Properties

Label 275.3.c.e.76.3
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,3,Mod(76,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.76");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-5}, \sqrt{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} + x^{2} + 105 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.3
Root \(-1.79129 - 2.23607i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.e.76.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607i q^{2} -4.58258 q^{3} -1.00000 q^{4} -10.2470i q^{6} +11.1803i q^{7} +6.70820i q^{8} +12.0000 q^{9} +(-4.00000 + 10.2470i) q^{11} +4.58258 q^{12} -8.94427i q^{13} -25.0000 q^{14} -19.0000 q^{16} -15.6525i q^{17} +26.8328i q^{18} -10.2470i q^{19} -51.2348i q^{21} +(-22.9129 - 8.94427i) q^{22} -27.4955 q^{23} -30.7409i q^{24} +20.0000 q^{26} -13.7477 q^{27} -11.1803i q^{28} +10.2470i q^{29} -3.00000 q^{31} -15.6525i q^{32} +(18.3303 - 46.9574i) q^{33} +35.0000 q^{34} -12.0000 q^{36} +4.58258 q^{37} +22.9129 q^{38} +40.9878i q^{39} -20.4939i q^{41} +114.564 q^{42} -22.3607i q^{43} +(4.00000 - 10.2470i) q^{44} -61.4817i q^{46} -64.1561 q^{47} +87.0689 q^{48} -76.0000 q^{49} +71.7287i q^{51} +8.94427i q^{52} -4.58258 q^{53} -30.7409i q^{54} -75.0000 q^{56} +46.9574i q^{57} -22.9129 q^{58} +18.0000 q^{59} +71.7287i q^{61} -6.70820i q^{62} +134.164i q^{63} -41.0000 q^{64} +(105.000 + 40.9878i) q^{66} +27.4955 q^{67} +15.6525i q^{68} +126.000 q^{69} +27.0000 q^{71} +80.4984i q^{72} -58.1378i q^{73} +10.2470i q^{74} +10.2470i q^{76} +(-114.564 - 44.7214i) q^{77} -91.6515 q^{78} +61.4817i q^{79} -45.0000 q^{81} +45.8258 q^{82} +71.5542i q^{83} +51.2348i q^{84} +50.0000 q^{86} -46.9574i q^{87} +(-68.7386 - 26.8328i) q^{88} -37.0000 q^{89} +100.000 q^{91} +27.4955 q^{92} +13.7477 q^{93} -143.457i q^{94} +71.7287i q^{96} +119.147 q^{97} -169.941i q^{98} +(-48.0000 + 122.963i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 48 q^{9} - 16 q^{11} - 100 q^{14} - 76 q^{16} + 80 q^{26} - 12 q^{31} + 140 q^{34} - 48 q^{36} + 16 q^{44} - 304 q^{49} - 300 q^{56} + 72 q^{59} - 164 q^{64} + 420 q^{66} + 504 q^{69} + 108 q^{71}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607i 1.11803i 0.829156 + 0.559017i \(0.188821\pi\)
−0.829156 + 0.559017i \(0.811179\pi\)
\(3\) −4.58258 −1.52753 −0.763763 0.645497i \(-0.776650\pi\)
−0.763763 + 0.645497i \(0.776650\pi\)
\(4\) −1.00000 −0.250000
\(5\) 0 0
\(6\) 10.2470i 1.70783i
\(7\) 11.1803i 1.59719i 0.601868 + 0.798596i \(0.294423\pi\)
−0.601868 + 0.798596i \(0.705577\pi\)
\(8\) 6.70820i 0.838525i
\(9\) 12.0000 1.33333
\(10\) 0 0
\(11\) −4.00000 + 10.2470i −0.363636 + 0.931541i
\(12\) 4.58258 0.381881
\(13\) 8.94427i 0.688021i −0.938966 0.344010i \(-0.888214\pi\)
0.938966 0.344010i \(-0.111786\pi\)
\(14\) −25.0000 −1.78571
\(15\) 0 0
\(16\) −19.0000 −1.18750
\(17\) 15.6525i 0.920734i −0.887729 0.460367i \(-0.847718\pi\)
0.887729 0.460367i \(-0.152282\pi\)
\(18\) 26.8328i 1.49071i
\(19\) 10.2470i 0.539313i −0.962957 0.269657i \(-0.913090\pi\)
0.962957 0.269657i \(-0.0869102\pi\)
\(20\) 0 0
\(21\) 51.2348i 2.43975i
\(22\) −22.9129 8.94427i −1.04149 0.406558i
\(23\) −27.4955 −1.19545 −0.597727 0.801700i \(-0.703929\pi\)
−0.597727 + 0.801700i \(0.703929\pi\)
\(24\) 30.7409i 1.28087i
\(25\) 0 0
\(26\) 20.0000 0.769231
\(27\) −13.7477 −0.509175
\(28\) 11.1803i 0.399298i
\(29\) 10.2470i 0.353343i 0.984270 + 0.176672i \(0.0565330\pi\)
−0.984270 + 0.176672i \(0.943467\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.0967742 −0.0483871 0.998829i \(-0.515408\pi\)
−0.0483871 + 0.998829i \(0.515408\pi\)
\(32\) 15.6525i 0.489140i
\(33\) 18.3303 46.9574i 0.555464 1.42295i
\(34\) 35.0000 1.02941
\(35\) 0 0
\(36\) −12.0000 −0.333333
\(37\) 4.58258 0.123853 0.0619267 0.998081i \(-0.480275\pi\)
0.0619267 + 0.998081i \(0.480275\pi\)
\(38\) 22.9129 0.602970
\(39\) 40.9878i 1.05097i
\(40\) 0 0
\(41\) 20.4939i 0.499851i −0.968265 0.249926i \(-0.919594\pi\)
0.968265 0.249926i \(-0.0804062\pi\)
\(42\) 114.564 2.72772
\(43\) 22.3607i 0.520016i −0.965606 0.260008i \(-0.916275\pi\)
0.965606 0.260008i \(-0.0837252\pi\)
\(44\) 4.00000 10.2470i 0.0909091 0.232885i
\(45\) 0 0
\(46\) 61.4817i 1.33656i
\(47\) −64.1561 −1.36502 −0.682511 0.730875i \(-0.739112\pi\)
−0.682511 + 0.730875i \(0.739112\pi\)
\(48\) 87.0689 1.81394
\(49\) −76.0000 −1.55102
\(50\) 0 0
\(51\) 71.7287i 1.40644i
\(52\) 8.94427i 0.172005i
\(53\) −4.58258 −0.0864637 −0.0432318 0.999065i \(-0.513765\pi\)
−0.0432318 + 0.999065i \(0.513765\pi\)
\(54\) 30.7409i 0.569275i
\(55\) 0 0
\(56\) −75.0000 −1.33929
\(57\) 46.9574i 0.823815i
\(58\) −22.9129 −0.395050
\(59\) 18.0000 0.305085 0.152542 0.988297i \(-0.451254\pi\)
0.152542 + 0.988297i \(0.451254\pi\)
\(60\) 0 0
\(61\) 71.7287i 1.17588i 0.808905 + 0.587940i \(0.200061\pi\)
−0.808905 + 0.587940i \(0.799939\pi\)
\(62\) 6.70820i 0.108197i
\(63\) 134.164i 2.12959i
\(64\) −41.0000 −0.640625
\(65\) 0 0
\(66\) 105.000 + 40.9878i 1.59091 + 0.621027i
\(67\) 27.4955 0.410380 0.205190 0.978722i \(-0.434219\pi\)
0.205190 + 0.978722i \(0.434219\pi\)
\(68\) 15.6525i 0.230183i
\(69\) 126.000 1.82609
\(70\) 0 0
\(71\) 27.0000 0.380282 0.190141 0.981757i \(-0.439106\pi\)
0.190141 + 0.981757i \(0.439106\pi\)
\(72\) 80.4984i 1.11803i
\(73\) 58.1378i 0.796408i −0.917297 0.398204i \(-0.869634\pi\)
0.917297 0.398204i \(-0.130366\pi\)
\(74\) 10.2470i 0.138472i
\(75\) 0 0
\(76\) 10.2470i 0.134828i
\(77\) −114.564 44.7214i −1.48785 0.580797i
\(78\) −91.6515 −1.17502
\(79\) 61.4817i 0.778249i 0.921185 + 0.389125i \(0.127222\pi\)
−0.921185 + 0.389125i \(0.872778\pi\)
\(80\) 0 0
\(81\) −45.0000 −0.555556
\(82\) 45.8258 0.558851
\(83\) 71.5542i 0.862098i 0.902328 + 0.431049i \(0.141856\pi\)
−0.902328 + 0.431049i \(0.858144\pi\)
\(84\) 51.2348i 0.609938i
\(85\) 0 0
\(86\) 50.0000 0.581395
\(87\) 46.9574i 0.539741i
\(88\) −68.7386 26.8328i −0.781121 0.304918i
\(89\) −37.0000 −0.415730 −0.207865 0.978157i \(-0.566652\pi\)
−0.207865 + 0.978157i \(0.566652\pi\)
\(90\) 0 0
\(91\) 100.000 1.09890
\(92\) 27.4955 0.298864
\(93\) 13.7477 0.147825
\(94\) 143.457i 1.52614i
\(95\) 0 0
\(96\) 71.7287i 0.747173i
\(97\) 119.147 1.22832 0.614160 0.789182i \(-0.289495\pi\)
0.614160 + 0.789182i \(0.289495\pi\)
\(98\) 169.941i 1.73409i
\(99\) −48.0000 + 122.963i −0.484848 + 1.24205i
\(100\) 0 0
\(101\) 102.470i 1.01455i 0.861784 + 0.507275i \(0.169347\pi\)
−0.861784 + 0.507275i \(0.830653\pi\)
\(102\) −160.390 −1.57245
\(103\) 18.3303 0.177964 0.0889821 0.996033i \(-0.471639\pi\)
0.0889821 + 0.996033i \(0.471639\pi\)
\(104\) 60.0000 0.576923
\(105\) 0 0
\(106\) 10.2470i 0.0966693i
\(107\) 156.525i 1.46285i 0.681923 + 0.731424i \(0.261144\pi\)
−0.681923 + 0.731424i \(0.738856\pi\)
\(108\) 13.7477 0.127294
\(109\) 20.4939i 0.188017i 0.995571 + 0.0940087i \(0.0299682\pi\)
−0.995571 + 0.0940087i \(0.970032\pi\)
\(110\) 0 0
\(111\) −21.0000 −0.189189
\(112\) 212.426i 1.89666i
\(113\) −164.973 −1.45994 −0.729968 0.683482i \(-0.760465\pi\)
−0.729968 + 0.683482i \(0.760465\pi\)
\(114\) −105.000 −0.921053
\(115\) 0 0
\(116\) 10.2470i 0.0883358i
\(117\) 107.331i 0.917361i
\(118\) 40.2492i 0.341095i
\(119\) 175.000 1.47059
\(120\) 0 0
\(121\) −89.0000 81.9756i −0.735537 0.677484i
\(122\) −160.390 −1.31467
\(123\) 93.9149i 0.763535i
\(124\) 3.00000 0.0241935
\(125\) 0 0
\(126\) −300.000 −2.38095
\(127\) 31.3050i 0.246496i −0.992376 0.123248i \(-0.960669\pi\)
0.992376 0.123248i \(-0.0393310\pi\)
\(128\) 154.289i 1.20538i
\(129\) 102.470i 0.794337i
\(130\) 0 0
\(131\) 215.186i 1.64264i 0.570467 + 0.821320i \(0.306762\pi\)
−0.570467 + 0.821320i \(0.693238\pi\)
\(132\) −18.3303 + 46.9574i −0.138866 + 0.355738i
\(133\) 114.564 0.861386
\(134\) 61.4817i 0.458819i
\(135\) 0 0
\(136\) 105.000 0.772059
\(137\) −64.1561 −0.468292 −0.234146 0.972201i \(-0.575229\pi\)
−0.234146 + 0.972201i \(0.575229\pi\)
\(138\) 281.745i 2.04163i
\(139\) 225.433i 1.62182i −0.585171 0.810910i \(-0.698973\pi\)
0.585171 0.810910i \(-0.301027\pi\)
\(140\) 0 0
\(141\) 294.000 2.08511
\(142\) 60.3738i 0.425168i
\(143\) 91.6515 + 35.7771i 0.640920 + 0.250189i
\(144\) −228.000 −1.58333
\(145\) 0 0
\(146\) 130.000 0.890411
\(147\) 348.276 2.36922
\(148\) −4.58258 −0.0309633
\(149\) 153.704i 1.03157i 0.856717 + 0.515786i \(0.172500\pi\)
−0.856717 + 0.515786i \(0.827500\pi\)
\(150\) 0 0
\(151\) 102.470i 0.678606i −0.940677 0.339303i \(-0.889809\pi\)
0.940677 0.339303i \(-0.110191\pi\)
\(152\) 68.7386 0.452228
\(153\) 187.830i 1.22765i
\(154\) 100.000 256.174i 0.649351 1.66347i
\(155\) 0 0
\(156\) 40.9878i 0.262742i
\(157\) 50.4083 0.321072 0.160536 0.987030i \(-0.448678\pi\)
0.160536 + 0.987030i \(0.448678\pi\)
\(158\) −137.477 −0.870109
\(159\) 21.0000 0.132075
\(160\) 0 0
\(161\) 307.409i 1.90937i
\(162\) 100.623i 0.621130i
\(163\) 270.372 1.65872 0.829362 0.558712i \(-0.188704\pi\)
0.829362 + 0.558712i \(0.188704\pi\)
\(164\) 20.4939i 0.124963i
\(165\) 0 0
\(166\) −160.000 −0.963855
\(167\) 297.397i 1.78082i 0.455159 + 0.890410i \(0.349583\pi\)
−0.455159 + 0.890410i \(0.650417\pi\)
\(168\) 343.693 2.04579
\(169\) 89.0000 0.526627
\(170\) 0 0
\(171\) 122.963i 0.719084i
\(172\) 22.3607i 0.130004i
\(173\) 143.108i 0.827216i 0.910455 + 0.413608i \(0.135732\pi\)
−0.910455 + 0.413608i \(0.864268\pi\)
\(174\) 105.000 0.603448
\(175\) 0 0
\(176\) 76.0000 194.692i 0.431818 1.10620i
\(177\) −82.4864 −0.466025
\(178\) 82.7345i 0.464801i
\(179\) −242.000 −1.35196 −0.675978 0.736922i \(-0.736278\pi\)
−0.675978 + 0.736922i \(0.736278\pi\)
\(180\) 0 0
\(181\) −258.000 −1.42541 −0.712707 0.701462i \(-0.752531\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(182\) 223.607i 1.22861i
\(183\) 328.702i 1.79619i
\(184\) 184.445i 1.00242i
\(185\) 0 0
\(186\) 30.7409i 0.165273i
\(187\) 160.390 + 62.6099i 0.857701 + 0.334812i
\(188\) 64.1561 0.341256
\(189\) 153.704i 0.813250i
\(190\) 0 0
\(191\) −278.000 −1.45550 −0.727749 0.685844i \(-0.759433\pi\)
−0.727749 + 0.685844i \(0.759433\pi\)
\(192\) 187.886 0.978571
\(193\) 78.2624i 0.405505i 0.979230 + 0.202752i \(0.0649886\pi\)
−0.979230 + 0.202752i \(0.935011\pi\)
\(194\) 266.421i 1.37330i
\(195\) 0 0
\(196\) 76.0000 0.387755
\(197\) 196.774i 0.998853i −0.866356 0.499426i \(-0.833544\pi\)
0.866356 0.499426i \(-0.166456\pi\)
\(198\) −274.955 107.331i −1.38866 0.542077i
\(199\) 53.0000 0.266332 0.133166 0.991094i \(-0.457486\pi\)
0.133166 + 0.991094i \(0.457486\pi\)
\(200\) 0 0
\(201\) −126.000 −0.626866
\(202\) −229.129 −1.13430
\(203\) −114.564 −0.564357
\(204\) 71.7287i 0.351611i
\(205\) 0 0
\(206\) 40.9878i 0.198970i
\(207\) −329.945 −1.59394
\(208\) 169.941i 0.817025i
\(209\) 105.000 + 40.9878i 0.502392 + 0.196114i
\(210\) 0 0
\(211\) 174.198i 0.825584i 0.910825 + 0.412792i \(0.135446\pi\)
−0.910825 + 0.412792i \(0.864554\pi\)
\(212\) 4.58258 0.0216159
\(213\) −123.730 −0.580890
\(214\) −350.000 −1.63551
\(215\) 0 0
\(216\) 92.2226i 0.426956i
\(217\) 33.5410i 0.154567i
\(218\) −45.8258 −0.210210
\(219\) 266.421i 1.21653i
\(220\) 0 0
\(221\) −140.000 −0.633484
\(222\) 46.9574i 0.211520i
\(223\) −394.102 −1.76727 −0.883636 0.468175i \(-0.844912\pi\)
−0.883636 + 0.468175i \(0.844912\pi\)
\(224\) 175.000 0.781250
\(225\) 0 0
\(226\) 368.890i 1.63226i
\(227\) 277.272i 1.22146i −0.791837 0.610732i \(-0.790875\pi\)
0.791837 0.610732i \(-0.209125\pi\)
\(228\) 46.9574i 0.205954i
\(229\) −292.000 −1.27511 −0.637555 0.770405i \(-0.720054\pi\)
−0.637555 + 0.770405i \(0.720054\pi\)
\(230\) 0 0
\(231\) 525.000 + 204.939i 2.27273 + 0.887182i
\(232\) −68.7386 −0.296287
\(233\) 172.177i 0.738958i 0.929239 + 0.369479i \(0.120464\pi\)
−0.929239 + 0.369479i \(0.879536\pi\)
\(234\) 240.000 1.02564
\(235\) 0 0
\(236\) −18.0000 −0.0762712
\(237\) 281.745i 1.18880i
\(238\) 391.312i 1.64417i
\(239\) 225.433i 0.943234i −0.881804 0.471617i \(-0.843671\pi\)
0.881804 0.471617i \(-0.156329\pi\)
\(240\) 0 0
\(241\) 327.902i 1.36059i −0.732938 0.680295i \(-0.761851\pi\)
0.732938 0.680295i \(-0.238149\pi\)
\(242\) 183.303 199.010i 0.757451 0.822356i
\(243\) 329.945 1.35780
\(244\) 71.7287i 0.293970i
\(245\) 0 0
\(246\) −210.000 −0.853659
\(247\) −91.6515 −0.371059
\(248\) 20.1246i 0.0811476i
\(249\) 327.902i 1.31688i
\(250\) 0 0
\(251\) 282.000 1.12351 0.561753 0.827305i \(-0.310127\pi\)
0.561753 + 0.827305i \(0.310127\pi\)
\(252\) 134.164i 0.532397i
\(253\) 109.982 281.745i 0.434711 1.11361i
\(254\) 70.0000 0.275591
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) −64.1561 −0.249634 −0.124817 0.992180i \(-0.539834\pi\)
−0.124817 + 0.992180i \(0.539834\pi\)
\(258\) −229.129 −0.888096
\(259\) 51.2348i 0.197818i
\(260\) 0 0
\(261\) 122.963i 0.471124i
\(262\) −481.170 −1.83653
\(263\) 199.010i 0.756692i −0.925664 0.378346i \(-0.876493\pi\)
0.925664 0.378346i \(-0.123507\pi\)
\(264\) 315.000 + 122.963i 1.19318 + 0.465770i
\(265\) 0 0
\(266\) 256.174i 0.963059i
\(267\) 169.555 0.635039
\(268\) −27.4955 −0.102595
\(269\) −162.000 −0.602230 −0.301115 0.953588i \(-0.597359\pi\)
−0.301115 + 0.953588i \(0.597359\pi\)
\(270\) 0 0
\(271\) 245.927i 0.907479i 0.891134 + 0.453740i \(0.149910\pi\)
−0.891134 + 0.453740i \(0.850090\pi\)
\(272\) 297.397i 1.09337i
\(273\) −458.258 −1.67860
\(274\) 143.457i 0.523567i
\(275\) 0 0
\(276\) −126.000 −0.456522
\(277\) 58.1378i 0.209884i 0.994478 + 0.104942i \(0.0334656\pi\)
−0.994478 + 0.104942i \(0.966534\pi\)
\(278\) 504.083 1.81325
\(279\) −36.0000 −0.129032
\(280\) 0 0
\(281\) 163.951i 0.583456i 0.956501 + 0.291728i \(0.0942303\pi\)
−0.956501 + 0.291728i \(0.905770\pi\)
\(282\) 657.404i 2.33122i
\(283\) 250.440i 0.884946i 0.896782 + 0.442473i \(0.145899\pi\)
−0.896782 + 0.442473i \(0.854101\pi\)
\(284\) −27.0000 −0.0950704
\(285\) 0 0
\(286\) −80.0000 + 204.939i −0.279720 + 0.716570i
\(287\) 229.129 0.798358
\(288\) 187.830i 0.652186i
\(289\) 44.0000 0.152249
\(290\) 0 0
\(291\) −546.000 −1.87629
\(292\) 58.1378i 0.199102i
\(293\) 447.214i 1.52633i 0.646206 + 0.763163i \(0.276355\pi\)
−0.646206 + 0.763163i \(0.723645\pi\)
\(294\) 778.768i 2.64887i
\(295\) 0 0
\(296\) 30.7409i 0.103854i
\(297\) 54.9909 140.872i 0.185155 0.474317i
\(298\) −343.693 −1.15333
\(299\) 245.927i 0.822498i
\(300\) 0 0
\(301\) 250.000 0.830565
\(302\) 229.129 0.758705
\(303\) 469.574i 1.54975i
\(304\) 194.692i 0.640434i
\(305\) 0 0
\(306\) 420.000 1.37255
\(307\) 447.214i 1.45672i 0.685194 + 0.728361i \(0.259718\pi\)
−0.685194 + 0.728361i \(0.740282\pi\)
\(308\) 114.564 + 44.7214i 0.371962 + 0.145199i
\(309\) −84.0000 −0.271845
\(310\) 0 0
\(311\) 87.0000 0.279743 0.139871 0.990170i \(-0.455331\pi\)
0.139871 + 0.990170i \(0.455331\pi\)
\(312\) −274.955 −0.881265
\(313\) 293.285 0.937012 0.468506 0.883460i \(-0.344792\pi\)
0.468506 + 0.883460i \(0.344792\pi\)
\(314\) 112.716i 0.358970i
\(315\) 0 0
\(316\) 61.4817i 0.194562i
\(317\) 50.4083 0.159017 0.0795084 0.996834i \(-0.474665\pi\)
0.0795084 + 0.996834i \(0.474665\pi\)
\(318\) 46.9574i 0.147665i
\(319\) −105.000 40.9878i −0.329154 0.128488i
\(320\) 0 0
\(321\) 717.287i 2.23454i
\(322\) 687.386 2.13474
\(323\) −160.390 −0.496564
\(324\) 45.0000 0.138889
\(325\) 0 0
\(326\) 604.570i 1.85451i
\(327\) 93.9149i 0.287201i
\(328\) 137.477 0.419138
\(329\) 717.287i 2.18020i
\(330\) 0 0
\(331\) −138.000 −0.416918 −0.208459 0.978031i \(-0.566845\pi\)
−0.208459 + 0.978031i \(0.566845\pi\)
\(332\) 71.5542i 0.215525i
\(333\) 54.9909 0.165138
\(334\) −665.000 −1.99102
\(335\) 0 0
\(336\) 973.460i 2.89720i
\(337\) 243.731i 0.723239i 0.932326 + 0.361619i \(0.117776\pi\)
−0.932326 + 0.361619i \(0.882224\pi\)
\(338\) 199.010i 0.588787i
\(339\) 756.000 2.23009
\(340\) 0 0
\(341\) 12.0000 30.7409i 0.0351906 0.0901491i
\(342\) 274.955 0.803961
\(343\) 301.869i 0.880085i
\(344\) 150.000 0.436047
\(345\) 0 0
\(346\) −320.000 −0.924855
\(347\) 4.47214i 0.0128880i 0.999979 + 0.00644400i \(0.00205120\pi\)
−0.999979 + 0.00644400i \(0.997949\pi\)
\(348\) 46.9574i 0.134935i
\(349\) 512.348i 1.46804i −0.679125 0.734022i \(-0.737641\pi\)
0.679125 0.734022i \(-0.262359\pi\)
\(350\) 0 0
\(351\) 122.963i 0.350323i
\(352\) 160.390 + 62.6099i 0.455654 + 0.177869i
\(353\) 293.285 0.830835 0.415418 0.909631i \(-0.363635\pi\)
0.415418 + 0.909631i \(0.363635\pi\)
\(354\) 184.445i 0.521031i
\(355\) 0 0
\(356\) 37.0000 0.103933
\(357\) −801.951 −2.24636
\(358\) 541.128i 1.51153i
\(359\) 635.311i 1.76967i 0.465906 + 0.884834i \(0.345728\pi\)
−0.465906 + 0.884834i \(0.654272\pi\)
\(360\) 0 0
\(361\) 256.000 0.709141
\(362\) 576.906i 1.59366i
\(363\) 407.849 + 375.659i 1.12355 + 1.03487i
\(364\) −100.000 −0.274725
\(365\) 0 0
\(366\) 735.000 2.00820
\(367\) −430.762 −1.17374 −0.586869 0.809682i \(-0.699640\pi\)
−0.586869 + 0.809682i \(0.699640\pi\)
\(368\) 522.414 1.41960
\(369\) 245.927i 0.666468i
\(370\) 0 0
\(371\) 51.2348i 0.138099i
\(372\) −13.7477 −0.0369563
\(373\) 545.601i 1.46274i 0.681983 + 0.731368i \(0.261118\pi\)
−0.681983 + 0.731368i \(0.738882\pi\)
\(374\) −140.000 + 358.643i −0.374332 + 0.958939i
\(375\) 0 0
\(376\) 430.372i 1.14461i
\(377\) 91.6515 0.243107
\(378\) 343.693 0.909241
\(379\) 428.000 1.12929 0.564644 0.825335i \(-0.309014\pi\)
0.564644 + 0.825335i \(0.309014\pi\)
\(380\) 0 0
\(381\) 143.457i 0.376528i
\(382\) 621.627i 1.62730i
\(383\) −164.973 −0.430738 −0.215369 0.976533i \(-0.569095\pi\)
−0.215369 + 0.976533i \(0.569095\pi\)
\(384\) 707.040i 1.84125i
\(385\) 0 0
\(386\) −175.000 −0.453368
\(387\) 268.328i 0.693354i
\(388\) −119.147 −0.307080
\(389\) 228.000 0.586118 0.293059 0.956094i \(-0.405327\pi\)
0.293059 + 0.956094i \(0.405327\pi\)
\(390\) 0 0
\(391\) 430.372i 1.10070i
\(392\) 509.823i 1.30057i
\(393\) 986.106i 2.50918i
\(394\) 440.000 1.11675
\(395\) 0 0
\(396\) 48.0000 122.963i 0.121212 0.310514i
\(397\) 669.056 1.68528 0.842640 0.538478i \(-0.181000\pi\)
0.842640 + 0.538478i \(0.181000\pi\)
\(398\) 118.512i 0.297768i
\(399\) −525.000 −1.31579
\(400\) 0 0
\(401\) 107.000 0.266833 0.133416 0.991060i \(-0.457405\pi\)
0.133416 + 0.991060i \(0.457405\pi\)
\(402\) 281.745i 0.700857i
\(403\) 26.8328i 0.0665827i
\(404\) 102.470i 0.253637i
\(405\) 0 0
\(406\) 256.174i 0.630970i
\(407\) −18.3303 + 46.9574i −0.0450376 + 0.115375i
\(408\) −481.170 −1.17934
\(409\) 327.902i 0.801717i 0.916140 + 0.400859i \(0.131288\pi\)
−0.916140 + 0.400859i \(0.868712\pi\)
\(410\) 0 0
\(411\) 294.000 0.715328
\(412\) −18.3303 −0.0444910
\(413\) 201.246i 0.487279i
\(414\) 737.780i 1.78208i
\(415\) 0 0
\(416\) −140.000 −0.336538
\(417\) 1033.06i 2.47737i
\(418\) −91.6515 + 234.787i −0.219262 + 0.561692i
\(419\) −722.000 −1.72315 −0.861575 0.507630i \(-0.830522\pi\)
−0.861575 + 0.507630i \(0.830522\pi\)
\(420\) 0 0
\(421\) −408.000 −0.969121 −0.484561 0.874758i \(-0.661020\pi\)
−0.484561 + 0.874758i \(0.661020\pi\)
\(422\) −389.519 −0.923031
\(423\) −769.873 −1.82003
\(424\) 30.7409i 0.0725020i
\(425\) 0 0
\(426\) 276.668i 0.649455i
\(427\) −801.951 −1.87810
\(428\) 156.525i 0.365712i
\(429\) −420.000 163.951i −0.979021 0.382171i
\(430\) 0 0
\(431\) 61.4817i 0.142649i 0.997453 + 0.0713245i \(0.0227226\pi\)
−0.997453 + 0.0713245i \(0.977277\pi\)
\(432\) 261.207 0.604645
\(433\) 247.459 0.571499 0.285750 0.958304i \(-0.407757\pi\)
0.285750 + 0.958304i \(0.407757\pi\)
\(434\) 75.0000 0.172811
\(435\) 0 0
\(436\) 20.4939i 0.0470044i
\(437\) 281.745i 0.644724i
\(438\) −595.735 −1.36013
\(439\) 430.372i 0.980346i −0.871625 0.490173i \(-0.836934\pi\)
0.871625 0.490173i \(-0.163066\pi\)
\(440\) 0 0
\(441\) −912.000 −2.06803
\(442\) 313.050i 0.708257i
\(443\) −302.450 −0.682731 −0.341366 0.939931i \(-0.610889\pi\)
−0.341366 + 0.939931i \(0.610889\pi\)
\(444\) 21.0000 0.0472973
\(445\) 0 0
\(446\) 881.238i 1.97587i
\(447\) 704.361i 1.57575i
\(448\) 458.394i 1.02320i
\(449\) −22.0000 −0.0489978 −0.0244989 0.999700i \(-0.507799\pi\)
−0.0244989 + 0.999700i \(0.507799\pi\)
\(450\) 0 0
\(451\) 210.000 + 81.9756i 0.465632 + 0.181764i
\(452\) 164.973 0.364984
\(453\) 469.574i 1.03659i
\(454\) 620.000 1.36564
\(455\) 0 0
\(456\) −315.000 −0.690789
\(457\) 346.591i 0.758404i 0.925314 + 0.379202i \(0.123801\pi\)
−0.925314 + 0.379202i \(0.876199\pi\)
\(458\) 652.932i 1.42562i
\(459\) 215.186i 0.468815i
\(460\) 0 0
\(461\) 338.149i 0.733513i −0.930317 0.366756i \(-0.880468\pi\)
0.930317 0.366756i \(-0.119532\pi\)
\(462\) −458.258 + 1173.94i −0.991900 + 2.54099i
\(463\) −623.230 −1.34607 −0.673035 0.739611i \(-0.735010\pi\)
−0.673035 + 0.739611i \(0.735010\pi\)
\(464\) 194.692i 0.419595i
\(465\) 0 0
\(466\) −385.000 −0.826180
\(467\) 554.492 1.18735 0.593674 0.804706i \(-0.297677\pi\)
0.593674 + 0.804706i \(0.297677\pi\)
\(468\) 107.331i 0.229340i
\(469\) 307.409i 0.655455i
\(470\) 0 0
\(471\) −231.000 −0.490446
\(472\) 120.748i 0.255821i
\(473\) 229.129 + 89.4427i 0.484416 + 0.189097i
\(474\) 630.000 1.32911
\(475\) 0 0
\(476\) −175.000 −0.367647
\(477\) −54.9909 −0.115285
\(478\) 504.083 1.05457
\(479\) 40.9878i 0.0855695i −0.999084 0.0427848i \(-0.986377\pi\)
0.999084 0.0427848i \(-0.0136230\pi\)
\(480\) 0 0
\(481\) 40.9878i 0.0852137i
\(482\) 733.212 1.52119
\(483\) 1408.72i 2.91661i
\(484\) 89.0000 + 81.9756i 0.183884 + 0.169371i
\(485\) 0 0
\(486\) 737.780i 1.51807i
\(487\) −339.111 −0.696326 −0.348163 0.937434i \(-0.613194\pi\)
−0.348163 + 0.937434i \(0.613194\pi\)
\(488\) −481.170 −0.986005
\(489\) −1239.00 −2.53374
\(490\) 0 0
\(491\) 584.076i 1.18956i −0.803887 0.594782i \(-0.797238\pi\)
0.803887 0.594782i \(-0.202762\pi\)
\(492\) 93.9149i 0.190884i
\(493\) 160.390 0.325335
\(494\) 204.939i 0.414856i
\(495\) 0 0
\(496\) 57.0000 0.114919
\(497\) 301.869i 0.607383i
\(498\) 733.212 1.47231
\(499\) 268.000 0.537074 0.268537 0.963269i \(-0.413460\pi\)
0.268537 + 0.963269i \(0.413460\pi\)
\(500\) 0 0
\(501\) 1362.84i 2.72025i
\(502\) 630.571i 1.25612i
\(503\) 541.128i 1.07580i −0.843008 0.537901i \(-0.819217\pi\)
0.843008 0.537901i \(-0.180783\pi\)
\(504\) −900.000 −1.78571
\(505\) 0 0
\(506\) 630.000 + 245.927i 1.24506 + 0.486021i
\(507\) −407.849 −0.804436
\(508\) 31.3050i 0.0616239i
\(509\) 828.000 1.62672 0.813360 0.581761i \(-0.197636\pi\)
0.813360 + 0.581761i \(0.197636\pi\)
\(510\) 0 0
\(511\) 650.000 1.27202
\(512\) 212.426i 0.414895i
\(513\) 140.872i 0.274605i
\(514\) 143.457i 0.279100i
\(515\) 0 0
\(516\) 102.470i 0.198584i
\(517\) 256.624 657.404i 0.496372 1.27157i
\(518\) −114.564 −0.221167
\(519\) 655.805i 1.26359i
\(520\) 0 0
\(521\) 242.000 0.464491 0.232246 0.972657i \(-0.425393\pi\)
0.232246 + 0.972657i \(0.425393\pi\)
\(522\) −274.955 −0.526733
\(523\) 143.108i 0.273630i 0.990597 + 0.136815i \(0.0436865\pi\)
−0.990597 + 0.136815i \(0.956313\pi\)
\(524\) 215.186i 0.410660i
\(525\) 0 0
\(526\) 445.000 0.846008
\(527\) 46.9574i 0.0891033i
\(528\) −348.276 + 892.191i −0.659613 + 1.68976i
\(529\) 227.000 0.429112
\(530\) 0 0
\(531\) 216.000 0.406780
\(532\) −114.564 −0.215347
\(533\) −183.303 −0.343908
\(534\) 379.137i 0.709995i
\(535\) 0 0
\(536\) 184.445i 0.344114i
\(537\) 1108.98 2.06515
\(538\) 362.243i 0.673314i
\(539\) 304.000 778.768i 0.564007 1.44484i
\(540\) 0 0
\(541\) 440.619i 0.814453i 0.913327 + 0.407226i \(0.133504\pi\)
−0.913327 + 0.407226i \(0.866496\pi\)
\(542\) −549.909 −1.01459
\(543\) 1182.30 2.17736
\(544\) −245.000 −0.450368
\(545\) 0 0
\(546\) 1024.70i 1.87673i
\(547\) 398.020i 0.727642i −0.931469 0.363821i \(-0.881472\pi\)
0.931469 0.363821i \(-0.118528\pi\)
\(548\) 64.1561 0.117073
\(549\) 860.744i 1.56784i
\(550\) 0 0
\(551\) 105.000 0.190563
\(552\) 845.234i 1.53122i
\(553\) −687.386 −1.24301
\(554\) −130.000 −0.234657
\(555\) 0 0
\(556\) 225.433i 0.405455i
\(557\) 156.525i 0.281014i 0.990080 + 0.140507i \(0.0448732\pi\)
−0.990080 + 0.140507i \(0.955127\pi\)
\(558\) 80.4984i 0.144262i
\(559\) −200.000 −0.357782
\(560\) 0 0
\(561\) −735.000 286.915i −1.31016 0.511434i
\(562\) −366.606 −0.652324
\(563\) 881.011i 1.56485i −0.622745 0.782425i \(-0.713982\pi\)
0.622745 0.782425i \(-0.286018\pi\)
\(564\) −294.000 −0.521277
\(565\) 0 0
\(566\) −560.000 −0.989399
\(567\) 503.115i 0.887329i
\(568\) 181.122i 0.318876i
\(569\) 143.457i 0.252122i 0.992023 + 0.126061i \(0.0402335\pi\)
−0.992023 + 0.126061i \(0.959767\pi\)
\(570\) 0 0
\(571\) 604.570i 1.05879i 0.848375 + 0.529396i \(0.177581\pi\)
−0.848375 + 0.529396i \(0.822419\pi\)
\(572\) −91.6515 35.7771i −0.160230 0.0625474i
\(573\) 1273.96 2.22331
\(574\) 512.348i 0.892592i
\(575\) 0 0
\(576\) −492.000 −0.854167
\(577\) 164.973 0.285915 0.142957 0.989729i \(-0.454339\pi\)
0.142957 + 0.989729i \(0.454339\pi\)
\(578\) 98.3870i 0.170220i
\(579\) 358.643i 0.619418i
\(580\) 0 0
\(581\) −800.000 −1.37694
\(582\) 1220.89i 2.09775i
\(583\) 18.3303 46.9574i 0.0314413 0.0805445i
\(584\) 390.000 0.667808
\(585\) 0 0
\(586\) −1000.00 −1.70648
\(587\) 875.272 1.49109 0.745547 0.666453i \(-0.232188\pi\)
0.745547 + 0.666453i \(0.232188\pi\)
\(588\) −348.276 −0.592306
\(589\) 30.7409i 0.0521916i
\(590\) 0 0
\(591\) 901.732i 1.52577i
\(592\) −87.0689 −0.147076
\(593\) 111.803i 0.188539i 0.995547 + 0.0942693i \(0.0300515\pi\)
−0.995547 + 0.0942693i \(0.969949\pi\)
\(594\) 315.000 + 122.963i 0.530303 + 0.207009i
\(595\) 0 0
\(596\) 153.704i 0.257893i
\(597\) −242.877 −0.406828
\(598\) −549.909 −0.919580
\(599\) 493.000 0.823038 0.411519 0.911401i \(-0.364998\pi\)
0.411519 + 0.911401i \(0.364998\pi\)
\(600\) 0 0
\(601\) 102.470i 0.170498i −0.996360 0.0852492i \(-0.972831\pi\)
0.996360 0.0852492i \(-0.0271686\pi\)
\(602\) 559.017i 0.928600i
\(603\) 329.945 0.547173
\(604\) 102.470i 0.169652i
\(605\) 0 0
\(606\) 1050.00 1.73267
\(607\) 816.165i 1.34459i −0.740284 0.672294i \(-0.765309\pi\)
0.740284 0.672294i \(-0.234691\pi\)
\(608\) −160.390 −0.263800
\(609\) 525.000 0.862069
\(610\) 0 0
\(611\) 573.829i 0.939164i
\(612\) 187.830i 0.306911i
\(613\) 881.011i 1.43721i −0.695418 0.718606i \(-0.744781\pi\)
0.695418 0.718606i \(-0.255219\pi\)
\(614\) −1000.00 −1.62866
\(615\) 0 0
\(616\) 300.000 768.521i 0.487013 1.24760i
\(617\) −293.285 −0.475340 −0.237670 0.971346i \(-0.576384\pi\)
−0.237670 + 0.971346i \(0.576384\pi\)
\(618\) 187.830i 0.303932i
\(619\) −972.000 −1.57027 −0.785137 0.619322i \(-0.787408\pi\)
−0.785137 + 0.619322i \(0.787408\pi\)
\(620\) 0 0
\(621\) 378.000 0.608696
\(622\) 194.538i 0.312762i
\(623\) 413.673i 0.664001i
\(624\) 778.768i 1.24803i
\(625\) 0 0
\(626\) 655.805i 1.04761i
\(627\) −481.170 187.830i −0.767417 0.299569i
\(628\) −50.4083 −0.0802680
\(629\) 71.7287i 0.114036i
\(630\) 0 0
\(631\) −113.000 −0.179081 −0.0895404 0.995983i \(-0.528540\pi\)
−0.0895404 + 0.995983i \(0.528540\pi\)
\(632\) −412.432 −0.652582
\(633\) 798.276i 1.26110i
\(634\) 112.716i 0.177786i
\(635\) 0 0
\(636\) −21.0000 −0.0330189
\(637\) 679.765i 1.06713i
\(638\) 91.6515 234.787i 0.143654 0.368005i
\(639\) 324.000 0.507042
\(640\) 0 0
\(641\) 1007.00 1.57098 0.785491 0.618873i \(-0.212410\pi\)
0.785491 + 0.618873i \(0.212410\pi\)
\(642\) 1603.90 2.49829
\(643\) 270.372 0.420485 0.210243 0.977649i \(-0.432575\pi\)
0.210243 + 0.977649i \(0.432575\pi\)
\(644\) 307.409i 0.477342i
\(645\) 0 0
\(646\) 358.643i 0.555175i
\(647\) −18.3303 −0.0283312 −0.0141656 0.999900i \(-0.504509\pi\)
−0.0141656 + 0.999900i \(0.504509\pi\)
\(648\) 301.869i 0.465847i
\(649\) −72.0000 + 184.445i −0.110940 + 0.284199i
\(650\) 0 0
\(651\) 153.704i 0.236105i
\(652\) −270.372 −0.414681
\(653\) −691.969 −1.05968 −0.529838 0.848099i \(-0.677747\pi\)
−0.529838 + 0.848099i \(0.677747\pi\)
\(654\) 210.000 0.321101
\(655\) 0 0
\(656\) 389.384i 0.593573i
\(657\) 697.653i 1.06188i
\(658\) 1603.90 2.43754
\(659\) 1096.42i 1.66377i 0.554949 + 0.831884i \(0.312738\pi\)
−0.554949 + 0.831884i \(0.687262\pi\)
\(660\) 0 0
\(661\) 862.000 1.30408 0.652042 0.758183i \(-0.273912\pi\)
0.652042 + 0.758183i \(0.273912\pi\)
\(662\) 308.577i 0.466129i
\(663\) 641.561 0.967663
\(664\) −480.000 −0.722892
\(665\) 0 0
\(666\) 122.963i 0.184630i
\(667\) 281.745i 0.422406i
\(668\) 297.397i 0.445205i
\(669\) 1806.00 2.69955
\(670\) 0 0
\(671\) −735.000 286.915i −1.09538 0.427593i
\(672\) −801.951 −1.19338
\(673\) 713.306i 1.05989i 0.848032 + 0.529945i \(0.177787\pi\)
−0.848032 + 0.529945i \(0.822213\pi\)
\(674\) −545.000 −0.808605
\(675\) 0 0
\(676\) −89.0000 −0.131657
\(677\) 31.3050i 0.0462407i −0.999733 0.0231203i \(-0.992640\pi\)
0.999733 0.0231203i \(-0.00736009\pi\)
\(678\) 1690.47i 2.49331i
\(679\) 1332.10i 1.96186i
\(680\) 0 0
\(681\) 1270.62i 1.86582i
\(682\) 68.7386 + 26.8328i 0.100790 + 0.0393443i
\(683\) −600.317 −0.878942 −0.439471 0.898257i \(-0.644834\pi\)
−0.439471 + 0.898257i \(0.644834\pi\)
\(684\) 122.963i 0.179771i
\(685\) 0 0
\(686\) 675.000 0.983965
\(687\) 1338.11 1.94776
\(688\) 424.853i 0.617519i
\(689\) 40.9878i 0.0594888i
\(690\) 0 0
\(691\) 872.000 1.26194 0.630970 0.775808i \(-0.282657\pi\)
0.630970 + 0.775808i \(0.282657\pi\)
\(692\) 143.108i 0.206804i
\(693\) −1374.77 536.656i −1.98380 0.774396i
\(694\) −10.0000 −0.0144092
\(695\) 0 0
\(696\) 315.000 0.452586
\(697\) −320.780 −0.460230
\(698\) 1145.64 1.64132
\(699\) 789.015i 1.12878i
\(700\) 0 0
\(701\) 870.991i 1.24250i −0.783613 0.621249i \(-0.786626\pi\)
0.783613 0.621249i \(-0.213374\pi\)
\(702\) −274.955 −0.391673
\(703\) 46.9574i 0.0667958i
\(704\) 164.000 420.125i 0.232955 0.596768i
\(705\) 0 0
\(706\) 655.805i 0.928902i
\(707\) −1145.64 −1.62043
\(708\) 82.4864 0.116506
\(709\) 768.000 1.08322 0.541608 0.840631i \(-0.317816\pi\)
0.541608 + 0.840631i \(0.317816\pi\)
\(710\) 0 0
\(711\) 737.780i 1.03767i
\(712\) 248.204i 0.348600i
\(713\) 82.4864 0.115689
\(714\) 1793.22i 2.51151i
\(715\) 0 0
\(716\) 242.000 0.337989
\(717\) 1033.06i 1.44081i
\(718\) −1420.60 −1.97855
\(719\) 263.000 0.365786 0.182893 0.983133i \(-0.441454\pi\)
0.182893 + 0.983133i \(0.441454\pi\)
\(720\) 0 0
\(721\) 204.939i 0.284243i
\(722\) 572.433i 0.792844i
\(723\) 1502.64i 2.07834i
\(724\) 258.000 0.356354
\(725\) 0 0
\(726\) −840.000 + 911.979i −1.15702 + 1.25617i
\(727\) −293.285 −0.403418 −0.201709 0.979446i \(-0.564650\pi\)
−0.201709 + 0.979446i \(0.564650\pi\)
\(728\) 670.820i 0.921457i
\(729\) −1107.00 −1.51852
\(730\) 0 0
\(731\) −350.000 −0.478796
\(732\) 328.702i 0.449046i
\(733\) 219.135i 0.298956i −0.988765 0.149478i \(-0.952241\pi\)
0.988765 0.149478i \(-0.0477593\pi\)
\(734\) 963.213i 1.31228i
\(735\) 0 0
\(736\) 430.372i 0.584744i
\(737\) −109.982 + 281.745i −0.149229 + 0.382286i
\(738\) 549.909 0.745134
\(739\) 389.384i 0.526907i 0.964672 + 0.263453i \(0.0848615\pi\)
−0.964672 + 0.263453i \(0.915138\pi\)
\(740\) 0 0
\(741\) 420.000 0.566802
\(742\) 114.564 0.154399
\(743\) 682.001i 0.917901i −0.888462 0.458951i \(-0.848225\pi\)
0.888462 0.458951i \(-0.151775\pi\)
\(744\) 92.2226i 0.123955i
\(745\) 0 0
\(746\) −1220.00 −1.63539
\(747\) 858.650i 1.14946i
\(748\) −160.390 62.6099i −0.214425 0.0837031i
\(749\) −1750.00 −2.33645
\(750\) 0 0
\(751\) −1003.00 −1.33555 −0.667776 0.744362i \(-0.732754\pi\)
−0.667776 + 0.744362i \(0.732754\pi\)
\(752\) 1218.97 1.62096
\(753\) −1292.29 −1.71618
\(754\) 204.939i 0.271802i
\(755\) 0 0
\(756\) 153.704i 0.203313i
\(757\) 1218.97 1.61026 0.805129 0.593100i \(-0.202096\pi\)
0.805129 + 0.593100i \(0.202096\pi\)
\(758\) 957.037i 1.26258i
\(759\) −504.000 + 1291.12i −0.664032 + 1.70107i
\(760\) 0 0
\(761\) 184.445i 0.242372i −0.992630 0.121186i \(-0.961330\pi\)
0.992630 0.121186i \(-0.0386698\pi\)
\(762\) −320.780 −0.420972
\(763\) −229.129 −0.300300
\(764\) 278.000 0.363874
\(765\) 0 0
\(766\) 368.890i 0.481580i
\(767\) 160.997i 0.209905i
\(768\) −829.446 −1.08001
\(769\) 245.927i 0.319801i 0.987133 + 0.159900i \(0.0511173\pi\)
−0.987133 + 0.159900i \(0.948883\pi\)
\(770\) 0 0
\(771\) 294.000 0.381323
\(772\) 78.2624i 0.101376i
\(773\) −279.537 −0.361626 −0.180813 0.983517i \(-0.557873\pi\)
−0.180813 + 0.983517i \(0.557873\pi\)
\(774\) 600.000 0.775194
\(775\) 0 0
\(776\) 799.262i 1.02998i
\(777\) 234.787i 0.302171i
\(778\) 509.823i 0.655300i
\(779\) −210.000 −0.269576
\(780\) 0 0
\(781\) −108.000 + 276.668i −0.138284 + 0.354248i
\(782\) −962.341 −1.23061
\(783\) 140.872i 0.179914i
\(784\) 1444.00 1.84184
\(785\) 0 0
\(786\) 2205.00 2.80534
\(787\) 746.847i 0.948979i 0.880261 + 0.474490i \(0.157367\pi\)
−0.880261 + 0.474490i \(0.842633\pi\)
\(788\) 196.774i 0.249713i
\(789\) 911.979i 1.15587i
\(790\) 0 0
\(791\) 1844.45i 2.33180i
\(792\) −824.864 321.994i −1.04149 0.406558i
\(793\) 641.561 0.809030
\(794\) 1496.05i 1.88420i
\(795\) 0 0
\(796\) −53.0000 −0.0665829
\(797\) −705.717 −0.885466 −0.442733 0.896653i \(-0.645991\pi\)
−0.442733 + 0.896653i \(0.645991\pi\)
\(798\) 1173.94i 1.47110i
\(799\) 1004.20i 1.25682i
\(800\) 0 0
\(801\) −444.000 −0.554307
\(802\) 239.259i 0.298328i
\(803\) 595.735 + 232.551i 0.741886 + 0.289603i
\(804\) 126.000 0.156716
\(805\) 0 0
\(806\) −60.0000 −0.0744417
\(807\) 742.377 0.919922
\(808\) −687.386 −0.850726
\(809\) 1209.14i 1.49461i −0.664481 0.747305i \(-0.731347\pi\)
0.664481 0.747305i \(-0.268653\pi\)
\(810\) 0 0
\(811\) 1096.42i 1.35194i 0.736929 + 0.675970i \(0.236275\pi\)
−0.736929 + 0.675970i \(0.763725\pi\)
\(812\) 114.564 0.141089
\(813\) 1126.98i 1.38620i
\(814\) −105.000 40.9878i −0.128993 0.0503536i
\(815\) 0 0
\(816\) 1362.84i 1.67015i
\(817\) −229.129 −0.280451
\(818\) −733.212 −0.896347
\(819\) 1200.00 1.46520
\(820\) 0 0
\(821\) 758.274i 0.923598i 0.886984 + 0.461799i \(0.152796\pi\)
−0.886984 + 0.461799i \(0.847204\pi\)
\(822\) 657.404i 0.799762i
\(823\) 293.285 0.356361 0.178180 0.983998i \(-0.442979\pi\)
0.178180 + 0.983998i \(0.442979\pi\)
\(824\) 122.963i 0.149227i
\(825\) 0 0
\(826\) −450.000 −0.544794
\(827\) 594.794i 0.719219i 0.933103 + 0.359609i \(0.117090\pi\)
−0.933103 + 0.359609i \(0.882910\pi\)
\(828\) 329.945 0.398485
\(829\) −102.000 −0.123040 −0.0615199 0.998106i \(-0.519595\pi\)
−0.0615199 + 0.998106i \(0.519595\pi\)
\(830\) 0 0
\(831\) 266.421i 0.320603i
\(832\) 366.715i 0.440763i
\(833\) 1189.59i 1.42808i
\(834\) −2310.00 −2.76978
\(835\) 0 0
\(836\) −105.000 40.9878i −0.125598 0.0490285i
\(837\) 41.2432 0.0492750
\(838\) 1614.44i 1.92654i
\(839\) 138.000 0.164482 0.0822408 0.996612i \(-0.473792\pi\)
0.0822408 + 0.996612i \(0.473792\pi\)
\(840\) 0 0
\(841\) 736.000 0.875149
\(842\) 912.316i 1.08351i
\(843\) 751.319i 0.891244i
\(844\) 174.198i 0.206396i
\(845\) 0 0
\(846\) 1721.49i 2.03486i
\(847\) 916.515 995.050i 1.08207 1.17479i
\(848\) 87.0689 0.102676
\(849\) 1147.66i 1.35178i
\(850\) 0 0
\(851\) −126.000 −0.148061
\(852\) 123.730 0.145222
\(853\) 532.184i 0.623897i 0.950099 + 0.311949i \(0.100982\pi\)
−0.950099 + 0.311949i \(0.899018\pi\)
\(854\) 1793.22i 2.09978i
\(855\) 0 0
\(856\) −1050.00 −1.22664
\(857\) 950.329i 1.10890i −0.832216 0.554451i \(-0.812928\pi\)
0.832216 0.554451i \(-0.187072\pi\)
\(858\) 366.606 939.149i 0.427280 1.09458i
\(859\) 1068.00 1.24331 0.621653 0.783293i \(-0.286461\pi\)
0.621653 + 0.783293i \(0.286461\pi\)
\(860\) 0 0
\(861\) −1050.00 −1.21951
\(862\) −137.477 −0.159486
\(863\) −73.3212 −0.0849608 −0.0424804 0.999097i \(-0.513526\pi\)
−0.0424804 + 0.999097i \(0.513526\pi\)
\(864\) 215.186i 0.249058i
\(865\) 0 0
\(866\) 553.335i 0.638955i
\(867\) −201.633 −0.232564
\(868\) 33.5410i 0.0386417i
\(869\) −630.000 245.927i −0.724971 0.283000i
\(870\) 0 0
\(871\) 245.927i 0.282350i
\(872\) −137.477 −0.157657
\(873\) 1429.76 1.63776
\(874\) −630.000 −0.720824
\(875\) 0 0
\(876\) 266.421i 0.304133i
\(877\) 169.941i 0.193776i 0.995295 + 0.0968878i \(0.0308888\pi\)
−0.995295 + 0.0968878i \(0.969111\pi\)
\(878\) 962.341 1.09606
\(879\) 2049.39i 2.33150i
\(880\) 0 0
\(881\) −78.0000 −0.0885358 −0.0442679 0.999020i \(-0.514096\pi\)
−0.0442679 + 0.999020i \(0.514096\pi\)
\(882\) 2039.29i 2.31212i
\(883\) 1553.49 1.75934 0.879668 0.475589i \(-0.157765\pi\)
0.879668 + 0.475589i \(0.157765\pi\)
\(884\) 140.000 0.158371
\(885\) 0 0
\(886\) 676.299i 0.763317i
\(887\) 299.633i 0.337805i 0.985633 + 0.168903i \(0.0540223\pi\)
−0.985633 + 0.168903i \(0.945978\pi\)
\(888\) 140.872i 0.158640i
\(889\) 350.000 0.393701
\(890\) 0 0
\(891\) 180.000 461.113i 0.202020 0.517523i
\(892\) 394.102 0.441818
\(893\) 657.404i 0.736175i
\(894\) 1575.00 1.76174
\(895\) 0 0
\(896\) 1725.00 1.92522
\(897\) 1126.98i 1.25639i
\(898\) 49.1935i 0.0547812i
\(899\) 30.7409i 0.0341945i
\(900\) 0 0
\(901\) 71.7287i 0.0796101i
\(902\) −183.303 + 469.574i −0.203218 + 0.520592i
\(903\) −1145.64 −1.26871
\(904\) 1106.67i 1.22419i
\(905\) 0 0
\(906\) −1050.00 −1.15894
\(907\) 691.969 0.762921 0.381460 0.924385i \(-0.375421\pi\)
0.381460 + 0.924385i \(0.375421\pi\)
\(908\) 277.272i 0.305366i
\(909\) 1229.63i 1.35273i
\(910\) 0 0
\(911\) 1037.00 1.13831 0.569155 0.822230i \(-0.307271\pi\)
0.569155 + 0.822230i \(0.307271\pi\)
\(912\) 892.191i 0.978280i
\(913\) −733.212 286.217i −0.803080 0.313490i
\(914\) −775.000 −0.847921
\(915\) 0 0
\(916\) 292.000 0.318777
\(917\) −2405.85 −2.62361
\(918\) −481.170 −0.524151
\(919\) 1782.97i 1.94012i 0.242867 + 0.970060i \(0.421912\pi\)
−0.242867 + 0.970060i \(0.578088\pi\)
\(920\) 0 0
\(921\) 2049.39i 2.22518i
\(922\) 756.125 0.820092
\(923\) 241.495i 0.261642i
\(924\) −525.000 204.939i −0.568182 0.221795i
\(925\) 0 0
\(926\) 1393.59i 1.50495i
\(927\) 219.964 0.237285
\(928\) 160.390 0.172834
\(929\) 633.000 0.681378 0.340689 0.940176i \(-0.389340\pi\)
0.340689 + 0.940176i \(0.389340\pi\)
\(930\) 0 0
\(931\) 778.768i 0.836486i
\(932\) 172.177i 0.184740i
\(933\) −398.684 −0.427314
\(934\) 1239.88i 1.32750i
\(935\) 0 0
\(936\) 720.000 0.769231
\(937\) 728.958i 0.777970i −0.921244 0.388985i \(-0.872826\pi\)
0.921244 0.388985i \(-0.127174\pi\)
\(938\) −687.386 −0.732821
\(939\) −1344.00 −1.43131
\(940\) 0 0
\(941\) 850.497i 0.903822i 0.892063 + 0.451911i \(0.149258\pi\)
−0.892063 + 0.451911i \(0.850742\pi\)
\(942\) 516.532i 0.548335i
\(943\) 563.489i 0.597549i
\(944\) −342.000 −0.362288
\(945\) 0 0
\(946\) −200.000 + 512.348i −0.211416 + 0.541594i
\(947\) −911.933 −0.962970 −0.481485 0.876454i \(-0.659902\pi\)
−0.481485 + 0.876454i \(0.659902\pi\)
\(948\) 281.745i 0.297199i
\(949\) −520.000 −0.547945
\(950\) 0 0
\(951\) −231.000 −0.242902
\(952\) 1173.94i 1.23313i
\(953\) 1236.55i 1.29753i 0.760989 + 0.648765i \(0.224714\pi\)
−0.760989 + 0.648765i \(0.775286\pi\)
\(954\) 122.963i 0.128892i
\(955\) 0 0
\(956\) 225.433i 0.235808i
\(957\) 481.170 + 187.830i 0.502790 + 0.196269i
\(958\) 91.6515 0.0956696
\(959\) 717.287i 0.747953i
\(960\) 0 0
\(961\) −952.000 −0.990635
\(962\) 91.6515 0.0952718
\(963\) 1878.30i 1.95046i
\(964\) 327.902i 0.340148i
\(965\) 0 0
\(966\) −3150.00 −3.26087
\(967\) 431.561i 0.446289i 0.974785 + 0.223144i \(0.0716321\pi\)
−0.974785 + 0.223144i \(0.928368\pi\)
\(968\) 549.909 597.030i 0.568088 0.616767i
\(969\) 735.000 0.758514
\(970\) 0 0
\(971\) −1048.00 −1.07930 −0.539650 0.841890i \(-0.681443\pi\)
−0.539650 + 0.841890i \(0.681443\pi\)
\(972\) −329.945 −0.339450
\(973\) 2520.42 2.59036
\(974\) 758.274i 0.778516i
\(975\) 0 0
\(976\) 1362.84i 1.39636i
\(977\) −247.459 −0.253285 −0.126642 0.991948i \(-0.540420\pi\)
−0.126642 + 0.991948i \(0.540420\pi\)
\(978\) 2770.49i 2.83281i
\(979\) 148.000 379.137i 0.151175 0.387270i
\(980\) 0 0
\(981\) 245.927i 0.250690i
\(982\) 1306.03 1.32997
\(983\) −27.4955 −0.0279710 −0.0139855 0.999902i \(-0.504452\pi\)
−0.0139855 + 0.999902i \(0.504452\pi\)
\(984\) −630.000 −0.640244
\(985\) 0 0
\(986\) 358.643i 0.363736i
\(987\) 3287.02i 3.33031i
\(988\) 91.6515 0.0927647
\(989\) 614.817i 0.621655i
\(990\) 0 0
\(991\) 1182.00 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(992\) 46.9574i 0.0473361i
\(993\) 632.395 0.636853
\(994\) −675.000 −0.679074
\(995\) 0 0
\(996\) 327.902i 0.329219i
\(997\) 1694.94i 1.70004i −0.526751 0.850020i \(-0.676590\pi\)
0.526751 0.850020i \(-0.323410\pi\)
\(998\) 599.266i 0.600467i
\(999\) −63.0000 −0.0630631
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.e.76.3 4
5.2 odd 4 55.3.d.d.54.2 yes 4
5.3 odd 4 55.3.d.d.54.3 yes 4
5.4 even 2 inner 275.3.c.e.76.2 4
11.10 odd 2 inner 275.3.c.e.76.1 4
15.2 even 4 495.3.h.d.109.4 4
15.8 even 4 495.3.h.d.109.1 4
20.3 even 4 880.3.i.d.769.3 4
20.7 even 4 880.3.i.d.769.2 4
55.32 even 4 55.3.d.d.54.4 yes 4
55.43 even 4 55.3.d.d.54.1 4
55.54 odd 2 inner 275.3.c.e.76.4 4
165.32 odd 4 495.3.h.d.109.2 4
165.98 odd 4 495.3.h.d.109.3 4
220.43 odd 4 880.3.i.d.769.4 4
220.87 odd 4 880.3.i.d.769.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.d.54.1 4 55.43 even 4
55.3.d.d.54.2 yes 4 5.2 odd 4
55.3.d.d.54.3 yes 4 5.3 odd 4
55.3.d.d.54.4 yes 4 55.32 even 4
275.3.c.e.76.1 4 11.10 odd 2 inner
275.3.c.e.76.2 4 5.4 even 2 inner
275.3.c.e.76.3 4 1.1 even 1 trivial
275.3.c.e.76.4 4 55.54 odd 2 inner
495.3.h.d.109.1 4 15.8 even 4
495.3.h.d.109.2 4 165.32 odd 4
495.3.h.d.109.3 4 165.98 odd 4
495.3.h.d.109.4 4 15.2 even 4
880.3.i.d.769.1 4 220.87 odd 4
880.3.i.d.769.2 4 20.7 even 4
880.3.i.d.769.3 4 20.3 even 4
880.3.i.d.769.4 4 220.43 odd 4