Properties

Label 55.3.f.a.12.10
Level $55$
Weight $3$
Character 55.12
Analytic conductor $1.499$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(12,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.12");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 8 x^{18} + 4 x^{17} + 212 x^{16} - 792 x^{15} + 1480 x^{14} + 148 x^{13} + \cdots + 38416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 12.10
Root \(-2.27868 + 2.27868i\) of defining polynomial
Character \(\chi\) \(=\) 55.12
Dual form 55.3.f.a.23.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.27868 + 2.27868i) q^{2} +(-1.69843 + 1.69843i) q^{3} +6.38475i q^{4} +(2.55248 - 4.29940i) q^{5} -7.74034 q^{6} +(-3.30878 - 3.30878i) q^{7} +(-5.43407 + 5.43407i) q^{8} +3.23068i q^{9} +(15.6132 - 3.98068i) q^{10} +3.31662 q^{11} +(-10.8440 - 10.8440i) q^{12} +(7.65935 - 7.65935i) q^{13} -15.0793i q^{14} +(2.96703 + 11.6374i) q^{15} +0.773991 q^{16} +(-19.8139 - 19.8139i) q^{17} +(-7.36168 + 7.36168i) q^{18} +17.4895i q^{19} +(27.4506 + 16.2969i) q^{20} +11.2395 q^{21} +(7.55752 + 7.55752i) q^{22} +(-11.7334 + 11.7334i) q^{23} -18.4588i q^{24} +(-11.9697 - 21.9483i) q^{25} +34.9064 q^{26} +(-20.7729 - 20.7729i) q^{27} +(21.1258 - 21.1258i) q^{28} +14.2026i q^{29} +(-19.7571 + 33.2789i) q^{30} -44.6924 q^{31} +(23.5000 + 23.5000i) q^{32} +(-5.63305 + 5.63305i) q^{33} -90.2989i q^{34} +(-22.6714 + 5.78020i) q^{35} -20.6271 q^{36} +(-2.84977 - 2.84977i) q^{37} +(-39.8529 + 39.8529i) q^{38} +26.0177i q^{39} +(9.49291 + 37.2336i) q^{40} +61.2271 q^{41} +(25.6111 + 25.6111i) q^{42} +(-10.2480 + 10.2480i) q^{43} +21.1758i q^{44} +(13.8900 + 8.24624i) q^{45} -53.4734 q^{46} +(58.6916 + 58.6916i) q^{47} +(-1.31457 + 1.31457i) q^{48} -27.1039i q^{49} +(22.7379 - 77.2881i) q^{50} +67.3049 q^{51} +(48.9030 + 48.9030i) q^{52} +(-45.5877 + 45.5877i) q^{53} -94.6697i q^{54} +(8.46561 - 14.2595i) q^{55} +35.9603 q^{56} +(-29.7047 - 29.7047i) q^{57} +(-32.3632 + 32.3632i) q^{58} +3.71455i q^{59} +(-74.3020 + 18.9437i) q^{60} -15.3228 q^{61} +(-101.840 - 101.840i) q^{62} +(10.6896 - 10.6896i) q^{63} +104.002i q^{64} +(-13.3803 - 52.4809i) q^{65} -25.6718 q^{66} +(-23.6682 - 23.6682i) q^{67} +(126.507 - 126.507i) q^{68} -39.8568i q^{69} +(-64.8320 - 38.4896i) q^{70} +66.4871 q^{71} +(-17.5557 - 17.5557i) q^{72} +(93.3093 - 93.3093i) q^{73} -12.9874i q^{74} +(57.6073 + 16.9478i) q^{75} -111.666 q^{76} +(-10.9740 - 10.9740i) q^{77} +(-59.2860 + 59.2860i) q^{78} +57.1583i q^{79} +(1.97559 - 3.32770i) q^{80} +41.4866 q^{81} +(139.517 + 139.517i) q^{82} +(45.3490 - 45.3490i) q^{83} +71.7612i q^{84} +(-135.762 + 34.6133i) q^{85} -46.7036 q^{86} +(-24.1221 - 24.1221i) q^{87} +(-18.0228 + 18.0228i) q^{88} +114.906i q^{89} +(12.8603 + 50.4413i) q^{90} -50.6863 q^{91} +(-74.9150 - 74.9150i) q^{92} +(75.9069 - 75.9069i) q^{93} +267.479i q^{94} +(75.1944 + 44.6415i) q^{95} -79.8260 q^{96} +(-31.9248 - 31.9248i) q^{97} +(61.7610 - 61.7610i) q^{98} +10.7150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{2} - 2 q^{3} - 8 q^{5} - 8 q^{6} + 12 q^{8} + 12 q^{10} - 16 q^{12} + 4 q^{13} - 20 q^{15} - 16 q^{16} + 24 q^{17} - 24 q^{18} - 8 q^{20} - 64 q^{21} - 86 q^{23} + 90 q^{25} + 96 q^{26} - 50 q^{27}+ \cdots + 620 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.27868 + 2.27868i 1.13934 + 1.13934i 0.988569 + 0.150770i \(0.0481753\pi\)
0.150770 + 0.988569i \(0.451825\pi\)
\(3\) −1.69843 + 1.69843i −0.566143 + 0.566143i −0.931046 0.364903i \(-0.881102\pi\)
0.364903 + 0.931046i \(0.381102\pi\)
\(4\) 6.38475i 1.59619i
\(5\) 2.55248 4.29940i 0.510496 0.859880i
\(6\) −7.74034 −1.29006
\(7\) −3.30878 3.30878i −0.472684 0.472684i 0.430098 0.902782i \(-0.358479\pi\)
−0.902782 + 0.430098i \(0.858479\pi\)
\(8\) −5.43407 + 5.43407i −0.679259 + 0.679259i
\(9\) 3.23068i 0.358964i
\(10\) 15.6132 3.98068i 1.56132 0.398068i
\(11\) 3.31662 0.301511
\(12\) −10.8440 10.8440i −0.903670 0.903670i
\(13\) 7.65935 7.65935i 0.589180 0.589180i −0.348229 0.937409i \(-0.613217\pi\)
0.937409 + 0.348229i \(0.113217\pi\)
\(14\) 15.0793i 1.07709i
\(15\) 2.96703 + 11.6374i 0.197802 + 0.775829i
\(16\) 0.773991 0.0483744
\(17\) −19.8139 19.8139i −1.16552 1.16552i −0.983248 0.182274i \(-0.941654\pi\)
−0.182274 0.983248i \(-0.558346\pi\)
\(18\) −7.36168 + 7.36168i −0.408982 + 0.408982i
\(19\) 17.4895i 0.920499i 0.887789 + 0.460250i \(0.152240\pi\)
−0.887789 + 0.460250i \(0.847760\pi\)
\(20\) 27.4506 + 16.2969i 1.37253 + 0.814846i
\(21\) 11.2395 0.535213
\(22\) 7.55752 + 7.55752i 0.343524 + 0.343524i
\(23\) −11.7334 + 11.7334i −0.510149 + 0.510149i −0.914572 0.404423i \(-0.867472\pi\)
0.404423 + 0.914572i \(0.367472\pi\)
\(24\) 18.4588i 0.769115i
\(25\) −11.9697 21.9483i −0.478789 0.877930i
\(26\) 34.9064 1.34255
\(27\) −20.7729 20.7729i −0.769368 0.769368i
\(28\) 21.1258 21.1258i 0.754491 0.754491i
\(29\) 14.2026i 0.489745i 0.969555 + 0.244873i \(0.0787461\pi\)
−0.969555 + 0.244873i \(0.921254\pi\)
\(30\) −19.7571 + 33.2789i −0.658569 + 1.10930i
\(31\) −44.6924 −1.44169 −0.720846 0.693096i \(-0.756246\pi\)
−0.720846 + 0.693096i \(0.756246\pi\)
\(32\) 23.5000 + 23.5000i 0.734374 + 0.734374i
\(33\) −5.63305 + 5.63305i −0.170699 + 0.170699i
\(34\) 90.2989i 2.65585i
\(35\) −22.6714 + 5.78020i −0.647754 + 0.165148i
\(36\) −20.6271 −0.572974
\(37\) −2.84977 2.84977i −0.0770207 0.0770207i 0.667547 0.744568i \(-0.267344\pi\)
−0.744568 + 0.667547i \(0.767344\pi\)
\(38\) −39.8529 + 39.8529i −1.04876 + 1.04876i
\(39\) 26.0177i 0.667121i
\(40\) 9.49291 + 37.2336i 0.237323 + 0.930840i
\(41\) 61.2271 1.49334 0.746672 0.665192i \(-0.231650\pi\)
0.746672 + 0.665192i \(0.231650\pi\)
\(42\) 25.6111 + 25.6111i 0.609789 + 0.609789i
\(43\) −10.2480 + 10.2480i −0.238325 + 0.238325i −0.816156 0.577832i \(-0.803899\pi\)
0.577832 + 0.816156i \(0.303899\pi\)
\(44\) 21.1758i 0.481268i
\(45\) 13.8900 + 8.24624i 0.308666 + 0.183250i
\(46\) −53.4734 −1.16247
\(47\) 58.6916 + 58.6916i 1.24876 + 1.24876i 0.956269 + 0.292489i \(0.0944835\pi\)
0.292489 + 0.956269i \(0.405516\pi\)
\(48\) −1.31457 + 1.31457i −0.0273868 + 0.0273868i
\(49\) 27.1039i 0.553141i
\(50\) 22.7379 77.2881i 0.454758 1.54576i
\(51\) 67.3049 1.31970
\(52\) 48.9030 + 48.9030i 0.940442 + 0.940442i
\(53\) −45.5877 + 45.5877i −0.860145 + 0.860145i −0.991355 0.131210i \(-0.958114\pi\)
0.131210 + 0.991355i \(0.458114\pi\)
\(54\) 94.6697i 1.75314i
\(55\) 8.46561 14.2595i 0.153920 0.259264i
\(56\) 35.9603 0.642149
\(57\) −29.7047 29.7047i −0.521134 0.521134i
\(58\) −32.3632 + 32.3632i −0.557986 + 0.557986i
\(59\) 3.71455i 0.0629584i 0.999504 + 0.0314792i \(0.0100218\pi\)
−0.999504 + 0.0314792i \(0.989978\pi\)
\(60\) −74.3020 + 18.9437i −1.23837 + 0.315729i
\(61\) −15.3228 −0.251193 −0.125596 0.992081i \(-0.540084\pi\)
−0.125596 + 0.992081i \(0.540084\pi\)
\(62\) −101.840 101.840i −1.64258 1.64258i
\(63\) 10.6896 10.6896i 0.169677 0.169677i
\(64\) 104.002i 1.62503i
\(65\) −13.3803 52.4809i −0.205851 0.807399i
\(66\) −25.6718 −0.388967
\(67\) −23.6682 23.6682i −0.353257 0.353257i 0.508063 0.861320i \(-0.330362\pi\)
−0.861320 + 0.508063i \(0.830362\pi\)
\(68\) 126.507 126.507i 1.86039 1.86039i
\(69\) 39.8568i 0.577635i
\(70\) −64.8320 38.4896i −0.926172 0.549851i
\(71\) 66.4871 0.936438 0.468219 0.883613i \(-0.344896\pi\)
0.468219 + 0.883613i \(0.344896\pi\)
\(72\) −17.5557 17.5557i −0.243830 0.243830i
\(73\) 93.3093 93.3093i 1.27821 1.27821i 0.336541 0.941669i \(-0.390743\pi\)
0.941669 0.336541i \(-0.109257\pi\)
\(74\) 12.9874i 0.175505i
\(75\) 57.6073 + 16.9478i 0.768097 + 0.225971i
\(76\) −111.666 −1.46929
\(77\) −10.9740 10.9740i −0.142519 0.142519i
\(78\) −59.2860 + 59.2860i −0.760077 + 0.760077i
\(79\) 57.1583i 0.723523i 0.932271 + 0.361762i \(0.117825\pi\)
−0.932271 + 0.361762i \(0.882175\pi\)
\(80\) 1.97559 3.32770i 0.0246949 0.0415962i
\(81\) 41.4866 0.512180
\(82\) 139.517 + 139.517i 1.70143 + 1.70143i
\(83\) 45.3490 45.3490i 0.546373 0.546373i −0.379017 0.925390i \(-0.623738\pi\)
0.925390 + 0.379017i \(0.123738\pi\)
\(84\) 71.7612i 0.854300i
\(85\) −135.762 + 34.6133i −1.59720 + 0.407216i
\(86\) −46.7036 −0.543065
\(87\) −24.1221 24.1221i −0.277266 0.277266i
\(88\) −18.0228 + 18.0228i −0.204804 + 0.204804i
\(89\) 114.906i 1.29107i 0.763729 + 0.645537i \(0.223366\pi\)
−0.763729 + 0.645537i \(0.776634\pi\)
\(90\) 12.8603 + 50.4413i 0.142892 + 0.560459i
\(91\) −50.6863 −0.556992
\(92\) −74.9150 74.9150i −0.814294 0.814294i
\(93\) 75.9069 75.9069i 0.816203 0.816203i
\(94\) 267.479i 2.84552i
\(95\) 75.1944 + 44.6415i 0.791519 + 0.469911i
\(96\) −79.8260 −0.831521
\(97\) −31.9248 31.9248i −0.329121 0.329121i 0.523131 0.852252i \(-0.324764\pi\)
−0.852252 + 0.523131i \(0.824764\pi\)
\(98\) 61.7610 61.7610i 0.630215 0.630215i
\(99\) 10.7150i 0.108232i
\(100\) 140.134 76.4236i 1.40134 0.764236i
\(101\) 109.388 1.08305 0.541523 0.840686i \(-0.317848\pi\)
0.541523 + 0.840686i \(0.317848\pi\)
\(102\) 153.366 + 153.366i 1.50359 + 1.50359i
\(103\) −28.7421 + 28.7421i −0.279050 + 0.279050i −0.832730 0.553680i \(-0.813223\pi\)
0.553680 + 0.832730i \(0.313223\pi\)
\(104\) 83.2429i 0.800412i
\(105\) 28.6885 48.3230i 0.273224 0.460219i
\(106\) −207.759 −1.95999
\(107\) −53.4385 53.4385i −0.499425 0.499425i 0.411834 0.911259i \(-0.364888\pi\)
−0.911259 + 0.411834i \(0.864888\pi\)
\(108\) 132.630 132.630i 1.22806 1.22806i
\(109\) 97.4174i 0.893738i −0.894600 0.446869i \(-0.852539\pi\)
0.894600 0.446869i \(-0.147461\pi\)
\(110\) 51.7832 13.2024i 0.470757 0.120022i
\(111\) 9.68025 0.0872095
\(112\) −2.56097 2.56097i −0.0228658 0.0228658i
\(113\) −109.416 + 109.416i −0.968280 + 0.968280i −0.999512 0.0312321i \(-0.990057\pi\)
0.0312321 + 0.999512i \(0.490057\pi\)
\(114\) 135.375i 1.18750i
\(115\) 20.4974 + 80.3961i 0.178238 + 0.699096i
\(116\) −90.6801 −0.781725
\(117\) 24.7449 + 24.7449i 0.211495 + 0.211495i
\(118\) −8.46425 + 8.46425i −0.0717310 + 0.0717310i
\(119\) 131.120i 1.10185i
\(120\) −79.3617 47.1156i −0.661347 0.392630i
\(121\) 11.0000 0.0909091
\(122\) −34.9156 34.9156i −0.286194 0.286194i
\(123\) −103.990 + 103.990i −0.845446 + 0.845446i
\(124\) 285.350i 2.30121i
\(125\) −124.917 4.55981i −0.999334 0.0364785i
\(126\) 48.7164 0.386638
\(127\) −3.94652 3.94652i −0.0310749 0.0310749i 0.691399 0.722474i \(-0.256995\pi\)
−0.722474 + 0.691399i \(0.756995\pi\)
\(128\) −142.987 + 142.987i −1.11708 + 1.11708i
\(129\) 34.8108i 0.269852i
\(130\) 89.0977 150.077i 0.685367 1.15443i
\(131\) −165.435 −1.26286 −0.631430 0.775433i \(-0.717532\pi\)
−0.631430 + 0.775433i \(0.717532\pi\)
\(132\) −35.9656 35.9656i −0.272467 0.272467i
\(133\) 57.8690 57.8690i 0.435105 0.435105i
\(134\) 107.864i 0.804958i
\(135\) −142.334 + 36.2888i −1.05432 + 0.268806i
\(136\) 215.340 1.58338
\(137\) 47.3215 + 47.3215i 0.345412 + 0.345412i 0.858397 0.512985i \(-0.171460\pi\)
−0.512985 + 0.858397i \(0.671460\pi\)
\(138\) 90.8208 90.8208i 0.658122 0.658122i
\(139\) 157.241i 1.13123i −0.824670 0.565614i \(-0.808639\pi\)
0.824670 0.565614i \(-0.191361\pi\)
\(140\) −36.9051 144.751i −0.263608 1.03394i
\(141\) −199.367 −1.41395
\(142\) 151.503 + 151.503i 1.06692 + 1.06692i
\(143\) 25.4032 25.4032i 0.177645 0.177645i
\(144\) 2.50052i 0.0173647i
\(145\) 61.0627 + 36.2518i 0.421122 + 0.250013i
\(146\) 425.244 2.91263
\(147\) 46.0340 + 46.0340i 0.313157 + 0.313157i
\(148\) 18.1950 18.1950i 0.122939 0.122939i
\(149\) 91.9814i 0.617325i 0.951172 + 0.308663i \(0.0998814\pi\)
−0.951172 + 0.308663i \(0.900119\pi\)
\(150\) 92.6497 + 169.887i 0.617665 + 1.13258i
\(151\) 178.745 1.18374 0.591870 0.806034i \(-0.298390\pi\)
0.591870 + 0.806034i \(0.298390\pi\)
\(152\) −95.0391 95.0391i −0.625257 0.625257i
\(153\) 64.0123 64.0123i 0.418381 0.418381i
\(154\) 50.0124i 0.324756i
\(155\) −114.076 + 192.151i −0.735977 + 1.23968i
\(156\) −166.116 −1.06485
\(157\) −85.3500 85.3500i −0.543631 0.543631i 0.380961 0.924591i \(-0.375593\pi\)
−0.924591 + 0.380961i \(0.875593\pi\)
\(158\) −130.245 + 130.245i −0.824338 + 0.824338i
\(159\) 154.855i 0.973930i
\(160\) 161.019 41.0527i 1.00637 0.256579i
\(161\) 77.6468 0.482278
\(162\) 94.5346 + 94.5346i 0.583547 + 0.583547i
\(163\) 34.8150 34.8150i 0.213589 0.213589i −0.592201 0.805790i \(-0.701741\pi\)
0.805790 + 0.592201i \(0.201741\pi\)
\(164\) 390.920i 2.38366i
\(165\) 9.84051 + 38.5970i 0.0596395 + 0.233921i
\(166\) 206.671 1.24501
\(167\) −8.73842 8.73842i −0.0523259 0.0523259i 0.680460 0.732786i \(-0.261780\pi\)
−0.732786 + 0.680460i \(0.761780\pi\)
\(168\) −61.0761 + 61.0761i −0.363548 + 0.363548i
\(169\) 51.6688i 0.305733i
\(170\) −388.231 230.486i −2.28371 1.35580i
\(171\) −56.5029 −0.330427
\(172\) −65.4306 65.4306i −0.380411 0.380411i
\(173\) 40.7527 40.7527i 0.235565 0.235565i −0.579446 0.815011i \(-0.696731\pi\)
0.815011 + 0.579446i \(0.196731\pi\)
\(174\) 109.933i 0.631799i
\(175\) −33.0168 + 112.227i −0.188668 + 0.641299i
\(176\) 2.56704 0.0145854
\(177\) −6.30889 6.30889i −0.0356435 0.0356435i
\(178\) −261.833 + 261.833i −1.47097 + 1.47097i
\(179\) 299.550i 1.67346i −0.547613 0.836732i \(-0.684463\pi\)
0.547613 0.836732i \(-0.315537\pi\)
\(180\) −52.6501 + 88.6841i −0.292501 + 0.492689i
\(181\) −204.042 −1.12730 −0.563651 0.826013i \(-0.690604\pi\)
−0.563651 + 0.826013i \(0.690604\pi\)
\(182\) −115.498 115.498i −0.634602 0.634602i
\(183\) 26.0246 26.0246i 0.142211 0.142211i
\(184\) 127.521i 0.693047i
\(185\) −19.5263 + 4.97833i −0.105547 + 0.0269099i
\(186\) 345.935 1.85986
\(187\) −65.7152 65.7152i −0.351418 0.351418i
\(188\) −374.731 + 374.731i −1.99325 + 1.99325i
\(189\) 137.466i 0.727335i
\(190\) 69.6200 + 273.067i 0.366421 + 1.43720i
\(191\) 68.1555 0.356835 0.178418 0.983955i \(-0.442902\pi\)
0.178418 + 0.983955i \(0.442902\pi\)
\(192\) −176.640 176.640i −0.919998 0.919998i
\(193\) 56.3440 56.3440i 0.291938 0.291938i −0.545908 0.837845i \(-0.683815\pi\)
0.837845 + 0.545908i \(0.183815\pi\)
\(194\) 145.493i 0.749962i
\(195\) 111.861 + 66.4096i 0.573644 + 0.340562i
\(196\) 173.051 0.882916
\(197\) 61.2935 + 61.2935i 0.311134 + 0.311134i 0.845349 0.534215i \(-0.179393\pi\)
−0.534215 + 0.845349i \(0.679393\pi\)
\(198\) −24.4159 + 24.4159i −0.123313 + 0.123313i
\(199\) 291.772i 1.46619i −0.680125 0.733096i \(-0.738075\pi\)
0.680125 0.733096i \(-0.261925\pi\)
\(200\) 184.313 + 54.2241i 0.921563 + 0.271120i
\(201\) 80.3975 0.399988
\(202\) 249.259 + 249.259i 1.23396 + 1.23396i
\(203\) 46.9934 46.9934i 0.231494 0.231494i
\(204\) 429.725i 2.10649i
\(205\) 156.281 263.240i 0.762346 1.28410i
\(206\) −130.988 −0.635864
\(207\) −37.9070 37.9070i −0.183125 0.183125i
\(208\) 5.92826 5.92826i 0.0285013 0.0285013i
\(209\) 58.0061i 0.277541i
\(210\) 175.484 44.7407i 0.835640 0.213051i
\(211\) −93.8771 −0.444915 −0.222458 0.974942i \(-0.571408\pi\)
−0.222458 + 0.974942i \(0.571408\pi\)
\(212\) −291.066 291.066i −1.37295 1.37295i
\(213\) −112.924 + 112.924i −0.530158 + 0.530158i
\(214\) 243.538i 1.13803i
\(215\) 17.9024 + 70.2178i 0.0832670 + 0.326594i
\(216\) 225.763 1.04520
\(217\) 147.878 + 147.878i 0.681464 + 0.681464i
\(218\) 221.983 221.983i 1.01827 1.01827i
\(219\) 316.958i 1.44730i
\(220\) 91.0433 + 54.0508i 0.413833 + 0.245685i
\(221\) −303.523 −1.37341
\(222\) 22.0582 + 22.0582i 0.0993611 + 0.0993611i
\(223\) −158.088 + 158.088i −0.708915 + 0.708915i −0.966307 0.257392i \(-0.917137\pi\)
0.257392 + 0.966307i \(0.417137\pi\)
\(224\) 155.513i 0.694253i
\(225\) 70.9078 38.6703i 0.315146 0.171868i
\(226\) −498.646 −2.20640
\(227\) 158.917 + 158.917i 0.700076 + 0.700076i 0.964427 0.264351i \(-0.0851576\pi\)
−0.264351 + 0.964427i \(0.585158\pi\)
\(228\) 189.657 189.657i 0.831828 0.831828i
\(229\) 43.6426i 0.190579i −0.995450 0.0952895i \(-0.969622\pi\)
0.995450 0.0952895i \(-0.0303777\pi\)
\(230\) −136.490 + 229.904i −0.593434 + 0.999582i
\(231\) 37.2771 0.161373
\(232\) −77.1780 77.1780i −0.332664 0.332664i
\(233\) 231.736 231.736i 0.994574 0.994574i −0.00541090 0.999985i \(-0.501722\pi\)
0.999985 + 0.00541090i \(0.00172235\pi\)
\(234\) 112.771i 0.481929i
\(235\) 402.148 102.530i 1.71127 0.436297i
\(236\) −23.7164 −0.100493
\(237\) −97.0793 97.0793i −0.409617 0.409617i
\(238\) −298.780 + 298.780i −1.25538 + 1.25538i
\(239\) 203.850i 0.852930i −0.904504 0.426465i \(-0.859759\pi\)
0.904504 0.426465i \(-0.140241\pi\)
\(240\) 2.29645 + 9.00727i 0.00956855 + 0.0375303i
\(241\) 96.8670 0.401938 0.200969 0.979598i \(-0.435591\pi\)
0.200969 + 0.979598i \(0.435591\pi\)
\(242\) 25.0655 + 25.0655i 0.103576 + 0.103576i
\(243\) 116.494 116.494i 0.479401 0.479401i
\(244\) 97.8320i 0.400951i
\(245\) −116.531 69.1821i −0.475635 0.282376i
\(246\) −473.919 −1.92650
\(247\) 133.958 + 133.958i 0.542340 + 0.542340i
\(248\) 242.862 242.862i 0.979282 0.979282i
\(249\) 154.044i 0.618650i
\(250\) −274.255 295.036i −1.09702 1.18014i
\(251\) −165.654 −0.659978 −0.329989 0.943985i \(-0.607045\pi\)
−0.329989 + 0.943985i \(0.607045\pi\)
\(252\) 68.2505 + 68.2505i 0.270835 + 0.270835i
\(253\) −38.9154 + 38.9154i −0.153816 + 0.153816i
\(254\) 17.9857i 0.0708098i
\(255\) 171.794 289.371i 0.673703 1.13479i
\(256\) −235.634 −0.920445
\(257\) 168.525 + 168.525i 0.655740 + 0.655740i 0.954369 0.298629i \(-0.0965295\pi\)
−0.298629 + 0.954369i \(0.596529\pi\)
\(258\) 79.3227 79.3227i 0.307452 0.307452i
\(259\) 18.8585i 0.0728128i
\(260\) 335.077 85.4298i 1.28876 0.328576i
\(261\) −45.8841 −0.175801
\(262\) −376.972 376.972i −1.43883 1.43883i
\(263\) −50.7899 + 50.7899i −0.193117 + 0.193117i −0.797042 0.603924i \(-0.793603\pi\)
0.603924 + 0.797042i \(0.293603\pi\)
\(264\) 61.2208i 0.231897i
\(265\) 79.6382 + 312.361i 0.300522 + 1.17872i
\(266\) 263.729 0.991464
\(267\) −195.159 195.159i −0.730933 0.730933i
\(268\) 151.115 151.115i 0.563864 0.563864i
\(269\) 256.648i 0.954081i 0.878881 + 0.477041i \(0.158291\pi\)
−0.878881 + 0.477041i \(0.841709\pi\)
\(270\) −407.023 241.642i −1.50749 0.894971i
\(271\) −215.163 −0.793958 −0.396979 0.917828i \(-0.629941\pi\)
−0.396979 + 0.917828i \(0.629941\pi\)
\(272\) −15.3358 15.3358i −0.0563815 0.0563815i
\(273\) 86.0870 86.0870i 0.315337 0.315337i
\(274\) 215.661i 0.787083i
\(275\) −39.6991 72.7941i −0.144360 0.264706i
\(276\) 254.476 0.922013
\(277\) 73.9418 + 73.9418i 0.266938 + 0.266938i 0.827865 0.560927i \(-0.189555\pi\)
−0.560927 + 0.827865i \(0.689555\pi\)
\(278\) 358.301 358.301i 1.28885 1.28885i
\(279\) 144.387i 0.517516i
\(280\) 91.7880 154.608i 0.327814 0.552171i
\(281\) 190.836 0.679133 0.339566 0.940582i \(-0.389720\pi\)
0.339566 + 0.940582i \(0.389720\pi\)
\(282\) −454.293 454.293i −1.61097 1.61097i
\(283\) −87.1090 + 87.1090i −0.307806 + 0.307806i −0.844058 0.536252i \(-0.819840\pi\)
0.536252 + 0.844058i \(0.319840\pi\)
\(284\) 424.503i 1.49473i
\(285\) −203.533 + 51.8918i −0.714150 + 0.182076i
\(286\) 115.771 0.404795
\(287\) −202.587 202.587i −0.705879 0.705879i
\(288\) −75.9208 + 75.9208i −0.263614 + 0.263614i
\(289\) 496.179i 1.71688i
\(290\) 56.5360 + 221.749i 0.194952 + 0.764650i
\(291\) 108.444 0.372660
\(292\) 595.756 + 595.756i 2.04026 + 2.04026i
\(293\) −317.484 + 317.484i −1.08356 + 1.08356i −0.0873871 + 0.996174i \(0.527852\pi\)
−0.996174 + 0.0873871i \(0.972148\pi\)
\(294\) 209.793i 0.713583i
\(295\) 15.9703 + 9.48129i 0.0541367 + 0.0321400i
\(296\) 30.9717 0.104634
\(297\) −68.8960 68.8960i −0.231973 0.231973i
\(298\) −209.596 + 209.596i −0.703343 + 0.703343i
\(299\) 179.741i 0.601140i
\(300\) −108.208 + 367.808i −0.360692 + 1.22603i
\(301\) 67.8166 0.225304
\(302\) 407.302 + 407.302i 1.34868 + 1.34868i
\(303\) −185.787 + 185.787i −0.613159 + 0.613159i
\(304\) 13.5367i 0.0445286i
\(305\) −39.1110 + 65.8787i −0.128233 + 0.215996i
\(306\) 291.727 0.953355
\(307\) −263.140 263.140i −0.857132 0.857132i 0.133867 0.990999i \(-0.457261\pi\)
−0.990999 + 0.133867i \(0.957261\pi\)
\(308\) 70.0662 70.0662i 0.227488 0.227488i
\(309\) 97.6328i 0.315964i
\(310\) −697.793 + 177.906i −2.25095 + 0.573891i
\(311\) 301.613 0.969816 0.484908 0.874565i \(-0.338853\pi\)
0.484908 + 0.874565i \(0.338853\pi\)
\(312\) −141.382 141.382i −0.453148 0.453148i
\(313\) 98.0189 98.0189i 0.313159 0.313159i −0.532973 0.846132i \(-0.678925\pi\)
0.846132 + 0.532973i \(0.178925\pi\)
\(314\) 388.971i 1.23876i
\(315\) −18.6740 73.2440i −0.0592824 0.232521i
\(316\) −364.941 −1.15488
\(317\) 232.617 + 232.617i 0.733806 + 0.733806i 0.971372 0.237565i \(-0.0763493\pi\)
−0.237565 + 0.971372i \(0.576349\pi\)
\(318\) 352.864 352.864i 1.10964 1.10964i
\(319\) 47.1047i 0.147664i
\(320\) 447.145 + 265.462i 1.39733 + 0.829569i
\(321\) 181.523 0.565492
\(322\) 176.932 + 176.932i 0.549479 + 0.549479i
\(323\) 346.535 346.535i 1.07286 1.07286i
\(324\) 264.881i 0.817535i
\(325\) −259.789 76.4291i −0.799352 0.235166i
\(326\) 158.664 0.486701
\(327\) 165.457 + 165.457i 0.505983 + 0.505983i
\(328\) −332.713 + 332.713i −1.01437 + 1.01437i
\(329\) 388.396i 1.18053i
\(330\) −65.5267 + 110.373i −0.198566 + 0.334465i
\(331\) 124.210 0.375256 0.187628 0.982240i \(-0.439920\pi\)
0.187628 + 0.982240i \(0.439920\pi\)
\(332\) 289.542 + 289.542i 0.872113 + 0.872113i
\(333\) 9.20668 9.20668i 0.0276477 0.0276477i
\(334\) 39.8241i 0.119234i
\(335\) −162.172 + 41.3466i −0.484095 + 0.123423i
\(336\) 8.69925 0.0258906
\(337\) 248.427 + 248.427i 0.737171 + 0.737171i 0.972030 0.234858i \(-0.0754626\pi\)
−0.234858 + 0.972030i \(0.575463\pi\)
\(338\) −117.737 + 117.737i −0.348333 + 0.348333i
\(339\) 371.669i 1.09637i
\(340\) −220.997 866.808i −0.649992 2.54943i
\(341\) −148.228 −0.434686
\(342\) −128.752 128.752i −0.376468 0.376468i
\(343\) −251.811 + 251.811i −0.734144 + 0.734144i
\(344\) 111.376i 0.323768i
\(345\) −171.360 101.734i −0.496697 0.294880i
\(346\) 185.724 0.536776
\(347\) 194.711 + 194.711i 0.561127 + 0.561127i 0.929628 0.368501i \(-0.120129\pi\)
−0.368501 + 0.929628i \(0.620129\pi\)
\(348\) 154.014 154.014i 0.442568 0.442568i
\(349\) 23.5545i 0.0674914i 0.999430 + 0.0337457i \(0.0107436\pi\)
−0.999430 + 0.0337457i \(0.989256\pi\)
\(350\) −330.965 + 180.495i −0.945613 + 0.515700i
\(351\) −318.214 −0.906593
\(352\) 77.9406 + 77.9406i 0.221422 + 0.221422i
\(353\) −60.4688 + 60.4688i −0.171300 + 0.171300i −0.787550 0.616251i \(-0.788651\pi\)
0.616251 + 0.787550i \(0.288651\pi\)
\(354\) 28.7519i 0.0812200i
\(355\) 169.707 285.855i 0.478047 0.805224i
\(356\) −733.643 −2.06080
\(357\) −222.697 222.697i −0.623802 0.623802i
\(358\) 682.578 682.578i 1.90664 1.90664i
\(359\) 502.684i 1.40024i −0.714028 0.700118i \(-0.753131\pi\)
0.714028 0.700118i \(-0.246869\pi\)
\(360\) −120.290 + 30.6686i −0.334138 + 0.0851904i
\(361\) 55.1177 0.152681
\(362\) −464.945 464.945i −1.28438 1.28438i
\(363\) −18.6827 + 18.6827i −0.0514675 + 0.0514675i
\(364\) 323.619i 0.889063i
\(365\) −163.004 639.344i −0.446587 1.75163i
\(366\) 118.603 0.324053
\(367\) −402.334 402.334i −1.09628 1.09628i −0.994842 0.101437i \(-0.967656\pi\)
−0.101437 0.994842i \(-0.532344\pi\)
\(368\) −9.08157 + 9.08157i −0.0246782 + 0.0246782i
\(369\) 197.805i 0.536058i
\(370\) −55.8381 33.1500i −0.150914 0.0895947i
\(371\) 301.680 0.813153
\(372\) 484.646 + 484.646i 1.30281 + 1.30281i
\(373\) −129.594 + 129.594i −0.347437 + 0.347437i −0.859154 0.511717i \(-0.829010\pi\)
0.511717 + 0.859154i \(0.329010\pi\)
\(374\) 299.487i 0.800769i
\(375\) 219.907 204.418i 0.586418 0.545114i
\(376\) −637.869 −1.69646
\(377\) 108.783 + 108.783i 0.288548 + 0.288548i
\(378\) −313.242 + 313.242i −0.828681 + 0.828681i
\(379\) 308.983i 0.815260i 0.913147 + 0.407630i \(0.133645\pi\)
−0.913147 + 0.407630i \(0.866355\pi\)
\(380\) −285.025 + 480.097i −0.750066 + 1.26341i
\(381\) 13.4058 0.0351857
\(382\) 155.305 + 155.305i 0.406556 + 0.406556i
\(383\) −137.024 + 137.024i −0.357765 + 0.357765i −0.862989 0.505223i \(-0.831410\pi\)
0.505223 + 0.862989i \(0.331410\pi\)
\(384\) 485.705i 1.26486i
\(385\) −75.1925 + 19.1707i −0.195305 + 0.0497941i
\(386\) 256.780 0.665232
\(387\) −33.1079 33.1079i −0.0855500 0.0855500i
\(388\) 203.832 203.832i 0.525339 0.525339i
\(389\) 219.114i 0.563275i 0.959521 + 0.281637i \(0.0908775\pi\)
−0.959521 + 0.281637i \(0.909122\pi\)
\(390\) 103.568 + 406.220i 0.265559 + 1.04159i
\(391\) 464.970 1.18918
\(392\) 147.284 + 147.284i 0.375726 + 0.375726i
\(393\) 280.979 280.979i 0.714959 0.714959i
\(394\) 279.336i 0.708975i
\(395\) 245.747 + 145.895i 0.622143 + 0.369355i
\(396\) −68.4123 −0.172758
\(397\) 447.147 + 447.147i 1.12631 + 1.12631i 0.990772 + 0.135542i \(0.0432777\pi\)
0.135542 + 0.990772i \(0.456722\pi\)
\(398\) 664.855 664.855i 1.67049 1.67049i
\(399\) 196.573i 0.492663i
\(400\) −9.26445 16.9878i −0.0231611 0.0424694i
\(401\) −697.196 −1.73864 −0.869321 0.494247i \(-0.835444\pi\)
−0.869321 + 0.494247i \(0.835444\pi\)
\(402\) 183.200 + 183.200i 0.455722 + 0.455722i
\(403\) −342.315 + 342.315i −0.849416 + 0.849416i
\(404\) 698.412i 1.72874i
\(405\) 105.894 178.368i 0.261466 0.440414i
\(406\) 214.166 0.527501
\(407\) −9.45161 9.45161i −0.0232226 0.0232226i
\(408\) −365.740 + 365.740i −0.896421 + 0.896421i
\(409\) 37.7115i 0.0922043i −0.998937 0.0461021i \(-0.985320\pi\)
0.998937 0.0461021i \(-0.0146800\pi\)
\(410\) 955.953 243.725i 2.33159 0.594452i
\(411\) −160.744 −0.391105
\(412\) −183.511 183.511i −0.445415 0.445415i
\(413\) 12.2906 12.2906i 0.0297594 0.0297594i
\(414\) 172.756i 0.417284i
\(415\) −79.2212 310.726i −0.190894 0.748736i
\(416\) 359.989 0.865357
\(417\) 267.062 + 267.062i 0.640437 + 0.640437i
\(418\) −132.177 + 132.177i −0.316213 + 0.316213i
\(419\) 486.001i 1.15991i −0.814650 0.579953i \(-0.803071\pi\)
0.814650 0.579953i \(-0.196929\pi\)
\(420\) 308.530 + 183.169i 0.734596 + 0.436116i
\(421\) −388.904 −0.923762 −0.461881 0.886942i \(-0.652825\pi\)
−0.461881 + 0.886942i \(0.652825\pi\)
\(422\) −213.916 213.916i −0.506909 0.506909i
\(423\) −189.614 + 189.614i −0.448260 + 0.448260i
\(424\) 495.453i 1.16852i
\(425\) −197.714 + 672.046i −0.465208 + 1.58129i
\(426\) −514.633 −1.20806
\(427\) 50.6997 + 50.6997i 0.118735 + 0.118735i
\(428\) 341.191 341.191i 0.797175 0.797175i
\(429\) 86.2910i 0.201144i
\(430\) −119.210 + 200.797i −0.277232 + 0.466971i
\(431\) 504.929 1.17153 0.585764 0.810482i \(-0.300795\pi\)
0.585764 + 0.810482i \(0.300795\pi\)
\(432\) −16.0781 16.0781i −0.0372177 0.0372177i
\(433\) 150.370 150.370i 0.347274 0.347274i −0.511819 0.859093i \(-0.671028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(434\) 673.931i 1.55284i
\(435\) −165.282 + 42.1395i −0.379958 + 0.0968725i
\(436\) 621.985 1.42657
\(437\) −205.212 205.212i −0.469592 0.469592i
\(438\) −722.246 + 722.246i −1.64896 + 1.64896i
\(439\) 210.919i 0.480454i −0.970717 0.240227i \(-0.922778\pi\)
0.970717 0.240227i \(-0.0772219\pi\)
\(440\) 31.4844 + 123.490i 0.0715555 + 0.280659i
\(441\) 87.5640 0.198558
\(442\) −691.630 691.630i −1.56477 1.56477i
\(443\) −442.849 + 442.849i −0.999660 + 0.999660i −1.00000 0.000339697i \(-0.999892\pi\)
0.000339697 1.00000i \(0.499892\pi\)
\(444\) 61.8060i 0.139203i
\(445\) 494.026 + 293.294i 1.11017 + 0.659088i
\(446\) −720.463 −1.61539
\(447\) −156.224 156.224i −0.349494 0.349494i
\(448\) 344.119 344.119i 0.768123 0.768123i
\(449\) 641.685i 1.42914i −0.699563 0.714571i \(-0.746622\pi\)
0.699563 0.714571i \(-0.253378\pi\)
\(450\) 249.693 + 73.4588i 0.554874 + 0.163242i
\(451\) 203.067 0.450260
\(452\) −698.591 698.591i −1.54556 1.54556i
\(453\) −303.585 + 303.585i −0.670166 + 0.670166i
\(454\) 724.243i 1.59525i
\(455\) −129.376 + 217.921i −0.284342 + 0.478946i
\(456\) 322.834 0.707970
\(457\) −103.709 103.709i −0.226934 0.226934i 0.584477 0.811411i \(-0.301300\pi\)
−0.811411 + 0.584477i \(0.801300\pi\)
\(458\) 99.4474 99.4474i 0.217134 0.217134i
\(459\) 823.185i 1.79343i
\(460\) −513.309 + 130.871i −1.11589 + 0.284502i
\(461\) −800.040 −1.73544 −0.867722 0.497050i \(-0.834417\pi\)
−0.867722 + 0.497050i \(0.834417\pi\)
\(462\) 84.9425 + 84.9425i 0.183858 + 0.183858i
\(463\) 252.447 252.447i 0.545242 0.545242i −0.379819 0.925061i \(-0.624014\pi\)
0.925061 + 0.379819i \(0.124014\pi\)
\(464\) 10.9927i 0.0236911i
\(465\) −132.604 520.105i −0.285169 1.11851i
\(466\) 1056.10 2.26631
\(467\) 80.1036 + 80.1036i 0.171528 + 0.171528i 0.787650 0.616122i \(-0.211297\pi\)
−0.616122 + 0.787650i \(0.711297\pi\)
\(468\) −157.990 + 157.990i −0.337585 + 0.337585i
\(469\) 156.626i 0.333957i
\(470\) 1150.00 + 682.733i 2.44680 + 1.45262i
\(471\) 289.922 0.615545
\(472\) −20.1851 20.1851i −0.0427651 0.0427651i
\(473\) −33.9886 + 33.9886i −0.0718576 + 0.0718576i
\(474\) 442.425i 0.933386i
\(475\) 383.864 209.344i 0.808134 0.440725i
\(476\) −837.166 −1.75875
\(477\) −147.279 147.279i −0.308761 0.308761i
\(478\) 464.509 464.509i 0.971776 0.971776i
\(479\) 411.116i 0.858280i −0.903238 0.429140i \(-0.858817\pi\)
0.903238 0.429140i \(-0.141183\pi\)
\(480\) −203.754 + 343.204i −0.424488 + 0.715009i
\(481\) −43.6547 −0.0907582
\(482\) 220.729 + 220.729i 0.457944 + 0.457944i
\(483\) −131.878 + 131.878i −0.273039 + 0.273039i
\(484\) 70.2322i 0.145108i
\(485\) −218.745 + 55.7702i −0.451020 + 0.114990i
\(486\) 530.907 1.09240
\(487\) −212.163 212.163i −0.435652 0.435652i 0.454894 0.890546i \(-0.349677\pi\)
−0.890546 + 0.454894i \(0.849677\pi\)
\(488\) 83.2650 83.2650i 0.170625 0.170625i
\(489\) 118.262i 0.241844i
\(490\) −107.892 423.179i −0.220187 0.863631i
\(491\) 113.699 0.231566 0.115783 0.993275i \(-0.463062\pi\)
0.115783 + 0.993275i \(0.463062\pi\)
\(492\) −663.949 663.949i −1.34949 1.34949i
\(493\) 281.409 281.409i 0.570809 0.570809i
\(494\) 610.495i 1.23582i
\(495\) 46.0679 + 27.3497i 0.0930664 + 0.0552519i
\(496\) −34.5915 −0.0697410
\(497\) −219.991 219.991i −0.442639 0.442639i
\(498\) −351.017 + 351.017i −0.704853 + 0.704853i
\(499\) 343.023i 0.687421i 0.939076 + 0.343711i \(0.111684\pi\)
−0.939076 + 0.343711i \(0.888316\pi\)
\(500\) 29.1133 797.562i 0.0582265 1.59512i
\(501\) 29.6832 0.0592479
\(502\) −377.473 377.473i −0.751939 0.751939i
\(503\) −625.342 + 625.342i −1.24323 + 1.24323i −0.284571 + 0.958655i \(0.591851\pi\)
−0.958655 + 0.284571i \(0.908149\pi\)
\(504\) 116.176i 0.230509i
\(505\) 279.209 470.301i 0.552890 0.931290i
\(506\) −177.351 −0.350497
\(507\) −87.7559 87.7559i −0.173088 0.173088i
\(508\) 25.1975 25.1975i 0.0496014 0.0496014i
\(509\) 106.269i 0.208780i 0.994536 + 0.104390i \(0.0332890\pi\)
−0.994536 + 0.104390i \(0.966711\pi\)
\(510\) 1050.85 267.919i 2.06048 0.525332i
\(511\) −617.481 −1.20838
\(512\) 35.0124 + 35.0124i 0.0683837 + 0.0683837i
\(513\) 363.308 363.308i 0.708203 0.708203i
\(514\) 768.029i 1.49422i
\(515\) 50.2103 + 196.937i 0.0974957 + 0.382403i
\(516\) 222.258 0.430733
\(517\) 194.658 + 194.658i 0.376515 + 0.376515i
\(518\) −42.9725 + 42.9725i −0.0829585 + 0.0829585i
\(519\) 138.431i 0.266726i
\(520\) 357.895 + 212.476i 0.688259 + 0.408607i
\(521\) 483.272 0.927586 0.463793 0.885944i \(-0.346488\pi\)
0.463793 + 0.885944i \(0.346488\pi\)
\(522\) −104.555 104.555i −0.200297 0.200297i
\(523\) −224.917 + 224.917i −0.430052 + 0.430052i −0.888646 0.458594i \(-0.848353\pi\)
0.458594 + 0.888646i \(0.348353\pi\)
\(524\) 1056.26i 2.01576i
\(525\) −134.533 246.687i −0.256254 0.469880i
\(526\) −231.468 −0.440052
\(527\) 885.530 + 885.530i 1.68032 + 1.68032i
\(528\) −4.35993 + 4.35993i −0.00825744 + 0.00825744i
\(529\) 253.653i 0.479495i
\(530\) −530.301 + 893.241i −1.00057 + 1.68536i
\(531\) −12.0005 −0.0225998
\(532\) 369.479 + 369.479i 0.694509 + 0.694509i
\(533\) 468.960 468.960i 0.879849 0.879849i
\(534\) 889.409i 1.66556i
\(535\) −366.154 + 93.3530i −0.684400 + 0.174492i
\(536\) 257.229 0.479906
\(537\) 508.764 + 508.764i 0.947420 + 0.947420i
\(538\) −584.818 + 584.818i −1.08702 + 1.08702i
\(539\) 89.8934i 0.166778i
\(540\) −231.695 908.765i −0.429064 1.68290i
\(541\) 507.591 0.938246 0.469123 0.883133i \(-0.344570\pi\)
0.469123 + 0.883133i \(0.344570\pi\)
\(542\) −490.286 490.286i −0.904587 0.904587i
\(543\) 346.550 346.550i 0.638214 0.638214i
\(544\) 931.251i 1.71186i
\(545\) −418.837 248.656i −0.768507 0.456249i
\(546\) 392.329 0.718551
\(547\) −224.439 224.439i −0.410309 0.410309i 0.471537 0.881846i \(-0.343699\pi\)
−0.881846 + 0.471537i \(0.843699\pi\)
\(548\) −302.136 + 302.136i −0.551342 + 0.551342i
\(549\) 49.5029i 0.0901693i
\(550\) 75.4130 256.336i 0.137115 0.466065i
\(551\) −248.396 −0.450810
\(552\) 216.585 + 216.585i 0.392364 + 0.392364i
\(553\) 189.125 189.125i 0.341997 0.341997i
\(554\) 336.979i 0.608265i
\(555\) 24.7086 41.6193i 0.0445200 0.0749897i
\(556\) 1003.94 1.80565
\(557\) 40.3442 + 40.3442i 0.0724312 + 0.0724312i 0.742394 0.669963i \(-0.233690\pi\)
−0.669963 + 0.742394i \(0.733690\pi\)
\(558\) 329.011 329.011i 0.589626 0.589626i
\(559\) 156.985i 0.280832i
\(560\) −17.5475 + 4.47382i −0.0313347 + 0.00798896i
\(561\) 223.225 0.397906
\(562\) 434.854 + 434.854i 0.773762 + 0.773762i
\(563\) −75.8838 + 75.8838i −0.134785 + 0.134785i −0.771280 0.636496i \(-0.780383\pi\)
0.636496 + 0.771280i \(0.280383\pi\)
\(564\) 1272.91i 2.25693i
\(565\) 191.141 + 749.703i 0.338302 + 1.32691i
\(566\) −396.987 −0.701390
\(567\) −137.270 137.270i −0.242099 0.242099i
\(568\) −361.295 + 361.295i −0.636084 + 0.636084i
\(569\) 940.148i 1.65228i −0.563464 0.826141i \(-0.690532\pi\)
0.563464 0.826141i \(-0.309468\pi\)
\(570\) −582.030 345.541i −1.02111 0.606212i
\(571\) −77.9393 −0.136496 −0.0682481 0.997668i \(-0.521741\pi\)
−0.0682481 + 0.997668i \(0.521741\pi\)
\(572\) 162.193 + 162.193i 0.283554 + 0.283554i
\(573\) −115.757 + 115.757i −0.202020 + 0.202020i
\(574\) 923.263i 1.60847i
\(575\) 397.974 + 117.083i 0.692129 + 0.203622i
\(576\) −335.996 −0.583327
\(577\) −500.861 500.861i −0.868043 0.868043i 0.124213 0.992256i \(-0.460359\pi\)
−0.992256 + 0.124213i \(0.960359\pi\)
\(578\) −1130.63 + 1130.63i −1.95611 + 1.95611i
\(579\) 191.393i 0.330557i
\(580\) −231.459 + 389.870i −0.399067 + 0.672190i
\(581\) −300.100 −0.516523
\(582\) 247.109 + 247.109i 0.424586 + 0.424586i
\(583\) −151.197 + 151.197i −0.259343 + 0.259343i
\(584\) 1014.10i 1.73647i
\(585\) 169.549 43.2275i 0.289827 0.0738931i
\(586\) −1446.89 −2.46909
\(587\) −101.416 101.416i −0.172771 0.172771i 0.615425 0.788196i \(-0.288984\pi\)
−0.788196 + 0.615425i \(0.788984\pi\)
\(588\) −293.916 + 293.916i −0.499856 + 0.499856i
\(589\) 781.648i 1.32708i
\(590\) 14.7864 + 57.9960i 0.0250617 + 0.0982984i
\(591\) −208.205 −0.352293
\(592\) −2.20569 2.20569i −0.00372583 0.00372583i
\(593\) 597.297 597.297i 1.00725 1.00725i 0.00727231 0.999974i \(-0.497685\pi\)
0.999974 0.00727231i \(-0.00231487\pi\)
\(594\) 313.984i 0.528592i
\(595\) 563.736 + 334.680i 0.947456 + 0.562487i
\(596\) −587.278 −0.985366
\(597\) 495.554 + 495.554i 0.830074 + 0.830074i
\(598\) −409.572 + 409.572i −0.684902 + 0.684902i
\(599\) 347.771i 0.580585i 0.956938 + 0.290293i \(0.0937527\pi\)
−0.956938 + 0.290293i \(0.906247\pi\)
\(600\) −405.138 + 220.946i −0.675230 + 0.368244i
\(601\) −192.174 −0.319757 −0.159878 0.987137i \(-0.551110\pi\)
−0.159878 + 0.987137i \(0.551110\pi\)
\(602\) 154.532 + 154.532i 0.256698 + 0.256698i
\(603\) 76.4644 76.4644i 0.126807 0.126807i
\(604\) 1141.24i 1.88947i
\(605\) 28.0773 47.2934i 0.0464087 0.0781709i
\(606\) −846.698 −1.39719
\(607\) −74.3868 74.3868i −0.122548 0.122548i 0.643173 0.765721i \(-0.277618\pi\)
−0.765721 + 0.643173i \(0.777618\pi\)
\(608\) −411.002 + 411.002i −0.675991 + 0.675991i
\(609\) 159.630i 0.262118i
\(610\) −239.238 + 60.9950i −0.392193 + 0.0999918i
\(611\) 899.079 1.47149
\(612\) 408.702 + 408.702i 0.667814 + 0.667814i
\(613\) 599.202 599.202i 0.977491 0.977491i −0.0222612 0.999752i \(-0.507087\pi\)
0.999752 + 0.0222612i \(0.00708655\pi\)
\(614\) 1199.22i 1.95313i
\(615\) 181.663 + 712.526i 0.295386 + 1.15858i
\(616\) 119.267 0.193615
\(617\) −95.9908 95.9908i −0.155577 0.155577i 0.625027 0.780603i \(-0.285088\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(618\) 222.474 222.474i 0.359990 0.359990i
\(619\) 349.611i 0.564800i −0.959297 0.282400i \(-0.908869\pi\)
0.959297 0.282400i \(-0.0911305\pi\)
\(620\) −1226.83 728.349i −1.97876 1.17476i
\(621\) 487.476 0.784985
\(622\) 687.279 + 687.279i 1.10495 + 1.10495i
\(623\) 380.198 380.198i 0.610270 0.610270i
\(624\) 20.1375i 0.0322716i
\(625\) −338.452 + 525.429i −0.541523 + 0.840686i
\(626\) 446.707 0.713590
\(627\) −98.5192 98.5192i −0.157128 0.157128i
\(628\) 544.938 544.938i 0.867736 0.867736i
\(629\) 112.930i 0.179539i
\(630\) 124.348 209.451i 0.197377 0.332463i
\(631\) 249.068 0.394720 0.197360 0.980331i \(-0.436763\pi\)
0.197360 + 0.980331i \(0.436763\pi\)
\(632\) −310.602 310.602i −0.491460 0.491460i
\(633\) 159.444 159.444i 0.251886 0.251886i
\(634\) 1060.12i 1.67211i
\(635\) −27.0411 + 6.89426i −0.0425843 + 0.0108571i
\(636\) 988.709 1.55457
\(637\) −207.598 207.598i −0.325900 0.325900i
\(638\) −107.337 + 107.337i −0.168239 + 0.168239i
\(639\) 214.798i 0.336148i
\(640\) 249.787 + 979.727i 0.390292 + 1.53082i
\(641\) 1112.98 1.73632 0.868159 0.496287i \(-0.165304\pi\)
0.868159 + 0.496287i \(0.165304\pi\)
\(642\) 413.632 + 413.632i 0.644287 + 0.644287i
\(643\) −396.093 + 396.093i −0.616008 + 0.616008i −0.944505 0.328497i \(-0.893458\pi\)
0.328497 + 0.944505i \(0.393458\pi\)
\(644\) 495.755i 0.769806i
\(645\) −149.666 88.8539i −0.232040 0.137758i
\(646\) 1579.28 2.44471
\(647\) 190.770 + 190.770i 0.294854 + 0.294854i 0.838994 0.544140i \(-0.183144\pi\)
−0.544140 + 0.838994i \(0.683144\pi\)
\(648\) −225.441 + 225.441i −0.347903 + 0.347903i
\(649\) 12.3198i 0.0189827i
\(650\) −417.819 766.134i −0.642799 1.17867i
\(651\) −502.319 −0.771612
\(652\) 222.285 + 222.285i 0.340928 + 0.340928i
\(653\) 41.7823 41.7823i 0.0639851 0.0639851i −0.674390 0.738375i \(-0.735593\pi\)
0.738375 + 0.674390i \(0.235593\pi\)
\(654\) 754.044i 1.15297i
\(655\) −422.268 + 711.270i −0.644684 + 1.08591i
\(656\) 47.3892 0.0722397
\(657\) 301.453 + 301.453i 0.458832 + 0.458832i
\(658\) 885.029 885.029i 1.34503 1.34503i
\(659\) 690.184i 1.04732i −0.851927 0.523660i \(-0.824566\pi\)
0.851927 0.523660i \(-0.175434\pi\)
\(660\) −246.432 + 62.8292i −0.373382 + 0.0951957i
\(661\) −658.583 −0.996344 −0.498172 0.867078i \(-0.665995\pi\)
−0.498172 + 0.867078i \(0.665995\pi\)
\(662\) 283.034 + 283.034i 0.427544 + 0.427544i
\(663\) 515.512 515.512i 0.777544 0.777544i
\(664\) 492.859i 0.742258i
\(665\) −101.093 396.511i −0.152019 0.596257i
\(666\) 41.9581 0.0630002
\(667\) −166.645 166.645i −0.249843 0.249843i
\(668\) 55.7926 55.7926i 0.0835219 0.0835219i
\(669\) 537.002i 0.802694i
\(670\) −463.753 275.322i −0.692168 0.410928i
\(671\) −50.8198 −0.0757375
\(672\) 264.127 + 264.127i 0.393046 + 0.393046i
\(673\) −901.911 + 901.911i −1.34014 + 1.34014i −0.444216 + 0.895920i \(0.646518\pi\)
−0.895920 + 0.444216i \(0.853482\pi\)
\(674\) 1132.17i 1.67978i
\(675\) −207.284 + 704.576i −0.307087 + 1.04382i
\(676\) −329.893 −0.488007
\(677\) −485.397 485.397i −0.716982 0.716982i 0.251004 0.967986i \(-0.419239\pi\)
−0.967986 + 0.251004i \(0.919239\pi\)
\(678\) 846.915 846.915i 1.24914 1.24914i
\(679\) 211.264i 0.311141i
\(680\) 549.651 925.833i 0.808310 1.36152i
\(681\) −539.819 −0.792686
\(682\) −337.764 337.764i −0.495255 0.495255i
\(683\) 713.724 713.724i 1.04498 1.04498i 0.0460448 0.998939i \(-0.485338\pi\)
0.998939 0.0460448i \(-0.0146617\pi\)
\(684\) 360.757i 0.527423i
\(685\) 324.241 82.6670i 0.473345 0.120682i
\(686\) −1147.59 −1.67288
\(687\) 74.1238 + 74.1238i 0.107895 + 0.107895i
\(688\) −7.93183 + 7.93183i −0.0115288 + 0.0115288i
\(689\) 698.344i 1.01356i
\(690\) −158.657 622.293i −0.229938 0.901875i
\(691\) −1319.75 −1.90991 −0.954954 0.296754i \(-0.904096\pi\)
−0.954954 + 0.296754i \(0.904096\pi\)
\(692\) 260.195 + 260.195i 0.376005 + 0.376005i
\(693\) 35.4535 35.4535i 0.0511594 0.0511594i
\(694\) 887.368i 1.27863i
\(695\) −676.041 401.353i −0.972721 0.577487i
\(696\) 262.163 0.376670
\(697\) −1213.15 1213.15i −1.74053 1.74053i
\(698\) −53.6731 + 53.6731i −0.0768955 + 0.0768955i
\(699\) 787.174i 1.12614i
\(700\) −716.543 210.804i −1.02363 0.301149i
\(701\) −1276.93 −1.82159 −0.910795 0.412859i \(-0.864530\pi\)
−0.910795 + 0.412859i \(0.864530\pi\)
\(702\) −725.108 725.108i −1.03292 1.03292i
\(703\) 49.8410 49.8410i 0.0708975 0.0708975i
\(704\) 344.935i 0.489964i
\(705\) −508.880 + 857.159i −0.721816 + 1.21583i
\(706\) −275.578 −0.390337
\(707\) −361.940 361.940i −0.511938 0.511938i
\(708\) 40.2807 40.2807i 0.0568936 0.0568936i
\(709\) 746.781i 1.05329i −0.850086 0.526644i \(-0.823450\pi\)
0.850086 0.526644i \(-0.176550\pi\)
\(710\) 1038.08 264.664i 1.46208 0.372766i
\(711\) −184.660 −0.259719
\(712\) −624.405 624.405i −0.876974 0.876974i
\(713\) 524.396 524.396i 0.735478 0.735478i
\(714\) 1014.91i 1.42144i
\(715\) −44.3774 174.060i −0.0620663 0.243440i
\(716\) 1912.55 2.67116
\(717\) 346.225 + 346.225i 0.482880 + 0.482880i
\(718\) 1145.46 1145.46i 1.59534 1.59534i
\(719\) 135.949i 0.189080i 0.995521 + 0.0945402i \(0.0301381\pi\)
−0.995521 + 0.0945402i \(0.969862\pi\)
\(720\) 10.7507 + 6.38251i 0.0149316 + 0.00886460i
\(721\) 190.203 0.263804
\(722\) 125.596 + 125.596i 0.173955 + 0.173955i
\(723\) −164.522 + 164.522i −0.227554 + 0.227554i
\(724\) 1302.75i 1.79938i
\(725\) 311.723 170.001i 0.429962 0.234484i
\(726\) −85.1438 −0.117278
\(727\) 192.127 + 192.127i 0.264273 + 0.264273i 0.826788 0.562514i \(-0.190166\pi\)
−0.562514 + 0.826788i \(0.690166\pi\)
\(728\) 275.433 275.433i 0.378342 0.378342i
\(729\) 769.094i 1.05500i
\(730\) 1085.43 1828.29i 1.48688 2.50451i
\(731\) 406.103 0.555545
\(732\) 166.161 + 166.161i 0.226995 + 0.226995i
\(733\) −288.677 + 288.677i −0.393830 + 0.393830i −0.876050 0.482220i \(-0.839830\pi\)
0.482220 + 0.876050i \(0.339830\pi\)
\(734\) 1833.58i 2.49807i
\(735\) 315.420 80.4180i 0.429142 0.109412i
\(736\) −551.471 −0.749281
\(737\) −78.4985 78.4985i −0.106511 0.106511i
\(738\) −450.734 + 450.734i −0.610751 + 0.610751i
\(739\) 135.495i 0.183349i 0.995789 + 0.0916746i \(0.0292220\pi\)
−0.995789 + 0.0916746i \(0.970778\pi\)
\(740\) −31.7854 124.670i −0.0429532 0.168473i
\(741\) −455.036 −0.614084
\(742\) 687.431 + 687.431i 0.926457 + 0.926457i
\(743\) −350.021 + 350.021i −0.471091 + 0.471091i −0.902268 0.431177i \(-0.858099\pi\)
0.431177 + 0.902268i \(0.358099\pi\)
\(744\) 824.967i 1.10883i
\(745\) 395.465 + 234.781i 0.530826 + 0.315142i
\(746\) −590.605 −0.791696
\(747\) 146.508 + 146.508i 0.196128 + 0.196128i
\(748\) 419.575 419.575i 0.560929 0.560929i
\(749\) 353.633i 0.472140i
\(750\) 966.899 + 35.2945i 1.28920 + 0.0470594i
\(751\) 1143.86 1.52311 0.761556 0.648099i \(-0.224436\pi\)
0.761556 + 0.648099i \(0.224436\pi\)
\(752\) 45.4268 + 45.4268i 0.0604080 + 0.0604080i
\(753\) 281.352 281.352i 0.373642 0.373642i
\(754\) 495.761i 0.657509i
\(755\) 456.242 768.495i 0.604294 1.01787i
\(756\) −877.688 −1.16096
\(757\) −99.4207 99.4207i −0.131335 0.131335i 0.638383 0.769719i \(-0.279603\pi\)
−0.769719 + 0.638383i \(0.779603\pi\)
\(758\) −704.074 + 704.074i −0.928857 + 0.928857i
\(759\) 132.190i 0.174163i
\(760\) −651.197 + 166.026i −0.856838 + 0.218456i
\(761\) −782.950 −1.02884 −0.514421 0.857537i \(-0.671993\pi\)
−0.514421 + 0.857537i \(0.671993\pi\)
\(762\) 30.5474 + 30.5474i 0.0400884 + 0.0400884i
\(763\) −322.333 + 322.333i −0.422455 + 0.422455i
\(764\) 435.156i 0.569576i
\(765\) −111.825 438.604i −0.146176 0.573339i
\(766\) −624.467 −0.815231
\(767\) 28.4510 + 28.4510i 0.0370939 + 0.0370939i
\(768\) 400.208 400.208i 0.521104 0.521104i
\(769\) 1060.55i 1.37913i 0.724224 + 0.689565i \(0.242198\pi\)
−0.724224 + 0.689565i \(0.757802\pi\)
\(770\) −215.023 127.656i −0.279251 0.165786i
\(771\) −572.456 −0.742485
\(772\) 359.742 + 359.742i 0.465987 + 0.465987i
\(773\) −599.585 + 599.585i −0.775660 + 0.775660i −0.979090 0.203429i \(-0.934791\pi\)
0.203429 + 0.979090i \(0.434791\pi\)
\(774\) 150.884i 0.194941i
\(775\) 534.956 + 980.921i 0.690265 + 1.26570i
\(776\) 346.963 0.447117
\(777\) −32.0299 32.0299i −0.0412225 0.0412225i
\(778\) −499.290 + 499.290i −0.641761 + 0.641761i
\(779\) 1070.83i 1.37462i
\(780\) −424.009 + 714.202i −0.543601 + 0.915643i
\(781\) 220.513 0.282347
\(782\) 1059.52 + 1059.52i 1.35488 + 1.35488i
\(783\) 295.030 295.030i 0.376794 0.376794i
\(784\) 20.9782i 0.0267579i
\(785\) −584.808 + 149.100i −0.744979 + 0.189936i
\(786\) 1280.52 1.62916
\(787\) −10.9757 10.9757i −0.0139462 0.0139462i 0.700099 0.714046i \(-0.253139\pi\)
−0.714046 + 0.700099i \(0.753139\pi\)
\(788\) −391.343 + 391.343i −0.496628 + 0.496628i
\(789\) 172.526i 0.218664i
\(790\) 227.529 + 892.426i 0.288011 + 1.12965i
\(791\) 724.066 0.915380
\(792\) −58.2258 58.2258i −0.0735174 0.0735174i
\(793\) −117.362 + 117.362i −0.147998 + 0.147998i
\(794\) 2037.81i 2.56651i
\(795\) −665.783 395.264i −0.837463 0.497187i
\(796\) 1862.89 2.34032
\(797\) 291.068 + 291.068i 0.365205 + 0.365205i 0.865725 0.500520i \(-0.166858\pi\)
−0.500520 + 0.865725i \(0.666858\pi\)
\(798\) −447.926 + 447.926i −0.561310 + 0.561310i
\(799\) 2325.82i 2.91091i
\(800\) 234.495 797.071i 0.293119 0.996339i
\(801\) −371.223 −0.463450
\(802\) −1588.68 1588.68i −1.98090 1.98090i
\(803\) 309.472 309.472i 0.385395 0.385395i
\(804\) 513.318i 0.638455i
\(805\) 198.192 333.835i 0.246201 0.414702i
\(806\) −1560.05 −1.93555
\(807\) −435.898 435.898i −0.540146 0.540146i
\(808\) −594.420 + 594.420i −0.735669 + 0.735669i
\(809\) 934.080i 1.15461i 0.816528 + 0.577305i \(0.195896\pi\)
−0.816528 + 0.577305i \(0.804104\pi\)
\(810\) 647.740 165.145i 0.799679 0.203882i
\(811\) 247.443 0.305109 0.152554 0.988295i \(-0.451250\pi\)
0.152554 + 0.988295i \(0.451250\pi\)
\(812\) 300.041 + 300.041i 0.369508 + 0.369508i
\(813\) 365.438 365.438i 0.449494 0.449494i
\(814\) 43.0743i 0.0529169i
\(815\) −60.8192 238.548i −0.0746248 0.292697i
\(816\) 52.0934 0.0638399
\(817\) −179.232 179.232i −0.219378 0.219378i
\(818\) 85.9325 85.9325i 0.105052 0.105052i
\(819\) 163.751i 0.199940i
\(820\) 1680.72 + 997.814i 2.04966 + 1.21685i
\(821\) −958.912 −1.16798 −0.583990 0.811761i \(-0.698509\pi\)
−0.583990 + 0.811761i \(0.698509\pi\)
\(822\) −366.285 366.285i −0.445602 0.445602i
\(823\) −841.533 + 841.533i −1.02252 + 1.02252i −0.0227782 + 0.999741i \(0.507251\pi\)
−0.999741 + 0.0227782i \(0.992749\pi\)
\(824\) 312.373i 0.379094i
\(825\) 191.062 + 56.2096i 0.231590 + 0.0681329i
\(826\) 56.0128 0.0678121
\(827\) 501.948 + 501.948i 0.606951 + 0.606951i 0.942148 0.335197i \(-0.108803\pi\)
−0.335197 + 0.942148i \(0.608803\pi\)
\(828\) 242.026 242.026i 0.292302 0.292302i
\(829\) 219.411i 0.264670i 0.991205 + 0.132335i \(0.0422474\pi\)
−0.991205 + 0.132335i \(0.957753\pi\)
\(830\) 527.524 888.563i 0.635571 1.07056i
\(831\) −251.170 −0.302250
\(832\) 796.585 + 796.585i 0.957434 + 0.957434i
\(833\) −537.033 + 537.033i −0.644697 + 0.644697i
\(834\) 1217.10i 1.45935i
\(835\) −59.8746 + 15.2654i −0.0717061 + 0.0182819i
\(836\) −370.354 −0.443007
\(837\) 928.393 + 928.393i 1.10919 + 1.10919i
\(838\) 1107.44 1107.44i 1.32153 1.32153i
\(839\) 1101.77i 1.31320i 0.754241 + 0.656598i \(0.228005\pi\)
−0.754241 + 0.656598i \(0.771995\pi\)
\(840\) 106.695 + 418.486i 0.127018 + 0.498198i
\(841\) 639.286 0.760150
\(842\) −886.187 886.187i −1.05248 1.05248i
\(843\) −324.122 + 324.122i −0.384486 + 0.384486i
\(844\) 599.381i 0.710168i
\(845\) 222.145 + 131.884i 0.262894 + 0.156075i
\(846\) −864.138 −1.02144
\(847\) −36.3966 36.3966i −0.0429712 0.0429712i
\(848\) −35.2845 + 35.2845i −0.0416090 + 0.0416090i
\(849\) 295.897i 0.348524i
\(850\) −1981.90 + 1080.85i −2.33165 + 1.27159i
\(851\) 66.8751 0.0785841
\(852\) −720.988 720.988i −0.846230 0.846230i
\(853\) 1045.69 1045.69i 1.22589 1.22589i 0.260387 0.965504i \(-0.416150\pi\)
0.965504 0.260387i \(-0.0838501\pi\)
\(854\) 231.057i 0.270558i
\(855\) −144.222 + 242.929i −0.168681 + 0.284127i
\(856\) 580.777 0.678478
\(857\) −1006.72 1006.72i −1.17471 1.17471i −0.981074 0.193632i \(-0.937973\pi\)
−0.193632 0.981074i \(-0.562027\pi\)
\(858\) −196.629 + 196.629i −0.229172 + 0.229172i
\(859\) 1366.58i 1.59090i −0.606021 0.795448i \(-0.707235\pi\)
0.606021 0.795448i \(-0.292765\pi\)
\(860\) −448.323 + 114.302i −0.521305 + 0.132910i
\(861\) 688.160 0.799257
\(862\) 1150.57 + 1150.57i 1.33477 + 1.33477i
\(863\) 947.174 947.174i 1.09754 1.09754i 0.102838 0.994698i \(-0.467208\pi\)
0.994698 0.102838i \(-0.0327924\pi\)
\(864\) 976.326i 1.13001i
\(865\) −71.1918 279.232i −0.0823027 0.322812i
\(866\) 685.288 0.791325
\(867\) −842.725 842.725i −0.972001 0.972001i
\(868\) −944.161 + 944.161i −1.08774 + 1.08774i
\(869\) 189.573i 0.218150i
\(870\) −472.647 280.602i −0.543272 0.322531i
\(871\) −362.566 −0.416264
\(872\) 529.373 + 529.373i 0.607079 + 0.607079i
\(873\) 103.139 103.139i 0.118143 0.118143i
\(874\) 935.223i 1.07005i
\(875\) 398.235 + 428.410i 0.455126 + 0.489612i
\(876\) −2023.70 −2.31016
\(877\) −87.0484 87.0484i −0.0992570 0.0992570i 0.655735 0.754992i \(-0.272359\pi\)
−0.754992 + 0.655735i \(0.772359\pi\)
\(878\) 480.617 480.617i 0.547400 0.547400i
\(879\) 1078.45i 1.22690i
\(880\) 6.55231 11.0367i 0.00744580 0.0125417i
\(881\) 868.490 0.985800 0.492900 0.870086i \(-0.335937\pi\)
0.492900 + 0.870086i \(0.335937\pi\)
\(882\) 199.530 + 199.530i 0.226225 + 0.226225i
\(883\) 608.328 608.328i 0.688934 0.688934i −0.273063 0.961996i \(-0.588037\pi\)
0.961996 + 0.273063i \(0.0880366\pi\)
\(884\) 1937.92i 2.19221i
\(885\) −43.2278 + 11.0212i −0.0488449 + 0.0124533i
\(886\) −2018.22 −2.27790
\(887\) 495.738 + 495.738i 0.558892 + 0.558892i 0.928992 0.370100i \(-0.120676\pi\)
−0.370100 + 0.928992i \(0.620676\pi\)
\(888\) −52.6032 + 52.6032i −0.0592378 + 0.0592378i
\(889\) 26.1163i 0.0293772i
\(890\) 457.402 + 1794.05i 0.513935 + 2.01578i
\(891\) 137.595 0.154428
\(892\) −1009.35 1009.35i −1.13156 1.13156i
\(893\) −1026.49 + 1026.49i −1.14948 + 1.14948i
\(894\) 711.968i 0.796385i
\(895\) −1287.89 764.595i −1.43898 0.854296i
\(896\) 946.224 1.05605
\(897\) −305.277 305.277i −0.340331 0.340331i
\(898\) 1462.19 1462.19i 1.62828 1.62828i
\(899\) 634.749i 0.706061i
\(900\) 246.900 + 452.728i 0.274334 + 0.503031i
\(901\) 1806.54 2.00504
\(902\) 462.725 + 462.725i 0.512999 + 0.512999i
\(903\) −115.182 + 115.182i −0.127554 + 0.127554i
\(904\) 1189.14i 1.31543i
\(905\) −520.812 + 877.257i −0.575483 + 0.969345i
\(906\) −1383.55 −1.52709
\(907\) 163.744 + 163.744i 0.180534 + 0.180534i 0.791588 0.611055i \(-0.209254\pi\)
−0.611055 + 0.791588i \(0.709254\pi\)
\(908\) −1014.65 + 1014.65i −1.11745 + 1.11745i
\(909\) 353.396i 0.388775i
\(910\) −791.376 + 201.766i −0.869644 + 0.221720i
\(911\) 1750.93 1.92199 0.960995 0.276566i \(-0.0891963\pi\)
0.960995 + 0.276566i \(0.0891963\pi\)
\(912\) −22.9911 22.9911i −0.0252096 0.0252096i
\(913\) 150.405 150.405i 0.164738 0.164738i
\(914\) 472.638i 0.517109i
\(915\) −45.4630 178.318i −0.0496864 0.194883i
\(916\) 278.647 0.304200
\(917\) 547.388 + 547.388i 0.596933 + 0.596933i
\(918\) −1875.77 + 1875.77i −2.04333 + 2.04333i
\(919\) 1637.39i 1.78170i 0.454293 + 0.890852i \(0.349892\pi\)
−0.454293 + 0.890852i \(0.650108\pi\)
\(920\) −548.263 325.494i −0.595938 0.353797i
\(921\) 893.848 0.970519
\(922\) −1823.03 1823.03i −1.97726 1.97726i
\(923\) 509.247 509.247i 0.551731 0.551731i
\(924\) 238.005i 0.257581i
\(925\) −28.4365 + 96.6583i −0.0307422 + 0.104495i
\(926\) 1150.49 1.24243
\(927\) −92.8565 92.8565i −0.100169 0.100169i
\(928\) −333.761 + 333.761i −0.359656 + 0.359656i
\(929\) 1639.43i 1.76473i −0.470568 0.882364i \(-0.655951\pi\)
0.470568 0.882364i \(-0.344049\pi\)
\(930\) 882.991 1487.31i 0.949453 1.59926i
\(931\) 474.033 0.509166
\(932\) 1479.57 + 1479.57i 1.58753 + 1.58753i
\(933\) −512.268 + 512.268i −0.549055 + 0.549055i
\(934\) 365.061i 0.390857i
\(935\) −450.273 + 114.799i −0.481575 + 0.122780i
\(936\) −268.931 −0.287319
\(937\) −141.600 141.600i −0.151121 0.151121i 0.627498 0.778618i \(-0.284079\pi\)
−0.778618 + 0.627498i \(0.784079\pi\)
\(938\) −356.900 + 356.900i −0.380491 + 0.380491i
\(939\) 332.956i 0.354586i
\(940\) 654.627 + 2567.61i 0.696412 + 2.73150i
\(941\) 1074.74 1.14212 0.571062 0.820907i \(-0.306531\pi\)
0.571062 + 0.820907i \(0.306531\pi\)
\(942\) 660.639 + 660.639i 0.701315 + 0.701315i
\(943\) −718.405 + 718.405i −0.761829 + 0.761829i
\(944\) 2.87502i 0.00304558i
\(945\) 591.023 + 350.880i 0.625421 + 0.371301i
\(946\) −154.898 −0.163740
\(947\) −1127.43 1127.43i −1.19053 1.19053i −0.976919 0.213609i \(-0.931478\pi\)
−0.213609 0.976919i \(-0.568522\pi\)
\(948\) 619.827 619.827i 0.653826 0.653826i
\(949\) 1429.38i 1.50619i
\(950\) 1351.73 + 397.674i 1.42287 + 0.418604i
\(951\) −790.166 −0.830879
\(952\) −712.514 712.514i −0.748439 0.748439i
\(953\) 99.4706 99.4706i 0.104376 0.104376i −0.652990 0.757366i \(-0.726486\pi\)
0.757366 + 0.652990i \(0.226486\pi\)
\(954\) 671.204i 0.703568i
\(955\) 173.965 293.028i 0.182163 0.306836i
\(956\) 1301.53 1.36144
\(957\) −80.0040 80.0040i −0.0835988 0.0835988i
\(958\) 936.801 936.801i 0.977871 0.977871i
\(959\) 313.153i 0.326541i
\(960\) −1210.31 + 308.576i −1.26074 + 0.321433i
\(961\) 1036.41 1.07847
\(962\) −99.4750 99.4750i −0.103404 0.103404i
\(963\) 172.643 172.643i 0.179276 0.179276i
\(964\) 618.472i 0.641568i
\(965\) −98.4287 386.062i −0.101999 0.400065i
\(966\) −601.013 −0.622167
\(967\) 1260.15 + 1260.15i 1.30315 + 1.30315i 0.926256 + 0.376896i \(0.123008\pi\)
0.376896 + 0.926256i \(0.376992\pi\)
\(968\) −59.7748 + 59.7748i −0.0617508 + 0.0617508i
\(969\) 1177.13i 1.21479i
\(970\) −625.531 371.367i −0.644878 0.382852i
\(971\) 1148.23 1.18252 0.591261 0.806481i \(-0.298630\pi\)
0.591261 + 0.806481i \(0.298630\pi\)
\(972\) 743.787 + 743.787i 0.765213 + 0.765213i
\(973\) −520.275 + 520.275i −0.534713 + 0.534713i
\(974\) 966.900i 0.992711i
\(975\) 571.043 311.425i 0.585685 0.319410i
\(976\) −11.8597 −0.0121513
\(977\) 145.709 + 145.709i 0.149139 + 0.149139i 0.777733 0.628594i \(-0.216369\pi\)
−0.628594 + 0.777733i \(0.716369\pi\)
\(978\) −269.480 + 269.480i −0.275542 + 0.275542i
\(979\) 381.099i 0.389274i
\(980\) 441.710 744.018i 0.450725 0.759202i
\(981\) 314.724 0.320820
\(982\) 259.083 + 259.083i 0.263832 + 0.263832i
\(983\) −562.675 + 562.675i −0.572406 + 0.572406i −0.932800 0.360394i \(-0.882642\pi\)
0.360394 + 0.932800i \(0.382642\pi\)
\(984\) 1130.18i 1.14855i
\(985\) 419.975 107.075i 0.426371 0.108706i
\(986\) 1282.48 1.30069
\(987\) 659.663 + 659.663i 0.668351 + 0.668351i
\(988\) −855.288 + 855.288i −0.865676 + 0.865676i
\(989\) 240.487i 0.243162i
\(990\) 42.6528 + 167.295i 0.0430836 + 0.168985i
\(991\) −1445.80 −1.45893 −0.729464 0.684019i \(-0.760231\pi\)
−0.729464 + 0.684019i \(0.760231\pi\)
\(992\) −1050.27 1050.27i −1.05874 1.05874i
\(993\) −210.961 + 210.961i −0.212449 + 0.212449i
\(994\) 1002.58i 1.00863i
\(995\) −1254.45 744.742i −1.26075 0.748484i
\(996\) −983.532 −0.987482
\(997\) 273.932 + 273.932i 0.274757 + 0.274757i 0.831012 0.556255i \(-0.187762\pi\)
−0.556255 + 0.831012i \(0.687762\pi\)
\(998\) −781.639 + 781.639i −0.783206 + 0.783206i
\(999\) 118.396i 0.118515i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.f.a.12.10 20
3.2 odd 2 495.3.j.a.397.1 20
5.2 odd 4 275.3.f.b.243.1 20
5.3 odd 4 inner 55.3.f.a.23.10 yes 20
5.4 even 2 275.3.f.b.232.1 20
15.8 even 4 495.3.j.a.298.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.f.a.12.10 20 1.1 even 1 trivial
55.3.f.a.23.10 yes 20 5.3 odd 4 inner
275.3.f.b.232.1 20 5.4 even 2
275.3.f.b.243.1 20 5.2 odd 4
495.3.j.a.298.1 20 15.8 even 4
495.3.j.a.397.1 20 3.2 odd 2