Properties

Label 5472.2.e.c.5167.2
Level 54725472
Weight 22
Character 5472.5167
Analytic conductor 43.69443.694
Analytic rank 00
Dimension 88
CM discriminant -456
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5472,2,Mod(5167,5472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5472.5167");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5472=253219 5472 = 2^{5} \cdot 3^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5472.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 43.694139986043.6941399860
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x812x6+96x4+248x2+900 x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 Copy content Toggle raw display
Coefficient ring: Z[a1,,a41]\Z[a_1, \ldots, a_{41}]
Coefficient ring index: 27 2^{7}
Twist minimal: no (minimal twist has level 1368)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 5167.2
Root 3.059231.41421i-3.05923 - 1.41421i of defining polynomial
Character χ\chi == 5472.5167
Dual form 5472.2.e.c.5167.8

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q4.32641iq5+4.15719q13+4.35890q19+1.55274iq2313.7178q25+10.2757q31+8.07974q3712.3288iq41+8.71780q43+7.10007iq47+7.00000q492.82843iq5917.9857iq658.71780q73+14.1982q79+11.3137iq8918.8584iq95+O(q100)q-4.32641i q^{5} +4.15719 q^{13} +4.35890 q^{19} +1.55274i q^{23} -13.7178 q^{25} +10.2757 q^{31} +8.07974 q^{37} -12.3288i q^{41} +8.71780 q^{43} +7.10007i q^{47} +7.00000 q^{49} -2.82843i q^{59} -17.9857i q^{65} -8.71780 q^{73} +14.1982 q^{79} +11.3137i q^{89} -18.8584i q^{95} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q40q25+56q49+O(q100) 8 q - 40 q^{25} + 56 q^{49}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5472Z)×\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times.

nn 12171217 20532053 37453745 44474447
χ(n)\chi(n) 11 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 − 4.32641i − 1.93483i −0.253200 0.967414i 0.581483π-0.581483\pi
0.253200 0.967414i 0.418517π-0.418517\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 4.15719 1.15300 0.576498 0.817099i 0.304419π-0.304419\pi
0.576498 + 0.817099i 0.304419π0.304419\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 4.35890 1.00000
2020 0 0
2121 0 0
2222 0 0
2323 1.55274i 0.323769i 0.986810 + 0.161885i 0.0517572π0.0517572\pi
−0.986810 + 0.161885i 0.948243π0.948243\pi
2424 0 0
2525 −13.7178 −2.74356
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 10.2757 1.84556 0.922781 0.385326i 0.125911π-0.125911\pi
0.922781 + 0.385326i 0.125911π0.125911\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 8.07974 1.32830 0.664151 0.747599i 0.268793π-0.268793\pi
0.664151 + 0.747599i 0.268793π0.268793\pi
3838 0 0
3939 0 0
4040 0 0
4141 − 12.3288i − 1.92544i −0.270501 0.962720i 0.587189π-0.587189\pi
0.270501 0.962720i 0.412811π-0.412811\pi
4242 0 0
4343 8.71780 1.32945 0.664726 0.747087i 0.268548π-0.268548\pi
0.664726 + 0.747087i 0.268548π0.268548\pi
4444 0 0
4545 0 0
4646 0 0
4747 7.10007i 1.03565i 0.855486 + 0.517826i 0.173259π0.173259\pi
−0.855486 + 0.517826i 0.826741π0.826741\pi
4848 0 0
4949 7.00000 1.00000
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 − 2.82843i − 0.368230i −0.982905 0.184115i 0.941058π-0.941058\pi
0.982905 0.184115i 0.0589419π-0.0589419\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0 0
6565 − 17.9857i − 2.23085i
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 −8.71780 −1.02034 −0.510171 0.860073i 0.670418π-0.670418\pi
−0.510171 + 0.860073i 0.670418π0.670418\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 14.1982 1.59742 0.798711 0.601714i 0.205515π-0.205515\pi
0.798711 + 0.601714i 0.205515π0.205515\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 11.3137i 1.19925i 0.800281 + 0.599625i 0.204684π0.204684\pi
−0.800281 + 0.599625i 0.795316π0.795316\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 − 18.8584i − 1.93483i
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 0 0
100100 0 0
101101 1.22092i 0.121486i 0.998153 + 0.0607431i 0.0193470π0.0193470\pi
−0.998153 + 0.0607431i 0.980653π0.980653\pi
102102 0 0
103103 6.35310 0.625989 0.312995 0.949755i 0.398668π-0.398668\pi
0.312995 + 0.949755i 0.398668π0.398668\pi
104104 0 0
105105 0 0
106106 0 0
107107 14.1421i 1.36717i 0.729870 + 0.683586i 0.239581π0.239581\pi
−0.729870 + 0.683586i 0.760419π0.760419\pi
108108 0 0
109109 0.234633 0.0224738 0.0112369 0.999937i 0.496423π-0.496423\pi
0.0112369 + 0.999937i 0.496423π0.496423\pi
110110 0 0
111111 0 0
112112 0 0
113113 − 12.3288i − 1.15980i −0.814688 0.579899i 0.803092π-0.803092\pi
0.814688 0.579899i 0.196908π-0.196908\pi
114114 0 0
115115 6.71780 0.626438
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 37.7167i 3.37349i
126126 0 0
127127 −22.5126 −1.99767 −0.998834 0.0482746i 0.984628π-0.984628\pi
−0.998834 + 0.0482746i 0.984628π0.984628\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 10.0000 0.848189 0.424094 0.905618i 0.360592π-0.360592\pi
0.424094 + 0.905618i 0.360592π0.360592\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 − 9.87374i − 0.808888i −0.914563 0.404444i 0.867465π-0.867465\pi
0.914563 0.404444i 0.132535π-0.132535\pi
150150 0 0
151151 −18.5900 −1.51283 −0.756417 0.654089i 0.773052π-0.773052\pi
−0.756417 + 0.654089i 0.773052π0.773052\pi
152152 0 0
153153 0 0
154154 0 0
155155 − 44.4566i − 3.57084i
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −14.0000 −1.09656 −0.548282 0.836293i 0.684718π-0.684718\pi
−0.548282 + 0.836293i 0.684718π0.684718\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 4.28220 0.329400
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 − 24.6577i − 1.84300i −0.388379 0.921500i 0.626965π-0.626965\pi
0.388379 0.921500i 0.373035π-0.373035\pi
180180 0 0
181181 12.0023 0.892123 0.446062 0.895002i 0.352826π-0.352826\pi
0.446062 + 0.895002i 0.352826π0.352826\pi
182182 0 0
183183 0 0
184184 0 0
185185 − 34.9562i − 2.57003i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 27.5112i 1.99064i 0.0966364 + 0.995320i 0.469192π0.469192\pi
−0.0966364 + 0.995320i 0.530808π0.530808\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 24.7375i − 1.76248i −0.472673 0.881238i 0.656711π-0.656711\pi
0.472673 0.881238i 0.343289π-0.343289\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −53.3395 −3.72539
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 − 37.7167i − 2.57226i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −26.4351 −1.77023 −0.885114 0.465375i 0.845919π-0.845919\pi
−0.885114 + 0.465375i 0.845919π0.845919\pi
224224 0 0
225225 0 0
226226 0 0
227227 − 24.6577i − 1.63659i −0.574801 0.818293i 0.694921π-0.694921\pi
0.574801 0.818293i 0.305079π-0.305079\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 30.7178 2.00381
236236 0 0
237237 0 0
238238 0 0
239239 − 3.99459i − 0.258388i −0.991619 0.129194i 0.958761π-0.958761\pi
0.991619 0.129194i 0.0412390π-0.0412390\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 0 0
243243 0 0
244244 0 0
245245 − 30.2848i − 1.93483i
246246 0 0
247247 18.1208 1.15300
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 28.2843i 1.76432i 0.470946 + 0.882162i 0.343913π0.343913\pi
−0.470946 + 0.882162i 0.656087π0.656087\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 21.9639i 1.35435i 0.735822 + 0.677175i 0.236796π0.236796\pi
−0.735822 + 0.677175i 0.763204π0.763204\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 − 12.3288i − 0.735476i −0.929929 0.367738i 0.880132π-0.880132\pi
0.929929 0.367738i 0.119868π-0.119868\pi
282282 0 0
283283 −26.0000 −1.54554 −0.772770 0.634686i 0.781129π-0.781129\pi
−0.772770 + 0.634686i 0.781129π0.781129\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 −12.2369 −0.712461
296296 0 0
297297 0 0
298298 0 0
299299 6.45504i 0.373305i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 12.6474i 0.717168i 0.933497 + 0.358584i 0.116740π0.116740\pi
−0.933497 + 0.358584i 0.883260π0.883260\pi
312312 0 0
313313 −8.71780 −0.492759 −0.246380 0.969173i 0.579241π-0.579241\pi
−0.246380 + 0.969173i 0.579241π0.579241\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −57.0274 −3.16331
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 33.0585i 1.74476i 0.488827 + 0.872381i 0.337425π0.337425\pi
−0.488827 + 0.872381i 0.662575π0.662575\pi
360360 0 0
361361 19.0000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 37.7167i 1.97418i
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 36.9454 1.91296 0.956481 0.291796i 0.0942529π-0.0942529\pi
0.956481 + 0.291796i 0.0942529π0.0942529\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 − 19.1902i − 0.972981i −0.873686 0.486491i 0.838277π-0.838277\pi
0.873686 0.486491i 0.161723π-0.161723\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 − 61.4272i − 3.09074i
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 − 12.3288i − 0.615672i −0.951439 0.307836i 0.900395π-0.900395\pi
0.951439 0.307836i 0.0996049π-0.0996049\pi
402402 0 0
403403 42.7178 2.12793
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 40.8680 1.99178 0.995891 0.0905552i 0.0288641π-0.0288641\pi
0.995891 + 0.0905552i 0.0288641π0.0288641\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 6.76825i 0.323769i
438438 0 0
439439 −30.3577 −1.44889 −0.724447 0.689331i 0.757905π-0.757905\pi
−0.724447 + 0.689331i 0.757905π0.757905\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 48.9477 2.32034
446446 0 0
447447 0 0
448448 0 0
449449 − 39.5980i − 1.86874i −0.356299 0.934372i 0.615961π-0.615961\pi
0.356299 0.934372i 0.384039π-0.384039\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 2.00000 0.0935561 0.0467780 0.998905i 0.485105π-0.485105\pi
0.0467780 + 0.998905i 0.485105π0.485105\pi
458458 0 0
459459 0 0
460460 0 0
461461 42.0431i 1.95814i 0.203513 + 0.979072i 0.434764π0.434764\pi
−0.203513 + 0.979072i 0.565236π0.565236\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −59.7945 −2.74356
476476 0 0
477477 0 0
478478 0 0
479479 − 39.2695i − 1.79427i −0.441758 0.897134i 0.645645π-0.645645\pi
0.441758 0.897134i 0.354355π-0.354355\pi
480480 0 0
481481 33.5890 1.53153
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 43.0639 1.95141 0.975705 0.219087i 0.0703079π-0.0703079\pi
0.975705 + 0.219087i 0.0703079π0.0703079\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −43.5890 −1.95131 −0.975656 0.219308i 0.929620π-0.929620\pi
−0.975656 + 0.219308i 0.929620π0.929620\pi
500500 0 0
501501 0 0
502502 0 0
503503 − 44.8168i − 1.99828i −0.0414285 0.999141i 0.513191π-0.513191\pi
0.0414285 0.999141i 0.486809π-0.486809\pi
504504 0 0
505505 5.28220 0.235055
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 − 27.4861i − 1.21118i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 − 5.65685i − 0.247831i −0.992293 0.123916i 0.960455π-0.960455\pi
0.992293 0.123916i 0.0395452π-0.0395452\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 20.5890 0.895173
530530 0 0
531531 0 0
532532 0 0
533533 − 51.2532i − 2.22002i
534534 0 0
535535 61.1846 2.64524
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 − 1.01512i − 0.0434829i
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 36.4958i 1.54638i 0.634176 + 0.773189i 0.281339π0.281339\pi
−0.634176 + 0.773189i 0.718661π0.718661\pi
558558 0 0
559559 36.2415 1.53285
560560 0 0
561561 0 0
562562 0 0
563563 14.1421i 0.596020i 0.954563 + 0.298010i 0.0963229π0.0963229\pi
−0.954563 + 0.298010i 0.903677π0.903677\pi
564564 0 0
565565 −53.3395 −2.24401
566566 0 0
567567 0 0
568568 0 0
569569 45.2548i 1.89718i 0.316506 + 0.948591i 0.397490π0.397490\pi
−0.316506 + 0.948591i 0.602510π0.602510\pi
570570 0 0
571571 −43.5890 −1.82414 −0.912071 0.410032i 0.865518π-0.865518\pi
−0.912071 + 0.410032i 0.865518π0.865518\pi
572572 0 0
573573 0 0
574574 0 0
575575 − 21.3002i − 0.888280i
576576 0 0
577577 −22.0000 −0.915872 −0.457936 0.888985i 0.651411π-0.651411\pi
−0.457936 + 0.888985i 0.651411π0.651411\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 44.7905 1.84556
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 47.5905i 1.93483i
606606 0 0
607607 −1.49201 −0.0605588 −0.0302794 0.999541i 0.509640π-0.509640\pi
−0.0302794 + 0.999541i 0.509640π0.509640\pi
608608 0 0
609609 0 0
610610 0 0
611611 29.5163i 1.19410i
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 8.71780 0.350398 0.175199 0.984533i 0.443943π-0.443943\pi
0.175199 + 0.984533i 0.443943π0.443943\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 94.5890 3.78356
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 97.3986i 3.86514i
636636 0 0
637637 29.1003 1.15300
638638 0 0
639639 0 0
640640 0 0
641641 − 22.6274i − 0.893729i −0.894602 0.446865i 0.852541π-0.852541\pi
0.894602 0.446865i 0.147459π-0.147459\pi
642642 0 0
643643 46.0000 1.81406 0.907031 0.421063i 0.138343π-0.138343\pi
0.907031 + 0.421063i 0.138343π0.138343\pi
644644 0 0
645645 0 0
646646 0 0
647647 47.9223i 1.88402i 0.335585 + 0.942010i 0.391066π0.391066\pi
−0.335585 + 0.942010i 0.608934π0.608934\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 − 50.6960i − 1.98389i −0.126684 0.991943i 0.540433π-0.540433\pi
0.126684 0.991943i 0.459567π-0.459567\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 − 24.6577i − 0.960526i −0.877125 0.480263i 0.840541π-0.840541\pi
0.877125 0.480263i 0.159459π-0.159459\pi
660660 0 0
661661 −7.61047 −0.296013 −0.148007 0.988986i 0.547286π-0.547286\pi
−0.148007 + 0.988986i 0.547286π0.547286\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 0 0
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 49.3153i 1.88700i 0.331375 + 0.943499i 0.392487π0.392487\pi
−0.331375 + 0.943499i 0.607513π0.607513\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −43.5890 −1.65820 −0.829102 0.559098i 0.811148π-0.811148\pi
−0.829102 + 0.559098i 0.811148π0.811148\pi
692692 0 0
693693 0 0
694694 0 0
695695 − 43.2641i − 1.64110i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 − 45.1486i − 1.70524i −0.522531 0.852620i 0.675012π-0.675012\pi
0.522531 0.852620i 0.324988π-0.324988\pi
702702 0 0
703703 35.2188 1.32830
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 15.9554i 0.597536i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 53.4696i 1.99408i 0.0768806 + 0.997040i 0.475504π0.475504\pi
−0.0768806 + 0.997040i 0.524496π0.524496\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −50.0000 −1.83928 −0.919640 0.392763i 0.871519π-0.871519\pi
−0.919640 + 0.392763i 0.871519π0.871519\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 −42.7178 −1.56506
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 50.9090 1.85770 0.928848 0.370462i 0.120801π-0.120801\pi
0.928848 + 0.370462i 0.120801π0.120801\pi
752752 0 0
753753 0 0
754754 0 0
755755 80.4280i 2.92707i
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 − 11.7583i − 0.424568i
768768 0 0
769769 43.5890 1.57186 0.785930 0.618316i 0.212185π-0.212185\pi
0.785930 + 0.618316i 0.212185π0.212185\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 −140.959 −5.06341
776776 0 0
777777 0 0
778778 0 0
779779 − 53.7401i − 1.92544i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 60.5697i 2.12166i
816816 0 0
817817 38.0000 1.32945
818818 0 0
819819 0 0
820820 0 0
821821 − 13.6429i − 0.476139i −0.971248 0.238070i 0.923485π-0.923485\pi
0.971248 0.238070i 0.0765146π-0.0765146\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 24.6577i − 0.857431i −0.903440 0.428715i 0.858966π-0.858966\pi
0.903440 0.428715i 0.141034π-0.141034\pi
828828 0 0
829829 19.8474 0.689329 0.344664 0.938726i 0.387993π-0.387993\pi
0.344664 + 0.938726i 0.387993π0.387993\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 0 0
844844 0 0
845845 − 18.5265i − 0.637333i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 12.5458i 0.430063i
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 − 56.5685i − 1.93234i −0.257897 0.966172i 0.583030π-0.583030\pi
0.257897 0.966172i 0.416970π-0.416970\pi
858858 0 0
859859 −43.5890 −1.48724 −0.743619 0.668604i 0.766892π-0.766892\pi
−0.743619 + 0.668604i 0.766892π0.766892\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 48.7131 1.64492 0.822462 0.568820i 0.192600π-0.192600\pi
0.822462 + 0.568820i 0.192600π0.192600\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 8.71780 0.293377 0.146689 0.989183i 0.453138π-0.453138\pi
0.146689 + 0.989183i 0.453138π0.453138\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 30.9485i 1.03565i
894894 0 0
895895 −106.679 −3.56589
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 − 51.9268i − 1.72611i
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −110.836 −3.64427
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 30.5123 1.00000
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −61.0246 −1.99359 −0.996793 0.0800213i 0.974501π-0.974501\pi
−0.996793 + 0.0800213i 0.974501π0.974501\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 19.1435 0.623398
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −36.2415 −1.17645
950950 0 0
951951 0 0
952952 0 0
953953 61.6441i 1.99685i 0.0561066 + 0.998425i 0.482131π0.482131\pi
−0.0561066 + 0.998425i 0.517869π0.517869\pi
954954 0 0
955955 119.025 3.85155
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 74.5890 2.40610
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 49.3153i 1.58260i 0.611426 + 0.791302i 0.290596π0.290596\pi
−0.611426 + 0.791302i 0.709404π0.709404\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 61.6441i 1.97217i 0.166240 + 0.986085i 0.446837π0.446837\pi
−0.166240 + 0.986085i 0.553163π0.553163\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 −107.025 −3.41009
986986 0 0
987987 0 0
988988 0 0
989989 13.5365i 0.430436i
990990 0 0
991991 31.2962 0.994157 0.497079 0.867706i 0.334406π-0.334406\pi
0.497079 + 0.867706i 0.334406π0.334406\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.e.c.5167.2 8
3.2 odd 2 inner 5472.2.e.c.5167.8 8
4.3 odd 2 1368.2.e.c.379.5 yes 8
8.3 odd 2 inner 5472.2.e.c.5167.7 8
8.5 even 2 1368.2.e.c.379.8 yes 8
12.11 even 2 1368.2.e.c.379.4 yes 8
19.18 odd 2 inner 5472.2.e.c.5167.1 8
24.5 odd 2 1368.2.e.c.379.1 8
24.11 even 2 inner 5472.2.e.c.5167.1 8
57.56 even 2 inner 5472.2.e.c.5167.7 8
76.75 even 2 1368.2.e.c.379.1 8
152.37 odd 2 1368.2.e.c.379.4 yes 8
152.75 even 2 inner 5472.2.e.c.5167.8 8
228.227 odd 2 1368.2.e.c.379.8 yes 8
456.227 odd 2 CM 5472.2.e.c.5167.2 8
456.341 even 2 1368.2.e.c.379.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1368.2.e.c.379.1 8 24.5 odd 2
1368.2.e.c.379.1 8 76.75 even 2
1368.2.e.c.379.4 yes 8 12.11 even 2
1368.2.e.c.379.4 yes 8 152.37 odd 2
1368.2.e.c.379.5 yes 8 4.3 odd 2
1368.2.e.c.379.5 yes 8 456.341 even 2
1368.2.e.c.379.8 yes 8 8.5 even 2
1368.2.e.c.379.8 yes 8 228.227 odd 2
5472.2.e.c.5167.1 8 19.18 odd 2 inner
5472.2.e.c.5167.1 8 24.11 even 2 inner
5472.2.e.c.5167.2 8 1.1 even 1 trivial
5472.2.e.c.5167.2 8 456.227 odd 2 CM
5472.2.e.c.5167.7 8 8.3 odd 2 inner
5472.2.e.c.5167.7 8 57.56 even 2 inner
5472.2.e.c.5167.8 8 3.2 odd 2 inner
5472.2.e.c.5167.8 8 152.75 even 2 inner