Properties

Label 495.3.j.a.298.1
Level $495$
Weight $3$
Character 495.298
Analytic conductor $13.488$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,3,Mod(298,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.298");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 8 x^{18} + 4 x^{17} + 212 x^{16} - 792 x^{15} + 1480 x^{14} + 148 x^{13} + \cdots + 38416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 298.1
Root \(-2.27868 - 2.27868i\) of defining polynomial
Character \(\chi\) \(=\) 495.298
Dual form 495.3.j.a.397.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.27868 + 2.27868i) q^{2} -6.38475i q^{4} +(-2.55248 - 4.29940i) q^{5} +(-3.30878 + 3.30878i) q^{7} +(5.43407 + 5.43407i) q^{8} +(15.6132 + 3.98068i) q^{10} -3.31662 q^{11} +(7.65935 + 7.65935i) q^{13} -15.0793i q^{14} +0.773991 q^{16} +(19.8139 - 19.8139i) q^{17} -17.4895i q^{19} +(-27.4506 + 16.2969i) q^{20} +(7.55752 - 7.55752i) q^{22} +(11.7334 + 11.7334i) q^{23} +(-11.9697 + 21.9483i) q^{25} -34.9064 q^{26} +(21.1258 + 21.1258i) q^{28} +14.2026i q^{29} -44.6924 q^{31} +(-23.5000 + 23.5000i) q^{32} +90.2989i q^{34} +(22.6714 + 5.78020i) q^{35} +(-2.84977 + 2.84977i) q^{37} +(39.8529 + 39.8529i) q^{38} +(9.49291 - 37.2336i) q^{40} -61.2271 q^{41} +(-10.2480 - 10.2480i) q^{43} +21.1758i q^{44} -53.4734 q^{46} +(-58.6916 + 58.6916i) q^{47} +27.1039i q^{49} +(-22.7379 - 77.2881i) q^{50} +(48.9030 - 48.9030i) q^{52} +(45.5877 + 45.5877i) q^{53} +(8.46561 + 14.2595i) q^{55} -35.9603 q^{56} +(-32.3632 - 32.3632i) q^{58} +3.71455i q^{59} -15.3228 q^{61} +(101.840 - 101.840i) q^{62} -104.002i q^{64} +(13.3803 - 52.4809i) q^{65} +(-23.6682 + 23.6682i) q^{67} +(-126.507 - 126.507i) q^{68} +(-64.8320 + 38.4896i) q^{70} -66.4871 q^{71} +(93.3093 + 93.3093i) q^{73} -12.9874i q^{74} -111.666 q^{76} +(10.9740 - 10.9740i) q^{77} -57.1583i q^{79} +(-1.97559 - 3.32770i) q^{80} +(139.517 - 139.517i) q^{82} +(-45.3490 - 45.3490i) q^{83} +(-135.762 - 34.6133i) q^{85} +46.7036 q^{86} +(-18.0228 - 18.0228i) q^{88} +114.906i q^{89} -50.6863 q^{91} +(74.9150 - 74.9150i) q^{92} -267.479i q^{94} +(-75.1944 + 44.6415i) q^{95} +(-31.9248 + 31.9248i) q^{97} +(-61.7610 - 61.7610i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} + 8 q^{5} - 12 q^{8} + 12 q^{10} + 4 q^{13} - 16 q^{16} - 24 q^{17} + 8 q^{20} + 86 q^{23} + 90 q^{25} - 96 q^{26} + 76 q^{28} - 40 q^{31} - 184 q^{32} + 60 q^{35} - 126 q^{37} - 184 q^{38}+ \cdots - 620 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27868 + 2.27868i −1.13934 + 1.13934i −0.150770 + 0.988569i \(0.548175\pi\)
−0.988569 + 0.150770i \(0.951825\pi\)
\(3\) 0 0
\(4\) 6.38475i 1.59619i
\(5\) −2.55248 4.29940i −0.510496 0.859880i
\(6\) 0 0
\(7\) −3.30878 + 3.30878i −0.472684 + 0.472684i −0.902782 0.430098i \(-0.858479\pi\)
0.430098 + 0.902782i \(0.358479\pi\)
\(8\) 5.43407 + 5.43407i 0.679259 + 0.679259i
\(9\) 0 0
\(10\) 15.6132 + 3.98068i 1.56132 + 0.398068i
\(11\) −3.31662 −0.301511
\(12\) 0 0
\(13\) 7.65935 + 7.65935i 0.589180 + 0.589180i 0.937409 0.348229i \(-0.113217\pi\)
−0.348229 + 0.937409i \(0.613217\pi\)
\(14\) 15.0793i 1.07709i
\(15\) 0 0
\(16\) 0.773991 0.0483744
\(17\) 19.8139 19.8139i 1.16552 1.16552i 0.182274 0.983248i \(-0.441654\pi\)
0.983248 0.182274i \(-0.0583458\pi\)
\(18\) 0 0
\(19\) 17.4895i 0.920499i −0.887789 0.460250i \(-0.847760\pi\)
0.887789 0.460250i \(-0.152240\pi\)
\(20\) −27.4506 + 16.2969i −1.37253 + 0.814846i
\(21\) 0 0
\(22\) 7.55752 7.55752i 0.343524 0.343524i
\(23\) 11.7334 + 11.7334i 0.510149 + 0.510149i 0.914572 0.404423i \(-0.132528\pi\)
−0.404423 + 0.914572i \(0.632528\pi\)
\(24\) 0 0
\(25\) −11.9697 + 21.9483i −0.478789 + 0.877930i
\(26\) −34.9064 −1.34255
\(27\) 0 0
\(28\) 21.1258 + 21.1258i 0.754491 + 0.754491i
\(29\) 14.2026i 0.489745i 0.969555 + 0.244873i \(0.0787461\pi\)
−0.969555 + 0.244873i \(0.921254\pi\)
\(30\) 0 0
\(31\) −44.6924 −1.44169 −0.720846 0.693096i \(-0.756246\pi\)
−0.720846 + 0.693096i \(0.756246\pi\)
\(32\) −23.5000 + 23.5000i −0.734374 + 0.734374i
\(33\) 0 0
\(34\) 90.2989i 2.65585i
\(35\) 22.6714 + 5.78020i 0.647754 + 0.165148i
\(36\) 0 0
\(37\) −2.84977 + 2.84977i −0.0770207 + 0.0770207i −0.744568 0.667547i \(-0.767344\pi\)
0.667547 + 0.744568i \(0.267344\pi\)
\(38\) 39.8529 + 39.8529i 1.04876 + 1.04876i
\(39\) 0 0
\(40\) 9.49291 37.2336i 0.237323 0.930840i
\(41\) −61.2271 −1.49334 −0.746672 0.665192i \(-0.768350\pi\)
−0.746672 + 0.665192i \(0.768350\pi\)
\(42\) 0 0
\(43\) −10.2480 10.2480i −0.238325 0.238325i 0.577832 0.816156i \(-0.303899\pi\)
−0.816156 + 0.577832i \(0.803899\pi\)
\(44\) 21.1758i 0.481268i
\(45\) 0 0
\(46\) −53.4734 −1.16247
\(47\) −58.6916 + 58.6916i −1.24876 + 1.24876i −0.292489 + 0.956269i \(0.594484\pi\)
−0.956269 + 0.292489i \(0.905516\pi\)
\(48\) 0 0
\(49\) 27.1039i 0.553141i
\(50\) −22.7379 77.2881i −0.454758 1.54576i
\(51\) 0 0
\(52\) 48.9030 48.9030i 0.940442 0.940442i
\(53\) 45.5877 + 45.5877i 0.860145 + 0.860145i 0.991355 0.131210i \(-0.0418861\pi\)
−0.131210 + 0.991355i \(0.541886\pi\)
\(54\) 0 0
\(55\) 8.46561 + 14.2595i 0.153920 + 0.259264i
\(56\) −35.9603 −0.642149
\(57\) 0 0
\(58\) −32.3632 32.3632i −0.557986 0.557986i
\(59\) 3.71455i 0.0629584i 0.999504 + 0.0314792i \(0.0100218\pi\)
−0.999504 + 0.0314792i \(0.989978\pi\)
\(60\) 0 0
\(61\) −15.3228 −0.251193 −0.125596 0.992081i \(-0.540084\pi\)
−0.125596 + 0.992081i \(0.540084\pi\)
\(62\) 101.840 101.840i 1.64258 1.64258i
\(63\) 0 0
\(64\) 104.002i 1.62503i
\(65\) 13.3803 52.4809i 0.205851 0.807399i
\(66\) 0 0
\(67\) −23.6682 + 23.6682i −0.353257 + 0.353257i −0.861320 0.508063i \(-0.830362\pi\)
0.508063 + 0.861320i \(0.330362\pi\)
\(68\) −126.507 126.507i −1.86039 1.86039i
\(69\) 0 0
\(70\) −64.8320 + 38.4896i −0.926172 + 0.549851i
\(71\) −66.4871 −0.936438 −0.468219 0.883613i \(-0.655104\pi\)
−0.468219 + 0.883613i \(0.655104\pi\)
\(72\) 0 0
\(73\) 93.3093 + 93.3093i 1.27821 + 1.27821i 0.941669 + 0.336541i \(0.109257\pi\)
0.336541 + 0.941669i \(0.390743\pi\)
\(74\) 12.9874i 0.175505i
\(75\) 0 0
\(76\) −111.666 −1.46929
\(77\) 10.9740 10.9740i 0.142519 0.142519i
\(78\) 0 0
\(79\) 57.1583i 0.723523i −0.932271 0.361762i \(-0.882175\pi\)
0.932271 0.361762i \(-0.117825\pi\)
\(80\) −1.97559 3.32770i −0.0246949 0.0415962i
\(81\) 0 0
\(82\) 139.517 139.517i 1.70143 1.70143i
\(83\) −45.3490 45.3490i −0.546373 0.546373i 0.379017 0.925390i \(-0.376262\pi\)
−0.925390 + 0.379017i \(0.876262\pi\)
\(84\) 0 0
\(85\) −135.762 34.6133i −1.59720 0.407216i
\(86\) 46.7036 0.543065
\(87\) 0 0
\(88\) −18.0228 18.0228i −0.204804 0.204804i
\(89\) 114.906i 1.29107i 0.763729 + 0.645537i \(0.223366\pi\)
−0.763729 + 0.645537i \(0.776634\pi\)
\(90\) 0 0
\(91\) −50.6863 −0.556992
\(92\) 74.9150 74.9150i 0.814294 0.814294i
\(93\) 0 0
\(94\) 267.479i 2.84552i
\(95\) −75.1944 + 44.6415i −0.791519 + 0.469911i
\(96\) 0 0
\(97\) −31.9248 + 31.9248i −0.329121 + 0.329121i −0.852252 0.523131i \(-0.824764\pi\)
0.523131 + 0.852252i \(0.324764\pi\)
\(98\) −61.7610 61.7610i −0.630215 0.630215i
\(99\) 0 0
\(100\) 140.134 + 76.4236i 1.40134 + 0.764236i
\(101\) −109.388 −1.08305 −0.541523 0.840686i \(-0.682152\pi\)
−0.541523 + 0.840686i \(0.682152\pi\)
\(102\) 0 0
\(103\) −28.7421 28.7421i −0.279050 0.279050i 0.553680 0.832730i \(-0.313223\pi\)
−0.832730 + 0.553680i \(0.813223\pi\)
\(104\) 83.2429i 0.800412i
\(105\) 0 0
\(106\) −207.759 −1.95999
\(107\) 53.4385 53.4385i 0.499425 0.499425i −0.411834 0.911259i \(-0.635112\pi\)
0.911259 + 0.411834i \(0.135112\pi\)
\(108\) 0 0
\(109\) 97.4174i 0.893738i 0.894600 + 0.446869i \(0.147461\pi\)
−0.894600 + 0.446869i \(0.852539\pi\)
\(110\) −51.7832 13.2024i −0.470757 0.120022i
\(111\) 0 0
\(112\) −2.56097 + 2.56097i −0.0228658 + 0.0228658i
\(113\) 109.416 + 109.416i 0.968280 + 0.968280i 0.999512 0.0312321i \(-0.00994311\pi\)
−0.0312321 + 0.999512i \(0.509943\pi\)
\(114\) 0 0
\(115\) 20.4974 80.3961i 0.178238 0.699096i
\(116\) 90.6801 0.781725
\(117\) 0 0
\(118\) −8.46425 8.46425i −0.0717310 0.0717310i
\(119\) 131.120i 1.10185i
\(120\) 0 0
\(121\) 11.0000 0.0909091
\(122\) 34.9156 34.9156i 0.286194 0.286194i
\(123\) 0 0
\(124\) 285.350i 2.30121i
\(125\) 124.917 4.55981i 0.999334 0.0364785i
\(126\) 0 0
\(127\) −3.94652 + 3.94652i −0.0310749 + 0.0310749i −0.722474 0.691399i \(-0.756995\pi\)
0.691399 + 0.722474i \(0.256995\pi\)
\(128\) 142.987 + 142.987i 1.11708 + 1.11708i
\(129\) 0 0
\(130\) 89.0977 + 150.077i 0.685367 + 1.15443i
\(131\) 165.435 1.26286 0.631430 0.775433i \(-0.282468\pi\)
0.631430 + 0.775433i \(0.282468\pi\)
\(132\) 0 0
\(133\) 57.8690 + 57.8690i 0.435105 + 0.435105i
\(134\) 107.864i 0.804958i
\(135\) 0 0
\(136\) 215.340 1.58338
\(137\) −47.3215 + 47.3215i −0.345412 + 0.345412i −0.858397 0.512985i \(-0.828540\pi\)
0.512985 + 0.858397i \(0.328540\pi\)
\(138\) 0 0
\(139\) 157.241i 1.13123i 0.824670 + 0.565614i \(0.191361\pi\)
−0.824670 + 0.565614i \(0.808639\pi\)
\(140\) 36.9051 144.751i 0.263608 1.03394i
\(141\) 0 0
\(142\) 151.503 151.503i 1.06692 1.06692i
\(143\) −25.4032 25.4032i −0.177645 0.177645i
\(144\) 0 0
\(145\) 61.0627 36.2518i 0.421122 0.250013i
\(146\) −425.244 −2.91263
\(147\) 0 0
\(148\) 18.1950 + 18.1950i 0.122939 + 0.122939i
\(149\) 91.9814i 0.617325i 0.951172 + 0.308663i \(0.0998814\pi\)
−0.951172 + 0.308663i \(0.900119\pi\)
\(150\) 0 0
\(151\) 178.745 1.18374 0.591870 0.806034i \(-0.298390\pi\)
0.591870 + 0.806034i \(0.298390\pi\)
\(152\) 95.0391 95.0391i 0.625257 0.625257i
\(153\) 0 0
\(154\) 50.0124i 0.324756i
\(155\) 114.076 + 192.151i 0.735977 + 1.23968i
\(156\) 0 0
\(157\) −85.3500 + 85.3500i −0.543631 + 0.543631i −0.924591 0.380961i \(-0.875593\pi\)
0.380961 + 0.924591i \(0.375593\pi\)
\(158\) 130.245 + 130.245i 0.824338 + 0.824338i
\(159\) 0 0
\(160\) 161.019 + 41.0527i 1.00637 + 0.256579i
\(161\) −77.6468 −0.482278
\(162\) 0 0
\(163\) 34.8150 + 34.8150i 0.213589 + 0.213589i 0.805790 0.592201i \(-0.201741\pi\)
−0.592201 + 0.805790i \(0.701741\pi\)
\(164\) 390.920i 2.38366i
\(165\) 0 0
\(166\) 206.671 1.24501
\(167\) 8.73842 8.73842i 0.0523259 0.0523259i −0.680460 0.732786i \(-0.738220\pi\)
0.732786 + 0.680460i \(0.238220\pi\)
\(168\) 0 0
\(169\) 51.6688i 0.305733i
\(170\) 388.231 230.486i 2.28371 1.35580i
\(171\) 0 0
\(172\) −65.4306 + 65.4306i −0.380411 + 0.380411i
\(173\) −40.7527 40.7527i −0.235565 0.235565i 0.579446 0.815011i \(-0.303269\pi\)
−0.815011 + 0.579446i \(0.803269\pi\)
\(174\) 0 0
\(175\) −33.0168 112.227i −0.188668 0.641299i
\(176\) −2.56704 −0.0145854
\(177\) 0 0
\(178\) −261.833 261.833i −1.47097 1.47097i
\(179\) 299.550i 1.67346i −0.547613 0.836732i \(-0.684463\pi\)
0.547613 0.836732i \(-0.315537\pi\)
\(180\) 0 0
\(181\) −204.042 −1.12730 −0.563651 0.826013i \(-0.690604\pi\)
−0.563651 + 0.826013i \(0.690604\pi\)
\(182\) 115.498 115.498i 0.634602 0.634602i
\(183\) 0 0
\(184\) 127.521i 0.693047i
\(185\) 19.5263 + 4.97833i 0.105547 + 0.0269099i
\(186\) 0 0
\(187\) −65.7152 + 65.7152i −0.351418 + 0.351418i
\(188\) 374.731 + 374.731i 1.99325 + 1.99325i
\(189\) 0 0
\(190\) 69.6200 273.067i 0.366421 1.43720i
\(191\) −68.1555 −0.356835 −0.178418 0.983955i \(-0.557098\pi\)
−0.178418 + 0.983955i \(0.557098\pi\)
\(192\) 0 0
\(193\) 56.3440 + 56.3440i 0.291938 + 0.291938i 0.837845 0.545908i \(-0.183815\pi\)
−0.545908 + 0.837845i \(0.683815\pi\)
\(194\) 145.493i 0.749962i
\(195\) 0 0
\(196\) 173.051 0.882916
\(197\) −61.2935 + 61.2935i −0.311134 + 0.311134i −0.845349 0.534215i \(-0.820607\pi\)
0.534215 + 0.845349i \(0.320607\pi\)
\(198\) 0 0
\(199\) 291.772i 1.46619i 0.680125 + 0.733096i \(0.261925\pi\)
−0.680125 + 0.733096i \(0.738075\pi\)
\(200\) −184.313 + 54.2241i −0.921563 + 0.271120i
\(201\) 0 0
\(202\) 249.259 249.259i 1.23396 1.23396i
\(203\) −46.9934 46.9934i −0.231494 0.231494i
\(204\) 0 0
\(205\) 156.281 + 263.240i 0.762346 + 1.28410i
\(206\) 130.988 0.635864
\(207\) 0 0
\(208\) 5.92826 + 5.92826i 0.0285013 + 0.0285013i
\(209\) 58.0061i 0.277541i
\(210\) 0 0
\(211\) −93.8771 −0.444915 −0.222458 0.974942i \(-0.571408\pi\)
−0.222458 + 0.974942i \(0.571408\pi\)
\(212\) 291.066 291.066i 1.37295 1.37295i
\(213\) 0 0
\(214\) 243.538i 1.13803i
\(215\) −17.9024 + 70.2178i −0.0832670 + 0.326594i
\(216\) 0 0
\(217\) 147.878 147.878i 0.681464 0.681464i
\(218\) −221.983 221.983i −1.01827 1.01827i
\(219\) 0 0
\(220\) 91.0433 54.0508i 0.413833 0.245685i
\(221\) 303.523 1.37341
\(222\) 0 0
\(223\) −158.088 158.088i −0.708915 0.708915i 0.257392 0.966307i \(-0.417137\pi\)
−0.966307 + 0.257392i \(0.917137\pi\)
\(224\) 155.513i 0.694253i
\(225\) 0 0
\(226\) −498.646 −2.20640
\(227\) −158.917 + 158.917i −0.700076 + 0.700076i −0.964427 0.264351i \(-0.914842\pi\)
0.264351 + 0.964427i \(0.414842\pi\)
\(228\) 0 0
\(229\) 43.6426i 0.190579i 0.995450 + 0.0952895i \(0.0303777\pi\)
−0.995450 + 0.0952895i \(0.969622\pi\)
\(230\) 136.490 + 229.904i 0.593434 + 0.999582i
\(231\) 0 0
\(232\) −77.1780 + 77.1780i −0.332664 + 0.332664i
\(233\) −231.736 231.736i −0.994574 0.994574i 0.00541090 0.999985i \(-0.498278\pi\)
−0.999985 + 0.00541090i \(0.998278\pi\)
\(234\) 0 0
\(235\) 402.148 + 102.530i 1.71127 + 0.436297i
\(236\) 23.7164 0.100493
\(237\) 0 0
\(238\) −298.780 298.780i −1.25538 1.25538i
\(239\) 203.850i 0.852930i −0.904504 0.426465i \(-0.859759\pi\)
0.904504 0.426465i \(-0.140241\pi\)
\(240\) 0 0
\(241\) 96.8670 0.401938 0.200969 0.979598i \(-0.435591\pi\)
0.200969 + 0.979598i \(0.435591\pi\)
\(242\) −25.0655 + 25.0655i −0.103576 + 0.103576i
\(243\) 0 0
\(244\) 97.8320i 0.400951i
\(245\) 116.531 69.1821i 0.475635 0.282376i
\(246\) 0 0
\(247\) 133.958 133.958i 0.542340 0.542340i
\(248\) −242.862 242.862i −0.979282 0.979282i
\(249\) 0 0
\(250\) −274.255 + 295.036i −1.09702 + 1.18014i
\(251\) 165.654 0.659978 0.329989 0.943985i \(-0.392955\pi\)
0.329989 + 0.943985i \(0.392955\pi\)
\(252\) 0 0
\(253\) −38.9154 38.9154i −0.153816 0.153816i
\(254\) 17.9857i 0.0708098i
\(255\) 0 0
\(256\) −235.634 −0.920445
\(257\) −168.525 + 168.525i −0.655740 + 0.655740i −0.954369 0.298629i \(-0.903471\pi\)
0.298629 + 0.954369i \(0.403471\pi\)
\(258\) 0 0
\(259\) 18.8585i 0.0728128i
\(260\) −335.077 85.4298i −1.28876 0.328576i
\(261\) 0 0
\(262\) −376.972 + 376.972i −1.43883 + 1.43883i
\(263\) 50.7899 + 50.7899i 0.193117 + 0.193117i 0.797042 0.603924i \(-0.206397\pi\)
−0.603924 + 0.797042i \(0.706397\pi\)
\(264\) 0 0
\(265\) 79.6382 312.361i 0.300522 1.17872i
\(266\) −263.729 −0.991464
\(267\) 0 0
\(268\) 151.115 + 151.115i 0.563864 + 0.563864i
\(269\) 256.648i 0.954081i 0.878881 + 0.477041i \(0.158291\pi\)
−0.878881 + 0.477041i \(0.841709\pi\)
\(270\) 0 0
\(271\) −215.163 −0.793958 −0.396979 0.917828i \(-0.629941\pi\)
−0.396979 + 0.917828i \(0.629941\pi\)
\(272\) 15.3358 15.3358i 0.0563815 0.0563815i
\(273\) 0 0
\(274\) 215.661i 0.787083i
\(275\) 39.6991 72.7941i 0.144360 0.264706i
\(276\) 0 0
\(277\) 73.9418 73.9418i 0.266938 0.266938i −0.560927 0.827865i \(-0.689555\pi\)
0.827865 + 0.560927i \(0.189555\pi\)
\(278\) −358.301 358.301i −1.28885 1.28885i
\(279\) 0 0
\(280\) 91.7880 + 154.608i 0.327814 + 0.552171i
\(281\) −190.836 −0.679133 −0.339566 0.940582i \(-0.610280\pi\)
−0.339566 + 0.940582i \(0.610280\pi\)
\(282\) 0 0
\(283\) −87.1090 87.1090i −0.307806 0.307806i 0.536252 0.844058i \(-0.319840\pi\)
−0.844058 + 0.536252i \(0.819840\pi\)
\(284\) 424.503i 1.49473i
\(285\) 0 0
\(286\) 115.771 0.404795
\(287\) 202.587 202.587i 0.705879 0.705879i
\(288\) 0 0
\(289\) 496.179i 1.71688i
\(290\) −56.5360 + 221.749i −0.194952 + 0.764650i
\(291\) 0 0
\(292\) 595.756 595.756i 2.04026 2.04026i
\(293\) 317.484 + 317.484i 1.08356 + 1.08356i 0.996174 + 0.0873871i \(0.0278517\pi\)
0.0873871 + 0.996174i \(0.472148\pi\)
\(294\) 0 0
\(295\) 15.9703 9.48129i 0.0541367 0.0321400i
\(296\) −30.9717 −0.104634
\(297\) 0 0
\(298\) −209.596 209.596i −0.703343 0.703343i
\(299\) 179.741i 0.601140i
\(300\) 0 0
\(301\) 67.8166 0.225304
\(302\) −407.302 + 407.302i −1.34868 + 1.34868i
\(303\) 0 0
\(304\) 13.5367i 0.0445286i
\(305\) 39.1110 + 65.8787i 0.128233 + 0.215996i
\(306\) 0 0
\(307\) −263.140 + 263.140i −0.857132 + 0.857132i −0.990999 0.133867i \(-0.957261\pi\)
0.133867 + 0.990999i \(0.457261\pi\)
\(308\) −70.0662 70.0662i −0.227488 0.227488i
\(309\) 0 0
\(310\) −697.793 177.906i −2.25095 0.573891i
\(311\) −301.613 −0.969816 −0.484908 0.874565i \(-0.661147\pi\)
−0.484908 + 0.874565i \(0.661147\pi\)
\(312\) 0 0
\(313\) 98.0189 + 98.0189i 0.313159 + 0.313159i 0.846132 0.532973i \(-0.178925\pi\)
−0.532973 + 0.846132i \(0.678925\pi\)
\(314\) 388.971i 1.23876i
\(315\) 0 0
\(316\) −364.941 −1.15488
\(317\) −232.617 + 232.617i −0.733806 + 0.733806i −0.971372 0.237565i \(-0.923651\pi\)
0.237565 + 0.971372i \(0.423651\pi\)
\(318\) 0 0
\(319\) 47.1047i 0.147664i
\(320\) −447.145 + 265.462i −1.39733 + 0.829569i
\(321\) 0 0
\(322\) 176.932 176.932i 0.549479 0.549479i
\(323\) −346.535 346.535i −1.07286 1.07286i
\(324\) 0 0
\(325\) −259.789 + 76.4291i −0.799352 + 0.235166i
\(326\) −158.664 −0.486701
\(327\) 0 0
\(328\) −332.713 332.713i −1.01437 1.01437i
\(329\) 388.396i 1.18053i
\(330\) 0 0
\(331\) 124.210 0.375256 0.187628 0.982240i \(-0.439920\pi\)
0.187628 + 0.982240i \(0.439920\pi\)
\(332\) −289.542 + 289.542i −0.872113 + 0.872113i
\(333\) 0 0
\(334\) 39.8241i 0.119234i
\(335\) 162.172 + 41.3466i 0.484095 + 0.123423i
\(336\) 0 0
\(337\) 248.427 248.427i 0.737171 0.737171i −0.234858 0.972030i \(-0.575463\pi\)
0.972030 + 0.234858i \(0.0754626\pi\)
\(338\) 117.737 + 117.737i 0.348333 + 0.348333i
\(339\) 0 0
\(340\) −220.997 + 866.808i −0.649992 + 2.54943i
\(341\) 148.228 0.434686
\(342\) 0 0
\(343\) −251.811 251.811i −0.734144 0.734144i
\(344\) 111.376i 0.323768i
\(345\) 0 0
\(346\) 185.724 0.536776
\(347\) −194.711 + 194.711i −0.561127 + 0.561127i −0.929628 0.368501i \(-0.879871\pi\)
0.368501 + 0.929628i \(0.379871\pi\)
\(348\) 0 0
\(349\) 23.5545i 0.0674914i −0.999430 0.0337457i \(-0.989256\pi\)
0.999430 0.0337457i \(-0.0107436\pi\)
\(350\) 330.965 + 180.495i 0.945613 + 0.515700i
\(351\) 0 0
\(352\) 77.9406 77.9406i 0.221422 0.221422i
\(353\) 60.4688 + 60.4688i 0.171300 + 0.171300i 0.787550 0.616251i \(-0.211349\pi\)
−0.616251 + 0.787550i \(0.711349\pi\)
\(354\) 0 0
\(355\) 169.707 + 285.855i 0.478047 + 0.805224i
\(356\) 733.643 2.06080
\(357\) 0 0
\(358\) 682.578 + 682.578i 1.90664 + 1.90664i
\(359\) 502.684i 1.40024i −0.714028 0.700118i \(-0.753131\pi\)
0.714028 0.700118i \(-0.246869\pi\)
\(360\) 0 0
\(361\) 55.1177 0.152681
\(362\) 464.945 464.945i 1.28438 1.28438i
\(363\) 0 0
\(364\) 323.619i 0.889063i
\(365\) 163.004 639.344i 0.446587 1.75163i
\(366\) 0 0
\(367\) −402.334 + 402.334i −1.09628 + 1.09628i −0.101437 + 0.994842i \(0.532344\pi\)
−0.994842 + 0.101437i \(0.967656\pi\)
\(368\) 9.08157 + 9.08157i 0.0246782 + 0.0246782i
\(369\) 0 0
\(370\) −55.8381 + 33.1500i −0.150914 + 0.0895947i
\(371\) −301.680 −0.813153
\(372\) 0 0
\(373\) −129.594 129.594i −0.347437 0.347437i 0.511717 0.859154i \(-0.329010\pi\)
−0.859154 + 0.511717i \(0.829010\pi\)
\(374\) 299.487i 0.800769i
\(375\) 0 0
\(376\) −637.869 −1.69646
\(377\) −108.783 + 108.783i −0.288548 + 0.288548i
\(378\) 0 0
\(379\) 308.983i 0.815260i −0.913147 0.407630i \(-0.866355\pi\)
0.913147 0.407630i \(-0.133645\pi\)
\(380\) 285.025 + 480.097i 0.750066 + 1.26341i
\(381\) 0 0
\(382\) 155.305 155.305i 0.406556 0.406556i
\(383\) 137.024 + 137.024i 0.357765 + 0.357765i 0.862989 0.505223i \(-0.168590\pi\)
−0.505223 + 0.862989i \(0.668590\pi\)
\(384\) 0 0
\(385\) −75.1925 19.1707i −0.195305 0.0497941i
\(386\) −256.780 −0.665232
\(387\) 0 0
\(388\) 203.832 + 203.832i 0.525339 + 0.525339i
\(389\) 219.114i 0.563275i 0.959521 + 0.281637i \(0.0908775\pi\)
−0.959521 + 0.281637i \(0.909122\pi\)
\(390\) 0 0
\(391\) 464.970 1.18918
\(392\) −147.284 + 147.284i −0.375726 + 0.375726i
\(393\) 0 0
\(394\) 279.336i 0.708975i
\(395\) −245.747 + 145.895i −0.622143 + 0.369355i
\(396\) 0 0
\(397\) 447.147 447.147i 1.12631 1.12631i 0.135542 0.990772i \(-0.456722\pi\)
0.990772 0.135542i \(-0.0432777\pi\)
\(398\) −664.855 664.855i −1.67049 1.67049i
\(399\) 0 0
\(400\) −9.26445 + 16.9878i −0.0231611 + 0.0424694i
\(401\) 697.196 1.73864 0.869321 0.494247i \(-0.164556\pi\)
0.869321 + 0.494247i \(0.164556\pi\)
\(402\) 0 0
\(403\) −342.315 342.315i −0.849416 0.849416i
\(404\) 698.412i 1.72874i
\(405\) 0 0
\(406\) 214.166 0.527501
\(407\) 9.45161 9.45161i 0.0232226 0.0232226i
\(408\) 0 0
\(409\) 37.7115i 0.0922043i 0.998937 + 0.0461021i \(0.0146800\pi\)
−0.998937 + 0.0461021i \(0.985320\pi\)
\(410\) −955.953 243.725i −2.33159 0.594452i
\(411\) 0 0
\(412\) −183.511 + 183.511i −0.445415 + 0.445415i
\(413\) −12.2906 12.2906i −0.0297594 0.0297594i
\(414\) 0 0
\(415\) −79.2212 + 310.726i −0.190894 + 0.748736i
\(416\) −359.989 −0.865357
\(417\) 0 0
\(418\) −132.177 132.177i −0.316213 0.316213i
\(419\) 486.001i 1.15991i −0.814650 0.579953i \(-0.803071\pi\)
0.814650 0.579953i \(-0.196929\pi\)
\(420\) 0 0
\(421\) −388.904 −0.923762 −0.461881 0.886942i \(-0.652825\pi\)
−0.461881 + 0.886942i \(0.652825\pi\)
\(422\) 213.916 213.916i 0.506909 0.506909i
\(423\) 0 0
\(424\) 495.453i 1.16852i
\(425\) 197.714 + 672.046i 0.465208 + 1.58129i
\(426\) 0 0
\(427\) 50.6997 50.6997i 0.118735 0.118735i
\(428\) −341.191 341.191i −0.797175 0.797175i
\(429\) 0 0
\(430\) −119.210 200.797i −0.277232 0.466971i
\(431\) −504.929 −1.17153 −0.585764 0.810482i \(-0.699205\pi\)
−0.585764 + 0.810482i \(0.699205\pi\)
\(432\) 0 0
\(433\) 150.370 + 150.370i 0.347274 + 0.347274i 0.859093 0.511819i \(-0.171028\pi\)
−0.511819 + 0.859093i \(0.671028\pi\)
\(434\) 673.931i 1.55284i
\(435\) 0 0
\(436\) 621.985 1.42657
\(437\) 205.212 205.212i 0.469592 0.469592i
\(438\) 0 0
\(439\) 210.919i 0.480454i 0.970717 + 0.240227i \(0.0772219\pi\)
−0.970717 + 0.240227i \(0.922778\pi\)
\(440\) −31.4844 + 123.490i −0.0715555 + 0.280659i
\(441\) 0 0
\(442\) −691.630 + 691.630i −1.56477 + 1.56477i
\(443\) 442.849 + 442.849i 0.999660 + 0.999660i 1.00000 0.000339697i \(-0.000108129\pi\)
−0.000339697 1.00000i \(0.500108\pi\)
\(444\) 0 0
\(445\) 494.026 293.294i 1.11017 0.659088i
\(446\) 720.463 1.61539
\(447\) 0 0
\(448\) 344.119 + 344.119i 0.768123 + 0.768123i
\(449\) 641.685i 1.42914i −0.699563 0.714571i \(-0.746622\pi\)
0.699563 0.714571i \(-0.253378\pi\)
\(450\) 0 0
\(451\) 203.067 0.450260
\(452\) 698.591 698.591i 1.54556 1.54556i
\(453\) 0 0
\(454\) 724.243i 1.59525i
\(455\) 129.376 + 217.921i 0.284342 + 0.478946i
\(456\) 0 0
\(457\) −103.709 + 103.709i −0.226934 + 0.226934i −0.811411 0.584477i \(-0.801300\pi\)
0.584477 + 0.811411i \(0.301300\pi\)
\(458\) −99.4474 99.4474i −0.217134 0.217134i
\(459\) 0 0
\(460\) −513.309 130.871i −1.11589 0.284502i
\(461\) 800.040 1.73544 0.867722 0.497050i \(-0.165583\pi\)
0.867722 + 0.497050i \(0.165583\pi\)
\(462\) 0 0
\(463\) 252.447 + 252.447i 0.545242 + 0.545242i 0.925061 0.379819i \(-0.124014\pi\)
−0.379819 + 0.925061i \(0.624014\pi\)
\(464\) 10.9927i 0.0236911i
\(465\) 0 0
\(466\) 1056.10 2.26631
\(467\) −80.1036 + 80.1036i −0.171528 + 0.171528i −0.787650 0.616122i \(-0.788703\pi\)
0.616122 + 0.787650i \(0.288703\pi\)
\(468\) 0 0
\(469\) 156.626i 0.333957i
\(470\) −1150.00 + 682.733i −2.44680 + 1.45262i
\(471\) 0 0
\(472\) −20.1851 + 20.1851i −0.0427651 + 0.0427651i
\(473\) 33.9886 + 33.9886i 0.0718576 + 0.0718576i
\(474\) 0 0
\(475\) 383.864 + 209.344i 0.808134 + 0.440725i
\(476\) 837.166 1.75875
\(477\) 0 0
\(478\) 464.509 + 464.509i 0.971776 + 0.971776i
\(479\) 411.116i 0.858280i −0.903238 0.429140i \(-0.858817\pi\)
0.903238 0.429140i \(-0.141183\pi\)
\(480\) 0 0
\(481\) −43.6547 −0.0907582
\(482\) −220.729 + 220.729i −0.457944 + 0.457944i
\(483\) 0 0
\(484\) 70.2322i 0.145108i
\(485\) 218.745 + 55.7702i 0.451020 + 0.114990i
\(486\) 0 0
\(487\) −212.163 + 212.163i −0.435652 + 0.435652i −0.890546 0.454894i \(-0.849677\pi\)
0.454894 + 0.890546i \(0.349677\pi\)
\(488\) −83.2650 83.2650i −0.170625 0.170625i
\(489\) 0 0
\(490\) −107.892 + 423.179i −0.220187 + 0.863631i
\(491\) −113.699 −0.231566 −0.115783 0.993275i \(-0.536938\pi\)
−0.115783 + 0.993275i \(0.536938\pi\)
\(492\) 0 0
\(493\) 281.409 + 281.409i 0.570809 + 0.570809i
\(494\) 610.495i 1.23582i
\(495\) 0 0
\(496\) −34.5915 −0.0697410
\(497\) 219.991 219.991i 0.442639 0.442639i
\(498\) 0 0
\(499\) 343.023i 0.687421i −0.939076 0.343711i \(-0.888316\pi\)
0.939076 0.343711i \(-0.111684\pi\)
\(500\) −29.1133 797.562i −0.0582265 1.59512i
\(501\) 0 0
\(502\) −377.473 + 377.473i −0.751939 + 0.751939i
\(503\) 625.342 + 625.342i 1.24323 + 1.24323i 0.958655 + 0.284571i \(0.0918510\pi\)
0.284571 + 0.958655i \(0.408149\pi\)
\(504\) 0 0
\(505\) 279.209 + 470.301i 0.552890 + 0.931290i
\(506\) 177.351 0.350497
\(507\) 0 0
\(508\) 25.1975 + 25.1975i 0.0496014 + 0.0496014i
\(509\) 106.269i 0.208780i 0.994536 + 0.104390i \(0.0332890\pi\)
−0.994536 + 0.104390i \(0.966711\pi\)
\(510\) 0 0
\(511\) −617.481 −1.20838
\(512\) −35.0124 + 35.0124i −0.0683837 + 0.0683837i
\(513\) 0 0
\(514\) 768.029i 1.49422i
\(515\) −50.2103 + 196.937i −0.0974957 + 0.382403i
\(516\) 0 0
\(517\) 194.658 194.658i 0.376515 0.376515i
\(518\) 42.9725 + 42.9725i 0.0829585 + 0.0829585i
\(519\) 0 0
\(520\) 357.895 212.476i 0.688259 0.408607i
\(521\) −483.272 −0.927586 −0.463793 0.885944i \(-0.653512\pi\)
−0.463793 + 0.885944i \(0.653512\pi\)
\(522\) 0 0
\(523\) −224.917 224.917i −0.430052 0.430052i 0.458594 0.888646i \(-0.348353\pi\)
−0.888646 + 0.458594i \(0.848353\pi\)
\(524\) 1056.26i 2.01576i
\(525\) 0 0
\(526\) −231.468 −0.440052
\(527\) −885.530 + 885.530i −1.68032 + 1.68032i
\(528\) 0 0
\(529\) 253.653i 0.479495i
\(530\) 530.301 + 893.241i 1.00057 + 1.68536i
\(531\) 0 0
\(532\) 369.479 369.479i 0.694509 0.694509i
\(533\) −468.960 468.960i −0.879849 0.879849i
\(534\) 0 0
\(535\) −366.154 93.3530i −0.684400 0.174492i
\(536\) −257.229 −0.479906
\(537\) 0 0
\(538\) −584.818 584.818i −1.08702 1.08702i
\(539\) 89.8934i 0.166778i
\(540\) 0 0
\(541\) 507.591 0.938246 0.469123 0.883133i \(-0.344570\pi\)
0.469123 + 0.883133i \(0.344570\pi\)
\(542\) 490.286 490.286i 0.904587 0.904587i
\(543\) 0 0
\(544\) 931.251i 1.71186i
\(545\) 418.837 248.656i 0.768507 0.456249i
\(546\) 0 0
\(547\) −224.439 + 224.439i −0.410309 + 0.410309i −0.881846 0.471537i \(-0.843699\pi\)
0.471537 + 0.881846i \(0.343699\pi\)
\(548\) 302.136 + 302.136i 0.551342 + 0.551342i
\(549\) 0 0
\(550\) 75.4130 + 256.336i 0.137115 + 0.466065i
\(551\) 248.396 0.450810
\(552\) 0 0
\(553\) 189.125 + 189.125i 0.341997 + 0.341997i
\(554\) 336.979i 0.608265i
\(555\) 0 0
\(556\) 1003.94 1.80565
\(557\) −40.3442 + 40.3442i −0.0724312 + 0.0724312i −0.742394 0.669963i \(-0.766310\pi\)
0.669963 + 0.742394i \(0.266310\pi\)
\(558\) 0 0
\(559\) 156.985i 0.280832i
\(560\) 17.5475 + 4.47382i 0.0313347 + 0.00798896i
\(561\) 0 0
\(562\) 434.854 434.854i 0.773762 0.773762i
\(563\) 75.8838 + 75.8838i 0.134785 + 0.134785i 0.771280 0.636496i \(-0.219617\pi\)
−0.636496 + 0.771280i \(0.719617\pi\)
\(564\) 0 0
\(565\) 191.141 749.703i 0.338302 1.32691i
\(566\) 396.987 0.701390
\(567\) 0 0
\(568\) −361.295 361.295i −0.636084 0.636084i
\(569\) 940.148i 1.65228i −0.563464 0.826141i \(-0.690532\pi\)
0.563464 0.826141i \(-0.309468\pi\)
\(570\) 0 0
\(571\) −77.9393 −0.136496 −0.0682481 0.997668i \(-0.521741\pi\)
−0.0682481 + 0.997668i \(0.521741\pi\)
\(572\) −162.193 + 162.193i −0.283554 + 0.283554i
\(573\) 0 0
\(574\) 923.263i 1.60847i
\(575\) −397.974 + 117.083i −0.692129 + 0.203622i
\(576\) 0 0
\(577\) −500.861 + 500.861i −0.868043 + 0.868043i −0.992256 0.124213i \(-0.960359\pi\)
0.124213 + 0.992256i \(0.460359\pi\)
\(578\) 1130.63 + 1130.63i 1.95611 + 1.95611i
\(579\) 0 0
\(580\) −231.459 389.870i −0.399067 0.672190i
\(581\) 300.100 0.516523
\(582\) 0 0
\(583\) −151.197 151.197i −0.259343 0.259343i
\(584\) 1014.10i 1.73647i
\(585\) 0 0
\(586\) −1446.89 −2.46909
\(587\) 101.416 101.416i 0.172771 0.172771i −0.615425 0.788196i \(-0.711016\pi\)
0.788196 + 0.615425i \(0.211016\pi\)
\(588\) 0 0
\(589\) 781.648i 1.32708i
\(590\) −14.7864 + 57.9960i −0.0250617 + 0.0982984i
\(591\) 0 0
\(592\) −2.20569 + 2.20569i −0.00372583 + 0.00372583i
\(593\) −597.297 597.297i −1.00725 1.00725i −0.999974 0.00727231i \(-0.997685\pi\)
−0.00727231 0.999974i \(-0.502315\pi\)
\(594\) 0 0
\(595\) 563.736 334.680i 0.947456 0.562487i
\(596\) 587.278 0.985366
\(597\) 0 0
\(598\) −409.572 409.572i −0.684902 0.684902i
\(599\) 347.771i 0.580585i 0.956938 + 0.290293i \(0.0937527\pi\)
−0.956938 + 0.290293i \(0.906247\pi\)
\(600\) 0 0
\(601\) −192.174 −0.319757 −0.159878 0.987137i \(-0.551110\pi\)
−0.159878 + 0.987137i \(0.551110\pi\)
\(602\) −154.532 + 154.532i −0.256698 + 0.256698i
\(603\) 0 0
\(604\) 1141.24i 1.88947i
\(605\) −28.0773 47.2934i −0.0464087 0.0781709i
\(606\) 0 0
\(607\) −74.3868 + 74.3868i −0.122548 + 0.122548i −0.765721 0.643173i \(-0.777618\pi\)
0.643173 + 0.765721i \(0.277618\pi\)
\(608\) 411.002 + 411.002i 0.675991 + 0.675991i
\(609\) 0 0
\(610\) −239.238 60.9950i −0.392193 0.0999918i
\(611\) −899.079 −1.47149
\(612\) 0 0
\(613\) 599.202 + 599.202i 0.977491 + 0.977491i 0.999752 0.0222612i \(-0.00708655\pi\)
−0.0222612 + 0.999752i \(0.507087\pi\)
\(614\) 1199.22i 1.95313i
\(615\) 0 0
\(616\) 119.267 0.193615
\(617\) 95.9908 95.9908i 0.155577 0.155577i −0.625027 0.780603i \(-0.714912\pi\)
0.780603 + 0.625027i \(0.214912\pi\)
\(618\) 0 0
\(619\) 349.611i 0.564800i 0.959297 + 0.282400i \(0.0911305\pi\)
−0.959297 + 0.282400i \(0.908869\pi\)
\(620\) 1226.83 728.349i 1.97876 1.17476i
\(621\) 0 0
\(622\) 687.279 687.279i 1.10495 1.10495i
\(623\) −380.198 380.198i −0.610270 0.610270i
\(624\) 0 0
\(625\) −338.452 525.429i −0.541523 0.840686i
\(626\) −446.707 −0.713590
\(627\) 0 0
\(628\) 544.938 + 544.938i 0.867736 + 0.867736i
\(629\) 112.930i 0.179539i
\(630\) 0 0
\(631\) 249.068 0.394720 0.197360 0.980331i \(-0.436763\pi\)
0.197360 + 0.980331i \(0.436763\pi\)
\(632\) 310.602 310.602i 0.491460 0.491460i
\(633\) 0 0
\(634\) 1060.12i 1.67211i
\(635\) 27.0411 + 6.89426i 0.0425843 + 0.0108571i
\(636\) 0 0
\(637\) −207.598 + 207.598i −0.325900 + 0.325900i
\(638\) 107.337 + 107.337i 0.168239 + 0.168239i
\(639\) 0 0
\(640\) 249.787 979.727i 0.390292 1.53082i
\(641\) −1112.98 −1.73632 −0.868159 0.496287i \(-0.834696\pi\)
−0.868159 + 0.496287i \(0.834696\pi\)
\(642\) 0 0
\(643\) −396.093 396.093i −0.616008 0.616008i 0.328497 0.944505i \(-0.393458\pi\)
−0.944505 + 0.328497i \(0.893458\pi\)
\(644\) 495.755i 0.769806i
\(645\) 0 0
\(646\) 1579.28 2.44471
\(647\) −190.770 + 190.770i −0.294854 + 0.294854i −0.838994 0.544140i \(-0.816856\pi\)
0.544140 + 0.838994i \(0.316856\pi\)
\(648\) 0 0
\(649\) 12.3198i 0.0189827i
\(650\) 417.819 766.134i 0.642799 1.17867i
\(651\) 0 0
\(652\) 222.285 222.285i 0.340928 0.340928i
\(653\) −41.7823 41.7823i −0.0639851 0.0639851i 0.674390 0.738375i \(-0.264407\pi\)
−0.738375 + 0.674390i \(0.764407\pi\)
\(654\) 0 0
\(655\) −422.268 711.270i −0.644684 1.08591i
\(656\) −47.3892 −0.0722397
\(657\) 0 0
\(658\) 885.029 + 885.029i 1.34503 + 1.34503i
\(659\) 690.184i 1.04732i −0.851927 0.523660i \(-0.824566\pi\)
0.851927 0.523660i \(-0.175434\pi\)
\(660\) 0 0
\(661\) −658.583 −0.996344 −0.498172 0.867078i \(-0.665995\pi\)
−0.498172 + 0.867078i \(0.665995\pi\)
\(662\) −283.034 + 283.034i −0.427544 + 0.427544i
\(663\) 0 0
\(664\) 492.859i 0.742258i
\(665\) 101.093 396.511i 0.152019 0.596257i
\(666\) 0 0
\(667\) −166.645 + 166.645i −0.249843 + 0.249843i
\(668\) −55.7926 55.7926i −0.0835219 0.0835219i
\(669\) 0 0
\(670\) −463.753 + 275.322i −0.692168 + 0.410928i
\(671\) 50.8198 0.0757375
\(672\) 0 0
\(673\) −901.911 901.911i −1.34014 1.34014i −0.895920 0.444216i \(-0.853482\pi\)
−0.444216 0.895920i \(-0.646518\pi\)
\(674\) 1132.17i 1.67978i
\(675\) 0 0
\(676\) −329.893 −0.488007
\(677\) 485.397 485.397i 0.716982 0.716982i −0.251004 0.967986i \(-0.580761\pi\)
0.967986 + 0.251004i \(0.0807608\pi\)
\(678\) 0 0
\(679\) 211.264i 0.311141i
\(680\) −549.651 925.833i −0.808310 1.36152i
\(681\) 0 0
\(682\) −337.764 + 337.764i −0.495255 + 0.495255i
\(683\) −713.724 713.724i −1.04498 1.04498i −0.998939 0.0460448i \(-0.985338\pi\)
−0.0460448 0.998939i \(-0.514662\pi\)
\(684\) 0 0
\(685\) 324.241 + 82.6670i 0.473345 + 0.120682i
\(686\) 1147.59 1.67288
\(687\) 0 0
\(688\) −7.93183 7.93183i −0.0115288 0.0115288i
\(689\) 698.344i 1.01356i
\(690\) 0 0
\(691\) −1319.75 −1.90991 −0.954954 0.296754i \(-0.904096\pi\)
−0.954954 + 0.296754i \(0.904096\pi\)
\(692\) −260.195 + 260.195i −0.376005 + 0.376005i
\(693\) 0 0
\(694\) 887.368i 1.27863i
\(695\) 676.041 401.353i 0.972721 0.577487i
\(696\) 0 0
\(697\) −1213.15 + 1213.15i −1.74053 + 1.74053i
\(698\) 53.6731 + 53.6731i 0.0768955 + 0.0768955i
\(699\) 0 0
\(700\) −716.543 + 210.804i −1.02363 + 0.301149i
\(701\) 1276.93 1.82159 0.910795 0.412859i \(-0.135470\pi\)
0.910795 + 0.412859i \(0.135470\pi\)
\(702\) 0 0
\(703\) 49.8410 + 49.8410i 0.0708975 + 0.0708975i
\(704\) 344.935i 0.489964i
\(705\) 0 0
\(706\) −275.578 −0.390337
\(707\) 361.940 361.940i 0.511938 0.511938i
\(708\) 0 0
\(709\) 746.781i 1.05329i 0.850086 + 0.526644i \(0.176550\pi\)
−0.850086 + 0.526644i \(0.823450\pi\)
\(710\) −1038.08 264.664i −1.46208 0.372766i
\(711\) 0 0
\(712\) −624.405 + 624.405i −0.876974 + 0.876974i
\(713\) −524.396 524.396i −0.735478 0.735478i
\(714\) 0 0
\(715\) −44.3774 + 174.060i −0.0620663 + 0.243440i
\(716\) −1912.55 −2.67116
\(717\) 0 0
\(718\) 1145.46 + 1145.46i 1.59534 + 1.59534i
\(719\) 135.949i 0.189080i 0.995521 + 0.0945402i \(0.0301381\pi\)
−0.995521 + 0.0945402i \(0.969862\pi\)
\(720\) 0 0
\(721\) 190.203 0.263804
\(722\) −125.596 + 125.596i −0.173955 + 0.173955i
\(723\) 0 0
\(724\) 1302.75i 1.79938i
\(725\) −311.723 170.001i −0.429962 0.234484i
\(726\) 0 0
\(727\) 192.127 192.127i 0.264273 0.264273i −0.562514 0.826788i \(-0.690166\pi\)
0.826788 + 0.562514i \(0.190166\pi\)
\(728\) −275.433 275.433i −0.378342 0.378342i
\(729\) 0 0
\(730\) 1085.43 + 1828.29i 1.48688 + 2.50451i
\(731\) −406.103 −0.555545
\(732\) 0 0
\(733\) −288.677 288.677i −0.393830 0.393830i 0.482220 0.876050i \(-0.339830\pi\)
−0.876050 + 0.482220i \(0.839830\pi\)
\(734\) 1833.58i 2.49807i
\(735\) 0 0
\(736\) −551.471 −0.749281
\(737\) 78.4985 78.4985i 0.106511 0.106511i
\(738\) 0 0
\(739\) 135.495i 0.183349i −0.995789 0.0916746i \(-0.970778\pi\)
0.995789 0.0916746i \(-0.0292220\pi\)
\(740\) 31.7854 124.670i 0.0429532 0.168473i
\(741\) 0 0
\(742\) 687.431 687.431i 0.926457 0.926457i
\(743\) 350.021 + 350.021i 0.471091 + 0.471091i 0.902268 0.431177i \(-0.141901\pi\)
−0.431177 + 0.902268i \(0.641901\pi\)
\(744\) 0 0
\(745\) 395.465 234.781i 0.530826 0.315142i
\(746\) 590.605 0.791696
\(747\) 0 0
\(748\) 419.575 + 419.575i 0.560929 + 0.560929i
\(749\) 353.633i 0.472140i
\(750\) 0 0
\(751\) 1143.86 1.52311 0.761556 0.648099i \(-0.224436\pi\)
0.761556 + 0.648099i \(0.224436\pi\)
\(752\) −45.4268 + 45.4268i −0.0604080 + 0.0604080i
\(753\) 0 0
\(754\) 495.761i 0.657509i
\(755\) −456.242 768.495i −0.604294 1.01787i
\(756\) 0 0
\(757\) −99.4207 + 99.4207i −0.131335 + 0.131335i −0.769719 0.638383i \(-0.779603\pi\)
0.638383 + 0.769719i \(0.279603\pi\)
\(758\) 704.074 + 704.074i 0.928857 + 0.928857i
\(759\) 0 0
\(760\) −651.197 166.026i −0.856838 0.218456i
\(761\) 782.950 1.02884 0.514421 0.857537i \(-0.328007\pi\)
0.514421 + 0.857537i \(0.328007\pi\)
\(762\) 0 0
\(763\) −322.333 322.333i −0.422455 0.422455i
\(764\) 435.156i 0.569576i
\(765\) 0 0
\(766\) −624.467 −0.815231
\(767\) −28.4510 + 28.4510i −0.0370939 + 0.0370939i
\(768\) 0 0
\(769\) 1060.55i 1.37913i −0.724224 0.689565i \(-0.757802\pi\)
0.724224 0.689565i \(-0.242198\pi\)
\(770\) 215.023 127.656i 0.279251 0.165786i
\(771\) 0 0
\(772\) 359.742 359.742i 0.465987 0.465987i
\(773\) 599.585 + 599.585i 0.775660 + 0.775660i 0.979090 0.203429i \(-0.0652087\pi\)
−0.203429 + 0.979090i \(0.565209\pi\)
\(774\) 0 0
\(775\) 534.956 980.921i 0.690265 1.26570i
\(776\) −346.963 −0.447117
\(777\) 0 0
\(778\) −499.290 499.290i −0.641761 0.641761i
\(779\) 1070.83i 1.37462i
\(780\) 0 0
\(781\) 220.513 0.282347
\(782\) −1059.52 + 1059.52i −1.35488 + 1.35488i
\(783\) 0 0
\(784\) 20.9782i 0.0267579i
\(785\) 584.808 + 149.100i 0.744979 + 0.189936i
\(786\) 0 0
\(787\) −10.9757 + 10.9757i −0.0139462 + 0.0139462i −0.714046 0.700099i \(-0.753139\pi\)
0.700099 + 0.714046i \(0.253139\pi\)
\(788\) 391.343 + 391.343i 0.496628 + 0.496628i
\(789\) 0 0
\(790\) 227.529 892.426i 0.288011 1.12965i
\(791\) −724.066 −0.915380
\(792\) 0 0
\(793\) −117.362 117.362i −0.147998 0.147998i
\(794\) 2037.81i 2.56651i
\(795\) 0 0
\(796\) 1862.89 2.34032
\(797\) −291.068 + 291.068i −0.365205 + 0.365205i −0.865725 0.500520i \(-0.833142\pi\)
0.500520 + 0.865725i \(0.333142\pi\)
\(798\) 0 0
\(799\) 2325.82i 2.91091i
\(800\) −234.495 797.071i −0.293119 0.996339i
\(801\) 0 0
\(802\) −1588.68 + 1588.68i −1.98090 + 1.98090i
\(803\) −309.472 309.472i −0.385395 0.385395i
\(804\) 0 0
\(805\) 198.192 + 333.835i 0.246201 + 0.414702i
\(806\) 1560.05 1.93555
\(807\) 0 0
\(808\) −594.420 594.420i −0.735669 0.735669i
\(809\) 934.080i 1.15461i 0.816528 + 0.577305i \(0.195896\pi\)
−0.816528 + 0.577305i \(0.804104\pi\)
\(810\) 0 0
\(811\) 247.443 0.305109 0.152554 0.988295i \(-0.451250\pi\)
0.152554 + 0.988295i \(0.451250\pi\)
\(812\) −300.041 + 300.041i −0.369508 + 0.369508i
\(813\) 0 0
\(814\) 43.0743i 0.0529169i
\(815\) 60.8192 238.548i 0.0746248 0.292697i
\(816\) 0 0
\(817\) −179.232 + 179.232i −0.219378 + 0.219378i
\(818\) −85.9325 85.9325i −0.105052 0.105052i
\(819\) 0 0
\(820\) 1680.72 997.814i 2.04966 1.21685i
\(821\) 958.912 1.16798 0.583990 0.811761i \(-0.301491\pi\)
0.583990 + 0.811761i \(0.301491\pi\)
\(822\) 0 0
\(823\) −841.533 841.533i −1.02252 1.02252i −0.999741 0.0227782i \(-0.992749\pi\)
−0.0227782 0.999741i \(-0.507251\pi\)
\(824\) 312.373i 0.379094i
\(825\) 0 0
\(826\) 56.0128 0.0678121
\(827\) −501.948 + 501.948i −0.606951 + 0.606951i −0.942148 0.335197i \(-0.891197\pi\)
0.335197 + 0.942148i \(0.391197\pi\)
\(828\) 0 0
\(829\) 219.411i 0.264670i −0.991205 0.132335i \(-0.957753\pi\)
0.991205 0.132335i \(-0.0422474\pi\)
\(830\) −527.524 888.563i −0.635571 1.07056i
\(831\) 0 0
\(832\) 796.585 796.585i 0.957434 0.957434i
\(833\) 537.033 + 537.033i 0.644697 + 0.644697i
\(834\) 0 0
\(835\) −59.8746 15.2654i −0.0717061 0.0182819i
\(836\) 370.354 0.443007
\(837\) 0 0
\(838\) 1107.44 + 1107.44i 1.32153 + 1.32153i
\(839\) 1101.77i 1.31320i 0.754241 + 0.656598i \(0.228005\pi\)
−0.754241 + 0.656598i \(0.771995\pi\)
\(840\) 0 0
\(841\) 639.286 0.760150
\(842\) 886.187 886.187i 1.05248 1.05248i
\(843\) 0 0
\(844\) 599.381i 0.710168i
\(845\) −222.145 + 131.884i −0.262894 + 0.156075i
\(846\) 0 0
\(847\) −36.3966 + 36.3966i −0.0429712 + 0.0429712i
\(848\) 35.2845 + 35.2845i 0.0416090 + 0.0416090i
\(849\) 0 0
\(850\) −1981.90 1080.85i −2.33165 1.27159i
\(851\) −66.8751 −0.0785841
\(852\) 0 0
\(853\) 1045.69 + 1045.69i 1.22589 + 1.22589i 0.965504 + 0.260387i \(0.0838501\pi\)
0.260387 + 0.965504i \(0.416150\pi\)
\(854\) 231.057i 0.270558i
\(855\) 0 0
\(856\) 580.777 0.678478
\(857\) 1006.72 1006.72i 1.17471 1.17471i 0.193632 0.981074i \(-0.437973\pi\)
0.981074 0.193632i \(-0.0620268\pi\)
\(858\) 0 0
\(859\) 1366.58i 1.59090i 0.606021 + 0.795448i \(0.292765\pi\)
−0.606021 + 0.795448i \(0.707235\pi\)
\(860\) 448.323 + 114.302i 0.521305 + 0.132910i
\(861\) 0 0
\(862\) 1150.57 1150.57i 1.33477 1.33477i
\(863\) −947.174 947.174i −1.09754 1.09754i −0.994698 0.102838i \(-0.967208\pi\)
−0.102838 0.994698i \(-0.532792\pi\)
\(864\) 0 0
\(865\) −71.1918 + 279.232i −0.0823027 + 0.322812i
\(866\) −685.288 −0.791325
\(867\) 0 0
\(868\) −944.161 944.161i −1.08774 1.08774i
\(869\) 189.573i 0.218150i
\(870\) 0 0
\(871\) −362.566 −0.416264
\(872\) −529.373 + 529.373i −0.607079 + 0.607079i
\(873\) 0 0
\(874\) 935.223i 1.07005i
\(875\) −398.235 + 428.410i −0.455126 + 0.489612i
\(876\) 0 0
\(877\) −87.0484 + 87.0484i −0.0992570 + 0.0992570i −0.754992 0.655735i \(-0.772359\pi\)
0.655735 + 0.754992i \(0.272359\pi\)
\(878\) −480.617 480.617i −0.547400 0.547400i
\(879\) 0 0
\(880\) 6.55231 + 11.0367i 0.00744580 + 0.0125417i
\(881\) −868.490 −0.985800 −0.492900 0.870086i \(-0.664063\pi\)
−0.492900 + 0.870086i \(0.664063\pi\)
\(882\) 0 0
\(883\) 608.328 + 608.328i 0.688934 + 0.688934i 0.961996 0.273063i \(-0.0880366\pi\)
−0.273063 + 0.961996i \(0.588037\pi\)
\(884\) 1937.92i 2.19221i
\(885\) 0 0
\(886\) −2018.22 −2.27790
\(887\) −495.738 + 495.738i −0.558892 + 0.558892i −0.928992 0.370100i \(-0.879324\pi\)
0.370100 + 0.928992i \(0.379324\pi\)
\(888\) 0 0
\(889\) 26.1163i 0.0293772i
\(890\) −457.402 + 1794.05i −0.513935 + 2.01578i
\(891\) 0 0
\(892\) −1009.35 + 1009.35i −1.13156 + 1.13156i
\(893\) 1026.49 + 1026.49i 1.14948 + 1.14948i
\(894\) 0 0
\(895\) −1287.89 + 764.595i −1.43898 + 0.854296i
\(896\) −946.224 −1.05605
\(897\) 0 0
\(898\) 1462.19 + 1462.19i 1.62828 + 1.62828i
\(899\) 634.749i 0.706061i
\(900\) 0 0
\(901\) 1806.54 2.00504
\(902\) −462.725 + 462.725i −0.512999 + 0.512999i
\(903\) 0 0
\(904\) 1189.14i 1.31543i
\(905\) 520.812 + 877.257i 0.575483 + 0.969345i
\(906\) 0 0
\(907\) 163.744 163.744i 0.180534 0.180534i −0.611055 0.791588i \(-0.709254\pi\)
0.791588 + 0.611055i \(0.209254\pi\)
\(908\) 1014.65 + 1014.65i 1.11745 + 1.11745i
\(909\) 0 0
\(910\) −791.376 201.766i −0.869644 0.221720i
\(911\) −1750.93 −1.92199 −0.960995 0.276566i \(-0.910804\pi\)
−0.960995 + 0.276566i \(0.910804\pi\)
\(912\) 0 0
\(913\) 150.405 + 150.405i 0.164738 + 0.164738i
\(914\) 472.638i 0.517109i
\(915\) 0 0
\(916\) 278.647 0.304200
\(917\) −547.388 + 547.388i −0.596933 + 0.596933i
\(918\) 0 0
\(919\) 1637.39i 1.78170i −0.454293 0.890852i \(-0.650108\pi\)
0.454293 0.890852i \(-0.349892\pi\)
\(920\) 548.263 325.494i 0.595938 0.353797i
\(921\) 0 0
\(922\) −1823.03 + 1823.03i −1.97726 + 1.97726i
\(923\) −509.247 509.247i −0.551731 0.551731i
\(924\) 0 0
\(925\) −28.4365 96.6583i −0.0307422 0.104495i
\(926\) −1150.49 −1.24243
\(927\) 0 0
\(928\) −333.761 333.761i −0.359656 0.359656i
\(929\) 1639.43i 1.76473i −0.470568 0.882364i \(-0.655951\pi\)
0.470568 0.882364i \(-0.344049\pi\)
\(930\) 0 0
\(931\) 474.033 0.509166
\(932\) −1479.57 + 1479.57i −1.58753 + 1.58753i
\(933\) 0 0
\(934\) 365.061i 0.390857i
\(935\) 450.273 + 114.799i 0.481575 + 0.122780i
\(936\) 0 0
\(937\) −141.600 + 141.600i −0.151121 + 0.151121i −0.778618 0.627498i \(-0.784079\pi\)
0.627498 + 0.778618i \(0.284079\pi\)
\(938\) 356.900 + 356.900i 0.380491 + 0.380491i
\(939\) 0 0
\(940\) 654.627 2567.61i 0.696412 2.73150i
\(941\) −1074.74 −1.14212 −0.571062 0.820907i \(-0.693469\pi\)
−0.571062 + 0.820907i \(0.693469\pi\)
\(942\) 0 0
\(943\) −718.405 718.405i −0.761829 0.761829i
\(944\) 2.87502i 0.00304558i
\(945\) 0 0
\(946\) −154.898 −0.163740
\(947\) 1127.43 1127.43i 1.19053 1.19053i 0.213609 0.976919i \(-0.431478\pi\)
0.976919 0.213609i \(-0.0685217\pi\)
\(948\) 0 0
\(949\) 1429.38i 1.50619i
\(950\) −1351.73 + 397.674i −1.42287 + 0.418604i
\(951\) 0 0
\(952\) −712.514 + 712.514i −0.748439 + 0.748439i
\(953\) −99.4706 99.4706i −0.104376 0.104376i 0.652990 0.757366i \(-0.273514\pi\)
−0.757366 + 0.652990i \(0.773514\pi\)
\(954\) 0 0
\(955\) 173.965 + 293.028i 0.182163 + 0.306836i
\(956\) −1301.53 −1.36144
\(957\) 0 0
\(958\) 936.801 + 936.801i 0.977871 + 0.977871i
\(959\) 313.153i 0.326541i
\(960\) 0 0
\(961\) 1036.41 1.07847
\(962\) 99.4750 99.4750i 0.103404 0.103404i
\(963\) 0 0
\(964\) 618.472i 0.641568i
\(965\) 98.4287 386.062i 0.101999 0.400065i
\(966\) 0 0
\(967\) 1260.15 1260.15i 1.30315 1.30315i 0.376896 0.926256i \(-0.376992\pi\)
0.926256 0.376896i \(-0.123008\pi\)
\(968\) 59.7748 + 59.7748i 0.0617508 + 0.0617508i
\(969\) 0 0
\(970\) −625.531 + 371.367i −0.644878 + 0.382852i
\(971\) −1148.23 −1.18252 −0.591261 0.806481i \(-0.701370\pi\)
−0.591261 + 0.806481i \(0.701370\pi\)
\(972\) 0 0
\(973\) −520.275 520.275i −0.534713 0.534713i
\(974\) 966.900i 0.992711i
\(975\) 0 0
\(976\) −11.8597 −0.0121513
\(977\) −145.709 + 145.709i −0.149139 + 0.149139i −0.777733 0.628594i \(-0.783631\pi\)
0.628594 + 0.777733i \(0.283631\pi\)
\(978\) 0 0
\(979\) 381.099i 0.389274i
\(980\) −441.710 744.018i −0.450725 0.759202i
\(981\) 0 0
\(982\) 259.083 259.083i 0.263832 0.263832i
\(983\) 562.675 + 562.675i 0.572406 + 0.572406i 0.932800 0.360394i \(-0.117358\pi\)
−0.360394 + 0.932800i \(0.617358\pi\)
\(984\) 0 0
\(985\) 419.975 + 107.075i 0.426371 + 0.108706i
\(986\) −1282.48 −1.30069
\(987\) 0 0
\(988\) −855.288 855.288i −0.865676 0.865676i
\(989\) 240.487i 0.243162i
\(990\) 0 0
\(991\) −1445.80 −1.45893 −0.729464 0.684019i \(-0.760231\pi\)
−0.729464 + 0.684019i \(0.760231\pi\)
\(992\) 1050.27 1050.27i 1.05874 1.05874i
\(993\) 0 0
\(994\) 1002.58i 1.00863i
\(995\) 1254.45 744.742i 1.26075 0.748484i
\(996\) 0 0
\(997\) 273.932 273.932i 0.274757 0.274757i −0.556255 0.831012i \(-0.687762\pi\)
0.831012 + 0.556255i \(0.187762\pi\)
\(998\) 781.639 + 781.639i 0.783206 + 0.783206i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.j.a.298.1 20
3.2 odd 2 55.3.f.a.23.10 yes 20
5.2 odd 4 inner 495.3.j.a.397.1 20
15.2 even 4 55.3.f.a.12.10 20
15.8 even 4 275.3.f.b.232.1 20
15.14 odd 2 275.3.f.b.243.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.f.a.12.10 20 15.2 even 4
55.3.f.a.23.10 yes 20 3.2 odd 2
275.3.f.b.232.1 20 15.8 even 4
275.3.f.b.243.1 20 15.14 odd 2
495.3.j.a.298.1 20 1.1 even 1 trivial
495.3.j.a.397.1 20 5.2 odd 4 inner