Properties

Label 1368.2.e.c.379.3
Level $1368$
Weight $2$
Character 1368.379
Analytic conductor $10.924$
Analytic rank $0$
Dimension $8$
CM discriminant -456
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,2,Mod(379,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4919453024256.11
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 96x^{4} + 248x^{2} + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 379.3
Root \(0.800688 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 1368.379
Dual form 1368.2.e.c.379.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +1.13234i q^{5} +2.82843i q^{8} +1.60138 q^{10} -5.89218 q^{13} +4.00000 q^{16} +4.35890 q^{19} -2.26469i q^{20} -9.46515i q^{23} +3.71780 q^{25} +8.33280i q^{26} +4.29081 q^{31} -5.65685i q^{32} +9.09493 q^{37} -6.16441i q^{38} -3.20275 q^{40} -12.3288i q^{41} +8.71780 q^{43} -13.3857 q^{46} +11.7298i q^{47} +7.00000 q^{49} -5.25776i q^{50} +11.7844 q^{52} -2.82843i q^{59} -6.06812i q^{62} -8.00000 q^{64} -6.67197i q^{65} +8.71780 q^{73} -12.8622i q^{74} -8.71780 q^{76} -10.6963 q^{79} +4.52937i q^{80} -17.4356 q^{82} -12.3288i q^{86} -11.3137i q^{89} +18.9303i q^{92} +16.5885 q^{94} +4.93577i q^{95} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 32 q^{16} - 40 q^{25} + 56 q^{49} - 64 q^{64}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 1.00000i
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) 1.13234i 0.506399i 0.967414 + 0.253200i \(0.0814830\pi\)
−0.967414 + 0.253200i \(0.918517\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) 1.60138 0.506399
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −5.89218 −1.63420 −0.817099 0.576498i \(-0.804419\pi\)
−0.817099 + 0.576498i \(0.804419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 4.35890 1.00000
\(20\) − 2.26469i − 0.506399i
\(21\) 0 0
\(22\) 0 0
\(23\) − 9.46515i − 1.97362i −0.161885 0.986810i \(-0.551757\pi\)
0.161885 0.986810i \(-0.448243\pi\)
\(24\) 0 0
\(25\) 3.71780 0.743560
\(26\) 8.33280i 1.63420i
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.29081 0.770651 0.385326 0.922781i \(-0.374089\pi\)
0.385326 + 0.922781i \(0.374089\pi\)
\(32\) − 5.65685i − 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.09493 1.49520 0.747599 0.664151i \(-0.231207\pi\)
0.747599 + 0.664151i \(0.231207\pi\)
\(38\) − 6.16441i − 1.00000i
\(39\) 0 0
\(40\) −3.20275 −0.506399
\(41\) − 12.3288i − 1.92544i −0.270501 0.962720i \(-0.587189\pi\)
0.270501 0.962720i \(-0.412811\pi\)
\(42\) 0 0
\(43\) 8.71780 1.32945 0.664726 0.747087i \(-0.268548\pi\)
0.664726 + 0.747087i \(0.268548\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −13.3857 −1.97362
\(47\) 11.7298i 1.71097i 0.517826 + 0.855486i \(0.326741\pi\)
−0.517826 + 0.855486i \(0.673259\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) − 5.25776i − 0.743560i
\(51\) 0 0
\(52\) 11.7844 1.63420
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 2.82843i − 0.368230i −0.982905 0.184115i \(-0.941058\pi\)
0.982905 0.184115i \(-0.0589419\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) − 6.06812i − 0.770651i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) − 6.67197i − 0.827556i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 8.71780 1.02034 0.510171 0.860073i \(-0.329582\pi\)
0.510171 + 0.860073i \(0.329582\pi\)
\(74\) − 12.8622i − 1.49520i
\(75\) 0 0
\(76\) −8.71780 −1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) −10.6963 −1.20343 −0.601714 0.798711i \(-0.705515\pi\)
−0.601714 + 0.798711i \(0.705515\pi\)
\(80\) 4.52937i 0.506399i
\(81\) 0 0
\(82\) −17.4356 −1.92544
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 12.3288i − 1.32945i
\(87\) 0 0
\(88\) 0 0
\(89\) − 11.3137i − 1.19925i −0.800281 0.599625i \(-0.795316\pi\)
0.800281 0.599625i \(-0.204684\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 18.9303i 1.97362i
\(93\) 0 0
\(94\) 16.5885 1.71097
\(95\) 4.93577i 0.506399i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) − 9.89949i − 1.00000i
\(99\) 0 0
\(100\) −7.43560 −0.743560
\(101\) − 20.0626i − 1.99631i −0.0607431 0.998153i \(-0.519347\pi\)
0.0607431 0.998153i \(-0.480653\pi\)
\(102\) 0 0
\(103\) 19.2779 1.89951 0.949755 0.312995i \(-0.101332\pi\)
0.949755 + 0.312995i \(0.101332\pi\)
\(104\) − 16.6656i − 1.63420i
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1421i 1.36717i 0.729870 + 0.683586i \(0.239581\pi\)
−0.729870 + 0.683586i \(0.760419\pi\)
\(108\) 0 0
\(109\) −20.8793 −1.99987 −0.999937 0.0112369i \(-0.996423\pi\)
−0.999937 + 0.0112369i \(0.996423\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 12.3288i − 1.15980i −0.814688 0.579899i \(-0.803092\pi\)
0.814688 0.579899i \(-0.196908\pi\)
\(114\) 0 0
\(115\) 10.7178 0.999440
\(116\) 0 0
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −8.58161 −0.770651
\(125\) 9.87154i 0.882938i
\(126\) 0 0
\(127\) −1.08805 −0.0965492 −0.0482746 0.998834i \(-0.515372\pi\)
−0.0482746 + 0.998834i \(0.515372\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) −9.43560 −0.827556
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) − 12.3288i − 1.02034i
\(147\) 0 0
\(148\) −18.1899 −1.49520
\(149\) 22.3273i 1.82913i 0.404444 + 0.914563i \(0.367465\pi\)
−0.404444 + 0.914563i \(0.632535\pi\)
\(150\) 0 0
\(151\) −16.0752 −1.30818 −0.654089 0.756417i \(-0.726948\pi\)
−0.654089 + 0.756417i \(0.726948\pi\)
\(152\) 12.3288i 1.00000i
\(153\) 0 0
\(154\) 0 0
\(155\) 4.85867i 0.390257i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 15.1269i 1.20343i
\(159\) 0 0
\(160\) 6.40550 0.506399
\(161\) 0 0
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) 24.6577i 1.92544i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 21.7178 1.67060
\(170\) 0 0
\(171\) 0 0
\(172\) −17.4356 −1.32945
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −16.0000 −1.19925
\(179\) 24.6577i 1.84300i 0.388379 + 0.921500i \(0.373035\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(180\) 0 0
\(181\) 24.0820 1.79000 0.895002 0.446062i \(-0.147174\pi\)
0.895002 + 0.446062i \(0.147174\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 26.7715 1.97362
\(185\) 10.2986i 0.757167i
\(186\) 0 0
\(187\) 0 0
\(188\) − 23.4597i − 1.71097i
\(189\) 0 0
\(190\) 6.98023 0.506399
\(191\) − 2.67108i − 0.193273i −0.995320 0.0966364i \(-0.969192\pi\)
0.995320 0.0966364i \(-0.0308084\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) − 13.2686i − 0.945347i −0.881238 0.472673i \(-0.843289\pi\)
0.881238 0.472673i \(-0.156711\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 10.5155i 0.743560i
\(201\) 0 0
\(202\) −28.3729 −1.99631
\(203\) 0 0
\(204\) 0 0
\(205\) 13.9605 0.975042
\(206\) − 27.2631i − 1.89951i
\(207\) 0 0
\(208\) −23.5687 −1.63420
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) 9.87154i 0.673234i
\(216\) 0 0
\(217\) 0 0
\(218\) 29.5278i 1.99987i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.8991 0.930750 0.465375 0.885114i \(-0.345919\pi\)
0.465375 + 0.885114i \(0.345919\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −17.4356 −1.15980
\(227\) 24.6577i 1.63659i 0.574801 + 0.818293i \(0.305079\pi\)
−0.574801 + 0.818293i \(0.694921\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) − 15.1573i − 0.999440i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −13.2822 −0.866435
\(236\) 5.65685i 0.368230i
\(237\) 0 0
\(238\) 0 0
\(239\) − 30.6601i − 1.98324i −0.129194 0.991619i \(-0.541239\pi\)
0.129194 0.991619i \(-0.458761\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 0 0
\(244\) 0 0
\(245\) 7.92641i 0.506399i
\(246\) 0 0
\(247\) −25.6834 −1.63420
\(248\) 12.1362i 0.770651i
\(249\) 0 0
\(250\) 13.9605 0.882938
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.53874i 0.0965492i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) − 28.2843i − 1.76432i −0.470946 0.882162i \(-0.656087\pi\)
0.470946 0.882162i \(-0.343913\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 13.3439i 0.827556i
\(261\) 0 0
\(262\) 0 0
\(263\) − 23.8661i − 1.47164i −0.677175 0.735822i \(-0.736796\pi\)
0.677175 0.735822i \(-0.263204\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 14.1421i 0.848189i
\(279\) 0 0
\(280\) 0 0
\(281\) − 12.3288i − 0.735476i −0.929929 0.367738i \(-0.880132\pi\)
0.929929 0.367738i \(-0.119868\pi\)
\(282\) 0 0
\(283\) 26.0000 1.54554 0.772770 0.634686i \(-0.218871\pi\)
0.772770 + 0.634686i \(0.218871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −17.4356 −1.02034
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 3.20275 0.186471
\(296\) 25.7244i 1.49520i
\(297\) 0 0
\(298\) 31.5756 1.82913
\(299\) 55.7704i 3.22528i
\(300\) 0 0
\(301\) 0 0
\(302\) 22.7337i 1.30818i
\(303\) 0 0
\(304\) 17.4356 1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.87119 0.390257
\(311\) 32.9248i 1.86699i 0.358584 + 0.933497i \(0.383260\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(312\) 0 0
\(313\) 8.71780 0.492759 0.246380 0.969173i \(-0.420759\pi\)
0.246380 + 0.969173i \(0.420759\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 21.3926 1.20343
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 9.05875i − 0.506399i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −21.9059 −1.21512
\(326\) − 19.7990i − 1.09656i
\(327\) 0 0
\(328\) 34.8712 1.92544
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) − 30.7136i − 1.67060i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 24.6577i 1.32945i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 22.6274i 1.19925i
\(357\) 0 0
\(358\) 34.8712 1.84300
\(359\) 18.5239i 0.977654i 0.872381 + 0.488827i \(0.162575\pi\)
−0.872381 + 0.488827i \(0.837425\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) − 34.0572i − 1.79000i
\(363\) 0 0
\(364\) 0 0
\(365\) 9.87154i 0.516700i
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) − 37.8606i − 1.97362i
\(369\) 0 0
\(370\) 14.5644 0.757167
\(371\) 0 0
\(372\) 0 0
\(373\) −11.2710 −0.583592 −0.291796 0.956481i \(-0.594253\pi\)
−0.291796 + 0.956481i \(0.594253\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −33.1770 −1.71097
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) − 9.87154i − 0.506399i
\(381\) 0 0
\(382\) −3.77748 −0.193273
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 34.4636i − 1.74737i −0.486491 0.873686i \(-0.661723\pi\)
0.486491 0.873686i \(-0.338277\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.7990i 1.00000i
\(393\) 0 0
\(394\) −18.7646 −0.945347
\(395\) − 12.1119i − 0.609416i
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 14.8712 0.743560
\(401\) − 12.3288i − 0.615672i −0.951439 0.307836i \(-0.900395\pi\)
0.951439 0.307836i \(-0.0996049\pi\)
\(402\) 0 0
\(403\) −25.2822 −1.25940
\(404\) 40.1253i 1.99631i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) − 19.7431i − 0.975042i
\(411\) 0 0
\(412\) −38.5558 −1.89951
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 33.3312i 1.63420i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 3.71607 0.181110 0.0905552 0.995891i \(-0.471136\pi\)
0.0905552 + 0.995891i \(0.471136\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 28.2843i − 1.36717i
\(429\) 0 0
\(430\) 13.9605 0.673234
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 41.7586 1.99987
\(437\) − 41.2576i − 1.97362i
\(438\) 0 0
\(439\) 28.8862 1.37866 0.689331 0.724447i \(-0.257905\pi\)
0.689331 + 0.724447i \(0.257905\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 12.8110 0.607300
\(446\) − 19.6562i − 0.930750i
\(447\) 0 0
\(448\) 0 0
\(449\) 39.5980i 1.86874i 0.356299 + 0.934372i \(0.384039\pi\)
−0.356299 + 0.934372i \(0.615961\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 24.6577i 1.15980i
\(453\) 0 0
\(454\) 34.8712 1.63659
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −21.4356 −0.999440
\(461\) 8.73920i 0.407025i 0.979072 + 0.203513i \(0.0652358\pi\)
−0.979072 + 0.203513i \(0.934764\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 18.7839i 0.866435i
\(471\) 0 0
\(472\) 8.00000 0.368230
\(473\) 0 0
\(474\) 0 0
\(475\) 16.2055 0.743560
\(476\) 0 0
\(477\) 0 0
\(478\) −43.3600 −1.98324
\(479\) 19.3367i 0.883516i 0.897134 + 0.441758i \(0.145645\pi\)
−0.897134 + 0.441758i \(0.854355\pi\)
\(480\) 0 0
\(481\) −53.5890 −2.44345
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 9.66966 0.438174 0.219087 0.975705i \(-0.429692\pi\)
0.219087 + 0.975705i \(0.429692\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 11.2096 0.506399
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 36.3218i 1.63420i
\(495\) 0 0
\(496\) 17.1632 0.770651
\(497\) 0 0
\(498\) 0 0
\(499\) −43.5890 −1.95131 −0.975656 0.219308i \(-0.929620\pi\)
−0.975656 + 0.219308i \(0.929620\pi\)
\(500\) − 19.7431i − 0.882938i
\(501\) 0 0
\(502\) 0 0
\(503\) − 1.85829i − 0.0828571i −0.999141 0.0414285i \(-0.986809\pi\)
0.999141 0.0414285i \(-0.0131909\pi\)
\(504\) 0 0
\(505\) 22.7178 1.01093
\(506\) 0 0
\(507\) 0 0
\(508\) 2.17611 0.0965492
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 22.6274i − 1.00000i
\(513\) 0 0
\(514\) −40.0000 −1.76432
\(515\) 21.8292i 0.961911i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 18.8712 0.827556
\(521\) 5.65685i 0.247831i 0.992293 + 0.123916i \(0.0395452\pi\)
−0.992293 + 0.123916i \(0.960455\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −33.7517 −1.47164
\(527\) 0 0
\(528\) 0 0
\(529\) −66.5890 −2.89517
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 72.6437i 3.14655i
\(534\) 0 0
\(535\) −16.0138 −0.692335
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 23.6425i − 1.01273i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 29.9342i 1.26835i 0.773189 + 0.634176i \(0.218661\pi\)
−0.773189 + 0.634176i \(0.781339\pi\)
\(558\) 0 0
\(559\) −51.3668 −2.17259
\(560\) 0 0
\(561\) 0 0
\(562\) −17.4356 −0.735476
\(563\) 14.1421i 0.596020i 0.954563 + 0.298010i \(0.0963229\pi\)
−0.954563 + 0.298010i \(0.903677\pi\)
\(564\) 0 0
\(565\) 13.9605 0.587321
\(566\) − 36.7696i − 1.54554i
\(567\) 0 0
\(568\) 0 0
\(569\) − 45.2548i − 1.89718i −0.316506 0.948591i \(-0.602510\pi\)
0.316506 0.948591i \(-0.397490\pi\)
\(570\) 0 0
\(571\) −43.5890 −1.82414 −0.912071 0.410032i \(-0.865518\pi\)
−0.912071 + 0.410032i \(0.865518\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 35.1895i − 1.46750i
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 24.0416i 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 24.6577i 1.02034i
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 18.7032 0.770651
\(590\) − 4.52937i − 0.186471i
\(591\) 0 0
\(592\) 36.3797 1.49520
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 44.6546i − 1.82913i
\(597\) 0 0
\(598\) 78.8712 3.22528
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 32.1503 1.30818
\(605\) − 12.4558i − 0.506399i
\(606\) 0 0
\(607\) 49.2521 1.99908 0.999541 0.0302794i \(-0.00963971\pi\)
0.999541 + 0.0302794i \(0.00963971\pi\)
\(608\) − 24.6577i − 1.00000i
\(609\) 0 0
\(610\) 0 0
\(611\) − 69.1143i − 2.79607i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 8.71780 0.350398 0.175199 0.984533i \(-0.443943\pi\)
0.175199 + 0.984533i \(0.443943\pi\)
\(620\) − 9.71733i − 0.390257i
\(621\) 0 0
\(622\) 46.5627 1.86699
\(623\) 0 0
\(624\) 0 0
\(625\) 7.41101 0.296440
\(626\) − 12.3288i − 0.492759i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) − 30.2537i − 1.20343i
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.23205i − 0.0488924i
\(636\) 0 0
\(637\) −41.2453 −1.63420
\(638\) 0 0
\(639\) 0 0
\(640\) −12.8110 −0.506399
\(641\) 22.6274i 0.893729i 0.894602 + 0.446865i \(0.147459\pi\)
−0.894602 + 0.446865i \(0.852541\pi\)
\(642\) 0 0
\(643\) −46.0000 −1.81406 −0.907031 0.421063i \(-0.861657\pi\)
−0.907031 + 0.421063i \(0.861657\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.0720i − 0.671170i −0.942010 0.335585i \(-0.891066\pi\)
0.942010 0.335585i \(-0.108934\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 30.9797i 1.21512i
\(651\) 0 0
\(652\) −28.0000 −1.09656
\(653\) − 6.47451i − 0.253367i −0.991943 0.126684i \(-0.959567\pi\)
0.991943 0.126684i \(-0.0404333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 49.3153i − 1.92544i
\(657\) 0 0
\(658\) 0 0
\(659\) 24.6577i 0.960526i 0.877125 + 0.480263i \(0.159459\pi\)
−0.877125 + 0.480263i \(0.840541\pi\)
\(660\) 0 0
\(661\) −50.8535 −1.97797 −0.988986 0.148007i \(-0.952714\pi\)
−0.988986 + 0.148007i \(0.952714\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −43.4356 −1.67060
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 49.3153i − 1.88700i −0.331375 0.943499i \(-0.607513\pi\)
0.331375 0.943499i \(-0.392487\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 34.8712 1.32945
\(689\) 0 0
\(690\) 0 0
\(691\) −43.5890 −1.65820 −0.829102 0.559098i \(-0.811148\pi\)
−0.829102 + 0.559098i \(0.811148\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 11.3234i − 0.429522i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 27.6695i − 1.04506i −0.852620 0.522531i \(-0.824988\pi\)
0.852620 0.522531i \(-0.175012\pi\)
\(702\) 0 0
\(703\) 39.6439 1.49520
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 32.0000 1.19925
\(713\) − 40.6131i − 1.52097i
\(714\) 0 0
\(715\) 0 0
\(716\) − 49.3153i − 1.84300i
\(717\) 0 0
\(718\) 26.1967 0.977654
\(719\) 4.12298i 0.153761i 0.997040 + 0.0768806i \(0.0244960\pi\)
−0.997040 + 0.0768806i \(0.975504\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 26.8701i − 1.00000i
\(723\) 0 0
\(724\) −48.1641 −1.79000
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 13.9605 0.516700
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −53.5430 −1.97362
\(737\) 0 0
\(738\) 0 0
\(739\) 50.0000 1.83928 0.919640 0.392763i \(-0.128481\pi\)
0.919640 + 0.392763i \(0.128481\pi\)
\(740\) − 20.5972i − 0.757167i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −25.2822 −0.926268
\(746\) 15.9397i 0.583592i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.3046 −0.740924 −0.370462 0.928848i \(-0.620801\pi\)
−0.370462 + 0.928848i \(0.620801\pi\)
\(752\) 46.9193i 1.71097i
\(753\) 0 0
\(754\) 0 0
\(755\) − 18.2026i − 0.662461i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −13.9605 −0.506399
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 5.34217i 0.193273i
\(765\) 0 0
\(766\) 0 0
\(767\) 16.6656i 0.601760i
\(768\) 0 0
\(769\) −43.5890 −1.57186 −0.785930 0.618316i \(-0.787815\pi\)
−0.785930 + 0.618316i \(0.787815\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 15.9523 0.573025
\(776\) 0 0
\(777\) 0 0
\(778\) −48.7388 −1.74737
\(779\) − 53.7401i − 1.92544i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 26.5371i 0.945347i
\(789\) 0 0
\(790\) −17.1288 −0.609416
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 21.0310i − 0.743560i
\(801\) 0 0
\(802\) −17.4356 −0.615672
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 35.7544i 1.25940i
\(807\) 0 0
\(808\) 56.7457 1.99631
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 15.8528i 0.555300i
\(816\) 0 0
\(817\) 38.0000 1.32945
\(818\) 0 0
\(819\) 0 0
\(820\) −27.9209 −0.975042
\(821\) − 55.6585i − 1.94250i −0.238070 0.971248i \(-0.576515\pi\)
0.238070 0.971248i \(-0.423485\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 54.5262i 1.89951i
\(825\) 0 0
\(826\) 0 0
\(827\) 24.6577i 0.857431i 0.903440 + 0.428715i \(0.141034\pi\)
−0.903440 + 0.428715i \(0.858966\pi\)
\(828\) 0 0
\(829\) 54.0563 1.87745 0.938726 0.344664i \(-0.112007\pi\)
0.938726 + 0.344664i \(0.112007\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 47.1374 1.63420
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) − 5.25532i − 0.181110i
\(843\) 0 0
\(844\) 0 0
\(845\) 24.5920i 0.845991i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 86.0849i − 2.95095i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −40.0000 −1.36717
\(857\) 56.5685i 1.93234i 0.257897 + 0.966172i \(0.416970\pi\)
−0.257897 + 0.966172i \(0.583030\pi\)
\(858\) 0 0
\(859\) −43.5890 −1.48724 −0.743619 0.668604i \(-0.766892\pi\)
−0.743619 + 0.668604i \(0.766892\pi\)
\(860\) − 19.7431i − 0.673234i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) − 59.0556i − 1.99987i
\(873\) 0 0
\(874\) −58.3471 −1.97362
\(875\) 0 0
\(876\) 0 0
\(877\) 33.6903 1.13764 0.568820 0.822462i \(-0.307400\pi\)
0.568820 + 0.822462i \(0.307400\pi\)
\(878\) − 40.8512i − 1.37866i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 8.71780 0.293377 0.146689 0.989183i \(-0.453138\pi\)
0.146689 + 0.989183i \(0.453138\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 18.1175i − 0.607300i
\(891\) 0 0
\(892\) −27.7981 −0.930750
\(893\) 51.1292i 1.71097i
\(894\) 0 0
\(895\) −27.9209 −0.933294
\(896\) 0 0
\(897\) 0 0
\(898\) 56.0000 1.86874
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 34.8712 1.15980
\(905\) 27.2692i 0.906457i
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) − 49.3153i − 1.63659i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) − 2.82843i − 0.0935561i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 30.3145i 0.999440i
\(921\) 0 0
\(922\) 12.3591 0.407025
\(923\) 0 0
\(924\) 0 0
\(925\) 33.8131 1.11177
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 30.5123 1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 61.0246 1.99359 0.996793 0.0800213i \(-0.0254988\pi\)
0.996793 + 0.0800213i \(0.0254988\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 26.5644 0.866435
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) −116.694 −3.80008
\(944\) − 11.3137i − 0.368230i
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −51.3668 −1.66744
\(950\) − 22.9180i − 0.743560i
\(951\) 0 0
\(952\) 0 0
\(953\) 61.6441i 1.99685i 0.0561066 + 0.998425i \(0.482131\pi\)
−0.0561066 + 0.998425i \(0.517869\pi\)
\(954\) 0 0
\(955\) 3.02459 0.0978733
\(956\) 61.3203i 1.98324i
\(957\) 0 0
\(958\) 27.3462 0.883516
\(959\) 0 0
\(960\) 0 0
\(961\) −12.5890 −0.406096
\(962\) 75.7863i 2.44345i
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) − 31.1127i − 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) − 49.3153i − 1.58260i −0.611426 0.791302i \(-0.709404\pi\)
0.611426 0.791302i \(-0.290596\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) − 13.6750i − 0.438174i
\(975\) 0 0
\(976\) 0 0
\(977\) 61.6441i 1.97217i 0.166240 + 0.986085i \(0.446837\pi\)
−0.166240 + 0.986085i \(0.553163\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) − 15.8528i − 0.506399i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 15.0246 0.478723
\(986\) 0 0
\(987\) 0 0
\(988\) 51.3668 1.63420
\(989\) − 82.5152i − 2.62383i
\(990\) 0 0
\(991\) 54.6310 1.73541 0.867706 0.497079i \(-0.165594\pi\)
0.867706 + 0.497079i \(0.165594\pi\)
\(992\) − 24.2725i − 0.770651i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 61.6441i 1.95131i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.2.e.c.379.3 yes 8
3.2 odd 2 inner 1368.2.e.c.379.6 yes 8
4.3 odd 2 5472.2.e.c.5167.5 8
8.3 odd 2 inner 1368.2.e.c.379.2 8
8.5 even 2 5472.2.e.c.5167.4 8
12.11 even 2 5472.2.e.c.5167.3 8
19.18 odd 2 inner 1368.2.e.c.379.7 yes 8
24.5 odd 2 5472.2.e.c.5167.6 8
24.11 even 2 inner 1368.2.e.c.379.7 yes 8
57.56 even 2 inner 1368.2.e.c.379.2 8
76.75 even 2 5472.2.e.c.5167.6 8
152.37 odd 2 5472.2.e.c.5167.3 8
152.75 even 2 inner 1368.2.e.c.379.6 yes 8
228.227 odd 2 5472.2.e.c.5167.4 8
456.227 odd 2 CM 1368.2.e.c.379.3 yes 8
456.341 even 2 5472.2.e.c.5167.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1368.2.e.c.379.2 8 8.3 odd 2 inner
1368.2.e.c.379.2 8 57.56 even 2 inner
1368.2.e.c.379.3 yes 8 1.1 even 1 trivial
1368.2.e.c.379.3 yes 8 456.227 odd 2 CM
1368.2.e.c.379.6 yes 8 3.2 odd 2 inner
1368.2.e.c.379.6 yes 8 152.75 even 2 inner
1368.2.e.c.379.7 yes 8 19.18 odd 2 inner
1368.2.e.c.379.7 yes 8 24.11 even 2 inner
5472.2.e.c.5167.3 8 12.11 even 2
5472.2.e.c.5167.3 8 152.37 odd 2
5472.2.e.c.5167.4 8 8.5 even 2
5472.2.e.c.5167.4 8 228.227 odd 2
5472.2.e.c.5167.5 8 4.3 odd 2
5472.2.e.c.5167.5 8 456.341 even 2
5472.2.e.c.5167.6 8 24.5 odd 2
5472.2.e.c.5167.6 8 76.75 even 2