Properties

Label 5472.2.e.c.5167.3
Level $5472$
Weight $2$
Character 5472.5167
Analytic conductor $43.694$
Analytic rank $0$
Dimension $8$
CM discriminant -456
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5472,2,Mod(5167,5472)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5472, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5472.5167");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{41}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 1368)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5167.3
Root \(-0.800688 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 5472.5167
Dual form 5472.2.e.c.5167.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.13234i q^{5} -5.89218 q^{13} -4.35890 q^{19} -9.46515i q^{23} +3.71780 q^{25} -4.29081 q^{31} +9.09493 q^{37} +12.3288i q^{41} -8.71780 q^{43} +11.7298i q^{47} +7.00000 q^{49} -2.82843i q^{59} +6.67197i q^{65} +8.71780 q^{73} +10.6963 q^{79} +11.3137i q^{89} +4.93577i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 40 q^{25} + 56 q^{49}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.13234i − 0.506399i −0.967414 0.253200i \(-0.918517\pi\)
0.967414 0.253200i \(-0.0814830\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.89218 −1.63420 −0.817099 0.576498i \(-0.804419\pi\)
−0.817099 + 0.576498i \(0.804419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −4.35890 −1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 9.46515i − 1.97362i −0.161885 0.986810i \(-0.551757\pi\)
0.161885 0.986810i \(-0.448243\pi\)
\(24\) 0 0
\(25\) 3.71780 0.743560
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −4.29081 −0.770651 −0.385326 0.922781i \(-0.625911\pi\)
−0.385326 + 0.922781i \(0.625911\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.09493 1.49520 0.747599 0.664151i \(-0.231207\pi\)
0.747599 + 0.664151i \(0.231207\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.3288i 1.92544i 0.270501 + 0.962720i \(0.412811\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −8.71780 −1.32945 −0.664726 0.747087i \(-0.731452\pi\)
−0.664726 + 0.747087i \(0.731452\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.7298i 1.71097i 0.517826 + 0.855486i \(0.326741\pi\)
−0.517826 + 0.855486i \(0.673259\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 2.82843i − 0.368230i −0.982905 0.184115i \(-0.941058\pi\)
0.982905 0.184115i \(-0.0589419\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.67197i 0.827556i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 8.71780 1.02034 0.510171 0.860073i \(-0.329582\pi\)
0.510171 + 0.860073i \(0.329582\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.6963 1.20343 0.601714 0.798711i \(-0.294485\pi\)
0.601714 + 0.798711i \(0.294485\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.3137i 1.19925i 0.800281 + 0.599625i \(0.204684\pi\)
−0.800281 + 0.599625i \(0.795316\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.93577i 0.506399i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 20.0626i 1.99631i 0.0607431 + 0.998153i \(0.480653\pi\)
−0.0607431 + 0.998153i \(0.519347\pi\)
\(102\) 0 0
\(103\) −19.2779 −1.89951 −0.949755 0.312995i \(-0.898668\pi\)
−0.949755 + 0.312995i \(0.898668\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1421i 1.36717i 0.729870 + 0.683586i \(0.239581\pi\)
−0.729870 + 0.683586i \(0.760419\pi\)
\(108\) 0 0
\(109\) −20.8793 −1.99987 −0.999937 0.0112369i \(-0.996423\pi\)
−0.999937 + 0.0112369i \(0.996423\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.3288i 1.15980i 0.814688 + 0.579899i \(0.196908\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) −10.7178 −0.999440
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.87154i − 0.882938i
\(126\) 0 0
\(127\) 1.08805 0.0965492 0.0482746 0.998834i \(-0.484628\pi\)
0.0482746 + 0.998834i \(0.484628\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 22.3273i − 1.82913i −0.404444 0.914563i \(-0.632535\pi\)
0.404444 0.914563i \(-0.367465\pi\)
\(150\) 0 0
\(151\) 16.0752 1.30818 0.654089 0.756417i \(-0.273052\pi\)
0.654089 + 0.756417i \(0.273052\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.85867i 0.390257i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 21.7178 1.67060
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.6577i 1.84300i 0.388379 + 0.921500i \(0.373035\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(180\) 0 0
\(181\) 24.0820 1.79000 0.895002 0.446062i \(-0.147174\pi\)
0.895002 + 0.446062i \(0.147174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 10.2986i − 0.757167i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 2.67108i − 0.193273i −0.995320 0.0966364i \(-0.969192\pi\)
0.995320 0.0966364i \(-0.0308084\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.2686i 0.945347i 0.881238 + 0.472673i \(0.156711\pi\)
−0.881238 + 0.472673i \(0.843289\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 13.9605 0.975042
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.87154i 0.673234i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.8991 −0.930750 −0.465375 0.885114i \(-0.654081\pi\)
−0.465375 + 0.885114i \(0.654081\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.6577i 1.63659i 0.574801 + 0.818293i \(0.305079\pi\)
−0.574801 + 0.818293i \(0.694921\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 13.2822 0.866435
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 30.6601i − 1.98324i −0.129194 0.991619i \(-0.541239\pi\)
0.129194 0.991619i \(-0.458761\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 7.92641i − 0.506399i
\(246\) 0 0
\(247\) 25.6834 1.63420
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.2843i 1.76432i 0.470946 + 0.882162i \(0.343913\pi\)
−0.470946 + 0.882162i \(0.656087\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 23.8661i − 1.47164i −0.677175 0.735822i \(-0.736796\pi\)
0.677175 0.735822i \(-0.263204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.3288i 0.735476i 0.929929 + 0.367738i \(0.119868\pi\)
−0.929929 + 0.367738i \(0.880132\pi\)
\(282\) 0 0
\(283\) −26.0000 −1.54554 −0.772770 0.634686i \(-0.781129\pi\)
−0.772770 + 0.634686i \(0.781129\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −3.20275 −0.186471
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 55.7704i 3.22528i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 32.9248i 1.86699i 0.358584 + 0.933497i \(0.383260\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(312\) 0 0
\(313\) 8.71780 0.492759 0.246380 0.969173i \(-0.420759\pi\)
0.246380 + 0.969173i \(0.420759\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −21.9059 −1.21512
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.5239i 0.977654i 0.872381 + 0.488827i \(0.162575\pi\)
−0.872381 + 0.488827i \(0.837425\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 9.87154i − 0.516700i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.2710 −0.583592 −0.291796 0.956481i \(-0.594253\pi\)
−0.291796 + 0.956481i \(0.594253\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 34.4636i 1.74737i 0.486491 + 0.873686i \(0.338277\pi\)
−0.486491 + 0.873686i \(0.661723\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 12.1119i − 0.609416i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.3288i 0.615672i 0.951439 + 0.307836i \(0.0996049\pi\)
−0.951439 + 0.307836i \(0.900395\pi\)
\(402\) 0 0
\(403\) 25.2822 1.25940
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 3.71607 0.181110 0.0905552 0.995891i \(-0.471136\pi\)
0.0905552 + 0.995891i \(0.471136\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 41.2576i 1.97362i
\(438\) 0 0
\(439\) −28.8862 −1.37866 −0.689331 0.724447i \(-0.742095\pi\)
−0.689331 + 0.724447i \(0.742095\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 12.8110 0.607300
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 39.5980i − 1.86874i −0.356299 0.934372i \(-0.615961\pi\)
0.356299 0.934372i \(-0.384039\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 8.73920i − 0.407025i −0.979072 0.203513i \(-0.934764\pi\)
0.979072 0.203513i \(-0.0652358\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −16.2055 −0.743560
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.3367i 0.883516i 0.897134 + 0.441758i \(0.145645\pi\)
−0.897134 + 0.441758i \(0.854355\pi\)
\(480\) 0 0
\(481\) −53.5890 −2.44345
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9.66966 −0.438174 −0.219087 0.975705i \(-0.570308\pi\)
−0.219087 + 0.975705i \(0.570308\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 43.5890 1.95131 0.975656 0.219308i \(-0.0703801\pi\)
0.975656 + 0.219308i \(0.0703801\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 1.85829i − 0.0828571i −0.999141 0.0414285i \(-0.986809\pi\)
0.999141 0.0414285i \(-0.0131909\pi\)
\(504\) 0 0
\(505\) 22.7178 1.01093
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.8292i 0.961911i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 5.65685i − 0.247831i −0.992293 0.123916i \(-0.960455\pi\)
0.992293 0.123916i \(-0.0395452\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −66.5890 −2.89517
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 72.6437i − 3.14655i
\(534\) 0 0
\(535\) 16.0138 0.692335
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 23.6425i 1.01273i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 29.9342i − 1.26835i −0.773189 0.634176i \(-0.781339\pi\)
0.773189 0.634176i \(-0.218661\pi\)
\(558\) 0 0
\(559\) 51.3668 2.17259
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.1421i 0.596020i 0.954563 + 0.298010i \(0.0963229\pi\)
−0.954563 + 0.298010i \(0.903677\pi\)
\(564\) 0 0
\(565\) 13.9605 0.587321
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 45.2548i 1.89718i 0.316506 + 0.948591i \(0.397490\pi\)
−0.316506 + 0.948591i \(0.602510\pi\)
\(570\) 0 0
\(571\) 43.5890 1.82414 0.912071 0.410032i \(-0.134482\pi\)
0.912071 + 0.410032i \(0.134482\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 35.1895i − 1.46750i
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 18.7032 0.770651
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.4558i 0.506399i
\(606\) 0 0
\(607\) −49.2521 −1.99908 −0.999541 0.0302794i \(-0.990360\pi\)
−0.999541 + 0.0302794i \(0.990360\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 69.1143i − 2.79607i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −8.71780 −0.350398 −0.175199 0.984533i \(-0.556057\pi\)
−0.175199 + 0.984533i \(0.556057\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.41101 0.296440
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.23205i − 0.0488924i
\(636\) 0 0
\(637\) −41.2453 −1.63420
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 22.6274i − 0.893729i −0.894602 0.446865i \(-0.852541\pi\)
0.894602 0.446865i \(-0.147459\pi\)
\(642\) 0 0
\(643\) 46.0000 1.81406 0.907031 0.421063i \(-0.138343\pi\)
0.907031 + 0.421063i \(0.138343\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.0720i − 0.671170i −0.942010 0.335585i \(-0.891066\pi\)
0.942010 0.335585i \(-0.108934\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.47451i 0.253367i 0.991943 + 0.126684i \(0.0404333\pi\)
−0.991943 + 0.126684i \(0.959567\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 24.6577i 0.960526i 0.877125 + 0.480263i \(0.159459\pi\)
−0.877125 + 0.480263i \(0.840541\pi\)
\(660\) 0 0
\(661\) −50.8535 −1.97797 −0.988986 0.148007i \(-0.952714\pi\)
−0.988986 + 0.148007i \(0.952714\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 49.3153i − 1.88700i −0.331375 0.943499i \(-0.607513\pi\)
0.331375 0.943499i \(-0.392487\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 43.5890 1.65820 0.829102 0.559098i \(-0.188852\pi\)
0.829102 + 0.559098i \(0.188852\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 11.3234i − 0.429522i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.6695i 1.04506i 0.852620 + 0.522531i \(0.175012\pi\)
−0.852620 + 0.522531i \(0.824988\pi\)
\(702\) 0 0
\(703\) −39.6439 −1.49520
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40.6131i 1.52097i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.12298i 0.153761i 0.997040 + 0.0768806i \(0.0244960\pi\)
−0.997040 + 0.0768806i \(0.975504\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −50.0000 −1.83928 −0.919640 0.392763i \(-0.871519\pi\)
−0.919640 + 0.392763i \(0.871519\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −25.2822 −0.926268
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.3046 0.740924 0.370462 0.928848i \(-0.379199\pi\)
0.370462 + 0.928848i \(0.379199\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 18.2026i − 0.662461i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.6656i 0.601760i
\(768\) 0 0
\(769\) −43.5890 −1.57186 −0.785930 0.618316i \(-0.787815\pi\)
−0.785930 + 0.618316i \(0.787815\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −15.9523 −0.573025
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 53.7401i − 1.92544i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 15.8528i 0.555300i
\(816\) 0 0
\(817\) 38.0000 1.32945
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 55.6585i 1.94250i 0.238070 + 0.971248i \(0.423485\pi\)
−0.238070 + 0.971248i \(0.576515\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.6577i 0.857431i 0.903440 + 0.428715i \(0.141034\pi\)
−0.903440 + 0.428715i \(0.858966\pi\)
\(828\) 0 0
\(829\) 54.0563 1.87745 0.938726 0.344664i \(-0.112007\pi\)
0.938726 + 0.344664i \(0.112007\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 24.5920i − 0.845991i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 86.0849i − 2.95095i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 56.5685i − 1.93234i −0.257897 0.966172i \(-0.583030\pi\)
0.257897 0.966172i \(-0.416970\pi\)
\(858\) 0 0
\(859\) 43.5890 1.48724 0.743619 0.668604i \(-0.233108\pi\)
0.743619 + 0.668604i \(0.233108\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.6903 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −8.71780 −0.293377 −0.146689 0.989183i \(-0.546862\pi\)
−0.146689 + 0.989183i \(0.546862\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 51.1292i − 1.71097i
\(894\) 0 0
\(895\) 27.9209 0.933294
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 27.2692i − 0.906457i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 33.8131 1.11177
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −30.5123 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 61.0246 1.99359 0.996793 0.0800213i \(-0.0254988\pi\)
0.996793 + 0.0800213i \(0.0254988\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 116.694 3.80008
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −51.3668 −1.66744
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 61.6441i − 1.99685i −0.0561066 0.998425i \(-0.517869\pi\)
0.0561066 0.998425i \(-0.482131\pi\)
\(954\) 0 0
\(955\) −3.02459 −0.0978733
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −12.5890 −0.406096
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 49.3153i − 1.58260i −0.611426 0.791302i \(-0.709404\pi\)
0.611426 0.791302i \(-0.290596\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 61.6441i − 1.97217i −0.166240 0.986085i \(-0.553163\pi\)
0.166240 0.986085i \(-0.446837\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 15.0246 0.478723
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 82.5152i 2.62383i
\(990\) 0 0
\(991\) −54.6310 −1.73541 −0.867706 0.497079i \(-0.834406\pi\)
−0.867706 + 0.497079i \(0.834406\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.e.c.5167.3 8
3.2 odd 2 inner 5472.2.e.c.5167.5 8
4.3 odd 2 1368.2.e.c.379.6 yes 8
8.3 odd 2 inner 5472.2.e.c.5167.6 8
8.5 even 2 1368.2.e.c.379.7 yes 8
12.11 even 2 1368.2.e.c.379.3 yes 8
19.18 odd 2 inner 5472.2.e.c.5167.4 8
24.5 odd 2 1368.2.e.c.379.2 8
24.11 even 2 inner 5472.2.e.c.5167.4 8
57.56 even 2 inner 5472.2.e.c.5167.6 8
76.75 even 2 1368.2.e.c.379.2 8
152.37 odd 2 1368.2.e.c.379.3 yes 8
152.75 even 2 inner 5472.2.e.c.5167.5 8
228.227 odd 2 1368.2.e.c.379.7 yes 8
456.227 odd 2 CM 5472.2.e.c.5167.3 8
456.341 even 2 1368.2.e.c.379.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1368.2.e.c.379.2 8 24.5 odd 2
1368.2.e.c.379.2 8 76.75 even 2
1368.2.e.c.379.3 yes 8 12.11 even 2
1368.2.e.c.379.3 yes 8 152.37 odd 2
1368.2.e.c.379.6 yes 8 4.3 odd 2
1368.2.e.c.379.6 yes 8 456.341 even 2
1368.2.e.c.379.7 yes 8 8.5 even 2
1368.2.e.c.379.7 yes 8 228.227 odd 2
5472.2.e.c.5167.3 8 1.1 even 1 trivial
5472.2.e.c.5167.3 8 456.227 odd 2 CM
5472.2.e.c.5167.4 8 19.18 odd 2 inner
5472.2.e.c.5167.4 8 24.11 even 2 inner
5472.2.e.c.5167.5 8 3.2 odd 2 inner
5472.2.e.c.5167.5 8 152.75 even 2 inner
5472.2.e.c.5167.6 8 8.3 odd 2 inner
5472.2.e.c.5167.6 8 57.56 even 2 inner