Properties

Label 55.3.d.c
Level $55$
Weight $3$
Character orbit 55.d
Self dual yes
Analytic conductor $1.499$
Analytic rank $0$
Dimension $2$
CM discriminant -55
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(54,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.54");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + 7 q^{4} - 5 q^{5} - 4 \beta q^{7} + 3 \beta q^{8} + 9 q^{9} - 5 \beta q^{10} + 11 q^{11} + 4 \beta q^{13} - 44 q^{14} + 5 q^{16} - 4 \beta q^{17} + 9 \beta q^{18} - 35 q^{20} + 11 \beta q^{22} + \cdots + 99 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} - 10 q^{5} + 18 q^{9} + 22 q^{11} - 88 q^{14} + 10 q^{16} - 70 q^{20} + 50 q^{25} + 88 q^{26} - 36 q^{31} - 88 q^{34} + 126 q^{36} + 154 q^{44} - 90 q^{45} + 254 q^{49} - 110 q^{55} - 264 q^{56}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
54.1
−3.31662
3.31662
−3.31662 0 7.00000 −5.00000 0 13.2665 −9.94987 9.00000 16.5831
54.2 3.31662 0 7.00000 −5.00000 0 −13.2665 9.94987 9.00000 −16.5831
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by \(\Q(\sqrt{-55}) \)
5.b even 2 1 inner
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.3.d.c 2
3.b odd 2 1 495.3.h.c 2
4.b odd 2 1 880.3.i.a 2
5.b even 2 1 inner 55.3.d.c 2
5.c odd 4 2 275.3.c.b 2
11.b odd 2 1 inner 55.3.d.c 2
15.d odd 2 1 495.3.h.c 2
20.d odd 2 1 880.3.i.a 2
33.d even 2 1 495.3.h.c 2
44.c even 2 1 880.3.i.a 2
55.d odd 2 1 CM 55.3.d.c 2
55.e even 4 2 275.3.c.b 2
165.d even 2 1 495.3.h.c 2
220.g even 2 1 880.3.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.d.c 2 1.a even 1 1 trivial
55.3.d.c 2 5.b even 2 1 inner
55.3.d.c 2 11.b odd 2 1 inner
55.3.d.c 2 55.d odd 2 1 CM
275.3.c.b 2 5.c odd 4 2
275.3.c.b 2 55.e even 4 2
495.3.h.c 2 3.b odd 2 1
495.3.h.c 2 15.d odd 2 1
495.3.h.c 2 33.d even 2 1
495.3.h.c 2 165.d even 2 1
880.3.i.a 2 4.b odd 2 1
880.3.i.a 2 20.d odd 2 1
880.3.i.a 2 44.c even 2 1
880.3.i.a 2 220.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(55, [\chi])\):

\( T_{2}^{2} - 11 \) Copy content Toggle raw display
\( T_{3} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 11 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 176 \) Copy content Toggle raw display
$11$ \( (T - 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 176 \) Copy content Toggle raw display
$17$ \( T^{2} - 176 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 18)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 176 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T + 102)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 78)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 21296 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 176 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less