6 q^{5} - 24 q^{6} - 20 q^{7} + 32 q^{8} - 18 q^{9} + 12 q^{10} - 36 q^{11} + 24 q^{12} + 52 q^{13} + 8 q^{14} + 36 q^{15} - 32 q^{16} - 120 q^{17} - 36 q^{18} - 118 q^{19}+ \cdots + 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) 3.43649 5.95218i 0.307369 0.532379i −0.670417 0.741985i \(-0.733885\pi\)
0.977786 + 0.209606i \(0.0672180\pi\)
\(6\) −6.00000 −0.408248
\(7\) 0.809475 + 18.5026i 0.0437075 + 0.999044i
\(8\) 8.00000 0.353553
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 6.87298 + 11.9044i 0.217343 + 0.376449i
\(11\) −18.6825 32.3590i −0.512088 0.886963i −0.999902 0.0140153i \(-0.995539\pi\)
0.487813 0.872948i \(-0.337795\pi\)
\(12\) 6.00000 10.3923i 0.144338 0.250000i
\(13\) 13.0000 0.277350
\(14\) −32.8569 17.1005i −0.627240 0.326450i
\(15\) 20.6190 0.354919
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −47.4284 82.1484i −0.676652 1.17200i −0.975983 0.217846i \(-0.930097\pi\)
0.299331 0.954149i \(-0.403236\pi\)
\(18\) −9.00000 15.5885i −0.117851 0.204124i
\(19\) −52.7379 + 91.3447i −0.636784 + 1.10294i 0.349350 + 0.936992i \(0.386403\pi\)
−0.986134 + 0.165951i \(0.946931\pi\)
\(20\) −27.4919 −0.307369
\(21\) −46.8569 + 29.8569i −0.486905 + 0.310253i
\(22\) 74.7298 0.724202
\(23\) −18.5474 + 32.1250i −0.168148 + 0.291240i −0.937769 0.347261i \(-0.887112\pi\)
0.769621 + 0.638501i \(0.220445\pi\)
\(24\) 12.0000 + 20.7846i 0.102062 + 0.176777i
\(25\) 38.8810 + 67.3440i 0.311048 + 0.538752i
\(26\) −13.0000 + 22.5167i −0.0980581 + 0.169842i
\(27\) −27.0000 −0.192450
\(28\) 62.4758 39.8092i 0.421672 0.268687i
\(29\) −57.9839 −0.371287 −0.185644 0.982617i \(-0.559437\pi\)
−0.185644 + 0.982617i \(0.559437\pi\)
\(30\) −20.6190 + 35.7131i −0.125483 + 0.217343i
\(31\) −111.571 193.246i −0.646408 1.11961i −0.983974 0.178310i \(-0.942937\pi\)
0.337566 0.941302i \(-0.390396\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) 56.0474 97.0769i 0.295654 0.512088i
\(34\) 189.714 0.956930
\(35\) 112.912 + 58.7658i 0.545305 + 0.283806i
\(36\) 36.0000 0.166667
\(37\) 13.7853 23.8768i 0.0612510 0.106090i −0.833774 0.552106i \(-0.813824\pi\)
0.895025 + 0.446016i \(0.147158\pi\)
\(38\) −105.476 182.689i −0.450275 0.779898i
\(39\) 19.5000 + 33.7750i 0.0800641 + 0.138675i
\(40\) 27.4919 47.6174i 0.108671 0.188224i
\(41\) 137.446 0.523546 0.261773 0.965129i \(-0.415693\pi\)
0.261773 + 0.965129i \(0.415693\pi\)
\(42\) −4.85685 111.015i −0.0178435 0.407858i
\(43\) −495.044 −1.75566 −0.877832 0.478969i \(-0.841011\pi\)
−0.877832 + 0.478969i \(0.841011\pi\)
\(44\) −74.7298 + 129.436i −0.256044 + 0.443482i
\(45\) 30.9284 + 53.5696i 0.102456 + 0.177460i
\(46\) −37.0948 64.2500i −0.118898 0.205938i
\(47\) −232.611 + 402.894i −0.721910 + 1.25039i 0.238323 + 0.971186i \(0.423402\pi\)
−0.960233 + 0.279199i \(0.909931\pi\)
\(48\) −48.0000 −0.144338
\(49\) −341.690 + 29.9547i −0.996179 + 0.0873315i
\(50\) −155.524 −0.439889
\(51\) 142.285 246.445i 0.390665 0.676652i
\(52\) −26.0000 45.0333i −0.0693375 0.120096i
\(53\) −136.292 236.065i −0.353230 0.611812i 0.633583 0.773674i \(-0.281583\pi\)
−0.986813 + 0.161862i \(0.948250\pi\)
\(54\) 27.0000 46.7654i 0.0680414 0.117851i
\(55\) −256.808 −0.629601
\(56\) 6.47580 + 148.020i 0.0154529 + 0.353216i
\(57\) −316.427 −0.735295
\(58\) 57.9839 100.431i 0.131270 0.227366i
\(59\) −144.191 249.745i −0.318170 0.551086i 0.661937 0.749560i \(-0.269735\pi\)
−0.980106 + 0.198474i \(0.936401\pi\)
\(60\) −41.2379 71.4261i −0.0887298 0.153685i
\(61\) −99.3800 + 172.131i −0.208595 + 0.361298i −0.951272 0.308352i \(-0.900222\pi\)
0.742677 + 0.669650i \(0.233556\pi\)
\(62\) 446.282 0.914160
\(63\) −147.856 76.9523i −0.295684 0.153890i
\(64\) 64.0000 0.125000
\(65\) 44.6744 77.3783i 0.0852489 0.147655i
\(66\) 112.095 + 194.154i 0.209059 + 0.362101i
\(67\) −103.690 179.595i −0.189070 0.327479i 0.755870 0.654721i \(-0.227214\pi\)
−0.944940 + 0.327242i \(0.893881\pi\)
\(68\) −189.714 + 328.594i −0.338326 + 0.585998i
\(69\) −111.284 −0.194160
\(70\) −214.698 + 136.804i −0.366590 + 0.233589i
\(71\) −141.444 −0.236426 −0.118213 0.992988i \(-0.537717\pi\)
−0.118213 + 0.992988i \(0.537717\pi\)
\(72\) −36.0000 + 62.3538i −0.0589256 + 0.102062i
\(73\) −162.737 281.869i −0.260917 0.451921i 0.705569 0.708641i \(-0.250691\pi\)
−0.966486 + 0.256720i \(0.917358\pi\)
\(74\) 27.5706 + 47.7536i 0.0433110 + 0.0750168i
\(75\) −116.643 + 202.032i −0.179584 + 0.311048i
\(76\) 421.903 0.636784
\(77\) 583.601 371.867i 0.863734 0.550366i
\(78\) −78.0000 −0.113228
\(79\) 529.855 917.735i 0.754599 1.30700i −0.190974 0.981595i \(-0.561165\pi\)
0.945573 0.325409i \(-0.105502\pi\)
\(80\) 54.9839 + 95.2349i 0.0768423 + 0.133095i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) −137.446 + 238.063i −0.185102 + 0.320605i
\(83\) −849.520 −1.12346 −0.561729 0.827322i \(-0.689863\pi\)
−0.561729 + 0.827322i \(0.689863\pi\)
\(84\) 197.141 + 102.603i 0.256070 + 0.133273i
\(85\) −651.950 −0.831928
\(86\) 495.044 857.442i 0.620721 1.07512i
\(87\) −86.9758 150.647i −0.107181 0.185644i
\(88\) −149.460 258.872i −0.181051 0.313589i
\(89\) 692.114 1198.78i 0.824314 1.42775i −0.0781290 0.996943i \(-0.524895\pi\)
0.902443 0.430810i \(-0.141772\pi\)
\(90\) −123.714 −0.144895
\(91\) 10.5232 + 240.533i 0.0121223 + 0.277085i
\(92\) 148.379 0.168148
\(93\) 334.712 579.738i 0.373204 0.646408i
\(94\) −465.222 805.788i −0.510468 0.884156i
\(95\) 362.467 + 627.811i 0.391456 + 0.678021i
\(96\) 48.0000 83.1384i 0.0510310 0.0883883i
\(97\) 150.434 0.157466 0.0787331 0.996896i \(-0.474913\pi\)
0.0787331 + 0.996896i \(0.474913\pi\)
\(98\) 289.806 621.778i 0.298723 0.640909i
\(99\) 336.284 0.341392
\(100\) 155.524 269.376i 0.155524 0.269376i
\(101\) −1.96773 3.40821i −0.00193858 0.00335772i 0.865054 0.501678i \(-0.167284\pi\)
−0.866993 + 0.498320i \(0.833950\pi\)
\(102\) 284.571 + 492.891i 0.276242 + 0.478465i
\(103\) −385.429 + 667.583i −0.368714 + 0.638631i −0.989365 0.145456i \(-0.953535\pi\)
0.620651 + 0.784087i \(0.286868\pi\)
\(104\) 104.000 0.0980581
\(105\) 16.6905 + 381.503i 0.0155127 + 0.354580i
\(106\) 545.169 0.499543
\(107\) 310.379 537.592i 0.280425 0.485710i −0.691064 0.722793i \(-0.742858\pi\)
0.971489 + 0.237083i \(0.0761913\pi\)
\(108\) 54.0000 + 93.5307i 0.0481125 + 0.0833333i
\(109\) −368.282 637.883i −0.323624 0.560534i 0.657609 0.753360i \(-0.271568\pi\)
−0.981233 + 0.192826i \(0.938235\pi\)
\(110\) 256.808 444.805i 0.222598 0.385550i
\(111\) 82.7117 0.0707265
\(112\) −262.855 136.804i −0.221763 0.115418i
\(113\) 710.877 0.591802 0.295901 0.955219i \(-0.404380\pi\)
0.295901 + 0.955219i \(0.404380\pi\)
\(114\) 316.427 548.068i 0.259966 0.450275i
\(115\) 127.476 + 220.795i 0.103367 + 0.179037i
\(116\) 115.968 + 200.862i 0.0928218 + 0.160772i
\(117\) −58.5000 + 101.325i −0.0462250 + 0.0800641i
\(118\) 576.762 0.449960
\(119\) 1481.56 944.044i 1.14130 0.727230i
\(120\) 164.952 0.125483
\(121\) −32.5685 + 56.4103i −0.0244692 + 0.0423819i
\(122\) −198.760 344.263i −0.147499 0.255476i
\(123\) 206.168 + 357.094i 0.151135 + 0.261773i
\(124\) −446.282 + 772.983i −0.323204 + 0.559806i
\(125\) 1393.58 0.997165
\(126\) 281.141 179.142i 0.198778 0.126660i
\(127\) −2120.99 −1.48195 −0.740974 0.671534i \(-0.765636\pi\)
−0.740974 + 0.671534i \(0.765636\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) −742.566 1286.16i −0.506817 0.877832i
\(130\) 89.3488 + 154.757i 0.0602801 + 0.104408i
\(131\) 454.531 787.271i 0.303149 0.525070i −0.673698 0.739007i \(-0.735295\pi\)
0.976848 + 0.213936i \(0.0686285\pi\)
\(132\) −448.379 −0.295654
\(133\) −1732.80 901.845i −1.12972 0.587969i
\(134\) 414.758 0.267385
\(135\) −92.7853 + 160.709i −0.0591532 + 0.102456i
\(136\) −379.427 657.188i −0.239233 0.414363i
\(137\) −49.6421 85.9827i −0.0309578 0.0536204i 0.850131 0.526571i \(-0.176522\pi\)
−0.881089 + 0.472950i \(0.843189\pi\)
\(138\) 111.284 192.750i 0.0686460 0.118898i
\(139\) −1056.43 −0.644639 −0.322320 0.946631i \(-0.604463\pi\)
−0.322320 + 0.946631i \(0.604463\pi\)
\(140\) −22.2540 508.671i −0.0134344 0.307075i
\(141\) −1395.67 −0.833590
\(142\) 141.444 244.987i 0.0835893 0.144781i
\(143\) −242.872 420.667i −0.142028 0.245999i
\(144\) −72.0000 124.708i −0.0416667 0.0721688i
\(145\) −199.261 + 345.130i −0.114122 + 0.197666i
\(146\) 650.948 0.368992
\(147\) −590.359 842.803i −0.331238 0.472879i
\(148\) −110.282 −0.0612510
\(149\) −282.297 + 488.954i −0.155213 + 0.268836i −0.933136 0.359522i \(-0.882940\pi\)
0.777924 + 0.628359i \(0.216273\pi\)
\(150\) −233.286 404.064i −0.126985 0.219944i
\(151\) 187.525 + 324.803i 0.101063 + 0.175047i 0.912123 0.409916i \(-0.134442\pi\)
−0.811060 + 0.584964i \(0.801109\pi\)
\(152\) −421.903 + 730.758i −0.225137 + 0.389949i
\(153\) 853.712 0.451101
\(154\) 60.4919 + 1382.69i 0.0316531 + 0.723510i
\(155\) −1533.65 −0.794744
\(156\) 78.0000 135.100i 0.0400320 0.0693375i
\(157\) 865.858 + 1499.71i 0.440146 + 0.762356i 0.997700 0.0677851i \(-0.0215932\pi\)
−0.557554 + 0.830141i \(0.688260\pi\)
\(158\) 1059.71 + 1835.47i 0.533582 + 0.924191i
\(159\) 408.877 708.196i 0.203937 0.353230i
\(160\) −219.935 −0.108671
\(161\) −609.408 317.170i −0.298311 0.155258i
\(162\) 162.000 0.0785674
\(163\) −1469.97 + 2546.07i −0.706362 + 1.22346i 0.259835 + 0.965653i \(0.416332\pi\)
−0.966198 + 0.257803i \(0.917002\pi\)
\(164\) −274.891 476.125i −0.130887 0.226702i
\(165\) −385.213 667.208i −0.181750 0.314800i
\(166\) 849.520 1471.41i 0.397202 0.687974i
\(167\) −737.024 −0.341513 −0.170756 0.985313i \(-0.554621\pi\)
−0.170756 + 0.985313i \(0.554621\pi\)
\(168\) −374.855 + 238.855i −0.172147 + 0.109691i
\(169\) 169.000 0.0769231
\(170\) 651.950 1129.21i 0.294131 0.509450i
\(171\) −474.641 822.103i −0.212261 0.367648i
\(172\) 990.089 + 1714.88i 0.438916 + 0.760225i
\(173\) −767.097 + 1328.65i −0.337117 + 0.583904i −0.983889 0.178779i \(-0.942785\pi\)
0.646772 + 0.762683i \(0.276119\pi\)
\(174\) 347.903 0.151577
\(175\) −1214.56 + 773.912i −0.524642 + 0.334299i
\(176\) 597.839 0.256044
\(177\) 432.572 749.236i 0.183695 0.318170i
\(178\) 1384.23 + 2397.55i 0.582878 + 1.00957i
\(179\) −1207.16 2090.86i −0.504062 0.873062i −0.999989 0.00469721i \(-0.998505\pi\)
0.495927 0.868364i \(-0.334829\pi\)
\(180\) 123.714 214.278i 0.0512282 0.0887298i
\(181\) −260.651 −0.107039 −0.0535194 0.998567i \(-0.517044\pi\)
−0.0535194 + 0.998567i \(0.517044\pi\)
\(182\) −427.139 222.307i −0.173965 0.0905410i
\(183\) −596.280 −0.240865
\(184\) −148.379 + 257.000i −0.0594492 + 0.102969i
\(185\) −94.7460 164.105i −0.0376533 0.0652174i
\(186\) 669.423 + 1159.48i 0.263895 + 0.457080i
\(187\) −1772.16 + 3069.47i −0.693011 + 1.20033i
\(188\) 1860.89 0.721910
\(189\) −21.8558 499.569i −0.00841152 0.192266i
\(190\) −1449.87 −0.553602
\(191\) −1903.73 + 3297.36i −0.721201 + 1.24916i 0.239318 + 0.970941i \(0.423076\pi\)
−0.960519 + 0.278215i \(0.910257\pi\)
\(192\) 96.0000 + 166.277i 0.0360844 + 0.0625000i
\(193\) −463.644 803.055i −0.172921 0.299509i 0.766519 0.642222i \(-0.221987\pi\)
−0.939440 + 0.342713i \(0.888654\pi\)
\(194\) −150.434 + 260.559i −0.0556727 + 0.0964279i
\(195\) 268.046 0.0984369
\(196\) 787.145 + 1123.74i 0.286860 + 0.409525i
\(197\) 4272.57 1.54522 0.772609 0.634882i \(-0.218951\pi\)
0.772609 + 0.634882i \(0.218951\pi\)
\(198\) −336.284 + 582.461i −0.120700 + 0.209059i
\(199\) 309.358 + 535.824i 0.110200 + 0.190872i 0.915851 0.401519i \(-0.131518\pi\)
−0.805651 + 0.592391i \(0.798184\pi\)
\(200\) 311.048 + 538.752i 0.109972 + 0.190477i
\(201\) 311.069 538.786i 0.109160 0.189070i
\(202\) 7.87093 0.00274157
\(203\) −46.9365 1072.85i −0.0162281 0.370933i
\(204\) −1138.28 −0.390665
\(205\) 472.331 818.101i 0.160922 0.278725i
\(206\) −770.859 1335.17i −0.260720 0.451580i
\(207\) −166.926 289.125i −0.0560492 0.0970801i
\(208\) −104.000 + 180.133i −0.0346688 + 0.0600481i
\(209\) 3941.09 1.30436
\(210\) −677.474 352.595i −0.222620 0.115863i
\(211\) 3483.58 1.13659 0.568293 0.822827i \(-0.307604\pi\)
0.568293 + 0.822827i \(0.307604\pi\)
\(212\) −545.169 + 944.261i −0.176615 + 0.305906i
\(213\) −212.165 367.481i −0.0682504 0.118213i
\(214\) 620.758 + 1075.18i 0.198290 + 0.343449i
\(215\) −1701.22 + 2946.59i −0.539637 + 0.934679i
\(216\) −216.000 −0.0680414
\(217\) 3485.23 2220.77i 1.09029 0.694726i
\(218\) 1473.13 0.457674
\(219\) 488.211 845.606i 0.150640 0.260917i
\(220\) 513.617 + 889.611i 0.157400 + 0.272625i
\(221\) −616.570 1067.93i −0.187669 0.325053i
\(222\) −82.7117 + 143.261i −0.0250056 + 0.0433110i
\(223\) −3301.86 −0.991521 −0.495761 0.868459i \(-0.665111\pi\)
−0.495761 + 0.868459i \(0.665111\pi\)
\(224\) 499.806 318.474i 0.149084 0.0949952i
\(225\) −699.859 −0.207366
\(226\) −710.877 + 1231.27i −0.209234 + 0.362403i
\(227\) −144.817 250.830i −0.0423428 0.0733399i 0.844077 0.536222i \(-0.180149\pi\)
−0.886420 + 0.462882i \(0.846815\pi\)
\(228\) 632.855 + 1096.14i 0.183824 + 0.318392i
\(229\) −3001.04 + 5197.96i −0.866002 + 1.49996i 4.68398e−5 1.00000i \(0.499985\pi\)
−0.866049 + 0.499959i \(0.833348\pi\)
\(230\) −509.903 −0.146183
\(231\) 1841.54 + 958.439i 0.524521 + 0.272990i
\(232\) −463.871 −0.131270
\(233\) −1348.67 + 2335.96i −0.379203 + 0.656798i −0.990946 0.134258i \(-0.957135\pi\)
0.611744 + 0.791056i \(0.290468\pi\)
\(234\) −117.000 202.650i −0.0326860 0.0566139i
\(235\) 1598.73 + 2769.08i 0.443786 + 0.768660i
\(236\) −576.762 + 998.981i −0.159085 + 0.275543i
\(237\) 3179.13 0.871336
\(238\) 153.569 + 3510.19i 0.0418251 + 0.956016i
\(239\) 1851.40 0.501076 0.250538 0.968107i \(-0.419393\pi\)
0.250538 + 0.968107i \(0.419393\pi\)
\(240\) −164.952 + 285.705i −0.0443649 + 0.0768423i
\(241\) −1847.95 3200.75i −0.493930 0.855512i 0.506045 0.862507i \(-0.331107\pi\)
−0.999976 + 0.00699477i \(0.997773\pi\)
\(242\) −65.1370 112.821i −0.0173023 0.0299685i
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 795.040 0.208595
\(245\) −995.917 + 2136.74i −0.259701 + 0.557188i
\(246\) −824.673 −0.213737
\(247\) −685.593 + 1187.48i −0.176612 + 0.305901i
\(248\) −892.564 1545.97i −0.228540 0.395843i
\(249\) −1274.28 2207.12i −0.324314 0.561729i
\(250\) −1393.58 + 2413.75i −0.352551 + 0.610636i
\(251\) −4141.18 −1.04139 −0.520695 0.853743i \(-0.674327\pi\)
−0.520695 + 0.853743i \(0.674327\pi\)
\(252\) 29.1411 + 666.092i 0.00728459 + 0.166507i
\(253\) 1386.04 0.344426
\(254\) 2120.99 3673.66i 0.523948 0.907504i
\(255\) −977.924 1693.81i −0.240157 0.415964i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 1246.94 2159.77i 0.302654 0.524212i −0.674082 0.738656i \(-0.735461\pi\)
0.976736 + 0.214444i \(0.0687940\pi\)
\(258\) 2970.27 0.716747
\(259\) 452.941 + 235.735i 0.108666 + 0.0565555i
\(260\) −357.395 −0.0852489
\(261\) 260.927 451.940i 0.0618812 0.107181i
\(262\) 909.062 + 1574.54i 0.214359 + 0.371281i
\(263\) 1440.14 + 2494.40i 0.337653 + 0.584833i 0.983991 0.178219i \(-0.0570335\pi\)
−0.646338 + 0.763052i \(0.723700\pi\)
\(264\) 448.379 776.615i 0.104530 0.181051i
\(265\) −1873.47 −0.434288
\(266\) 3294.84 2099.45i 0.759473 0.483932i
\(267\) 4152.68 0.951835
\(268\) −414.758 + 718.382i −0.0945350 + 0.163739i
\(269\) 3021.86 + 5234.01i 0.684929 + 1.18633i 0.973459 + 0.228861i \(0.0735002\pi\)
−0.288530 + 0.957471i \(0.593166\pi\)
\(270\) −185.571 321.418i −0.0418276 0.0724476i
\(271\) −2211.94 + 3831.19i −0.495814 + 0.858775i −0.999988 0.00482701i \(-0.998464\pi\)
0.504174 + 0.863602i \(0.331797\pi\)
\(272\) 1517.71 0.338326
\(273\) −609.139 + 388.140i −0.135043 + 0.0860487i
\(274\) 198.569 0.0437809
\(275\) 1452.79 2516.30i 0.318569 0.551777i
\(276\) 222.569 + 385.500i 0.0485400 + 0.0840738i
\(277\) 3058.51 + 5297.50i 0.663423 + 1.14908i 0.979710 + 0.200419i \(0.0642304\pi\)
−0.316287 + 0.948664i \(0.602436\pi\)
\(278\) 1056.43 1829.78i 0.227914 0.394759i
\(279\) 2008.27 0.430939
\(280\) 903.298 + 470.126i 0.192794 + 0.100341i
\(281\) −6771.02 −1.43746 −0.718728 0.695291i \(-0.755276\pi\)
−0.718728 + 0.695291i \(0.755276\pi\)
\(282\) 1395.67 2417.36i 0.294719 0.510468i
\(283\) 442.446 + 766.340i 0.0929354 + 0.160969i 0.908745 0.417352i \(-0.137042\pi\)
−0.815810 + 0.578320i \(0.803708\pi\)
\(284\) 282.887 + 489.975i 0.0591065 + 0.102376i
\(285\) −1087.40 + 1883.43i −0.226007 + 0.391456i
\(286\) 971.488 0.200858
\(287\) 111.259 + 2543.10i 0.0228829 + 0.523046i
\(288\) 288.000 0.0589256
\(289\) −2042.41 + 3537.56i −0.415716 + 0.720041i
\(290\) −398.522 690.261i −0.0806966 0.139771i
\(291\) 225.650 + 390.838i 0.0454566 + 0.0787331i
\(292\) −650.948 + 1127.47i −0.130458 + 0.225960i
\(293\) 5971.86 1.19072 0.595358 0.803461i \(-0.297010\pi\)
0.595358 + 0.803461i \(0.297010\pi\)
\(294\) 2050.14 179.728i 0.406688 0.0356530i
\(295\) −1982.04 −0.391182
\(296\) 110.282 191.014i 0.0216555 0.0375084i
\(297\) 504.426 + 873.692i 0.0985515 + 0.170696i
\(298\) −564.595 977.907i −0.109752 0.190096i
\(299\) −241.116 + 417.625i −0.0466358 + 0.0807755i
\(300\) 933.145 0.179584
\(301\) −400.726 9159.59i −0.0767358 1.75399i
\(302\) −750.101 −0.142925
\(303\) 5.90320 10.2246i 0.00111924 0.00193858i
\(304\) −843.806 1461.52i −0.159196 0.275736i
\(305\) 683.037 + 1183.06i 0.128231 + 0.222103i
\(306\) −853.712 + 1478.67i −0.159488 + 0.276242i
\(307\) 6395.36 1.18893 0.594467 0.804120i \(-0.297363\pi\)
0.594467 + 0.804120i \(0.297363\pi\)
\(308\) −2455.39 1277.92i −0.454249 0.236416i
\(309\) −2312.58 −0.425754
\(310\) 1533.65 2656.35i 0.280984 0.486679i
\(311\) 320.273 + 554.729i 0.0583956 + 0.101144i 0.893745 0.448575i \(-0.148068\pi\)
−0.835350 + 0.549719i \(0.814735\pi\)
\(312\) 156.000 + 270.200i 0.0283069 + 0.0490290i
\(313\) −5005.59 + 8669.94i −0.903939 + 1.56567i −0.0816031 + 0.996665i \(0.526004\pi\)
−0.822336 + 0.569003i \(0.807329\pi\)
\(314\) −3463.43 −0.622461
\(315\) −966.139 + 615.618i −0.172812 + 0.110115i
\(316\) −4238.84 −0.754599
\(317\) −2933.78 + 5081.46i −0.519804 + 0.900326i 0.479931 + 0.877306i \(0.340662\pi\)
−0.999735 + 0.0230202i \(0.992672\pi\)
\(318\) 817.754 + 1416.39i 0.144206 + 0.249771i
\(319\) 1083.28 + 1876.30i 0.190132 + 0.329318i
\(320\) 219.935 380.939i 0.0384211 0.0665474i
\(321\) 1862.27 0.323807
\(322\) 1158.76 738.357i 0.200544 0.127786i
\(323\) 10005.1 1.72353
\(324\) −162.000 + 280.592i −0.0277778 + 0.0481125i
\(325\) 505.454 + 875.471i 0.0862693 + 0.149423i
\(326\) −2939.94 5092.13i −0.499474 0.865114i
\(327\) 1104.85 1913.65i 0.186845 0.323624i
\(328\) 1099.56 0.185102
\(329\) −7642.86 3977.76i −1.28074 0.666569i
\(330\) 1540.85 0.257033
\(331\) −2570.04 + 4451.44i −0.426774 + 0.739194i −0.996584 0.0825821i \(-0.973683\pi\)
0.569810 + 0.821776i \(0.307017\pi\)
\(332\) 1699.04 + 2942.82i 0.280864 + 0.486471i
\(333\) 124.067 + 214.891i 0.0204170 + 0.0353633i
\(334\) 737.024 1276.56i 0.120743 0.209133i
\(335\) −1425.31 −0.232457
\(336\) −38.8548 888.123i −0.00630864 0.144200i
\(337\) −8309.33 −1.34314 −0.671570 0.740941i \(-0.734380\pi\)
−0.671570 + 0.740941i \(0.734380\pi\)
\(338\) −169.000 + 292.717i −0.0271964 + 0.0471056i
\(339\) 1066.32 + 1846.91i 0.170839 + 0.295901i
\(340\) 1303.90 + 2258.42i 0.207982 + 0.360235i
\(341\) −4168.82 + 7220.62i −0.662037 + 1.14668i
\(342\) 1898.56 0.300183
\(343\) −830.828 6297.88i −0.130789 0.991410i
\(344\) −3960.35 −0.620721
\(345\) −382.427 + 662.384i −0.0596788 + 0.103367i
\(346\) −1534.19 2657.30i −0.238378 0.412883i
\(347\) 5218.01 + 9037.86i 0.807255 + 1.39821i 0.914758 + 0.404002i \(0.132381\pi\)
−0.107503 + 0.994205i \(0.534285\pi\)
\(348\) −347.903 + 602.586i −0.0535907 + 0.0928218i
\(349\) 7035.05 1.07902 0.539509 0.841980i \(-0.318610\pi\)
0.539509 + 0.841980i \(0.318610\pi\)
\(350\) −125.893 2877.60i −0.0192265 0.439468i
\(351\) −351.000 −0.0533761
\(352\) −597.839 + 1035.49i −0.0905253 + 0.156794i
\(353\) −5042.57 8733.99i −0.760309 1.31689i −0.942691 0.333666i \(-0.891714\pi\)
0.182382 0.983228i \(-0.441619\pi\)
\(354\) 865.143 + 1498.47i 0.129892 + 0.224980i
\(355\) −486.070 + 841.897i −0.0726701 + 0.125868i
\(356\) −5536.91 −0.824314
\(357\) 4675.05 + 2433.15i 0.693080 + 0.360717i
\(358\) 4828.63 0.712852
\(359\) −183.359 + 317.587i −0.0269563 + 0.0466897i −0.879189 0.476473i \(-0.841915\pi\)
0.852233 + 0.523163i \(0.175248\pi\)
\(360\) 247.427 + 428.557i 0.0362238 + 0.0627415i
\(361\) −2133.07 3694.59i −0.310989 0.538648i
\(362\) 260.651 451.461i 0.0378440 0.0655476i
\(363\) −195.411 −0.0282546
\(364\) 812.185 517.520i 0.116951 0.0745204i
\(365\) −2236.98 −0.320791
\(366\) 596.280 1032.79i 0.0851586 0.147499i
\(367\) 815.834 + 1413.07i 0.116039 + 0.200985i 0.918194 0.396130i \(-0.129647\pi\)
−0.802156 + 0.597115i \(0.796314\pi\)
\(368\) −296.758 514.000i −0.0420369 0.0728101i
\(369\) −618.505 + 1071.28i −0.0872577 + 0.151135i
\(370\) 378.984 0.0532498
\(371\) 4257.49 2712.85i 0.595789 0.379633i
\(372\) −2677.69 −0.373204
\(373\) −926.727 + 1605.14i −0.128644 + 0.222817i −0.923151 0.384437i \(-0.874396\pi\)
0.794508 + 0.607254i \(0.207729\pi\)
\(374\) −3544.32 6138.94i −0.490033 0.848762i
\(375\) 2090.37 + 3620.63i 0.287857 + 0.498583i
\(376\) −1860.89 + 3223.15i −0.255234 + 0.442078i
\(377\) −753.790 −0.102977
\(378\) 887.135 + 461.714i 0.120712 + 0.0628254i
\(379\) 8143.37 1.10369 0.551843 0.833948i \(-0.313925\pi\)
0.551843 + 0.833948i \(0.313925\pi\)
\(380\) 1449.87 2511.24i 0.195728 0.339011i
\(381\) −3181.48 5510.49i −0.427802 0.740974i
\(382\) −3807.47 6594.73i −0.509966 0.883287i
\(383\) 3664.00 6346.23i 0.488829 0.846677i −0.511088 0.859528i \(-0.670757\pi\)
0.999917 + 0.0128511i \(0.00409074\pi\)
\(384\) −384.000 −0.0510310
\(385\) −207.880 4751.61i −0.0275183 0.628999i
\(386\) 1854.58 0.244548
\(387\) 2227.70 3858.49i 0.292611 0.506817i
\(388\) −300.867 521.117i −0.0393665 0.0681848i
\(389\) −1801.60 3120.46i −0.234819 0.406719i 0.724401 0.689379i \(-0.242117\pi\)
−0.959220 + 0.282660i \(0.908783\pi\)
\(390\) −268.046 + 464.270i −0.0348027 + 0.0602801i
\(391\) 3518.69 0.455110
\(392\) −2733.52 + 239.638i −0.352203 + 0.0308764i
\(393\) 2727.19 0.350047
\(394\) −4272.57 + 7400.31i −0.546317 + 0.946249i
\(395\) −3641.68 6307.58i −0.463881 0.803465i
\(396\) −672.569 1164.92i −0.0853481 0.147827i
\(397\) 6937.60 12016.3i 0.877049 1.51909i 0.0224844 0.999747i \(-0.492842\pi\)
0.854564 0.519346i \(-0.173824\pi\)
\(398\) −1237.43 −0.155846
\(399\) −256.140 5854.72i −0.0321380 0.734593i
\(400\) −1244.19 −0.155524
\(401\) 3480.14 6027.78i 0.433391 0.750656i −0.563771 0.825931i \(-0.690650\pi\)
0.997163 + 0.0752748i \(0.0239834\pi\)
\(402\) 622.137 + 1077.57i 0.0771875 + 0.133693i
\(403\) −1450.42 2512.20i −0.179281 0.310525i
\(404\) −7.87093 + 13.6329i −0.000969291 + 0.00167886i
\(405\) −556.712 −0.0683043
\(406\) 1905.17 + 991.554i 0.232886 + 0.121207i
\(407\) −1030.17 −0.125464
\(408\) 1138.28 1971.56i 0.138121 0.239233i
\(409\) −5816.90 10075.2i −0.703244 1.21806i −0.967321 0.253553i \(-0.918401\pi\)
0.264077 0.964502i \(-0.414933\pi\)
\(410\) 944.661 + 1636.20i 0.113789 + 0.197088i
\(411\) 148.926 257.948i 0.0178735 0.0309578i
\(412\) 3083.44 0.368714
\(413\) 4504.21 2870.06i 0.536653 0.341952i
\(414\) 667.706 0.0792655
\(415\) −2919.37 + 5056.50i −0.345316 + 0.598105i
\(416\) −208.000 360.267i −0.0245145 0.0424604i
\(417\) −1584.64 2744.67i −0.186091 0.322320i
\(418\) −3941.09 + 6826.18i −0.461161 + 0.798754i
\(419\) 9044.25 1.05451 0.527256 0.849707i \(-0.323221\pi\)
0.527256 + 0.849707i \(0.323221\pi\)
\(420\) 1288.19 820.824i 0.149660 0.0953622i
\(421\) −14419.0 −1.66921 −0.834607 0.550846i \(-0.814305\pi\)
−0.834607 + 0.550846i \(0.814305\pi\)
\(422\) −3483.58 + 6033.74i −0.401844 + 0.696013i
\(423\) −2093.50 3626.04i −0.240637 0.416795i
\(424\) −1090.34 1888.52i −0.124886 0.216308i
\(425\) 3688.13 6388.04i 0.420943 0.729095i
\(426\) 848.661 0.0965206
\(427\) −3265.31 1699.45i −0.370069 0.192604i
\(428\) −2483.03 −0.280425
\(429\) 728.616 1262.00i 0.0819998 0.142028i
\(430\) −3402.43 5893.18i −0.381581 0.660918i
\(431\) 3517.98 + 6093.31i 0.393167 + 0.680985i 0.992865 0.119241i \(-0.0380461\pi\)
−0.599698 + 0.800226i \(0.704713\pi\)
\(432\) 216.000 374.123i 0.0240563 0.0416667i
\(433\) 8976.40 0.996255 0.498127 0.867104i \(-0.334021\pi\)
0.498127 + 0.867104i \(0.334021\pi\)
\(434\) 361.254 + 8257.36i 0.0399557 + 0.913286i
\(435\) −1195.57 −0.131777
\(436\) −1473.13 + 2551.53i −0.161812 + 0.280267i
\(437\) −1956.30 3388.41i −0.214148 0.370914i
\(438\) 976.421 + 1691.21i 0.106519 + 0.184496i
\(439\) 7485.73 12965.7i 0.813836 1.40961i −0.0963239 0.995350i \(-0.530708\pi\)
0.910160 0.414256i \(-0.135958\pi\)
\(440\) −2054.47 −0.222598
\(441\) 1304.13 2798.00i 0.140819 0.302127i
\(442\) 2466.28 0.265405
\(443\) −7071.91 + 12248.9i −0.758457 + 1.31369i 0.185181 + 0.982705i \(0.440713\pi\)
−0.943637 + 0.330981i \(0.892620\pi\)
\(444\) −165.423 286.522i −0.0176816 0.0306255i
\(445\) −4756.89 8239.17i −0.506737 0.877695i
\(446\) 3301.86 5719.00i 0.350556 0.607180i
\(447\) −1693.78 −0.179224
\(448\) 51.8064 + 1184.16i 0.00546344 + 0.124881i
\(449\) 12278.7 1.29058 0.645288 0.763939i \(-0.276737\pi\)
0.645288 + 0.763939i \(0.276737\pi\)
\(450\) 699.859 1212.19i 0.0733148 0.126985i
\(451\) −2567.82 4447.60i −0.268102 0.464366i
\(452\) −1421.75 2462.55i −0.147951 0.256258i
\(453\) −562.576 + 974.410i −0.0583490 + 0.101063i
\(454\) 579.267 0.0598818
\(455\) 1467.86 + 763.955i 0.151240 + 0.0787137i
\(456\) −2531.42 −0.259966
\(457\) −6195.94 + 10731.7i −0.634209 + 1.09848i 0.352473 + 0.935822i \(0.385341\pi\)
−0.986682 + 0.162661i \(0.947992\pi\)
\(458\) −6002.08 10395.9i −0.612356 1.06063i
\(459\) 1280.57 + 2218.01i 0.130222 + 0.225551i
\(460\) 509.903 883.178i 0.0516834 0.0895183i
\(461\) −12194.8 −1.23203 −0.616017 0.787733i \(-0.711255\pi\)
−0.616017 + 0.787733i \(0.711255\pi\)
\(462\) −3501.60 + 2231.20i −0.352618 + 0.224686i
\(463\) 12130.0 1.21756 0.608778 0.793341i \(-0.291660\pi\)
0.608778 + 0.793341i \(0.291660\pi\)
\(464\) 463.871 803.448i 0.0464109 0.0803861i
\(465\) −2300.47 3984.53i −0.229423 0.397372i
\(466\) −2697.34 4671.92i −0.268137 0.464426i
\(467\) −3187.95 + 5521.68i −0.315890 + 0.547137i −0.979626 0.200829i \(-0.935636\pi\)
0.663736 + 0.747967i \(0.268970\pi\)
\(468\) 468.000 0.0462250
\(469\) 3239.04 2063.90i 0.318902 0.203203i
\(470\) −6394.92 −0.627608
\(471\) −2597.57 + 4499.13i −0.254119 + 0.440146i
\(472\) −1153.52 1997.96i −0.112490 0.194838i
\(473\) 9248.64 + 16019.1i 0.899055 + 1.55721i
\(474\) −3179.13 + 5506.41i −0.308064 + 0.533582i
\(475\) −8202.02 −0.792283
\(476\) −6233.39 3244.20i −0.600225 0.312390i
\(477\) 2453.26 0.235487
\(478\) −1851.40 + 3206.72i −0.177157 + 0.306845i
\(479\) −8595.69 14888.2i −0.819931 1.42016i −0.905732 0.423851i \(-0.860678\pi\)
0.0858007 0.996312i \(-0.472655\pi\)
\(480\) −329.903 571.409i −0.0313707 0.0543357i
\(481\) 179.209 310.398i 0.0169880 0.0294240i
\(482\) 7391.81 0.698523
\(483\) −90.0818 2059.04i −0.00848626 0.193975i
\(484\) 260.548 0.0244692
\(485\) 516.964 895.407i 0.0484002 0.0838316i
\(486\) 243.000 + 420.888i 0.0226805 + 0.0392837i
\(487\) −6014.43 10417.3i −0.559630 0.969308i −0.997527 0.0702826i \(-0.977610\pi\)
0.437897 0.899025i \(-0.355723\pi\)
\(488\) −795.040 + 1377.05i −0.0737495 + 0.127738i
\(489\) −8819.83 −0.815637
\(490\) −2705.02 3861.72i −0.249388 0.356030i
\(491\) 10398.6 0.955767 0.477884 0.878423i \(-0.341404\pi\)
0.477884 + 0.878423i \(0.341404\pi\)
\(492\) 824.673 1428.38i 0.0755674 0.130887i
\(493\) 2750.08 + 4763.28i 0.251232 + 0.435147i
\(494\) −1371.19 2374.96i −0.124884 0.216305i
\(495\) 1155.64 2001.62i 0.104933 0.181750i
\(496\) 3570.26 0.323204
\(497\) −114.495 2617.07i −0.0103336 0.236200i
\(498\) 5097.12 0.458649
\(499\) 422.453 731.711i 0.0378990 0.0656430i −0.846454 0.532462i \(-0.821267\pi\)
0.884353 + 0.466819i \(0.154600\pi\)
\(500\) −2787.16 4827.50i −0.249291 0.431785i
\(501\) −1105.54 1914.84i −0.0985862 0.170756i
\(502\) 4141.18 7172.74i 0.368187 0.637719i
\(503\) −5808.89 −0.514922 −0.257461 0.966289i \(-0.582886\pi\)
−0.257461 + 0.966289i \(0.582886\pi\)
\(504\) −1182.85 615.618i −0.104540 0.0544084i
\(505\) −27.0484 −0.00238344
\(506\) −1386.04 + 2400.70i −0.121773 + 0.210917i
\(507\) 253.500 + 439.075i 0.0222058 + 0.0384615i
\(508\) 4241.98 + 7347.32i 0.370487 + 0.641702i
\(509\) 10024.7 17363.3i 0.872960 1.51201i 0.0140401 0.999901i \(-0.495531\pi\)
0.858920 0.512110i \(-0.171136\pi\)
\(510\) 3911.70 0.339633
\(511\) 5083.56 3239.21i 0.440085 0.280420i
\(512\) 512.000 0.0441942
\(513\) 1423.92 2466.31i 0.122549 0.212261i
\(514\) 2493.88 + 4319.53i 0.214009 + 0.370674i
\(515\) 2649.05 + 4588.29i 0.226662 + 0.392591i
\(516\) −2970.27 + 5144.65i −0.253408 + 0.438916i
\(517\) 17383.0 1.47873
\(518\) −861.246 + 548.781i −0.0730521 + 0.0465484i
\(519\) −4602.58 −0.389269
\(520\) 357.395 619.027i 0.0301400 0.0522041i
\(521\) 3947.57 + 6837.39i 0.331951 + 0.574955i 0.982894 0.184171i \(-0.0589599\pi\)
−0.650944 + 0.759126i \(0.725627\pi\)
\(522\) 521.855 + 903.879i 0.0437566 + 0.0757887i
\(523\) −10172.0 + 17618.5i −0.850462 + 1.47304i 0.0303307 + 0.999540i \(0.490344\pi\)
−0.880792 + 0.473503i \(0.842989\pi\)
\(524\) −3636.25 −0.303149
\(525\) −3832.53 1994.66i −0.318600 0.165817i
\(526\) −5760.56 −0.477514
\(527\) −10583.2 + 18330.7i −0.874787 + 1.51518i
\(528\) 896.758 + 1553.23i 0.0739136 + 0.128022i
\(529\) 5395.49 + 9345.26i 0.443453 + 0.768083i
\(530\) 1873.47 3244.94i 0.153544 0.265946i
\(531\) 2595.43 0.212113
\(532\) 341.520 + 7806.29i 0.0278323 + 0.636176i
\(533\) 1786.79 0.145206
\(534\) −4152.68 + 7192.66i −0.336525 + 0.582878i
\(535\) −2133.23 3694.86i −0.172388 0.298585i
\(536\) −829.516 1436.76i −0.0668463 0.115781i
\(537\) 3621.47 6272.57i 0.291021 0.504062i
\(538\) −12087.4 −0.968636
\(539\) 7352.90 + 10497.1i 0.587592 + 0.838853i
\(540\) 742.282 0.0591532
\(541\) 7186.18 12446.8i 0.571087 0.989151i −0.425368 0.905021i \(-0.639855\pi\)
0.996455 0.0841309i \(-0.0268114\pi\)
\(542\) −4423.87 7662.37i −0.350593 0.607245i
\(543\) −390.976 677.191i −0.0308995 0.0535194i
\(544\) −1517.71 + 2628.75i −0.119616 + 0.207181i
\(545\) −5062.39 −0.397888
\(546\) −63.1391 1443.20i −0.00494890 0.113119i
\(547\) 2625.07 0.205192 0.102596 0.994723i \(-0.467285\pi\)
0.102596 + 0.994723i \(0.467285\pi\)
\(548\) −198.569 + 343.931i −0.0154789 + 0.0268102i
\(549\) −894.420 1549.18i −0.0695317 0.120433i
\(550\) 2905.57 + 5032.60i 0.225262 + 0.390165i
\(551\) 3057.95 5296.52i 0.236430 0.409509i
\(552\) −890.274 −0.0686460
\(553\) 17409.4 + 9060.79i 1.33874 + 0.696752i
\(554\) −12234.1 −0.938222
\(555\) 284.238 492.314i 0.0217391 0.0376533i
\(556\) 2112.85 + 3659.56i 0.161160 + 0.279137i
\(557\) −457.229 791.945i −0.0347817 0.0602438i 0.848111 0.529819i \(-0.177740\pi\)
−0.882892 + 0.469576i \(0.844407\pi\)
\(558\) −2008.27 + 3478.43i −0.152360 + 0.263895i
\(559\) −6435.58 −0.486934
\(560\) −1717.58 + 1094.43i −0.129609 + 0.0825861i
\(561\) −10633.0 −0.800221
\(562\) 6771.02 11727.8i 0.508218 0.880259i
\(563\) −6355.48 11008.0i −0.475758 0.824037i 0.523857 0.851806i \(-0.324493\pi\)
−0.999614 + 0.0277698i \(0.991159\pi\)
\(564\) 2791.33 + 4834.73i 0.208398 + 0.360955i
\(565\) 2442.92 4231.27i 0.181902 0.315063i
\(566\) −1769.79 −0.131430
\(567\) 1265.13 806.137i 0.0937049 0.0597082i
\(568\) −1131.55 −0.0835893
\(569\) −4136.78 + 7165.11i −0.304785 + 0.527904i −0.977213 0.212259i \(-0.931918\pi\)
0.672428 + 0.740162i \(0.265251\pi\)
\(570\) −2174.80 3766.86i −0.159811 0.276801i
\(571\) 5612.73 + 9721.53i 0.411358 + 0.712492i 0.995038 0.0994908i \(-0.0317214\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(572\) −971.488 + 1682.67i −0.0710139 + 0.123000i
\(573\) −11422.4 −0.832771
\(574\) −4516.03 2350.39i −0.328389 0.170912i
\(575\) −2884.57 −0.209208
\(576\) −288.000 + 498.831i −0.0208333 + 0.0360844i
\(577\) −5632.71 9756.15i −0.406400 0.703906i 0.588083 0.808801i \(-0.299883\pi\)
−0.994483 + 0.104895i \(0.966549\pi\)
\(578\) −4084.82 7075.12i −0.293955 0.509146i
\(579\) 1390.93 2409.17i 0.0998362 0.172921i
\(580\) 1594.09 0.114122
\(581\) −687.665 15718.3i −0.0491036 1.12238i
\(582\) −902.601 −0.0642853
\(583\) −5092.55 + 8820.56i −0.361770 + 0.626604i
\(584\) −1301.90 2254.95i −0.0922479 0.159778i
\(585\) 402.070 + 696.405i 0.0284163 + 0.0492185i
\(586\) −5971.86 + 10343.6i −0.420982 + 0.729162i
\(587\) 7643.94 0.537477 0.268739 0.963213i \(-0.413393\pi\)
0.268739 + 0.963213i \(0.413393\pi\)
\(588\) −1738.84 + 3730.67i −0.121953 + 0.261650i
\(589\) 23536.0 1.64649
\(590\) 1982.04 3432.99i 0.138304 0.239549i
\(591\) 6408.86 + 11100.5i 0.446066 + 0.772609i
\(592\) 220.564 + 382.029i 0.0153127 + 0.0265224i
\(593\) 7379.09 12781.0i 0.511000 0.885078i −0.488919 0.872329i \(-0.662609\pi\)
0.999919 0.0127487i \(-0.00405816\pi\)
\(594\) −2017.71 −0.139373
\(595\) −527.737 12062.7i −0.0363615 0.831133i
\(596\) 2258.38 0.155213
\(597\) −928.074 + 1607.47i −0.0636240 + 0.110200i
\(598\) −482.232 835.250i −0.0329765 0.0571169i
\(599\) 14582.5 + 25257.6i 0.994698 + 1.72287i 0.586413 + 0.810012i \(0.300539\pi\)
0.408284 + 0.912855i \(0.366127\pi\)
\(600\) −933.145 + 1616.25i −0.0634925 + 0.109972i
\(601\) 1815.00 0.123187 0.0615936 0.998101i \(-0.480382\pi\)
0.0615936 + 0.998101i \(0.480382\pi\)
\(602\) 16265.6 + 8465.51i 1.10122 + 0.573137i
\(603\) 1866.41 0.126047
\(604\) 750.101 1299.21i 0.0505317 0.0875235i
\(605\) 223.843 + 387.707i 0.0150422 + 0.0260538i
\(606\) 11.8064 + 20.4493i 0.000791423 + 0.00137078i
\(607\) 8552.88 14814.0i 0.571912 0.990581i −0.424457 0.905448i \(-0.639535\pi\)
0.996370 0.0851330i \(-0.0271315\pi\)
\(608\) 3375.23 0.225137
\(609\) 2716.94 1731.22i 0.180782 0.115193i
\(610\) −2732.15 −0.181347
\(611\) −3023.94 + 5237.62i −0.200222 + 0.346794i
\(612\) −1707.42 2957.34i −0.112775 0.195333i
\(613\) −7034.97 12184.9i −0.463523 0.802845i 0.535611 0.844465i \(-0.320082\pi\)
−0.999134 + 0.0416198i \(0.986748\pi\)
\(614\) −6395.36 + 11077.1i −0.420352 + 0.728070i
\(615\) 2833.98 0.185817
\(616\) 4668.81 2974.94i 0.305376 0.194584i
\(617\) −6621.60 −0.432051 −0.216026 0.976388i \(-0.569309\pi\)
−0.216026 + 0.976388i \(0.569309\pi\)
\(618\) 2312.58 4005.50i 0.150527 0.260720i
\(619\) 7603.83 + 13170.2i 0.493738 + 0.855179i 0.999974 0.00721586i \(-0.00229690\pi\)
−0.506236 + 0.862395i \(0.668964\pi\)
\(620\) 3067.29 + 5312.70i 0.198686 + 0.344134i
\(621\) 500.779 867.375i 0.0323600 0.0560492i
\(622\) −1281.09 −0.0825838
\(623\) 22740.7 + 11835.5i 1.46242 + 0.761122i
\(624\) −624.000 −0.0400320
\(625\) −71.1033 + 123.155i −0.00455061 + 0.00788189i
\(626\) −10011.2 17339.9i −0.639181 1.10709i
\(627\) 5911.64 + 10239.3i 0.376536 + 0.652180i
\(628\) 3463.43 5998.84i 0.220073 0.381178i
\(629\) −2615.26 −0.165782
\(630\) −100.143 2289.02i −0.00633301 0.144757i
\(631\) −10712.5 −0.675845 −0.337923 0.941174i \(-0.609724\pi\)
−0.337923 + 0.941174i \(0.609724\pi\)
\(632\) 4238.84 7341.88i 0.266791 0.462096i
\(633\) 5225.37 + 9050.60i 0.328104 + 0.568293i
\(634\) −5867.57 10162.9i −0.367557 0.636627i
\(635\) −7288.76 + 12624.5i −0.455505 + 0.788958i
\(636\) −3271.02 −0.203937
\(637\) −4441.96 + 389.411i −0.276290 + 0.0242214i
\(638\) −4333.12 −0.268887
\(639\) 636.496 1102.44i 0.0394044 0.0682504i
\(640\) 439.871 + 761.879i 0.0271679 + 0.0470561i
\(641\) 457.392 + 792.226i 0.0281839 + 0.0488160i 0.879773 0.475393i \(-0.157694\pi\)
−0.851589 + 0.524209i \(0.824361\pi\)
\(642\) −1862.27 + 3225.55i −0.114483 + 0.198290i
\(643\) 6292.65 0.385938 0.192969 0.981205i \(-0.438188\pi\)
0.192969 + 0.981205i \(0.438188\pi\)
\(644\) 120.109 + 2745.39i 0.00734932 + 0.167987i
\(645\) −10207.3 −0.623119
\(646\) −10005.1 + 17329.3i −0.609358 + 1.05544i
\(647\) −13589.6 23538.0i −0.825756 1.43025i −0.901340 0.433112i \(-0.857416\pi\)
0.0755843 0.997139i \(-0.475918\pi\)
\(648\) −324.000 561.184i −0.0196419 0.0340207i
\(649\) −5387.67 + 9331.71i −0.325862 + 0.564410i
\(650\) −2021.81 −0.122003
\(651\) 10997.6 + 5723.74i 0.662103 + 0.344595i
\(652\) 11759.8 0.706362
\(653\) −8091.10 + 14014.2i −0.484884 + 0.839843i −0.999849 0.0173677i \(-0.994471\pi\)
0.514965 + 0.857211i \(0.327805\pi\)
\(654\) 2209.69 + 3827.30i 0.132119 + 0.228837i
\(655\) −3123.99 5410.90i −0.186358 0.322781i
\(656\) −1099.56 + 1904.50i −0.0654433 + 0.113351i
\(657\) 2929.26 0.173944
\(658\) 14532.6 9260.06i 0.861000 0.548624i
\(659\) −27804.3 −1.64355 −0.821777 0.569809i \(-0.807017\pi\)
−0.821777 + 0.569809i \(0.807017\pi\)
\(660\) −1540.85 + 2668.83i −0.0908750 + 0.157400i
\(661\) −10254.5 17761.3i −0.603408 1.04513i −0.992301 0.123850i \(-0.960476\pi\)
0.388893 0.921283i \(-0.372858\pi\)
\(662\) −5140.08 8902.88i −0.301775 0.522689i
\(663\) 1849.71 3203.79i 0.108351 0.187669i
\(664\) −6796.16 −0.397202
\(665\) −11322.7 + 7214.76i −0.660264 + 0.420716i
\(666\) −496.270 −0.0288740
\(667\) 1075.45 1862.73i 0.0624311 0.108134i
\(668\) 1474.05 + 2553.13i 0.0853782 + 0.147879i
\(669\) −4952.80 8578.50i −0.286227 0.495761i
\(670\) 1425.31 2468.71i 0.0821860 0.142350i
\(671\) 7426.65 0.427277
\(672\) 1577.13 + 820.824i 0.0905343 + 0.0471190i
\(673\) −28966.8 −1.65912 −0.829559 0.558418i \(-0.811408\pi\)
−0.829559 + 0.558418i \(0.811408\pi\)
\(674\) 8309.33 14392.2i 0.474872 0.822502i
\(675\) −1049.79 1818.29i −0.0598613 0.103683i
\(676\) −338.000 585.433i −0.0192308 0.0333087i
\(677\) 6725.08 11648.2i 0.381781 0.661264i −0.609536 0.792758i \(-0.708644\pi\)
0.991317 + 0.131494i \(0.0419775\pi\)
\(678\) −4265.26 −0.241602
\(679\) 121.772 + 2783.41i 0.00688246 + 0.157316i
\(680\) −5215.60 −0.294131
\(681\) 434.450 752.489i 0.0244466 0.0423428i
\(682\) −8337.65 14441.2i −0.468131 0.810826i
\(683\) 16299.8 + 28232.1i 0.913171 + 1.58166i 0.809558 + 0.587040i \(0.199707\pi\)
0.103613 + 0.994618i \(0.466960\pi\)
\(684\) −1898.56 + 3288.41i −0.106131 + 0.183824i
\(685\) −682.379 −0.0380618
\(686\) 11739.1 + 4858.85i 0.653353 + 0.270425i
\(687\) −18006.3 −0.999973
\(688\) 3960.35 6859.54i 0.219458 0.380112i
\(689\) −1771.80 3068.85i −0.0979684 0.169686i
\(690\) −764.855 1324.77i −0.0421993 0.0730914i
\(691\) −10146.9 + 17575.0i −0.558622 + 0.967561i 0.438990 + 0.898492i \(0.355336\pi\)
−0.997612 + 0.0690691i \(0.977997\pi\)
\(692\) 6136.77 0.337117
\(693\) 272.214 + 6222.12i 0.0149214 + 0.341066i
\(694\) −20872.1 −1.14163
\(695\) −3630.40 + 6288.03i −0.198142 + 0.343192i
\(696\) −695.806 1205.17i −0.0378944 0.0656350i
\(697\) −6518.83 11290.9i −0.354259 0.613594i
\(698\) −7035.05 + 12185.1i −0.381491 + 0.660761i
\(699\) −8092.01 −0.437865
\(700\) 5110.04 + 2659.54i 0.275916 + 0.143602i
\(701\) 9724.69 0.523961 0.261980 0.965073i \(-0.415624\pi\)
0.261980 + 0.965073i \(0.415624\pi\)
\(702\) 351.000 607.950i 0.0188713 0.0326860i
\(703\) 1454.01 + 2518.42i 0.0780073 + 0.135113i
\(704\) −1195.68 2070.97i −0.0640111 0.110870i
\(705\) −4796.19 + 8307.25i −0.256220 + 0.443786i
\(706\) 20170.3 1.07524
\(707\) 61.4679 39.1670i 0.00326978 0.00208349i
\(708\) −3460.57 −0.183695
\(709\) −10742.9 + 18607.2i −0.569050 + 0.985624i 0.427610 + 0.903963i \(0.359356\pi\)
−0.996660 + 0.0816604i \(0.973978\pi\)
\(710\) −972.139 1683.79i −0.0513855 0.0890024i
\(711\) 4768.69 + 8259.62i 0.251533 + 0.435668i
\(712\) 5536.91 9590.21i 0.291439 0.504787i
\(713\) 8277.36 0.434768
\(714\) −8889.39 + 5664.27i −0.465934 + 0.296891i
\(715\) −3338.51 −0.174620
\(716\) −4828.63 + 8363.43i −0.252031 + 0.436531i
\(717\) 2777.10 + 4810.08i 0.144648 + 0.250538i
\(718\) −366.718 635.174i −0.0190610 0.0330146i
\(719\) −9038.75 + 15655.6i −0.468830 + 0.812037i −0.999365 0.0356260i \(-0.988657\pi\)
0.530536 + 0.847663i \(0.321991\pi\)
\(720\) −989.710 −0.0512282
\(721\) −12664.0 6591.04i −0.654136 0.340448i
\(722\) 8532.29 0.439805
\(723\) 5543.86 9602.25i 0.285171 0.493930i
\(724\) 521.302 + 902.921i 0.0267597 + 0.0463492i
\(725\) −2254.47 3904.86i −0.115488 0.200032i
\(726\) 195.411 338.462i 0.00998951 0.0173023i
\(727\) 18754.7 0.956772 0.478386 0.878150i \(-0.341222\pi\)
0.478386 + 0.878150i \(0.341222\pi\)
\(728\) 84.1854 + 1924.27i 0.00428588 + 0.0979644i
\(729\) 729.000 0.0370370
\(730\) 2236.98 3874.56i 0.113417 0.196443i
\(731\) 23479.2 + 40667.1i 1.18797 + 2.05763i
\(732\) 1192.56 + 2065.58i 0.0602163 + 0.104298i
\(733\) 1762.14 3052.12i 0.0887943 0.153796i −0.818207 0.574923i \(-0.805032\pi\)
0.907002 + 0.421127i \(0.138365\pi\)
\(734\) −3263.34 −0.164104
\(735\) −7045.28 + 617.635i −0.353563 + 0.0309957i
\(736\) 1187.03 0.0594492
\(737\) −3874.35 + 6710.57i −0.193641 + 0.335396i
\(738\) −1237.01 2142.56i −0.0617005 0.106868i
\(739\) −17227.2 29838.5i −0.857530 1.48529i −0.874278 0.485425i \(-0.838665\pi\)
0.0167483 0.999860i \(-0.494669\pi\)
\(740\) −378.984 + 656.419i −0.0188267 + 0.0326087i
\(741\) −4113.56 −0.203934
\(742\) 441.301 + 10087.0i 0.0218338 + 0.499065i
\(743\) 6510.61 0.321469 0.160734 0.986998i \(-0.448614\pi\)
0.160734 + 0.986998i \(0.448614\pi\)
\(744\) 2677.69 4637.90i 0.131948 0.228540i
\(745\) 1940.23 + 3360.57i 0.0954153 + 0.165264i
\(746\) −1853.45 3210.28i −0.0909648 0.157556i
\(747\) 3822.84 6621.35i 0.187243 0.324314i
\(748\) 14177.3 0.693011
\(749\) 10198.1 + 5307.64i 0.497503 + 0.258928i
\(750\) −8361.48 −0.407091
\(751\) 5831.63 10100.7i 0.283354 0.490784i −0.688854 0.724900i \(-0.741886\pi\)
0.972209 + 0.234116i \(0.0752194\pi\)
\(752\) −3721.77 6446.30i −0.180478 0.312596i
\(753\) −6211.77 10759.1i −0.300624 0.520695i
\(754\) 753.790 1305.60i 0.0364077 0.0630600i
\(755\) 2577.72 0.124255
\(756\) −1686.85 + 1074.85i −0.0811508 + 0.0517088i
\(757\) 11268.4 0.541027 0.270514 0.962716i \(-0.412806\pi\)
0.270514 + 0.962716i \(0.412806\pi\)
\(758\) −8143.37 + 14104.7i −0.390212 + 0.675867i
\(759\) 2079.06 + 3601.04i 0.0994272 + 0.172213i
\(760\) 2899.73 + 5022.49i 0.138401 + 0.239717i
\(761\) 4241.85 7347.09i 0.202059 0.349976i −0.747133 0.664675i \(-0.768570\pi\)
0.949192 + 0.314699i \(0.101903\pi\)
\(762\) 12725.9 0.605003
\(763\) 11504.4 7330.51i 0.545853 0.347814i
\(764\) 15229.9 0.721201
\(765\) 2933.77 5081.44i 0.138655 0.240157i
\(766\) 7328.00 + 12692.5i 0.345655 + 0.598691i
\(767\) −1874.48 3246.69i −0.0882444 0.152844i
\(768\) 384.000 665.108i 0.0180422 0.0312500i
\(769\) 21134.3 0.991056 0.495528 0.868592i \(-0.334975\pi\)
0.495528 + 0.868592i \(0.334975\pi\)
\(770\) 8437.92 + 4391.56i 0.394911 + 0.205533i
\(771\) 7481.65 0.349475
\(772\) −1854.58 + 3212.22i −0.0864607 + 0.149754i
\(773\) −2673.23 4630.17i −0.124385 0.215441i 0.797108 0.603837i \(-0.206362\pi\)
−0.921492 + 0.388397i \(0.873029\pi\)
\(774\) 4455.40 + 7716.98i 0.206907 + 0.358373i
\(775\) 8675.96 15027.2i 0.402129 0.696507i
\(776\) 1203.47 0.0556727
\(777\) 66.9530 + 1530.38i 0.00309128 + 0.0706589i
\(778\) 7206.40 0.332085
\(779\) −7248.59 + 12554.9i −0.333386 + 0.577442i
\(780\) −536.093 928.540i −0.0246092 0.0426244i
\(781\) 2642.51 + 4576.97i 0.121071 + 0.209701i
\(782\) −3518.69 + 6094.55i −0.160906 + 0.278697i
\(783\) 1565.56 0.0714543
\(784\) 2318.45 4974.23i 0.105615 0.226596i
\(785\) 11902.1 0.541150
\(786\) −2727.19 + 4723.63i −0.123760 + 0.214359i
\(787\) −1063.64 1842.27i −0.0481760 0.0834433i 0.840932 0.541141i \(-0.182008\pi\)
−0.889108 + 0.457698i \(0.848674\pi\)
\(788\) −8545.14 14800.6i −0.386305 0.669099i
\(789\) −4320.42 + 7483.19i −0.194944 + 0.337653i
\(790\) 14566.7 0.656027
\(791\) 575.437 + 13153.0i 0.0258662 + 0.591237i
\(792\) 2690.27 0.120700
\(793\) −1291.94 + 2237.71i −0.0578539 + 0.100206i
\(794\) 13875.2 + 24032.6i 0.620167 + 1.07416i
\(795\) −2810.20 4867.42i −0.125368 0.217144i
\(796\) 1237.43 2143.29i 0.0551000 0.0954360i
\(797\) −37823.6 −1.68103 −0.840514 0.541790i \(-0.817747\pi\)
−0.840514 + 0.541790i \(0.817747\pi\)
\(798\) 10396.8 + 5411.07i 0.461207 + 0.240037i
\(799\) 44129.5 1.95393
\(800\) 1244.19 2155.01i 0.0549861 0.0952387i
\(801\) 6229.02 + 10789.0i 0.274771 + 0.475918i
\(802\) 6960.28 + 12055.6i 0.306454 + 0.530794i
\(803\) −6080.65 + 10532.0i −0.267225 + 0.462847i
\(804\) −2488.55 −0.109160
\(805\) −3982.08 + 2537.36i −0.174348 + 0.111093i
\(806\) 5801.67 0.253542
\(807\) −9065.58 + 15702.0i −0.395444 + 0.684929i
\(808\) −15.7419 27.2657i −0.000685392 0.00118713i
\(809\) 11917.4 + 20641.5i 0.517914 + 0.897053i 0.999783 + 0.0208101i \(0.00662455\pi\)
−0.481870 + 0.876243i \(0.660042\pi\)
\(810\) 556.712 964.253i 0.0241492 0.0418276i
\(811\) 24263.1 1.05055 0.525273 0.850934i \(-0.323963\pi\)
0.525273 + 0.850934i \(0.323963\pi\)
\(812\) −3622.59 + 2308.29i −0.156561 + 0.0997601i
\(813\) −13271.6 −0.572517
\(814\) 1030.17 1784.31i 0.0443581 0.0768305i
\(815\) 10103.1 + 17499.1i 0.434228 + 0.752105i
\(816\) 2276.56 + 3943.13i 0.0976663 + 0.169163i
\(817\) 26107.6 45219.7i 1.11798 1.93640i
\(818\) 23267.6 0.994538
\(819\) −1922.13 1000.38i −0.0820079 0.0426814i
\(820\) −3778.64 −0.160922
\(821\) 19343.7 33504.3i 0.822291 1.42425i −0.0816810 0.996659i \(-0.526029\pi\)
0.903972 0.427591i \(-0.140638\pi\)
\(822\) 297.853 + 515.896i 0.0126385 + 0.0218904i
\(823\) 18711.7 + 32409.5i 0.792524 + 1.37269i 0.924399 + 0.381426i \(0.124567\pi\)
−0.131875 + 0.991266i \(0.542100\pi\)
\(824\) −3083.44 + 5340.67i −0.130360 + 0.225790i
\(825\) 8716.72 0.367851
\(826\) 466.875 + 10671.6i 0.0196666 + 0.449530i
\(827\) 8358.27 0.351446 0.175723 0.984440i \(-0.443774\pi\)
0.175723 + 0.984440i \(0.443774\pi\)
\(828\) −667.706 + 1156.50i −0.0280246 + 0.0485400i
\(829\) −16695.8 28918.1i −0.699482 1.21154i −0.968646 0.248444i \(-0.920081\pi\)
0.269164 0.963094i \(-0.413253\pi\)
\(830\) −5838.74 10113.0i −0.244175 0.422924i
\(831\) −9175.54 + 15892.5i −0.383028 + 0.663423i
\(832\) 832.000 0.0346688
\(833\) 18666.5 + 26648.6i 0.776419 + 1.10842i
\(834\) 6338.55 0.263173
\(835\) −2532.78 + 4386.90i −0.104970 + 0.181814i
\(836\) −7882.19 13652.4i −0.326090 0.564804i
\(837\) 3012.40 + 5217.64i 0.124401 + 0.215469i
\(838\) −9044.25 + 15665.1i −0.372826 + 0.645754i
\(839\) 15014.7 0.617835 0.308918 0.951089i \(-0.400033\pi\)
0.308918 + 0.951089i \(0.400033\pi\)
\(840\) 133.524 + 3052.03i 0.00548455 + 0.125363i
\(841\) −21026.9 −0.862146
\(842\) 14419.0 24974.4i 0.590156 1.02218i
\(843\) −10156.5 17591.6i −0.414958 0.718728i
\(844\) −6967.16 12067.5i −0.284146 0.492156i
\(845\) 580.767 1005.92i 0.0236438 0.0409522i
\(846\) 8373.99 0.340312
\(847\) −1070.10 556.938i −0.0434109 0.0225934i
\(848\) 4361.35 0.176615
\(849\) −1327.34 + 2299.02i −0.0536563 + 0.0929354i
\(850\) 7376.27 + 12776.1i 0.297652 + 0.515548i
\(851\) 511.361 + 885.704i 0.0205984 + 0.0356775i
\(852\) −848.661 + 1469.92i −0.0341252 + 0.0591065i
\(853\) −31433.8 −1.26175 −0.630874 0.775885i \(-0.717304\pi\)
−0.630874 + 0.775885i \(0.717304\pi\)
\(854\) 6208.85 3956.24i 0.248785 0.158524i
\(855\) −6524.40 −0.260971
\(856\) 2483.03 4300.74i 0.0991452 0.171725i
\(857\) −19425.5 33645.9i −0.774285 1.34110i −0.935195 0.354132i \(-0.884776\pi\)
0.160910 0.986969i \(-0.448557\pi\)
\(858\) 1457.23 + 2524.00i 0.0579826 + 0.100429i
\(859\) 14189.6 24577.2i 0.563614 0.976208i −0.433563 0.901123i \(-0.642744\pi\)
0.997177 0.0750850i \(-0.0239228\pi\)
\(860\) 13609.7 0.539637
\(861\) −6440.27 + 4103.70i −0.254917 + 0.162432i
\(862\) −14071.9 −0.556022
\(863\) −4032.08 + 6983.77i −0.159042 + 0.275469i −0.934524 0.355901i \(-0.884174\pi\)
0.775481 + 0.631371i \(0.217507\pi\)
\(864\) 432.000 + 748.246i 0.0170103 + 0.0294628i
\(865\) 5272.24 + 9131.79i 0.207239 + 0.358948i
\(866\) −8976.40 + 15547.6i −0.352229 + 0.610079i
\(867\) −12254.5 −0.480027
\(868\) −14663.4 7631.65i −0.573398 0.298428i
\(869\) −39596.0 −1.54569
\(870\) 1195.57 2070.78i 0.0465902 0.0806966i
\(871\) −1347.96 2334.74i −0.0524386 0.0908263i
\(872\) −2946.26 5103.07i −0.114418 0.198179i
\(873\) −676.951 + 1172.51i −0.0262444 + 0.0454566i
\(874\) 7825.20 0.302850
\(875\) 1128.07 + 25784.8i 0.0435836 + 0.996212i
\(876\) −3905.69 −0.150640
\(877\) −12007.0 + 20796.8i −0.462313 + 0.800750i −0.999076 0.0429836i \(-0.986314\pi\)
0.536763 + 0.843733i \(0.319647\pi\)
\(878\) 14971.5 + 25931.3i 0.575469 + 0.996742i
\(879\) 8957.79 + 15515.3i 0.343730 + 0.595358i
\(880\) 2054.47 3558.44i 0.0787001 0.136313i
\(881\) −30327.2 −1.15976 −0.579880 0.814702i \(-0.696901\pi\)
−0.579880 + 0.814702i \(0.696901\pi\)
\(882\) 3542.15 + 5056.82i 0.135227 + 0.193052i
\(883\) −7991.80 −0.304581 −0.152291 0.988336i \(-0.548665\pi\)
−0.152291 + 0.988336i \(0.548665\pi\)
\(884\) −2466.28 + 4271.72i −0.0938347 + 0.162527i
\(885\) −2973.06 5149.49i −0.112925 0.195591i
\(886\) −14143.8 24497.8i −0.536310 0.928916i
\(887\) 13820.7 23938.2i 0.523173 0.906161i −0.476464 0.879194i \(-0.658082\pi\)
0.999636 0.0269673i \(-0.00858499\pi\)
\(888\) 661.693 0.0250056
\(889\) −1716.89 39243.7i −0.0647723 1.48053i
\(890\) 19027.5 0.716635
\(891\) −1513.28 + 2621.08i −0.0568987 + 0.0985515i
\(892\) 6603.73 + 11438.0i 0.247880 + 0.429341i
\(893\) −24534.8 42495.6i −0.919402 1.59245i
\(894\) 1693.78 2933.72i 0.0633654 0.109752i
\(895\) −16593.5 −0.619733
\(896\) −2102.84 1094.43i −0.0784050 0.0408063i
\(897\) −1446.70 −0.0538503
\(898\) −12278.7 + 21267.4i −0.456288 + 0.790313i
\(899\) 6469.29 + 11205.1i 0.240003 + 0.415698i
\(900\) 1399.72 + 2424.38i 0.0518414 + 0.0897919i
\(901\) −12928.3 + 22392.4i −0.478028 + 0.827968i
\(902\) 10271.3 0.379153
\(903\) 23196.2 14780.5i 0.854841 0.544700i
\(904\) 5687.01 0.209234
\(905\) −895.725 + 1551.44i −0.0329004 + 0.0569852i
\(906\) −1125.15 1948.82i −0.0412590 0.0714627i
\(907\) 13383.9 + 23181.7i 0.489974 + 0.848659i 0.999933 0.0115389i \(-0.00367302\pi\)
−0.509960 + 0.860198i \(0.670340\pi\)
\(908\) −579.267 + 1003.32i −0.0211714 + 0.0366700i
\(909\) 35.4192 0.00129239
\(910\) −2791.07 + 1778.45i −0.101674 + 0.0647859i
\(911\) −18868.4 −0.686209 −0.343105 0.939297i \(-0.611479\pi\)
−0.343105 + 0.939297i \(0.611479\pi\)
\(912\) 2531.42 4384.55i 0.0919119 0.159196i
\(913\) 15871.1 + 27489.6i 0.575309 + 0.996465i
\(914\) −12391.9 21463.4i −0.448454 0.776745i
\(915\) −2049.11 + 3549.17i −0.0740345 + 0.128231i
\(916\) 24008.3 0.866002
\(917\) 14934.5 + 7772.72i 0.537818 + 0.279910i
\(918\) −5122.27 −0.184161
\(919\) −1356.75 + 2349.97i −0.0486999 + 0.0843506i −0.889348 0.457231i \(-0.848841\pi\)
0.840648 + 0.541582i \(0.182174\pi\)
\(920\) 1019.81 + 1766.36i 0.0365457 + 0.0632990i
\(921\) 9593.04 + 16615.6i 0.343216 + 0.594467i
\(922\) 12194.8 21122.0i 0.435590 0.754463i
\(923\) −1838.77 −0.0655728
\(924\) −362.952 8296.16i −0.0129223 0.295372i
\(925\) 2143.94 0.0762080
\(926\) −12130.0 + 21009.7i −0.430471 + 0.745597i
\(927\) −3468.87 6008.25i −0.122905 0.212877i
\(928\) 927.742 + 1606.90i 0.0328175 + 0.0568415i
\(929\) 2235.73 3872.40i 0.0789581 0.136759i −0.823843 0.566819i \(-0.808174\pi\)
0.902801 + 0.430059i \(0.141507\pi\)
\(930\) 9201.87 0.324453
\(931\) 15283.8 32791.3i 0.538030 1.15434i
\(932\) 10789.3 0.379203
\(933\) −960.819 + 1664.19i −0.0337147 + 0.0583956i
\(934\) −6375.89 11043.4i −0.223368 0.386884i
\(935\) 12180.0 + 21096.4i 0.426021 + 0.737889i
\(936\) −468.000 + 810.600i −0.0163430 + 0.0283069i
\(937\) 46869.4 1.63410 0.817052 0.576564i \(-0.195607\pi\)
0.817052 + 0.576564i \(0.195607\pi\)
\(938\) 335.736 + 7674.09i 0.0116868 + 0.267130i
\(939\) −30033.6 −1.04378
\(940\) 6394.92 11076.3i 0.221893 0.384330i
\(941\) −13870.6 24024.6i −0.480519 0.832283i 0.519231 0.854634i \(-0.326218\pi\)
−0.999750 + 0.0223507i \(0.992885\pi\)
\(942\) −5195.15 8998.26i −0.179689 0.311230i
\(943\) −2549.25 + 4415.44i −0.0880330 + 0.152478i
\(944\) 4614.10 0.159085
\(945\) −3048.63 1586.68i −0.104944 0.0546186i
\(946\) −36994.6 −1.27146
\(947\) −6989.74 + 12106.6i −0.239848 + 0.415429i −0.960671 0.277691i \(-0.910431\pi\)
0.720822 + 0.693120i \(0.243764\pi\)
\(948\) −6358.26 11012.8i −0.217834 0.377300i
\(949\) −2115.58 3664.29i −0.0723652 0.125340i
\(950\) 8202.02 14206.3i 0.280114 0.485172i
\(951\) −17602.7 −0.600218
\(952\) 11852.5 7552.36i 0.403511 0.257115i
\(953\) 24513.3 0.833224 0.416612 0.909084i \(-0.363217\pi\)
0.416612 + 0.909084i \(0.363217\pi\)
\(954\) −2453.26 + 4249.17i −0.0832571 + 0.144206i
\(955\) 13084.3 + 22662.7i 0.443350 + 0.767904i
\(956\) −3702.80 6413.44i −0.125269 0.216972i
\(957\) −3249.84 + 5628.89i −0.109773 + 0.190132i
\(958\) 34382.8 1.15956
\(959\) 1550.72 988.107i 0.0522161 0.0332718i
\(960\) 1319.61 0.0443649
\(961\) −10000.5 + 17321.3i −0.335688 + 0.581428i
\(962\) 358.417 + 620.797i 0.0120123 + 0.0208059i
\(963\) 2793.41 + 4838.33i 0.0934750 + 0.161903i
\(964\) −7391.81 + 12803.0i −0.246965 + 0.427756i
\(965\) −6373.24 −0.212603
\(966\) 3656.45 + 1903.02i 0.121785 + 0.0633836i
\(967\) 11102.1 0.369204 0.184602 0.982813i \(-0.440900\pi\)
0.184602 + 0.982813i \(0.440900\pi\)
\(968\) −260.548 + 451.282i −0.00865117 + 0.0149843i
\(969\) 15007.7 + 25994.0i 0.497539 + 0.861763i
\(970\) 1033.93 + 1790.81i 0.0342241 + 0.0592779i
\(971\) −16268.1 + 28177.1i −0.537659 + 0.931253i 0.461370 + 0.887208i \(0.347358\pi\)
−0.999030 + 0.0440455i \(0.985975\pi\)
\(972\) −972.000 −0.0320750
\(973\) −855.150 19546.6i −0.0281756 0.644023i
\(974\) 24057.7 0.791436
\(975\) −1516.36 + 2626.41i −0.0498076 + 0.0862693i
\(976\) −1590.08 2754.10i −0.0521488 0.0903244i
\(977\) −1668.84 2890.51i −0.0546477 0.0946525i 0.837407 0.546579i \(-0.184070\pi\)
−0.892055 + 0.451927i \(0.850737\pi\)
\(978\) 8819.83 15276.4i 0.288371 0.499474i
\(979\) −51721.6 −1.68849
\(980\) 9393.70 823.513i 0.306195 0.0268430i
\(981\) 6629.08 0.215749
\(982\) −10398.6 + 18010.9i −0.337915 + 0.585286i
\(983\) −12735.5 22058.6i −0.413226 0.715728i 0.582015 0.813178i \(-0.302265\pi\)
−0.995240 + 0.0974504i \(0.968931\pi\)
\(984\) 1649.35 + 2856.75i 0.0534342 + 0.0925508i
\(985\) 14682.7 25431.1i 0.474952 0.822642i
\(986\) −11000.3 −0.355296
\(987\) −1129.76 25823.4i −0.0364342 0.832794i
\(988\) 5484.74 0.176612
\(989\) 9181.77 15903.3i 0.295211 0.511320i
\(990\) 2311.28 + 4003.25i 0.0741992 + 0.128517i
\(991\) 14421.8 + 24979.4i 0.462286 + 0.800702i 0.999074 0.0430143i \(-0.0136961\pi\)
−0.536789 + 0.843717i \(0.680363\pi\)
\(992\) −3570.26 + 6183.87i −0.114270 + 0.197921i
\(993\) −15420.2 −0.492796
\(994\) 4647.39 + 2418.76i 0.148296 + 0.0771814i
\(995\) 4252.42 0.135488
\(996\) −5097.12 + 8828.47i −0.162157 + 0.280864i
\(997\) −2714.30 4701.30i −0.0862213 0.149340i 0.819690 0.572808i \(-0.194146\pi\)
−0.905911 + 0.423468i \(0.860813\pi\)
\(998\) 844.907 + 1463.42i 0.0267986 + 0.0464166i
\(999\) −372.202 + 644.674i −0.0117878 + 0.0204170i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 546.4.i.a.79.2 4
7.4 even 3 inner 546.4.i.a.235.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.4.i.a.79.2 4 1.1 even 1 trivial
546.4.i.a.235.2 yes 4 7.4 even 3 inner