Properties

Label 55.3.d.d.54.1
Level $55$
Weight $3$
Character 55.54
Analytic conductor $1.499$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(54,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.54");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{5}, \sqrt{-21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + 41x^{2} - 40x + 505 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 54.1
Root \(1.61803 - 4.58258i\) of defining polynomial
Character \(\chi\) \(=\) 55.54
Dual form 55.3.d.d.54.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} -4.58258i q^{3} +1.00000 q^{4} +(-2.00000 + 4.58258i) q^{5} +10.2470i q^{6} -11.1803 q^{7} +6.70820 q^{8} -12.0000 q^{9} +(4.47214 - 10.2470i) q^{10} +(-4.00000 - 10.2470i) q^{11} -4.58258i q^{12} -8.94427 q^{13} +25.0000 q^{14} +(21.0000 + 9.16515i) q^{15} -19.0000 q^{16} +15.6525 q^{17} +26.8328 q^{18} -10.2470i q^{19} +(-2.00000 + 4.58258i) q^{20} +51.2348i q^{21} +(8.94427 + 22.9129i) q^{22} -27.4955i q^{23} -30.7409i q^{24} +(-17.0000 - 18.3303i) q^{25} +20.0000 q^{26} +13.7477i q^{27} -11.1803 q^{28} +10.2470i q^{29} +(-46.9574 - 20.4939i) q^{30} -3.00000 q^{31} +15.6525 q^{32} +(-46.9574 + 18.3303i) q^{33} -35.0000 q^{34} +(22.3607 - 51.2348i) q^{35} -12.0000 q^{36} -4.58258i q^{37} +22.9129i q^{38} +40.9878i q^{39} +(-13.4164 + 30.7409i) q^{40} +20.4939i q^{41} -114.564i q^{42} -22.3607 q^{43} +(-4.00000 - 10.2470i) q^{44} +(24.0000 - 54.9909i) q^{45} +61.4817i q^{46} +64.1561i q^{47} +87.0689i q^{48} +76.0000 q^{49} +(38.0132 + 40.9878i) q^{50} -71.7287i q^{51} -8.94427 q^{52} -4.58258i q^{53} -30.7409i q^{54} +(54.9574 + 2.16360i) q^{55} -75.0000 q^{56} -46.9574 q^{57} -22.9129i q^{58} -18.0000 q^{59} +(21.0000 + 9.16515i) q^{60} -71.7287i q^{61} +6.70820 q^{62} +134.164 q^{63} +41.0000 q^{64} +(17.8885 - 40.9878i) q^{65} +(105.000 - 40.9878i) q^{66} -27.4955i q^{67} +15.6525 q^{68} -126.000 q^{69} +(-50.0000 + 114.564i) q^{70} +27.0000 q^{71} -80.4984 q^{72} -58.1378 q^{73} +10.2470i q^{74} +(-84.0000 + 77.9038i) q^{75} -10.2470i q^{76} +(44.7214 + 114.564i) q^{77} -91.6515i q^{78} +61.4817i q^{79} +(38.0000 - 87.0689i) q^{80} -45.0000 q^{81} -45.8258i q^{82} +71.5542 q^{83} +51.2348i q^{84} +(-31.3050 + 71.7287i) q^{85} +50.0000 q^{86} +46.9574 q^{87} +(-26.8328 - 68.7386i) q^{88} +37.0000 q^{89} +(-53.6656 + 122.963i) q^{90} +100.000 q^{91} -27.4955i q^{92} +13.7477i q^{93} -143.457i q^{94} +(46.9574 + 20.4939i) q^{95} -71.7287i q^{96} -119.147i q^{97} -169.941 q^{98} +(48.0000 + 122.963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 8 q^{5} - 48 q^{9} - 16 q^{11} + 100 q^{14} + 84 q^{15} - 76 q^{16} - 8 q^{20} - 68 q^{25} + 80 q^{26} - 12 q^{31} - 140 q^{34} - 48 q^{36} - 16 q^{44} + 96 q^{45} + 304 q^{49} + 32 q^{55}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.11803 −0.559017 0.829156i \(-0.688821\pi\)
−0.559017 + 0.829156i \(0.688821\pi\)
\(3\) 4.58258i 1.52753i −0.645497 0.763763i \(-0.723350\pi\)
0.645497 0.763763i \(-0.276650\pi\)
\(4\) 1.00000 0.250000
\(5\) −2.00000 + 4.58258i −0.400000 + 0.916515i
\(6\) 10.2470i 1.70783i
\(7\) −11.1803 −1.59719 −0.798596 0.601868i \(-0.794423\pi\)
−0.798596 + 0.601868i \(0.794423\pi\)
\(8\) 6.70820 0.838525
\(9\) −12.0000 −1.33333
\(10\) 4.47214 10.2470i 0.447214 1.02470i
\(11\) −4.00000 10.2470i −0.363636 0.931541i
\(12\) 4.58258i 0.381881i
\(13\) −8.94427 −0.688021 −0.344010 0.938966i \(-0.611786\pi\)
−0.344010 + 0.938966i \(0.611786\pi\)
\(14\) 25.0000 1.78571
\(15\) 21.0000 + 9.16515i 1.40000 + 0.611010i
\(16\) −19.0000 −1.18750
\(17\) 15.6525 0.920734 0.460367 0.887729i \(-0.347718\pi\)
0.460367 + 0.887729i \(0.347718\pi\)
\(18\) 26.8328 1.49071
\(19\) 10.2470i 0.539313i −0.962957 0.269657i \(-0.913090\pi\)
0.962957 0.269657i \(-0.0869102\pi\)
\(20\) −2.00000 + 4.58258i −0.100000 + 0.229129i
\(21\) 51.2348i 2.43975i
\(22\) 8.94427 + 22.9129i 0.406558 + 1.04149i
\(23\) 27.4955i 1.19545i −0.801700 0.597727i \(-0.796071\pi\)
0.801700 0.597727i \(-0.203929\pi\)
\(24\) 30.7409i 1.28087i
\(25\) −17.0000 18.3303i −0.680000 0.733212i
\(26\) 20.0000 0.769231
\(27\) 13.7477i 0.509175i
\(28\) −11.1803 −0.399298
\(29\) 10.2470i 0.353343i 0.984270 + 0.176672i \(0.0565330\pi\)
−0.984270 + 0.176672i \(0.943467\pi\)
\(30\) −46.9574 20.4939i −1.56525 0.683130i
\(31\) −3.00000 −0.0967742 −0.0483871 0.998829i \(-0.515408\pi\)
−0.0483871 + 0.998829i \(0.515408\pi\)
\(32\) 15.6525 0.489140
\(33\) −46.9574 + 18.3303i −1.42295 + 0.555464i
\(34\) −35.0000 −1.02941
\(35\) 22.3607 51.2348i 0.638877 1.46385i
\(36\) −12.0000 −0.333333
\(37\) 4.58258i 0.123853i −0.998081 0.0619267i \(-0.980275\pi\)
0.998081 0.0619267i \(-0.0197245\pi\)
\(38\) 22.9129i 0.602970i
\(39\) 40.9878i 1.05097i
\(40\) −13.4164 + 30.7409i −0.335410 + 0.768521i
\(41\) 20.4939i 0.499851i 0.968265 + 0.249926i \(0.0804062\pi\)
−0.968265 + 0.249926i \(0.919594\pi\)
\(42\) 114.564i 2.72772i
\(43\) −22.3607 −0.520016 −0.260008 0.965606i \(-0.583725\pi\)
−0.260008 + 0.965606i \(0.583725\pi\)
\(44\) −4.00000 10.2470i −0.0909091 0.232885i
\(45\) 24.0000 54.9909i 0.533333 1.22202i
\(46\) 61.4817i 1.33656i
\(47\) 64.1561i 1.36502i 0.730875 + 0.682511i \(0.239112\pi\)
−0.730875 + 0.682511i \(0.760888\pi\)
\(48\) 87.0689i 1.81394i
\(49\) 76.0000 1.55102
\(50\) 38.0132 + 40.9878i 0.760263 + 0.819756i
\(51\) 71.7287i 1.40644i
\(52\) −8.94427 −0.172005
\(53\) 4.58258i 0.0864637i −0.999065 0.0432318i \(-0.986235\pi\)
0.999065 0.0432318i \(-0.0137654\pi\)
\(54\) 30.7409i 0.569275i
\(55\) 54.9574 + 2.16360i 0.999226 + 0.0393382i
\(56\) −75.0000 −1.33929
\(57\) −46.9574 −0.823815
\(58\) 22.9129i 0.395050i
\(59\) −18.0000 −0.305085 −0.152542 0.988297i \(-0.548746\pi\)
−0.152542 + 0.988297i \(0.548746\pi\)
\(60\) 21.0000 + 9.16515i 0.350000 + 0.152753i
\(61\) 71.7287i 1.17588i −0.808905 0.587940i \(-0.799939\pi\)
0.808905 0.587940i \(-0.200061\pi\)
\(62\) 6.70820 0.108197
\(63\) 134.164 2.12959
\(64\) 41.0000 0.640625
\(65\) 17.8885 40.9878i 0.275208 0.630582i
\(66\) 105.000 40.9878i 1.59091 0.621027i
\(67\) 27.4955i 0.410380i −0.978722 0.205190i \(-0.934219\pi\)
0.978722 0.205190i \(-0.0657812\pi\)
\(68\) 15.6525 0.230183
\(69\) −126.000 −1.82609
\(70\) −50.0000 + 114.564i −0.714286 + 1.63663i
\(71\) 27.0000 0.380282 0.190141 0.981757i \(-0.439106\pi\)
0.190141 + 0.981757i \(0.439106\pi\)
\(72\) −80.4984 −1.11803
\(73\) −58.1378 −0.796408 −0.398204 0.917297i \(-0.630366\pi\)
−0.398204 + 0.917297i \(0.630366\pi\)
\(74\) 10.2470i 0.138472i
\(75\) −84.0000 + 77.9038i −1.12000 + 1.03872i
\(76\) 10.2470i 0.134828i
\(77\) 44.7214 + 114.564i 0.580797 + 1.48785i
\(78\) 91.6515i 1.17502i
\(79\) 61.4817i 0.778249i 0.921185 + 0.389125i \(0.127222\pi\)
−0.921185 + 0.389125i \(0.872778\pi\)
\(80\) 38.0000 87.0689i 0.475000 1.08836i
\(81\) −45.0000 −0.555556
\(82\) 45.8258i 0.558851i
\(83\) 71.5542 0.862098 0.431049 0.902328i \(-0.358144\pi\)
0.431049 + 0.902328i \(0.358144\pi\)
\(84\) 51.2348i 0.609938i
\(85\) −31.3050 + 71.7287i −0.368294 + 0.843867i
\(86\) 50.0000 0.581395
\(87\) 46.9574 0.539741
\(88\) −26.8328 68.7386i −0.304918 0.781121i
\(89\) 37.0000 0.415730 0.207865 0.978157i \(-0.433348\pi\)
0.207865 + 0.978157i \(0.433348\pi\)
\(90\) −53.6656 + 122.963i −0.596285 + 1.36626i
\(91\) 100.000 1.09890
\(92\) 27.4955i 0.298864i
\(93\) 13.7477i 0.147825i
\(94\) 143.457i 1.52614i
\(95\) 46.9574 + 20.4939i 0.494289 + 0.215725i
\(96\) 71.7287i 0.747173i
\(97\) 119.147i 1.22832i −0.789182 0.614160i \(-0.789495\pi\)
0.789182 0.614160i \(-0.210505\pi\)
\(98\) −169.941 −1.73409
\(99\) 48.0000 + 122.963i 0.484848 + 1.24205i
\(100\) −17.0000 18.3303i −0.170000 0.183303i
\(101\) 102.470i 1.01455i −0.861784 0.507275i \(-0.830653\pi\)
0.861784 0.507275i \(-0.169347\pi\)
\(102\) 160.390i 1.57245i
\(103\) 18.3303i 0.177964i 0.996033 + 0.0889821i \(0.0283614\pi\)
−0.996033 + 0.0889821i \(0.971639\pi\)
\(104\) −60.0000 −0.576923
\(105\) −234.787 102.470i −2.23607 0.975900i
\(106\) 10.2470i 0.0966693i
\(107\) −156.525 −1.46285 −0.731424 0.681923i \(-0.761144\pi\)
−0.731424 + 0.681923i \(0.761144\pi\)
\(108\) 13.7477i 0.127294i
\(109\) 20.4939i 0.188017i 0.995571 + 0.0940087i \(0.0299682\pi\)
−0.995571 + 0.0940087i \(0.970032\pi\)
\(110\) −122.889 4.83795i −1.11717 0.0439814i
\(111\) −21.0000 −0.189189
\(112\) 212.426 1.89666
\(113\) 164.973i 1.45994i −0.683482 0.729968i \(-0.739535\pi\)
0.683482 0.729968i \(-0.260465\pi\)
\(114\) 105.000 0.921053
\(115\) 126.000 + 54.9909i 1.09565 + 0.478182i
\(116\) 10.2470i 0.0883358i
\(117\) 107.331 0.917361
\(118\) 40.2492 0.341095
\(119\) −175.000 −1.47059
\(120\) 140.872 + 61.4817i 1.17394 + 0.512348i
\(121\) −89.0000 + 81.9756i −0.735537 + 0.677484i
\(122\) 160.390i 1.31467i
\(123\) 93.9149 0.763535
\(124\) −3.00000 −0.0241935
\(125\) 118.000 41.2432i 0.944000 0.329945i
\(126\) −300.000 −2.38095
\(127\) 31.3050 0.246496 0.123248 0.992376i \(-0.460669\pi\)
0.123248 + 0.992376i \(0.460669\pi\)
\(128\) −154.289 −1.20538
\(129\) 102.470i 0.794337i
\(130\) −40.0000 + 91.6515i −0.307692 + 0.705012i
\(131\) 215.186i 1.64264i −0.570467 0.821320i \(-0.693238\pi\)
0.570467 0.821320i \(-0.306762\pi\)
\(132\) −46.9574 + 18.3303i −0.355738 + 0.138866i
\(133\) 114.564i 0.861386i
\(134\) 61.4817i 0.458819i
\(135\) −63.0000 27.4955i −0.466667 0.203670i
\(136\) 105.000 0.772059
\(137\) 64.1561i 0.468292i 0.972201 + 0.234146i \(0.0752294\pi\)
−0.972201 + 0.234146i \(0.924771\pi\)
\(138\) 281.745 2.04163
\(139\) 225.433i 1.62182i −0.585171 0.810910i \(-0.698973\pi\)
0.585171 0.810910i \(-0.301027\pi\)
\(140\) 22.3607 51.2348i 0.159719 0.365963i
\(141\) 294.000 2.08511
\(142\) −60.3738 −0.425168
\(143\) 35.7771 + 91.6515i 0.250189 + 0.640920i
\(144\) 228.000 1.58333
\(145\) −46.9574 20.4939i −0.323844 0.141337i
\(146\) 130.000 0.890411
\(147\) 348.276i 2.36922i
\(148\) 4.58258i 0.0309633i
\(149\) 153.704i 1.03157i 0.856717 + 0.515786i \(0.172500\pi\)
−0.856717 + 0.515786i \(0.827500\pi\)
\(150\) 187.830 174.198i 1.25220 1.16132i
\(151\) 102.470i 0.678606i 0.940677 + 0.339303i \(0.110191\pi\)
−0.940677 + 0.339303i \(0.889809\pi\)
\(152\) 68.7386i 0.452228i
\(153\) −187.830 −1.22765
\(154\) −100.000 256.174i −0.649351 1.66347i
\(155\) 6.00000 13.7477i 0.0387097 0.0886950i
\(156\) 40.9878i 0.262742i
\(157\) 50.4083i 0.321072i −0.987030 0.160536i \(-0.948678\pi\)
0.987030 0.160536i \(-0.0513223\pi\)
\(158\) 137.477i 0.870109i
\(159\) −21.0000 −0.132075
\(160\) −31.3050 + 71.7287i −0.195656 + 0.448304i
\(161\) 307.409i 1.90937i
\(162\) 100.623 0.621130
\(163\) 270.372i 1.65872i 0.558712 + 0.829362i \(0.311296\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(164\) 20.4939i 0.124963i
\(165\) 9.91486 251.847i 0.0600900 1.52634i
\(166\) −160.000 −0.963855
\(167\) −297.397 −1.78082 −0.890410 0.455159i \(-0.849583\pi\)
−0.890410 + 0.455159i \(0.849583\pi\)
\(168\) 343.693i 2.04579i
\(169\) −89.0000 −0.526627
\(170\) 70.0000 160.390i 0.411765 0.943471i
\(171\) 122.963i 0.719084i
\(172\) −22.3607 −0.130004
\(173\) 143.108 0.827216 0.413608 0.910455i \(-0.364268\pi\)
0.413608 + 0.910455i \(0.364268\pi\)
\(174\) −105.000 −0.603448
\(175\) 190.066 + 204.939i 1.08609 + 1.17108i
\(176\) 76.0000 + 194.692i 0.431818 + 1.10620i
\(177\) 82.4864i 0.466025i
\(178\) −82.7345 −0.464801
\(179\) 242.000 1.35196 0.675978 0.736922i \(-0.263722\pi\)
0.675978 + 0.736922i \(0.263722\pi\)
\(180\) 24.0000 54.9909i 0.133333 0.305505i
\(181\) −258.000 −1.42541 −0.712707 0.701462i \(-0.752531\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(182\) −223.607 −1.22861
\(183\) −328.702 −1.79619
\(184\) 184.445i 1.00242i
\(185\) 21.0000 + 9.16515i 0.113514 + 0.0495414i
\(186\) 30.7409i 0.165273i
\(187\) −62.6099 160.390i −0.334812 0.857701i
\(188\) 64.1561i 0.341256i
\(189\) 153.704i 0.813250i
\(190\) −105.000 45.8258i −0.552632 0.241188i
\(191\) −278.000 −1.45550 −0.727749 0.685844i \(-0.759433\pi\)
−0.727749 + 0.685844i \(0.759433\pi\)
\(192\) 187.886i 0.978571i
\(193\) 78.2624 0.405505 0.202752 0.979230i \(-0.435011\pi\)
0.202752 + 0.979230i \(0.435011\pi\)
\(194\) 266.421i 1.37330i
\(195\) −187.830 81.9756i −0.963229 0.420388i
\(196\) 76.0000 0.387755
\(197\) 196.774 0.998853 0.499426 0.866356i \(-0.333544\pi\)
0.499426 + 0.866356i \(0.333544\pi\)
\(198\) −107.331 274.955i −0.542077 1.38866i
\(199\) −53.0000 −0.266332 −0.133166 0.991094i \(-0.542514\pi\)
−0.133166 + 0.991094i \(0.542514\pi\)
\(200\) −114.039 122.963i −0.570197 0.614817i
\(201\) −126.000 −0.626866
\(202\) 229.129i 1.13430i
\(203\) 114.564i 0.564357i
\(204\) 71.7287i 0.351611i
\(205\) −93.9149 40.9878i −0.458121 0.199941i
\(206\) 40.9878i 0.198970i
\(207\) 329.945i 1.59394i
\(208\) 169.941 0.817025
\(209\) −105.000 + 40.9878i −0.502392 + 0.196114i
\(210\) 525.000 + 229.129i 2.50000 + 1.09109i
\(211\) 174.198i 0.825584i −0.910825 0.412792i \(-0.864554\pi\)
0.910825 0.412792i \(-0.135446\pi\)
\(212\) 4.58258i 0.0216159i
\(213\) 123.730i 0.580890i
\(214\) 350.000 1.63551
\(215\) 44.7214 102.470i 0.208006 0.476602i
\(216\) 92.2226i 0.426956i
\(217\) 33.5410 0.154567
\(218\) 45.8258i 0.210210i
\(219\) 266.421i 1.21653i
\(220\) 54.9574 + 2.16360i 0.249806 + 0.00983454i
\(221\) −140.000 −0.633484
\(222\) 46.9574 0.211520
\(223\) 394.102i 1.76727i −0.468175 0.883636i \(-0.655088\pi\)
0.468175 0.883636i \(-0.344912\pi\)
\(224\) −175.000 −0.781250
\(225\) 204.000 + 219.964i 0.906667 + 0.977616i
\(226\) 368.890i 1.63226i
\(227\) 277.272 1.22146 0.610732 0.791837i \(-0.290875\pi\)
0.610732 + 0.791837i \(0.290875\pi\)
\(228\) −46.9574 −0.205954
\(229\) 292.000 1.27511 0.637555 0.770405i \(-0.279946\pi\)
0.637555 + 0.770405i \(0.279946\pi\)
\(230\) −281.745 122.963i −1.22498 0.534624i
\(231\) 525.000 204.939i 2.27273 0.887182i
\(232\) 68.7386i 0.296287i
\(233\) 172.177 0.738958 0.369479 0.929239i \(-0.379536\pi\)
0.369479 + 0.929239i \(0.379536\pi\)
\(234\) −240.000 −1.02564
\(235\) −294.000 128.312i −1.25106 0.546009i
\(236\) −18.0000 −0.0762712
\(237\) 281.745 1.18880
\(238\) 391.312 1.64417
\(239\) 225.433i 0.943234i −0.881804 0.471617i \(-0.843671\pi\)
0.881804 0.471617i \(-0.156329\pi\)
\(240\) −399.000 174.138i −1.66250 0.725574i
\(241\) 327.902i 1.36059i 0.732938 + 0.680295i \(0.238149\pi\)
−0.732938 + 0.680295i \(0.761851\pi\)
\(242\) 199.010 183.303i 0.822356 0.757451i
\(243\) 329.945i 1.35780i
\(244\) 71.7287i 0.293970i
\(245\) −152.000 + 348.276i −0.620408 + 1.42153i
\(246\) −210.000 −0.853659
\(247\) 91.6515i 0.371059i
\(248\) −20.1246 −0.0811476
\(249\) 327.902i 1.31688i
\(250\) −263.856 + 92.2226i −1.05542 + 0.368890i
\(251\) 282.000 1.12351 0.561753 0.827305i \(-0.310127\pi\)
0.561753 + 0.827305i \(0.310127\pi\)
\(252\) 134.164 0.532397
\(253\) −281.745 + 109.982i −1.11361 + 0.434711i
\(254\) −70.0000 −0.275591
\(255\) 328.702 + 143.457i 1.28903 + 0.562578i
\(256\) 181.000 0.707031
\(257\) 64.1561i 0.249634i 0.992180 + 0.124817i \(0.0398345\pi\)
−0.992180 + 0.124817i \(0.960166\pi\)
\(258\) 229.129i 0.888096i
\(259\) 51.2348i 0.197818i
\(260\) 17.8885 40.9878i 0.0688021 0.157645i
\(261\) 122.963i 0.471124i
\(262\) 481.170i 1.83653i
\(263\) −199.010 −0.756692 −0.378346 0.925664i \(-0.623507\pi\)
−0.378346 + 0.925664i \(0.623507\pi\)
\(264\) −315.000 + 122.963i −1.19318 + 0.465770i
\(265\) 21.0000 + 9.16515i 0.0792453 + 0.0345855i
\(266\) 256.174i 0.963059i
\(267\) 169.555i 0.635039i
\(268\) 27.4955i 0.102595i
\(269\) 162.000 0.602230 0.301115 0.953588i \(-0.402641\pi\)
0.301115 + 0.953588i \(0.402641\pi\)
\(270\) 140.872 + 61.4817i 0.521749 + 0.227710i
\(271\) 245.927i 0.907479i −0.891134 0.453740i \(-0.850090\pi\)
0.891134 0.453740i \(-0.149910\pi\)
\(272\) −297.397 −1.09337
\(273\) 458.258i 1.67860i
\(274\) 143.457i 0.523567i
\(275\) −119.830 + 247.519i −0.435744 + 0.900070i
\(276\) −126.000 −0.456522
\(277\) −58.1378 −0.209884 −0.104942 0.994478i \(-0.533466\pi\)
−0.104942 + 0.994478i \(0.533466\pi\)
\(278\) 504.083i 1.81325i
\(279\) 36.0000 0.129032
\(280\) 150.000 343.693i 0.535714 1.22748i
\(281\) 163.951i 0.583456i −0.956501 0.291728i \(-0.905770\pi\)
0.956501 0.291728i \(-0.0942303\pi\)
\(282\) −657.404 −2.33122
\(283\) 250.440 0.884946 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(284\) 27.0000 0.0950704
\(285\) 93.9149 215.186i 0.329526 0.755038i
\(286\) −80.0000 204.939i −0.279720 0.716570i
\(287\) 229.129i 0.798358i
\(288\) −187.830 −0.652186
\(289\) −44.0000 −0.152249
\(290\) 105.000 + 45.8258i 0.362069 + 0.158020i
\(291\) −546.000 −1.87629
\(292\) −58.1378 −0.199102
\(293\) 447.214 1.52633 0.763163 0.646206i \(-0.223645\pi\)
0.763163 + 0.646206i \(0.223645\pi\)
\(294\) 778.768i 2.64887i
\(295\) 36.0000 82.4864i 0.122034 0.279615i
\(296\) 30.7409i 0.103854i
\(297\) 140.872 54.9909i 0.474317 0.185155i
\(298\) 343.693i 1.15333i
\(299\) 245.927i 0.822498i
\(300\) −84.0000 + 77.9038i −0.280000 + 0.259679i
\(301\) 250.000 0.830565
\(302\) 229.129i 0.758705i
\(303\) −469.574 −1.54975
\(304\) 194.692i 0.640434i
\(305\) 328.702 + 143.457i 1.07771 + 0.470352i
\(306\) 420.000 1.37255
\(307\) −447.214 −1.45672 −0.728361 0.685194i \(-0.759718\pi\)
−0.728361 + 0.685194i \(0.759718\pi\)
\(308\) 44.7214 + 114.564i 0.145199 + 0.371962i
\(309\) 84.0000 0.271845
\(310\) −13.4164 + 30.7409i −0.0432787 + 0.0991640i
\(311\) 87.0000 0.279743 0.139871 0.990170i \(-0.455331\pi\)
0.139871 + 0.990170i \(0.455331\pi\)
\(312\) 274.955i 0.881265i
\(313\) 293.285i 0.937012i 0.883460 + 0.468506i \(0.155208\pi\)
−0.883460 + 0.468506i \(0.844792\pi\)
\(314\) 112.716i 0.358970i
\(315\) −268.328 + 614.817i −0.851835 + 1.95180i
\(316\) 61.4817i 0.194562i
\(317\) 50.4083i 0.159017i −0.996834 0.0795084i \(-0.974665\pi\)
0.996834 0.0795084i \(-0.0253351\pi\)
\(318\) 46.9574 0.147665
\(319\) 105.000 40.9878i 0.329154 0.128488i
\(320\) −82.0000 + 187.886i −0.256250 + 0.587143i
\(321\) 717.287i 2.23454i
\(322\) 687.386i 2.13474i
\(323\) 160.390i 0.496564i
\(324\) −45.0000 −0.138889
\(325\) 152.053 + 163.951i 0.467854 + 0.504465i
\(326\) 604.570i 1.85451i
\(327\) 93.9149 0.287201
\(328\) 137.477i 0.419138i
\(329\) 717.287i 2.18020i
\(330\) −22.1703 + 563.146i −0.0671827 + 1.70650i
\(331\) −138.000 −0.416918 −0.208459 0.978031i \(-0.566845\pi\)
−0.208459 + 0.978031i \(0.566845\pi\)
\(332\) 71.5542 0.215525
\(333\) 54.9909i 0.165138i
\(334\) 665.000 1.99102
\(335\) 126.000 + 54.9909i 0.376119 + 0.164152i
\(336\) 973.460i 2.89720i
\(337\) −243.731 −0.723239 −0.361619 0.932326i \(-0.617776\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(338\) 199.010 0.588787
\(339\) −756.000 −2.23009
\(340\) −31.3050 + 71.7287i −0.0920734 + 0.210967i
\(341\) 12.0000 + 30.7409i 0.0351906 + 0.0901491i
\(342\) 274.955i 0.803961i
\(343\) −301.869 −0.880085
\(344\) −150.000 −0.436047
\(345\) 252.000 577.405i 0.730435 1.67364i
\(346\) −320.000 −0.924855
\(347\) −4.47214 −0.0128880 −0.00644400 0.999979i \(-0.502051\pi\)
−0.00644400 + 0.999979i \(0.502051\pi\)
\(348\) 46.9574 0.134935
\(349\) 512.348i 1.46804i −0.679125 0.734022i \(-0.737641\pi\)
0.679125 0.734022i \(-0.262359\pi\)
\(350\) −425.000 458.258i −1.21429 1.30931i
\(351\) 122.963i 0.350323i
\(352\) −62.6099 160.390i −0.177869 0.455654i
\(353\) 293.285i 0.830835i 0.909631 + 0.415418i \(0.136365\pi\)
−0.909631 + 0.415418i \(0.863635\pi\)
\(354\) 184.445i 0.521031i
\(355\) −54.0000 + 123.730i −0.152113 + 0.348534i
\(356\) 37.0000 0.103933
\(357\) 801.951i 2.24636i
\(358\) −541.128 −1.51153
\(359\) 635.311i 1.76967i 0.465906 + 0.884834i \(0.345728\pi\)
−0.465906 + 0.884834i \(0.654272\pi\)
\(360\) 160.997 368.890i 0.447214 1.02470i
\(361\) 256.000 0.709141
\(362\) 576.906 1.59366
\(363\) 375.659 + 407.849i 1.03487 + 1.12355i
\(364\) 100.000 0.274725
\(365\) 116.276 266.421i 0.318563 0.729920i
\(366\) 735.000 2.00820
\(367\) 430.762i 1.17374i 0.809682 + 0.586869i \(0.199640\pi\)
−0.809682 + 0.586869i \(0.800360\pi\)
\(368\) 522.414i 1.41960i
\(369\) 245.927i 0.666468i
\(370\) −46.9574 20.4939i −0.126912 0.0553889i
\(371\) 51.2348i 0.138099i
\(372\) 13.7477i 0.0369563i
\(373\) 545.601 1.46274 0.731368 0.681983i \(-0.238882\pi\)
0.731368 + 0.681983i \(0.238882\pi\)
\(374\) 140.000 + 358.643i 0.374332 + 0.958939i
\(375\) −189.000 540.744i −0.504000 1.44198i
\(376\) 430.372i 1.14461i
\(377\) 91.6515i 0.243107i
\(378\) 343.693i 0.909241i
\(379\) −428.000 −1.12929 −0.564644 0.825335i \(-0.690986\pi\)
−0.564644 + 0.825335i \(0.690986\pi\)
\(380\) 46.9574 + 20.4939i 0.123572 + 0.0539313i
\(381\) 143.457i 0.376528i
\(382\) 621.627 1.62730
\(383\) 164.973i 0.430738i −0.976533 0.215369i \(-0.930905\pi\)
0.976533 0.215369i \(-0.0690955\pi\)
\(384\) 707.040i 1.84125i
\(385\) −614.443 24.1898i −1.59596 0.0628306i
\(386\) −175.000 −0.453368
\(387\) 268.328 0.693354
\(388\) 119.147i 0.307080i
\(389\) −228.000 −0.586118 −0.293059 0.956094i \(-0.594673\pi\)
−0.293059 + 0.956094i \(0.594673\pi\)
\(390\) 420.000 + 183.303i 1.07692 + 0.470008i
\(391\) 430.372i 1.10070i
\(392\) 509.823 1.30057
\(393\) −986.106 −2.50918
\(394\) −440.000 −1.11675
\(395\) −281.745 122.963i −0.713277 0.311300i
\(396\) 48.0000 + 122.963i 0.121212 + 0.310514i
\(397\) 669.056i 1.68528i −0.538478 0.842640i \(-0.681000\pi\)
0.538478 0.842640i \(-0.319000\pi\)
\(398\) 118.512 0.297768
\(399\) 525.000 1.31579
\(400\) 323.000 + 348.276i 0.807500 + 0.870689i
\(401\) 107.000 0.266833 0.133416 0.991060i \(-0.457405\pi\)
0.133416 + 0.991060i \(0.457405\pi\)
\(402\) 281.745 0.700857
\(403\) 26.8328 0.0665827
\(404\) 102.470i 0.253637i
\(405\) 90.0000 206.216i 0.222222 0.509175i
\(406\) 256.174i 0.630970i
\(407\) −46.9574 + 18.3303i −0.115375 + 0.0450376i
\(408\) 481.170i 1.17934i
\(409\) 327.902i 0.801717i 0.916140 + 0.400859i \(0.131288\pi\)
−0.916140 + 0.400859i \(0.868712\pi\)
\(410\) 210.000 + 91.6515i 0.512195 + 0.223540i
\(411\) 294.000 0.715328
\(412\) 18.3303i 0.0444910i
\(413\) 201.246 0.487279
\(414\) 737.780i 1.78208i
\(415\) −143.108 + 327.902i −0.344839 + 0.790126i
\(416\) −140.000 −0.336538
\(417\) −1033.06 −2.47737
\(418\) 234.787 91.6515i 0.561692 0.219262i
\(419\) 722.000 1.72315 0.861575 0.507630i \(-0.169478\pi\)
0.861575 + 0.507630i \(0.169478\pi\)
\(420\) −234.787 102.470i −0.559017 0.243975i
\(421\) −408.000 −0.969121 −0.484561 0.874758i \(-0.661020\pi\)
−0.484561 + 0.874758i \(0.661020\pi\)
\(422\) 389.519i 0.923031i
\(423\) 769.873i 1.82003i
\(424\) 30.7409i 0.0725020i
\(425\) −266.092 286.915i −0.626099 0.675093i
\(426\) 276.668i 0.649455i
\(427\) 801.951i 1.87810i
\(428\) −156.525 −0.365712
\(429\) 420.000 163.951i 0.979021 0.382171i
\(430\) −100.000 + 229.129i −0.232558 + 0.532858i
\(431\) 61.4817i 0.142649i −0.997453 0.0713245i \(-0.977277\pi\)
0.997453 0.0713245i \(-0.0227226\pi\)
\(432\) 261.207i 0.604645i
\(433\) 247.459i 0.571499i 0.958304 + 0.285750i \(0.0922425\pi\)
−0.958304 + 0.285750i \(0.907757\pi\)
\(434\) −75.0000 −0.172811
\(435\) −93.9149 + 215.186i −0.215896 + 0.494680i
\(436\) 20.4939i 0.0470044i
\(437\) −281.745 −0.644724
\(438\) 595.735i 1.36013i
\(439\) 430.372i 0.980346i −0.871625 0.490173i \(-0.836934\pi\)
0.871625 0.490173i \(-0.163066\pi\)
\(440\) 368.666 + 14.5139i 0.837876 + 0.0329860i
\(441\) −912.000 −2.06803
\(442\) 313.050 0.708257
\(443\) 302.450i 0.682731i −0.939931 0.341366i \(-0.889111\pi\)
0.939931 0.341366i \(-0.110889\pi\)
\(444\) −21.0000 −0.0472973
\(445\) −74.0000 + 169.555i −0.166292 + 0.381023i
\(446\) 881.238i 1.97587i
\(447\) 704.361 1.57575
\(448\) −458.394 −1.02320
\(449\) 22.0000 0.0489978 0.0244989 0.999700i \(-0.492201\pi\)
0.0244989 + 0.999700i \(0.492201\pi\)
\(450\) −456.158 491.854i −1.01368 1.09301i
\(451\) 210.000 81.9756i 0.465632 0.181764i
\(452\) 164.973i 0.364984i
\(453\) 469.574 1.03659
\(454\) −620.000 −1.36564
\(455\) −200.000 + 458.258i −0.439560 + 1.00716i
\(456\) −315.000 −0.690789
\(457\) −346.591 −0.758404 −0.379202 0.925314i \(-0.623801\pi\)
−0.379202 + 0.925314i \(0.623801\pi\)
\(458\) −652.932 −1.42562
\(459\) 215.186i 0.468815i
\(460\) 126.000 + 54.9909i 0.273913 + 0.119545i
\(461\) 338.149i 0.733513i 0.930317 + 0.366756i \(0.119532\pi\)
−0.930317 + 0.366756i \(0.880468\pi\)
\(462\) −1173.94 + 458.258i −2.54099 + 0.991900i
\(463\) 623.230i 1.34607i −0.739611 0.673035i \(-0.764990\pi\)
0.739611 0.673035i \(-0.235010\pi\)
\(464\) 194.692i 0.419595i
\(465\) −63.0000 27.4955i −0.135484 0.0591300i
\(466\) −385.000 −0.826180
\(467\) 554.492i 1.18735i −0.804706 0.593674i \(-0.797677\pi\)
0.804706 0.593674i \(-0.202323\pi\)
\(468\) 107.331 0.229340
\(469\) 307.409i 0.655455i
\(470\) 657.404 + 286.915i 1.39873 + 0.610457i
\(471\) −231.000 −0.490446
\(472\) −120.748 −0.255821
\(473\) 89.4427 + 229.129i 0.189097 + 0.484416i
\(474\) −630.000 −1.32911
\(475\) −187.830 + 174.198i −0.395431 + 0.366733i
\(476\) −175.000 −0.367647
\(477\) 54.9909i 0.115285i
\(478\) 504.083i 1.05457i
\(479\) 40.9878i 0.0855695i −0.999084 0.0427848i \(-0.986377\pi\)
0.999084 0.0427848i \(-0.0136230\pi\)
\(480\) 328.702 + 143.457i 0.684796 + 0.298869i
\(481\) 40.9878i 0.0852137i
\(482\) 733.212i 1.52119i
\(483\) 1408.72 2.91661
\(484\) −89.0000 + 81.9756i −0.183884 + 0.169371i
\(485\) 546.000 + 238.294i 1.12577 + 0.491328i
\(486\) 737.780i 1.51807i
\(487\) 339.111i 0.696326i 0.937434 + 0.348163i \(0.113194\pi\)
−0.937434 + 0.348163i \(0.886806\pi\)
\(488\) 481.170i 0.986005i
\(489\) 1239.00 2.53374
\(490\) 339.882 778.768i 0.693637 1.58932i
\(491\) 584.076i 1.18956i 0.803887 + 0.594782i \(0.202762\pi\)
−0.803887 + 0.594782i \(0.797238\pi\)
\(492\) 93.9149 0.190884
\(493\) 160.390i 0.325335i
\(494\) 204.939i 0.414856i
\(495\) −659.489 25.9632i −1.33230 0.0524509i
\(496\) 57.0000 0.114919
\(497\) −301.869 −0.607383
\(498\) 733.212i 1.47231i
\(499\) −268.000 −0.537074 −0.268537 0.963269i \(-0.586540\pi\)
−0.268537 + 0.963269i \(0.586540\pi\)
\(500\) 118.000 41.2432i 0.236000 0.0824864i
\(501\) 1362.84i 2.72025i
\(502\) −630.571 −1.25612
\(503\) −541.128 −1.07580 −0.537901 0.843008i \(-0.680783\pi\)
−0.537901 + 0.843008i \(0.680783\pi\)
\(504\) 900.000 1.78571
\(505\) 469.574 + 204.939i 0.929850 + 0.405820i
\(506\) 630.000 245.927i 1.24506 0.486021i
\(507\) 407.849i 0.804436i
\(508\) 31.3050 0.0616239
\(509\) −828.000 −1.62672 −0.813360 0.581761i \(-0.802364\pi\)
−0.813360 + 0.581761i \(0.802364\pi\)
\(510\) −735.000 320.780i −1.44118 0.628981i
\(511\) 650.000 1.27202
\(512\) 212.426 0.414895
\(513\) 140.872 0.274605
\(514\) 143.457i 0.279100i
\(515\) −84.0000 36.6606i −0.163107 0.0711856i
\(516\) 102.470i 0.198584i
\(517\) 657.404 256.624i 1.27157 0.496372i
\(518\) 114.564i 0.221167i
\(519\) 655.805i 1.26359i
\(520\) 120.000 274.955i 0.230769 0.528759i
\(521\) 242.000 0.464491 0.232246 0.972657i \(-0.425393\pi\)
0.232246 + 0.972657i \(0.425393\pi\)
\(522\) 274.955i 0.526733i
\(523\) 143.108 0.273630 0.136815 0.990597i \(-0.456313\pi\)
0.136815 + 0.990597i \(0.456313\pi\)
\(524\) 215.186i 0.410660i
\(525\) 939.149 870.991i 1.78885 1.65903i
\(526\) 445.000 0.846008
\(527\) −46.9574 −0.0891033
\(528\) 892.191 348.276i 1.68976 0.659613i
\(529\) −227.000 −0.429112
\(530\) −46.9574 20.4939i −0.0885989 0.0386677i
\(531\) 216.000 0.406780
\(532\) 114.564i 0.215347i
\(533\) 183.303i 0.343908i
\(534\) 379.137i 0.709995i
\(535\) 313.050 717.287i 0.585139 1.34072i
\(536\) 184.445i 0.344114i
\(537\) 1108.98i 2.06515i
\(538\) −362.243 −0.673314
\(539\) −304.000 778.768i −0.564007 1.44484i
\(540\) −63.0000 27.4955i −0.116667 0.0509175i
\(541\) 440.619i 0.814453i −0.913327 0.407226i \(-0.866496\pi\)
0.913327 0.407226i \(-0.133504\pi\)
\(542\) 549.909i 1.01459i
\(543\) 1182.30i 2.17736i
\(544\) 245.000 0.450368
\(545\) −93.9149 40.9878i −0.172321 0.0752070i
\(546\) 1024.70i 1.87673i
\(547\) 398.020 0.727642 0.363821 0.931469i \(-0.381472\pi\)
0.363821 + 0.931469i \(0.381472\pi\)
\(548\) 64.1561i 0.117073i
\(549\) 860.744i 1.56784i
\(550\) 267.947 553.470i 0.487177 1.00631i
\(551\) 105.000 0.190563
\(552\) −845.234 −1.53122
\(553\) 687.386i 1.24301i
\(554\) 130.000 0.234657
\(555\) 42.0000 96.2341i 0.0756757 0.173395i
\(556\) 225.433i 0.405455i
\(557\) −156.525 −0.281014 −0.140507 0.990080i \(-0.544873\pi\)
−0.140507 + 0.990080i \(0.544873\pi\)
\(558\) −80.4984 −0.144262
\(559\) 200.000 0.357782
\(560\) −424.853 + 973.460i −0.758666 + 1.73832i
\(561\) −735.000 + 286.915i −1.31016 + 0.511434i
\(562\) 366.606i 0.652324i
\(563\) −881.011 −1.56485 −0.782425 0.622745i \(-0.786018\pi\)
−0.782425 + 0.622745i \(0.786018\pi\)
\(564\) 294.000 0.521277
\(565\) 756.000 + 329.945i 1.33805 + 0.583974i
\(566\) −560.000 −0.989399
\(567\) 503.115 0.887329
\(568\) 181.122 0.318876
\(569\) 143.457i 0.252122i 0.992023 + 0.126061i \(0.0402335\pi\)
−0.992023 + 0.126061i \(0.959767\pi\)
\(570\) −210.000 + 481.170i −0.368421 + 0.844159i
\(571\) 604.570i 1.05879i −0.848375 0.529396i \(-0.822419\pi\)
0.848375 0.529396i \(-0.177581\pi\)
\(572\) 35.7771 + 91.6515i 0.0625474 + 0.160230i
\(573\) 1273.96i 2.22331i
\(574\) 512.348i 0.892592i
\(575\) −504.000 + 467.423i −0.876522 + 0.812909i
\(576\) −492.000 −0.854167
\(577\) 164.973i 0.285915i −0.989729 0.142957i \(-0.954339\pi\)
0.989729 0.142957i \(-0.0456612\pi\)
\(578\) 98.3870 0.170220
\(579\) 358.643i 0.619418i
\(580\) −46.9574 20.4939i −0.0809611 0.0353343i
\(581\) −800.000 −1.37694
\(582\) 1220.89 2.09775
\(583\) −46.9574 + 18.3303i −0.0805445 + 0.0314413i
\(584\) −390.000 −0.667808
\(585\) −214.663 + 491.854i −0.366944 + 0.840775i
\(586\) −1000.00 −1.70648
\(587\) 875.272i 1.49109i −0.666453 0.745547i \(-0.732188\pi\)
0.666453 0.745547i \(-0.267812\pi\)
\(588\) 348.276i 0.592306i
\(589\) 30.7409i 0.0521916i
\(590\) −80.4984 + 184.445i −0.136438 + 0.312619i
\(591\) 901.732i 1.52577i
\(592\) 87.0689i 0.147076i
\(593\) 111.803 0.188539 0.0942693 0.995547i \(-0.469949\pi\)
0.0942693 + 0.995547i \(0.469949\pi\)
\(594\) −315.000 + 122.963i −0.530303 + 0.207009i
\(595\) 350.000 801.951i 0.588235 1.34782i
\(596\) 153.704i 0.257893i
\(597\) 242.877i 0.406828i
\(598\) 549.909i 0.919580i
\(599\) −493.000 −0.823038 −0.411519 0.911401i \(-0.635002\pi\)
−0.411519 + 0.911401i \(0.635002\pi\)
\(600\) −563.489 + 522.594i −0.939149 + 0.870991i
\(601\) 102.470i 0.170498i 0.996360 + 0.0852492i \(0.0271686\pi\)
−0.996360 + 0.0852492i \(0.972831\pi\)
\(602\) −559.017 −0.928600
\(603\) 329.945i 0.547173i
\(604\) 102.470i 0.169652i
\(605\) −197.659 571.800i −0.326710 0.945125i
\(606\) 1050.00 1.73267
\(607\) 816.165 1.34459 0.672294 0.740284i \(-0.265309\pi\)
0.672294 + 0.740284i \(0.265309\pi\)
\(608\) 160.390i 0.263800i
\(609\) −525.000 −0.862069
\(610\) −735.000 320.780i −1.20492 0.525869i
\(611\) 573.829i 0.939164i
\(612\) −187.830 −0.306911
\(613\) −881.011 −1.43721 −0.718606 0.695418i \(-0.755219\pi\)
−0.718606 + 0.695418i \(0.755219\pi\)
\(614\) 1000.00 1.62866
\(615\) −187.830 + 430.372i −0.305414 + 0.699792i
\(616\) 300.000 + 768.521i 0.487013 + 1.24760i
\(617\) 293.285i 0.475340i 0.971346 + 0.237670i \(0.0763837\pi\)
−0.971346 + 0.237670i \(0.923616\pi\)
\(618\) −187.830 −0.303932
\(619\) 972.000 1.57027 0.785137 0.619322i \(-0.212592\pi\)
0.785137 + 0.619322i \(0.212592\pi\)
\(620\) 6.00000 13.7477i 0.00967742 0.0221738i
\(621\) 378.000 0.608696
\(622\) −194.538 −0.312762
\(623\) −413.673 −0.664001
\(624\) 778.768i 1.24803i
\(625\) −47.0000 + 623.230i −0.0752000 + 0.997168i
\(626\) 655.805i 1.04761i
\(627\) 187.830 + 481.170i 0.299569 + 0.767417i
\(628\) 50.4083i 0.0802680i
\(629\) 71.7287i 0.114036i
\(630\) 600.000 1374.77i 0.952381 2.18218i
\(631\) −113.000 −0.179081 −0.0895404 0.995983i \(-0.528540\pi\)
−0.0895404 + 0.995983i \(0.528540\pi\)
\(632\) 412.432i 0.652582i
\(633\) −798.276 −1.26110
\(634\) 112.716i 0.177786i
\(635\) −62.6099 + 143.457i −0.0985983 + 0.225917i
\(636\) −21.0000 −0.0330189
\(637\) −679.765 −1.06713
\(638\) −234.787 + 91.6515i −0.368005 + 0.143654i
\(639\) −324.000 −0.507042
\(640\) 308.577 707.040i 0.482152 1.10475i
\(641\) 1007.00 1.57098 0.785491 0.618873i \(-0.212410\pi\)
0.785491 + 0.618873i \(0.212410\pi\)
\(642\) 1603.90i 2.49829i
\(643\) 270.372i 0.420485i 0.977649 + 0.210243i \(0.0674254\pi\)
−0.977649 + 0.210243i \(0.932575\pi\)
\(644\) 307.409i 0.477342i
\(645\) −469.574 204.939i −0.728022 0.317735i
\(646\) 358.643i 0.555175i
\(647\) 18.3303i 0.0283312i 0.999900 + 0.0141656i \(0.00450921\pi\)
−0.999900 + 0.0141656i \(0.995491\pi\)
\(648\) −301.869 −0.465847
\(649\) 72.0000 + 184.445i 0.110940 + 0.284199i
\(650\) −340.000 366.606i −0.523077 0.564009i
\(651\) 153.704i 0.236105i
\(652\) 270.372i 0.414681i
\(653\) 691.969i 1.05968i −0.848099 0.529838i \(-0.822253\pi\)
0.848099 0.529838i \(-0.177747\pi\)
\(654\) −210.000 −0.321101
\(655\) 986.106 + 430.372i 1.50551 + 0.657056i
\(656\) 389.384i 0.593573i
\(657\) 697.653 1.06188
\(658\) 1603.90i 2.43754i
\(659\) 1096.42i 1.66377i 0.554949 + 0.831884i \(0.312738\pi\)
−0.554949 + 0.831884i \(0.687262\pi\)
\(660\) 9.91486 251.847i 0.0150225 0.381586i
\(661\) 862.000 1.30408 0.652042 0.758183i \(-0.273912\pi\)
0.652042 + 0.758183i \(0.273912\pi\)
\(662\) 308.577 0.466129
\(663\) 641.561i 0.967663i
\(664\) 480.000 0.722892
\(665\) −525.000 229.129i −0.789474 0.344555i
\(666\) 122.963i 0.184630i
\(667\) 281.745 0.422406
\(668\) −297.397 −0.445205
\(669\) −1806.00 −2.69955
\(670\) −281.745 122.963i −0.420514 0.183527i
\(671\) −735.000 + 286.915i −1.09538 + 0.427593i
\(672\) 801.951i 1.19338i
\(673\) 713.306 1.05989 0.529945 0.848032i \(-0.322213\pi\)
0.529945 + 0.848032i \(0.322213\pi\)
\(674\) 545.000 0.808605
\(675\) 252.000 233.711i 0.373333 0.346239i
\(676\) −89.0000 −0.131657
\(677\) 31.3050 0.0462407 0.0231203 0.999733i \(-0.492640\pi\)
0.0231203 + 0.999733i \(0.492640\pi\)
\(678\) 1690.47 2.49331
\(679\) 1332.10i 1.96186i
\(680\) −210.000 + 481.170i −0.308824 + 0.707604i
\(681\) 1270.62i 1.86582i
\(682\) −26.8328 68.7386i −0.0393443 0.100790i
\(683\) 600.317i 0.878942i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(684\) 122.963i 0.179771i
\(685\) −294.000 128.312i −0.429197 0.187317i
\(686\) 675.000 0.983965
\(687\) 1338.11i 1.94776i
\(688\) 424.853 0.617519
\(689\) 40.9878i 0.0594888i
\(690\) −563.489 + 1291.12i −0.816651 + 1.87118i
\(691\) 872.000 1.26194 0.630970 0.775808i \(-0.282657\pi\)
0.630970 + 0.775808i \(0.282657\pi\)
\(692\) 143.108 0.206804
\(693\) −536.656 1374.77i −0.774396 1.98380i
\(694\) 10.0000 0.0144092
\(695\) 1033.06 + 450.866i 1.48642 + 0.648728i
\(696\) 315.000 0.452586
\(697\) 320.780i 0.460230i
\(698\) 1145.64i 1.64132i
\(699\) 789.015i 1.12878i
\(700\) 190.066 + 204.939i 0.271523 + 0.292770i
\(701\) 870.991i 1.24250i 0.783613 + 0.621249i \(0.213374\pi\)
−0.783613 + 0.621249i \(0.786626\pi\)
\(702\) 274.955i 0.391673i
\(703\) −46.9574 −0.0667958
\(704\) −164.000 420.125i −0.232955 0.596768i
\(705\) −588.000 + 1347.28i −0.834043 + 1.91103i
\(706\) 655.805i 0.928902i
\(707\) 1145.64i 1.62043i
\(708\) 82.4864i 0.116506i
\(709\) −768.000 −1.08322 −0.541608 0.840631i \(-0.682184\pi\)
−0.541608 + 0.840631i \(0.682184\pi\)
\(710\) 120.748 276.668i 0.170067 0.389673i
\(711\) 737.780i 1.03767i
\(712\) 248.204 0.348600
\(713\) 82.4864i 0.115689i
\(714\) 1793.22i 2.51151i
\(715\) −491.554 19.3518i −0.687488 0.0270655i
\(716\) 242.000 0.337989
\(717\) −1033.06 −1.44081
\(718\) 1420.60i 1.97855i
\(719\) −263.000 −0.365786 −0.182893 0.983133i \(-0.558546\pi\)
−0.182893 + 0.983133i \(0.558546\pi\)
\(720\) −456.000 + 1044.83i −0.633333 + 1.45115i
\(721\) 204.939i 0.284243i
\(722\) −572.433 −0.792844
\(723\) 1502.64 2.07834
\(724\) −258.000 −0.356354
\(725\) 187.830 174.198i 0.259075 0.240273i
\(726\) −840.000 911.979i −1.15702 1.25617i
\(727\) 293.285i 0.403418i 0.979446 + 0.201709i \(0.0646495\pi\)
−0.979446 + 0.201709i \(0.935350\pi\)
\(728\) 670.820 0.921457
\(729\) 1107.00 1.51852
\(730\) −260.000 + 595.735i −0.356164 + 0.816075i
\(731\) −350.000 −0.478796
\(732\) −328.702 −0.449046
\(733\) −219.135 −0.298956 −0.149478 0.988765i \(-0.547759\pi\)
−0.149478 + 0.988765i \(0.547759\pi\)
\(734\) 963.213i 1.31228i
\(735\) 1596.00 + 696.552i 2.17143 + 0.947689i
\(736\) 430.372i 0.584744i
\(737\) −281.745 + 109.982i −0.382286 + 0.149229i
\(738\) 549.909i 0.745134i
\(739\) 389.384i 0.526907i 0.964672 + 0.263453i \(0.0848615\pi\)
−0.964672 + 0.263453i \(0.915138\pi\)
\(740\) 21.0000 + 9.16515i 0.0283784 + 0.0123853i
\(741\) 420.000 0.566802
\(742\) 114.564i 0.154399i
\(743\) −682.001 −0.917901 −0.458951 0.888462i \(-0.651775\pi\)
−0.458951 + 0.888462i \(0.651775\pi\)
\(744\) 92.2226i 0.123955i
\(745\) −704.361 307.409i −0.945452 0.412629i
\(746\) −1220.00 −1.63539
\(747\) −858.650 −1.14946
\(748\) −62.6099 160.390i −0.0837031 0.214425i
\(749\) 1750.00 2.33645
\(750\) 422.617 + 1209.14i 0.563489 + 1.61219i
\(751\) −1003.00 −1.33555 −0.667776 0.744362i \(-0.732754\pi\)
−0.667776 + 0.744362i \(0.732754\pi\)
\(752\) 1218.97i 1.62096i
\(753\) 1292.29i 1.71618i
\(754\) 204.939i 0.271802i
\(755\) −469.574 204.939i −0.621953 0.271442i
\(756\) 153.704i 0.203313i
\(757\) 1218.97i 1.61026i −0.593100 0.805129i \(-0.702096\pi\)
0.593100 0.805129i \(-0.297904\pi\)
\(758\) 957.037 1.26258
\(759\) 504.000 + 1291.12i 0.664032 + 1.70107i
\(760\) 315.000 + 137.477i 0.414474 + 0.180891i
\(761\) 184.445i 0.242372i 0.992630 + 0.121186i \(0.0386698\pi\)
−0.992630 + 0.121186i \(0.961330\pi\)
\(762\) 320.780i 0.420972i
\(763\) 229.129i 0.300300i
\(764\) −278.000 −0.363874
\(765\) 375.659 860.744i 0.491058 1.12516i
\(766\) 368.890i 0.481580i
\(767\) 160.997 0.209905
\(768\) 829.446i 1.08001i
\(769\) 245.927i 0.319801i 0.987133 + 0.159900i \(0.0511173\pi\)
−0.987133 + 0.159900i \(0.948883\pi\)
\(770\) 1373.94 + 54.0900i 1.78433 + 0.0702467i
\(771\) 294.000 0.381323
\(772\) 78.2624 0.101376
\(773\) 279.537i 0.361626i −0.983517 0.180813i \(-0.942127\pi\)
0.983517 0.180813i \(-0.0578729\pi\)
\(774\) −600.000 −0.775194
\(775\) 51.0000 + 54.9909i 0.0658065 + 0.0709560i
\(776\) 799.262i 1.02998i
\(777\) 234.787 0.302171
\(778\) 509.823 0.655300
\(779\) 210.000 0.269576
\(780\) −187.830 81.9756i −0.240807 0.105097i
\(781\) −108.000 276.668i −0.138284 0.354248i
\(782\) 962.341i 1.23061i
\(783\) −140.872 −0.179914
\(784\) −1444.00 −1.84184
\(785\) 231.000 + 100.817i 0.294268 + 0.128429i
\(786\) 2205.00 2.80534
\(787\) −746.847 −0.948979 −0.474490 0.880261i \(-0.657367\pi\)
−0.474490 + 0.880261i \(0.657367\pi\)
\(788\) 196.774 0.249713
\(789\) 911.979i 1.15587i
\(790\) 630.000 + 274.955i 0.797468 + 0.348044i
\(791\) 1844.45i 2.33180i
\(792\) 321.994 + 824.864i 0.406558 + 1.04149i
\(793\) 641.561i 0.809030i
\(794\) 1496.05i 1.88420i
\(795\) 42.0000 96.2341i 0.0528302 0.121049i
\(796\) −53.0000 −0.0665829
\(797\) 705.717i 0.885466i 0.896653 + 0.442733i \(0.145991\pi\)
−0.896653 + 0.442733i \(0.854009\pi\)
\(798\) −1173.94 −1.47110
\(799\) 1004.20i 1.25682i
\(800\) −266.092 286.915i −0.332615 0.358643i
\(801\) −444.000 −0.554307
\(802\) −239.259 −0.298328
\(803\) 232.551 + 595.735i 0.289603 + 0.741886i
\(804\) −126.000 −0.156716
\(805\) −1408.72 614.817i −1.74997 0.763748i
\(806\) −60.0000 −0.0744417
\(807\) 742.377i 0.919922i
\(808\) 687.386i 0.850726i
\(809\) 1209.14i 1.49461i −0.664481 0.747305i \(-0.731347\pi\)
0.664481 0.747305i \(-0.268653\pi\)
\(810\) −201.246 + 461.113i −0.248452 + 0.569275i
\(811\) 1096.42i 1.35194i −0.736929 0.675970i \(-0.763725\pi\)
0.736929 0.675970i \(-0.236275\pi\)
\(812\) 114.564i 0.141089i
\(813\) −1126.98 −1.38620
\(814\) 105.000 40.9878i 0.128993 0.0503536i
\(815\) −1239.00 540.744i −1.52025 0.663489i
\(816\) 1362.84i 1.67015i
\(817\) 229.129i 0.280451i
\(818\) 733.212i 0.896347i
\(819\) −1200.00 −1.46520
\(820\) −93.9149 40.9878i −0.114530 0.0499851i
\(821\) 758.274i 0.923598i −0.886984 0.461799i \(-0.847204\pi\)
0.886984 0.461799i \(-0.152796\pi\)
\(822\) −657.404 −0.799762
\(823\) 293.285i 0.356361i 0.983998 + 0.178180i \(0.0570210\pi\)
−0.983998 + 0.178180i \(0.942979\pi\)
\(824\) 122.963i 0.149227i
\(825\) 1134.28 + 549.129i 1.37488 + 0.665611i
\(826\) −450.000 −0.544794
\(827\) −594.794 −0.719219 −0.359609 0.933103i \(-0.617090\pi\)
−0.359609 + 0.933103i \(0.617090\pi\)
\(828\) 329.945i 0.398485i
\(829\) 102.000 0.123040 0.0615199 0.998106i \(-0.480405\pi\)
0.0615199 + 0.998106i \(0.480405\pi\)
\(830\) 320.000 733.212i 0.385542 0.883388i
\(831\) 266.421i 0.320603i
\(832\) −366.715 −0.440763
\(833\) 1189.59 1.42808
\(834\) 2310.00 2.76978
\(835\) 594.794 1362.84i 0.712328 1.63215i
\(836\) −105.000 + 40.9878i −0.125598 + 0.0490285i
\(837\) 41.2432i 0.0492750i
\(838\) −1614.44 −1.92654
\(839\) −138.000 −0.164482 −0.0822408 0.996612i \(-0.526208\pi\)
−0.0822408 + 0.996612i \(0.526208\pi\)
\(840\) −1575.00 687.386i −1.87500 0.818317i
\(841\) 736.000 0.875149
\(842\) 912.316 1.08351
\(843\) −751.319 −0.891244
\(844\) 174.198i 0.206396i
\(845\) 178.000 407.849i 0.210651 0.482662i
\(846\) 1721.49i 2.03486i
\(847\) 995.050 916.515i 1.17479 1.08207i
\(848\) 87.0689i 0.102676i
\(849\) 1147.66i 1.35178i
\(850\) 595.000 + 641.561i 0.700000 + 0.754777i
\(851\) −126.000 −0.148061
\(852\) 123.730i 0.145222i
\(853\) 532.184 0.623897 0.311949 0.950099i \(-0.399018\pi\)
0.311949 + 0.950099i \(0.399018\pi\)
\(854\) 1793.22i 2.09978i
\(855\) −563.489 245.927i −0.659052 0.287634i
\(856\) −1050.00 −1.22664
\(857\) 950.329 1.10890 0.554451 0.832216i \(-0.312928\pi\)
0.554451 + 0.832216i \(0.312928\pi\)
\(858\) −939.149 + 366.606i −1.09458 + 0.427280i
\(859\) −1068.00 −1.24331 −0.621653 0.783293i \(-0.713539\pi\)
−0.621653 + 0.783293i \(0.713539\pi\)
\(860\) 44.7214 102.470i 0.0520016 0.119151i
\(861\) −1050.00 −1.21951
\(862\) 137.477i 0.159486i
\(863\) 73.3212i 0.0849608i −0.999097 0.0424804i \(-0.986474\pi\)
0.999097 0.0424804i \(-0.0135260\pi\)
\(864\) 215.186i 0.249058i
\(865\) −286.217 + 655.805i −0.330886 + 0.758156i
\(866\) 553.335i 0.638955i
\(867\) 201.633i 0.232564i
\(868\) 33.5410 0.0386417
\(869\) 630.000 245.927i 0.724971 0.283000i
\(870\) 210.000 481.170i 0.241379 0.553069i
\(871\) 245.927i 0.282350i
\(872\) 137.477i 0.157657i
\(873\) 1429.76i 1.63776i
\(874\) 630.000 0.720824
\(875\) −1319.28 + 461.113i −1.50775 + 0.526986i
\(876\) 266.421i 0.304133i
\(877\) −169.941 −0.193776 −0.0968878 0.995295i \(-0.530889\pi\)
−0.0968878 + 0.995295i \(0.530889\pi\)
\(878\) 962.341i 1.09606i
\(879\) 2049.39i 2.33150i
\(880\) −1044.19 41.1084i −1.18658 0.0467141i
\(881\) −78.0000 −0.0885358 −0.0442679 0.999020i \(-0.514096\pi\)
−0.0442679 + 0.999020i \(0.514096\pi\)
\(882\) 2039.29 2.31212
\(883\) 1553.49i 1.75934i 0.475589 + 0.879668i \(0.342235\pi\)
−0.475589 + 0.879668i \(0.657765\pi\)
\(884\) −140.000 −0.158371
\(885\) −378.000 164.973i −0.427119 0.186410i
\(886\) 676.299i 0.763317i
\(887\) −299.633 −0.337805 −0.168903 0.985633i \(-0.554022\pi\)
−0.168903 + 0.985633i \(0.554022\pi\)
\(888\) −140.872 −0.158640
\(889\) −350.000 −0.393701
\(890\) 165.469 379.137i 0.185920 0.425997i
\(891\) 180.000 + 461.113i 0.202020 + 0.517523i
\(892\) 394.102i 0.441818i
\(893\) 657.404 0.736175
\(894\) −1575.00 −1.76174
\(895\) −484.000 + 1108.98i −0.540782 + 1.23909i
\(896\) 1725.00 1.92522
\(897\) 1126.98 1.25639
\(898\) −49.1935 −0.0547812
\(899\) 30.7409i 0.0341945i
\(900\) 204.000 + 219.964i 0.226667 + 0.244404i
\(901\) 71.7287i 0.0796101i
\(902\) −469.574 + 183.303i −0.520592 + 0.203218i
\(903\) 1145.64i 1.26871i
\(904\) 1106.67i 1.22419i
\(905\) 516.000 1182.30i 0.570166 1.30641i
\(906\) −1050.00 −1.15894
\(907\) 691.969i 0.762921i −0.924385 0.381460i \(-0.875421\pi\)
0.924385 0.381460i \(-0.124579\pi\)
\(908\) 277.272 0.305366
\(909\) 1229.63i 1.35273i
\(910\) 447.214 1024.70i 0.491444 1.12604i
\(911\) 1037.00 1.13831 0.569155 0.822230i \(-0.307271\pi\)
0.569155 + 0.822230i \(0.307271\pi\)
\(912\) 892.191 0.978280
\(913\) −286.217 733.212i −0.313490 0.803080i
\(914\) 775.000 0.847921
\(915\) 657.404 1506.30i 0.718474 1.64623i
\(916\) 292.000 0.318777
\(917\) 2405.85i 2.62361i
\(918\) 481.170i 0.524151i
\(919\) 1782.97i 1.94012i 0.242867 + 0.970060i \(0.421912\pi\)
−0.242867 + 0.970060i \(0.578088\pi\)
\(920\) 845.234 + 368.890i 0.918732 + 0.400968i
\(921\) 2049.39i 2.22518i
\(922\) 756.125i 0.820092i
\(923\) −241.495 −0.261642
\(924\) 525.000 204.939i 0.568182 0.221795i
\(925\) −84.0000 + 77.9038i −0.0908108 + 0.0842203i
\(926\) 1393.59i 1.50495i
\(927\) 219.964i 0.237285i
\(928\) 160.390i 0.172834i
\(929\) −633.000 −0.681378 −0.340689 0.940176i \(-0.610660\pi\)
−0.340689 + 0.940176i \(0.610660\pi\)
\(930\) 140.872 + 61.4817i 0.151476 + 0.0661094i
\(931\) 778.768i 0.836486i
\(932\) 172.177 0.184740
\(933\) 398.684i 0.427314i
\(934\) 1239.88i 1.32750i
\(935\) 860.220 + 33.8657i 0.920021 + 0.0362200i
\(936\) 720.000 0.769231
\(937\) 728.958 0.777970 0.388985 0.921244i \(-0.372826\pi\)
0.388985 + 0.921244i \(0.372826\pi\)
\(938\) 687.386i 0.732821i
\(939\) 1344.00 1.43131
\(940\) −294.000 128.312i −0.312766 0.136502i
\(941\) 850.497i 0.903822i −0.892063 0.451911i \(-0.850742\pi\)
0.892063 0.451911i \(-0.149258\pi\)
\(942\) 516.532 0.548335
\(943\) 563.489 0.597549
\(944\) 342.000 0.362288
\(945\) 704.361 + 307.409i 0.745356 + 0.325300i
\(946\) −200.000 512.348i −0.211416 0.541594i
\(947\) 911.933i 0.962970i 0.876454 + 0.481485i \(0.159902\pi\)
−0.876454 + 0.481485i \(0.840098\pi\)
\(948\) 281.745 0.297199
\(949\) 520.000 0.547945
\(950\) 420.000 389.519i 0.442105 0.410020i
\(951\) −231.000 −0.242902
\(952\) −1173.94 −1.23313
\(953\) 1236.55 1.29753 0.648765 0.760989i \(-0.275286\pi\)
0.648765 + 0.760989i \(0.275286\pi\)
\(954\) 122.963i 0.128892i
\(955\) 556.000 1273.96i 0.582199 1.33399i
\(956\) 225.433i 0.235808i
\(957\) −187.830 481.170i −0.196269 0.502790i
\(958\) 91.6515i 0.0956696i
\(959\) 717.287i 0.747953i
\(960\) 861.000 + 375.771i 0.896875 + 0.391428i
\(961\) −952.000 −0.990635
\(962\) 91.6515i 0.0952718i
\(963\) 1878.30 1.95046
\(964\) 327.902i 0.340148i
\(965\) −156.525 + 358.643i −0.162202 + 0.371651i
\(966\) −3150.00 −3.26087
\(967\) −431.561 −0.446289 −0.223144 0.974785i \(-0.571632\pi\)
−0.223144 + 0.974785i \(0.571632\pi\)
\(968\) −597.030 + 549.909i −0.616767 + 0.568088i
\(969\) −735.000 −0.758514
\(970\) −1220.89 532.841i −1.25865 0.549321i
\(971\) −1048.00 −1.07930 −0.539650 0.841890i \(-0.681443\pi\)
−0.539650 + 0.841890i \(0.681443\pi\)
\(972\) 329.945i 0.339450i
\(973\) 2520.42i 2.59036i
\(974\) 758.274i 0.778516i
\(975\) 751.319 696.793i 0.770583 0.714659i
\(976\) 1362.84i 1.39636i
\(977\) 247.459i 0.253285i 0.991948 + 0.126642i \(0.0404200\pi\)
−0.991948 + 0.126642i \(0.959580\pi\)
\(978\) −2770.49 −2.83281
\(979\) −148.000 379.137i −0.151175 0.387270i
\(980\) −152.000 + 348.276i −0.155102 + 0.355383i
\(981\) 245.927i 0.250690i
\(982\) 1306.03i 1.32997i
\(983\) 27.4955i 0.0279710i −0.999902 0.0139855i \(-0.995548\pi\)
0.999902 0.0139855i \(-0.00445186\pi\)
\(984\) 630.000 0.640244
\(985\) −393.548 + 901.732i −0.399541 + 0.915464i
\(986\) 358.643i 0.363736i
\(987\) −3287.02 −3.33031
\(988\) 91.6515i 0.0927647i
\(989\) 614.817i 0.621655i
\(990\) 1474.66 + 58.0554i 1.48956 + 0.0586419i
\(991\) 1182.00 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(992\) −46.9574 −0.0473361
\(993\) 632.395i 0.636853i
\(994\) 675.000 0.679074
\(995\) 106.000 242.877i 0.106533 0.244097i
\(996\) 327.902i 0.329219i
\(997\) 1694.94 1.70004 0.850020 0.526751i \(-0.176590\pi\)
0.850020 + 0.526751i \(0.176590\pi\)
\(998\) 599.266 0.600467
\(999\) 63.0000 0.0630631
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.d.d.54.1 4
3.2 odd 2 495.3.h.d.109.3 4
4.3 odd 2 880.3.i.d.769.4 4
5.2 odd 4 275.3.c.e.76.1 4
5.3 odd 4 275.3.c.e.76.4 4
5.4 even 2 inner 55.3.d.d.54.4 yes 4
11.10 odd 2 inner 55.3.d.d.54.3 yes 4
15.14 odd 2 495.3.h.d.109.2 4
20.19 odd 2 880.3.i.d.769.1 4
33.32 even 2 495.3.h.d.109.1 4
44.43 even 2 880.3.i.d.769.3 4
55.32 even 4 275.3.c.e.76.3 4
55.43 even 4 275.3.c.e.76.2 4
55.54 odd 2 inner 55.3.d.d.54.2 yes 4
165.164 even 2 495.3.h.d.109.4 4
220.219 even 2 880.3.i.d.769.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.d.54.1 4 1.1 even 1 trivial
55.3.d.d.54.2 yes 4 55.54 odd 2 inner
55.3.d.d.54.3 yes 4 11.10 odd 2 inner
55.3.d.d.54.4 yes 4 5.4 even 2 inner
275.3.c.e.76.1 4 5.2 odd 4
275.3.c.e.76.2 4 55.43 even 4
275.3.c.e.76.3 4 55.32 even 4
275.3.c.e.76.4 4 5.3 odd 4
495.3.h.d.109.1 4 33.32 even 2
495.3.h.d.109.2 4 15.14 odd 2
495.3.h.d.109.3 4 3.2 odd 2
495.3.h.d.109.4 4 165.164 even 2
880.3.i.d.769.1 4 20.19 odd 2
880.3.i.d.769.2 4 220.219 even 2
880.3.i.d.769.3 4 44.43 even 2
880.3.i.d.769.4 4 4.3 odd 2