Properties

Label 55.4.g.b.31.6
Level $55$
Weight $4$
Character 55.31
Analytic conductor $3.245$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,4,Mod(16,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.16");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.g (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.24510505032\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 31.6
Character \(\chi\) \(=\) 55.31
Dual form 55.4.g.b.16.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50387 - 4.62843i) q^{2} +(4.25544 - 3.09176i) q^{3} +(-12.6886 - 9.21884i) q^{4} +(1.54508 + 4.75528i) q^{5} +(-7.91037 - 24.3456i) q^{6} +(4.59294 + 3.33697i) q^{7} +(-30.2534 + 21.9804i) q^{8} +(0.206327 - 0.635008i) q^{9} +O(q^{10})\) \(q+(1.50387 - 4.62843i) q^{2} +(4.25544 - 3.09176i) q^{3} +(-12.6886 - 9.21884i) q^{4} +(1.54508 + 4.75528i) q^{5} +(-7.91037 - 24.3456i) q^{6} +(4.59294 + 3.33697i) q^{7} +(-30.2534 + 21.9804i) q^{8} +(0.206327 - 0.635008i) q^{9} +24.3331 q^{10} +(33.8148 - 13.6951i) q^{11} -82.4981 q^{12} +(-24.4801 + 75.3419i) q^{13} +(22.3521 - 16.2398i) q^{14} +(21.2772 + 15.4588i) q^{15} +(17.4646 + 53.7504i) q^{16} +(-28.7566 - 88.5037i) q^{17} +(-2.62881 - 1.90994i) q^{18} +(6.75924 - 4.91087i) q^{19} +(24.2332 - 74.5820i) q^{20} +29.8621 q^{21} +(-12.5339 - 177.105i) q^{22} +25.5926 q^{23} +(-60.7835 + 187.072i) q^{24} +(-20.2254 + 14.6946i) q^{25} +(311.900 + 226.609i) q^{26} +(42.8014 + 131.729i) q^{27} +(-27.5152 - 84.6832i) q^{28} +(97.5933 + 70.9057i) q^{29} +(103.548 - 75.2320i) q^{30} +(50.9402 - 156.778i) q^{31} -24.1177 q^{32} +(101.555 - 162.826i) q^{33} -452.879 q^{34} +(-8.77174 + 26.9966i) q^{35} +(-8.47205 + 6.15530i) q^{36} +(89.4056 + 64.9570i) q^{37} +(-12.5646 - 38.6700i) q^{38} +(128.765 + 396.299i) q^{39} +(-151.267 - 109.902i) q^{40} +(-389.354 + 282.882i) q^{41} +(44.9087 - 138.215i) q^{42} -341.001 q^{43} +(-555.318 - 137.961i) q^{44} +3.33844 q^{45} +(38.4879 - 118.454i) q^{46} +(65.5726 - 47.6413i) q^{47} +(240.502 + 174.735i) q^{48} +(-96.0331 - 295.559i) q^{49} +(37.5967 + 115.711i) q^{50} +(-396.003 - 287.713i) q^{51} +(1005.18 - 730.309i) q^{52} +(-179.608 + 552.777i) q^{53} +674.067 q^{54} +(117.371 + 139.639i) q^{55} -212.300 q^{56} +(13.5803 - 41.7958i) q^{57} +(474.950 - 345.071i) q^{58} +(469.461 + 341.083i) q^{59} +(-127.467 - 392.302i) q^{60} +(-136.899 - 421.331i) q^{61} +(-649.029 - 471.547i) q^{62} +(3.06665 - 2.22805i) q^{63} +(-175.986 + 541.630i) q^{64} -396.096 q^{65} +(-600.904 - 714.909i) q^{66} +47.2746 q^{67} +(-451.019 + 1388.09i) q^{68} +(108.908 - 79.1260i) q^{69} +(111.761 + 81.1989i) q^{70} +(109.883 + 338.184i) q^{71} +(7.71564 + 23.7463i) q^{72} +(-401.808 - 291.930i) q^{73} +(435.103 - 316.121i) q^{74} +(-40.6358 + 125.064i) q^{75} -131.038 q^{76} +(201.010 + 49.9381i) q^{77} +2027.89 q^{78} +(-126.399 + 389.015i) q^{79} +(-228.614 + 166.098i) q^{80} +(603.997 + 438.830i) q^{81} +(723.765 + 2227.52i) q^{82} +(-363.087 - 1117.47i) q^{83} +(-378.909 - 275.294i) q^{84} +(376.429 - 273.491i) q^{85} +(-512.821 + 1578.30i) q^{86} +634.525 q^{87} +(-721.990 + 1157.59i) q^{88} +1148.29 q^{89} +(5.02057 - 15.4517i) q^{90} +(-363.849 + 264.352i) q^{91} +(-324.735 - 235.934i) q^{92} +(-267.946 - 824.653i) q^{93} +(-121.892 - 375.145i) q^{94} +(33.7962 + 24.5544i) q^{95} +(-102.631 + 74.5659i) q^{96} +(370.588 - 1140.55i) q^{97} -1512.40 q^{98} +(-1.71962 - 24.2984i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{2} + 4 q^{3} - 36 q^{4} - 30 q^{5} + 30 q^{6} + 81 q^{7} - 10 q^{8} - 48 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 6 q^{2} + 4 q^{3} - 36 q^{4} - 30 q^{5} + 30 q^{6} + 81 q^{7} - 10 q^{8} - 48 q^{9} - 70 q^{10} - 72 q^{11} + 10 q^{12} + 65 q^{13} - 47 q^{14} + 20 q^{15} - 60 q^{16} - 142 q^{17} + 283 q^{18} - 17 q^{19} - 55 q^{20} - 200 q^{21} + 87 q^{22} - 182 q^{23} + 70 q^{24} - 150 q^{25} + 736 q^{26} + 643 q^{27} - 52 q^{28} + 80 q^{29} - 210 q^{31} - 504 q^{32} + 993 q^{33} + 1046 q^{34} + 80 q^{35} - 2242 q^{36} + 560 q^{37} + 187 q^{38} - 1294 q^{39} - 50 q^{40} + 293 q^{41} - 2231 q^{42} - 3658 q^{43} + 1293 q^{44} + 1310 q^{45} - 57 q^{46} - 1824 q^{47} + 1977 q^{48} + 73 q^{49} + 150 q^{50} - 1769 q^{51} + 3342 q^{52} + 838 q^{53} + 2784 q^{54} + 290 q^{55} + 8652 q^{56} + 273 q^{57} - 3896 q^{58} + 1653 q^{59} - 875 q^{60} - 888 q^{61} - 2200 q^{62} + 3149 q^{63} - 4644 q^{64} - 2050 q^{65} - 4497 q^{66} + 3966 q^{67} - 3783 q^{68} - 3384 q^{69} - 235 q^{70} + 1664 q^{71} - 4264 q^{72} - 2210 q^{73} + 1552 q^{74} - 25 q^{75} + 3048 q^{76} - 1304 q^{77} + 10064 q^{78} + 12 q^{79} - 275 q^{80} + 5005 q^{81} + 4099 q^{82} + 1945 q^{83} - 7584 q^{84} + 1865 q^{85} - 5156 q^{86} - 3844 q^{87} + 619 q^{88} + 4568 q^{89} - 210 q^{90} - 4885 q^{91} + 3390 q^{92} + 2844 q^{93} - 8932 q^{94} - 85 q^{95} - 1249 q^{96} - 3255 q^{97} - 7778 q^{98} + 5980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50387 4.62843i 0.531698 1.63640i −0.218979 0.975730i \(-0.570273\pi\)
0.750677 0.660669i \(-0.229727\pi\)
\(3\) 4.25544 3.09176i 0.818959 0.595009i −0.0974551 0.995240i \(-0.531070\pi\)
0.916414 + 0.400231i \(0.131070\pi\)
\(4\) −12.6886 9.21884i −1.58608 1.15235i
\(5\) 1.54508 + 4.75528i 0.138197 + 0.425325i
\(6\) −7.91037 24.3456i −0.538232 1.65651i
\(7\) 4.59294 + 3.33697i 0.247996 + 0.180179i 0.704838 0.709368i \(-0.251020\pi\)
−0.456842 + 0.889548i \(0.651020\pi\)
\(8\) −30.2534 + 21.9804i −1.33702 + 0.971405i
\(9\) 0.206327 0.635008i 0.00764173 0.0235188i
\(10\) 24.3331 0.769481
\(11\) 33.8148 13.6951i 0.926869 0.375385i
\(12\) −82.4981 −1.98460
\(13\) −24.4801 + 75.3419i −0.522273 + 1.60739i 0.247373 + 0.968920i \(0.420433\pi\)
−0.769646 + 0.638471i \(0.779567\pi\)
\(14\) 22.3521 16.2398i 0.426704 0.310019i
\(15\) 21.2772 + 15.4588i 0.366250 + 0.266096i
\(16\) 17.4646 + 53.7504i 0.272884 + 0.839850i
\(17\) −28.7566 88.5037i −0.410264 1.26266i −0.916419 0.400221i \(-0.868933\pi\)
0.506154 0.862443i \(-0.331067\pi\)
\(18\) −2.62881 1.90994i −0.0344231 0.0250098i
\(19\) 6.75924 4.91087i 0.0816145 0.0592964i −0.546230 0.837635i \(-0.683937\pi\)
0.627844 + 0.778339i \(0.283937\pi\)
\(20\) 24.2332 74.5820i 0.270935 0.833852i
\(21\) 29.8621 0.310307
\(22\) −12.5339 177.105i −0.121466 1.71632i
\(23\) 25.5926 0.232018 0.116009 0.993248i \(-0.462990\pi\)
0.116009 + 0.993248i \(0.462990\pi\)
\(24\) −60.7835 + 187.072i −0.516974 + 1.59108i
\(25\) −20.2254 + 14.6946i −0.161803 + 0.117557i
\(26\) 311.900 + 226.609i 2.35264 + 1.70929i
\(27\) 42.8014 + 131.729i 0.305079 + 0.938936i
\(28\) −27.5152 84.6832i −0.185710 0.571558i
\(29\) 97.5933 + 70.9057i 0.624918 + 0.454029i 0.854636 0.519228i \(-0.173780\pi\)
−0.229718 + 0.973257i \(0.573780\pi\)
\(30\) 103.548 75.2320i 0.630173 0.457848i
\(31\) 50.9402 156.778i 0.295133 0.908327i −0.688043 0.725670i \(-0.741530\pi\)
0.983177 0.182657i \(-0.0584699\pi\)
\(32\) −24.1177 −0.133233
\(33\) 101.555 162.826i 0.535710 0.858920i
\(34\) −452.879 −2.28436
\(35\) −8.77174 + 26.9966i −0.0423627 + 0.130379i
\(36\) −8.47205 + 6.15530i −0.0392224 + 0.0284968i
\(37\) 89.4056 + 64.9570i 0.397248 + 0.288618i 0.768419 0.639947i \(-0.221044\pi\)
−0.371171 + 0.928565i \(0.621044\pi\)
\(38\) −12.5646 38.6700i −0.0536383 0.165082i
\(39\) 128.765 + 396.299i 0.528691 + 1.62714i
\(40\) −151.267 109.902i −0.597935 0.434426i
\(41\) −389.354 + 282.882i −1.48310 + 1.07753i −0.506553 + 0.862209i \(0.669081\pi\)
−0.976543 + 0.215324i \(0.930919\pi\)
\(42\) 44.9087 138.215i 0.164989 0.507785i
\(43\) −341.001 −1.20935 −0.604677 0.796471i \(-0.706698\pi\)
−0.604677 + 0.796471i \(0.706698\pi\)
\(44\) −555.318 137.961i −1.90267 0.472691i
\(45\) 3.33844 0.0110592
\(46\) 38.4879 118.454i 0.123364 0.379674i
\(47\) 65.5726 47.6413i 0.203505 0.147855i −0.481365 0.876520i \(-0.659859\pi\)
0.684870 + 0.728665i \(0.259859\pi\)
\(48\) 240.502 + 174.735i 0.723198 + 0.525434i
\(49\) −96.0331 295.559i −0.279980 0.861689i
\(50\) 37.5967 + 115.711i 0.106340 + 0.327280i
\(51\) −396.003 287.713i −1.08729 0.789959i
\(52\) 1005.18 730.309i 2.68065 1.94761i
\(53\) −179.608 + 552.777i −0.465492 + 1.43264i 0.392871 + 0.919594i \(0.371482\pi\)
−0.858363 + 0.513043i \(0.828518\pi\)
\(54\) 674.067 1.69868
\(55\) 117.371 + 139.639i 0.287751 + 0.342344i
\(56\) −212.300 −0.506603
\(57\) 13.5803 41.7958i 0.0315571 0.0971227i
\(58\) 474.950 345.071i 1.07524 0.781208i
\(59\) 469.461 + 341.083i 1.03591 + 0.752632i 0.969483 0.245160i \(-0.0788404\pi\)
0.0664259 + 0.997791i \(0.478840\pi\)
\(60\) −127.467 392.302i −0.274264 0.844099i
\(61\) −136.899 421.331i −0.287346 0.884359i −0.985686 0.168593i \(-0.946078\pi\)
0.698340 0.715766i \(-0.253922\pi\)
\(62\) −649.029 471.547i −1.32946 0.965912i
\(63\) 3.06665 2.22805i 0.00613272 0.00445568i
\(64\) −175.986 + 541.630i −0.343723 + 1.05787i
\(65\) −396.096 −0.755841
\(66\) −600.904 714.909i −1.12070 1.33332i
\(67\) 47.2746 0.0862017 0.0431008 0.999071i \(-0.486276\pi\)
0.0431008 + 0.999071i \(0.486276\pi\)
\(68\) −451.019 + 1388.09i −0.804325 + 2.47546i
\(69\) 108.908 79.1260i 0.190014 0.138053i
\(70\) 111.761 + 81.1989i 0.190828 + 0.138645i
\(71\) 109.883 + 338.184i 0.183671 + 0.565282i 0.999923 0.0124142i \(-0.00395167\pi\)
−0.816252 + 0.577697i \(0.803952\pi\)
\(72\) 7.71564 + 23.7463i 0.0126291 + 0.0388685i
\(73\) −401.808 291.930i −0.644220 0.468053i 0.217078 0.976154i \(-0.430348\pi\)
−0.861297 + 0.508101i \(0.830348\pi\)
\(74\) 435.103 316.121i 0.683510 0.496599i
\(75\) −40.6358 + 125.064i −0.0625629 + 0.192549i
\(76\) −131.038 −0.197778
\(77\) 201.010 + 49.9381i 0.297496 + 0.0739087i
\(78\) 2027.89 2.94376
\(79\) −126.399 + 389.015i −0.180012 + 0.554021i −0.999827 0.0186083i \(-0.994076\pi\)
0.819815 + 0.572629i \(0.194076\pi\)
\(80\) −228.614 + 166.098i −0.319498 + 0.232129i
\(81\) 603.997 + 438.830i 0.828529 + 0.601961i
\(82\) 723.765 + 2227.52i 0.974713 + 2.99986i
\(83\) −363.087 1117.47i −0.480168 1.47780i −0.838859 0.544348i \(-0.816777\pi\)
0.358692 0.933456i \(-0.383223\pi\)
\(84\) −378.909 275.294i −0.492171 0.357583i
\(85\) 376.429 273.491i 0.480346 0.348992i
\(86\) −512.821 + 1578.30i −0.643011 + 1.97898i
\(87\) 634.525 0.781934
\(88\) −721.990 + 1157.59i −0.874595 + 1.40226i
\(89\) 1148.29 1.36763 0.683813 0.729657i \(-0.260320\pi\)
0.683813 + 0.729657i \(0.260320\pi\)
\(90\) 5.02057 15.4517i 0.00588016 0.0180973i
\(91\) −363.849 + 264.352i −0.419140 + 0.304523i
\(92\) −324.735 235.934i −0.368000 0.267367i
\(93\) −267.946 824.653i −0.298760 0.919490i
\(94\) −121.892 375.145i −0.133747 0.411630i
\(95\) 33.7962 + 24.5544i 0.0364991 + 0.0265182i
\(96\) −102.631 + 74.5659i −0.109112 + 0.0792745i
\(97\) 370.588 1140.55i 0.387913 1.19387i −0.546432 0.837503i \(-0.684014\pi\)
0.934345 0.356370i \(-0.115986\pi\)
\(98\) −1512.40 −1.55893
\(99\) −1.71962 24.2984i −0.00174574 0.0246675i
\(100\) 392.101 0.392101
\(101\) 521.188 1604.05i 0.513467 1.58029i −0.272587 0.962131i \(-0.587879\pi\)
0.786054 0.618158i \(-0.212121\pi\)
\(102\) −1927.20 + 1400.19i −1.87080 + 1.35921i
\(103\) −1518.47 1103.23i −1.45261 1.05539i −0.985212 0.171340i \(-0.945190\pi\)
−0.467401 0.884045i \(-0.654810\pi\)
\(104\) −915.439 2817.43i −0.863136 2.65646i
\(105\) 46.1394 + 142.003i 0.0428833 + 0.131981i
\(106\) 2288.38 + 1662.61i 2.09686 + 1.52346i
\(107\) −1019.53 + 740.734i −0.921139 + 0.669247i −0.943807 0.330496i \(-0.892784\pi\)
0.0226680 + 0.999743i \(0.492784\pi\)
\(108\) 671.298 2066.04i 0.598108 1.84079i
\(109\) 743.082 0.652976 0.326488 0.945201i \(-0.394135\pi\)
0.326488 + 0.945201i \(0.394135\pi\)
\(110\) 822.820 333.245i 0.713208 0.288852i
\(111\) 581.291 0.497060
\(112\) −99.1496 + 305.151i −0.0836496 + 0.257447i
\(113\) 646.345 469.597i 0.538080 0.390938i −0.285292 0.958441i \(-0.592090\pi\)
0.823371 + 0.567503i \(0.192090\pi\)
\(114\) −173.026 125.711i −0.142153 0.103280i
\(115\) 39.5427 + 121.700i 0.0320641 + 0.0986833i
\(116\) −584.659 1799.39i −0.467967 1.44025i
\(117\) 42.7919 + 31.0901i 0.0338129 + 0.0245665i
\(118\) 2284.69 1659.92i 1.78240 1.29499i
\(119\) 163.257 502.452i 0.125762 0.387056i
\(120\) −983.497 −0.748172
\(121\) 955.887 926.198i 0.718172 0.695866i
\(122\) −2155.98 −1.59994
\(123\) −782.269 + 2407.58i −0.573454 + 1.76491i
\(124\) −2091.67 + 1519.69i −1.51482 + 1.10058i
\(125\) −101.127 73.4732i −0.0723607 0.0525731i
\(126\) −5.70055 17.5445i −0.00403052 0.0124047i
\(127\) −209.033 643.337i −0.146053 0.449504i 0.851092 0.525016i \(-0.175941\pi\)
−0.997145 + 0.0755125i \(0.975941\pi\)
\(128\) 2086.15 + 1515.67i 1.44055 + 1.04662i
\(129\) −1451.11 + 1054.29i −0.990411 + 0.719575i
\(130\) −595.677 + 1833.30i −0.401879 + 1.23686i
\(131\) −19.1565 −0.0127764 −0.00638822 0.999980i \(-0.502033\pi\)
−0.00638822 + 0.999980i \(0.502033\pi\)
\(132\) −2789.66 + 1129.82i −1.83946 + 0.744988i
\(133\) 47.4322 0.0309240
\(134\) 71.0948 218.807i 0.0458333 0.141060i
\(135\) −560.277 + 407.065i −0.357193 + 0.259516i
\(136\) 2815.33 + 2045.46i 1.77509 + 1.28968i
\(137\) −139.219 428.473i −0.0868199 0.267204i 0.898216 0.439555i \(-0.144864\pi\)
−0.985036 + 0.172351i \(0.944864\pi\)
\(138\) −202.447 623.067i −0.124880 0.384340i
\(139\) 316.358 + 229.847i 0.193044 + 0.140255i 0.680109 0.733111i \(-0.261932\pi\)
−0.487065 + 0.873366i \(0.661932\pi\)
\(140\) 360.179 261.686i 0.217434 0.157975i
\(141\) 131.745 405.469i 0.0786874 0.242175i
\(142\) 1730.51 1.02269
\(143\) 204.028 + 2882.93i 0.119312 + 1.68589i
\(144\) 37.7353 0.0218376
\(145\) −186.387 + 573.639i −0.106749 + 0.328539i
\(146\) −1955.45 + 1420.72i −1.10845 + 0.805337i
\(147\) −1322.46 960.823i −0.742004 0.539098i
\(148\) −535.608 1648.43i −0.297478 0.915542i
\(149\) −610.566 1879.13i −0.335702 1.03318i −0.966375 0.257135i \(-0.917221\pi\)
0.630674 0.776048i \(-0.282779\pi\)
\(150\) 517.740 + 376.160i 0.281822 + 0.204756i
\(151\) 377.960 274.604i 0.203695 0.147993i −0.481261 0.876577i \(-0.659821\pi\)
0.684956 + 0.728584i \(0.259821\pi\)
\(152\) −96.5471 + 297.141i −0.0515198 + 0.158562i
\(153\) −62.1338 −0.0328315
\(154\) 533.428 855.261i 0.279122 0.447525i
\(155\) 824.230 0.427121
\(156\) 2019.56 6215.57i 1.03650 3.19002i
\(157\) −185.411 + 134.709i −0.0942512 + 0.0684775i −0.633913 0.773405i \(-0.718552\pi\)
0.539662 + 0.841882i \(0.318552\pi\)
\(158\) 1610.44 + 1170.06i 0.810887 + 0.589144i
\(159\) 944.740 + 2907.61i 0.471212 + 1.45024i
\(160\) −37.2639 114.686i −0.0184123 0.0566672i
\(161\) 117.545 + 85.4016i 0.0575395 + 0.0418049i
\(162\) 2939.43 2135.62i 1.42558 1.03574i
\(163\) −401.061 + 1234.34i −0.192721 + 0.593134i 0.807275 + 0.590176i \(0.200942\pi\)
−0.999996 + 0.00295819i \(0.999058\pi\)
\(164\) 7548.23 3.59401
\(165\) 931.194 + 231.342i 0.439354 + 0.109151i
\(166\) −5718.15 −2.67358
\(167\) −1049.77 + 3230.85i −0.486427 + 1.49707i 0.343476 + 0.939161i \(0.388396\pi\)
−0.829903 + 0.557908i \(0.811604\pi\)
\(168\) −903.429 + 656.380i −0.414887 + 0.301433i
\(169\) −3299.72 2397.39i −1.50192 1.09121i
\(170\) −699.737 2153.57i −0.315691 0.971596i
\(171\) −1.72383 5.30542i −0.000770906 0.00237261i
\(172\) 4326.84 + 3143.63i 1.91813 + 1.39360i
\(173\) −1314.11 + 954.754i −0.577513 + 0.419587i −0.837827 0.545937i \(-0.816174\pi\)
0.260314 + 0.965524i \(0.416174\pi\)
\(174\) 954.243 2936.86i 0.415753 1.27956i
\(175\) −141.930 −0.0613079
\(176\) 1326.68 + 1578.38i 0.568195 + 0.675994i
\(177\) 3052.31 1.29619
\(178\) 1726.88 5314.80i 0.727164 2.23798i
\(179\) −346.759 + 251.935i −0.144793 + 0.105198i −0.657824 0.753172i \(-0.728523\pi\)
0.513031 + 0.858370i \(0.328523\pi\)
\(180\) −42.3602 30.7765i −0.0175408 0.0127441i
\(181\) 381.146 + 1173.05i 0.156521 + 0.481723i 0.998312 0.0580811i \(-0.0184982\pi\)
−0.841790 + 0.539804i \(0.818498\pi\)
\(182\) 676.354 + 2081.60i 0.275465 + 0.847795i
\(183\) −1885.22 1369.69i −0.761525 0.553280i
\(184\) −774.263 + 562.535i −0.310214 + 0.225384i
\(185\) −170.749 + 525.513i −0.0678581 + 0.208846i
\(186\) −4219.81 −1.66350
\(187\) −2184.47 2598.91i −0.854247 1.01632i
\(188\) −1271.23 −0.493158
\(189\) −242.992 + 747.851i −0.0935187 + 0.287821i
\(190\) 164.473 119.497i 0.0628008 0.0456275i
\(191\) 1320.87 + 959.669i 0.500392 + 0.363556i 0.809167 0.587579i \(-0.199919\pi\)
−0.308775 + 0.951135i \(0.599919\pi\)
\(192\) 925.689 + 2848.98i 0.347947 + 1.07087i
\(193\) 271.324 + 835.048i 0.101193 + 0.311441i 0.988818 0.149126i \(-0.0476461\pi\)
−0.887625 + 0.460567i \(0.847646\pi\)
\(194\) −4721.66 3430.49i −1.74740 1.26956i
\(195\) −1685.56 + 1224.63i −0.619003 + 0.449732i
\(196\) −1506.19 + 4635.56i −0.548901 + 1.68934i
\(197\) 2810.78 1.01655 0.508274 0.861195i \(-0.330284\pi\)
0.508274 + 0.861195i \(0.330284\pi\)
\(198\) −115.050 28.5824i −0.0412940 0.0102589i
\(199\) 3287.10 1.17094 0.585468 0.810696i \(-0.300911\pi\)
0.585468 + 0.810696i \(0.300911\pi\)
\(200\) 288.894 889.125i 0.102140 0.314353i
\(201\) 201.174 146.162i 0.0705956 0.0512907i
\(202\) −6640.45 4824.57i −2.31297 1.68047i
\(203\) 211.630 + 651.332i 0.0731702 + 0.225195i
\(204\) 2372.36 + 7301.38i 0.814209 + 2.50588i
\(205\) −1946.77 1414.41i −0.663261 0.481887i
\(206\) −7389.81 + 5369.01i −2.49938 + 1.81591i
\(207\) 5.28043 16.2515i 0.00177302 0.00545680i
\(208\) −4477.19 −1.49249
\(209\) 161.307 258.629i 0.0533869 0.0855969i
\(210\) 726.637 0.238775
\(211\) 249.885 769.065i 0.0815297 0.250923i −0.901980 0.431778i \(-0.857887\pi\)
0.983510 + 0.180855i \(0.0578865\pi\)
\(212\) 7374.95 5358.21i 2.38921 1.73587i
\(213\) 1513.18 + 1099.39i 0.486767 + 0.353657i
\(214\) 1895.19 + 5832.80i 0.605387 + 1.86319i
\(215\) −526.876 1621.56i −0.167128 0.514369i
\(216\) −4190.34 3044.46i −1.31999 0.959025i
\(217\) 757.128 550.086i 0.236854 0.172084i
\(218\) 1117.50 3439.31i 0.347186 1.06853i
\(219\) −2612.44 −0.806085
\(220\) −201.970 2853.85i −0.0618947 0.874576i
\(221\) 7372.00 2.24387
\(222\) 874.185 2690.47i 0.264286 0.813389i
\(223\) 2067.69 1502.27i 0.620911 0.451118i −0.232329 0.972637i \(-0.574635\pi\)
0.853239 + 0.521519i \(0.174635\pi\)
\(224\) −110.771 80.4799i −0.0330411 0.0240058i
\(225\) 5.15817 + 15.8752i 0.00152835 + 0.00470377i
\(226\) −1201.48 3697.78i −0.353634 1.08837i
\(227\) 2270.90 + 1649.91i 0.663987 + 0.482415i 0.868007 0.496552i \(-0.165401\pi\)
−0.204020 + 0.978967i \(0.565401\pi\)
\(228\) −557.624 + 405.138i −0.161972 + 0.117679i
\(229\) 643.027 1979.03i 0.185556 0.571084i −0.814401 0.580302i \(-0.802934\pi\)
0.999958 + 0.00921862i \(0.00293442\pi\)
\(230\) 622.747 0.178534
\(231\) 1009.78 408.965i 0.287613 0.116485i
\(232\) −4511.06 −1.27658
\(233\) −966.037 + 2973.16i −0.271619 + 0.835957i 0.718475 + 0.695552i \(0.244840\pi\)
−0.990094 + 0.140404i \(0.955160\pi\)
\(234\) 208.252 151.304i 0.0581788 0.0422694i
\(235\) 327.863 + 238.207i 0.0910104 + 0.0661229i
\(236\) −2812.43 8655.77i −0.775736 2.38747i
\(237\) 664.858 + 2046.22i 0.182224 + 0.560829i
\(238\) −2080.05 1511.24i −0.566511 0.411594i
\(239\) 3266.47 2373.23i 0.884060 0.642307i −0.0502627 0.998736i \(-0.516006\pi\)
0.934322 + 0.356429i \(0.116006\pi\)
\(240\) −459.319 + 1413.64i −0.123537 + 0.380208i
\(241\) −5286.33 −1.41296 −0.706478 0.707735i \(-0.749717\pi\)
−0.706478 + 0.707735i \(0.749717\pi\)
\(242\) −2849.32 5817.14i −0.756864 1.54521i
\(243\) 187.305 0.0494471
\(244\) −2147.12 + 6608.16i −0.563342 + 1.73379i
\(245\) 1257.09 913.329i 0.327806 0.238165i
\(246\) 9966.88 + 7241.36i 2.58319 + 1.87680i
\(247\) 204.528 + 629.473i 0.0526875 + 0.162155i
\(248\) 1904.92 + 5862.75i 0.487753 + 1.50115i
\(249\) −5000.02 3632.73i −1.27254 0.924557i
\(250\) −492.148 + 357.566i −0.124505 + 0.0904579i
\(251\) −487.246 + 1499.59i −0.122529 + 0.377105i −0.993443 0.114331i \(-0.963528\pi\)
0.870914 + 0.491435i \(0.163528\pi\)
\(252\) −59.4517 −0.0148615
\(253\) 865.409 350.494i 0.215051 0.0870963i
\(254\) −3292.00 −0.813223
\(255\) 756.299 2327.65i 0.185731 0.571620i
\(256\) 6466.58 4698.25i 1.57876 1.14703i
\(257\) −3376.92 2453.48i −0.819636 0.595500i 0.0969723 0.995287i \(-0.469084\pi\)
−0.916608 + 0.399787i \(0.869084\pi\)
\(258\) 2697.44 + 8301.88i 0.650913 + 2.00330i
\(259\) 193.875 + 596.687i 0.0465129 + 0.143152i
\(260\) 5025.92 + 3651.54i 1.19882 + 0.870997i
\(261\) 65.1618 47.3428i 0.0154537 0.0112278i
\(262\) −28.8089 + 88.6648i −0.00679321 + 0.0209074i
\(263\) 3203.13 0.751001 0.375500 0.926822i \(-0.377471\pi\)
0.375500 + 0.926822i \(0.377471\pi\)
\(264\) 506.597 + 7158.26i 0.118102 + 1.66879i
\(265\) −2906.12 −0.673666
\(266\) 71.3319 219.537i 0.0164423 0.0506040i
\(267\) 4886.48 3550.24i 1.12003 0.813749i
\(268\) −599.851 435.817i −0.136723 0.0993349i
\(269\) −759.218 2336.63i −0.172083 0.529617i 0.827405 0.561605i \(-0.189816\pi\)
−0.999488 + 0.0319883i \(0.989816\pi\)
\(270\) 1041.49 + 3205.38i 0.234752 + 0.722493i
\(271\) 252.038 + 183.116i 0.0564952 + 0.0410462i 0.615674 0.788001i \(-0.288884\pi\)
−0.559179 + 0.829047i \(0.688884\pi\)
\(272\) 4254.88 3091.35i 0.948493 0.689121i
\(273\) −731.026 + 2249.87i −0.162065 + 0.498784i
\(274\) −2192.53 −0.483414
\(275\) −482.674 + 773.887i −0.105841 + 0.169699i
\(276\) −2111.34 −0.460463
\(277\) −1394.19 + 4290.87i −0.302414 + 0.930735i 0.678215 + 0.734863i \(0.262754\pi\)
−0.980630 + 0.195872i \(0.937246\pi\)
\(278\) 1539.59 1118.58i 0.332154 0.241324i
\(279\) −89.0449 64.6949i −0.0191075 0.0138824i
\(280\) −328.022 1009.55i −0.0700109 0.215471i
\(281\) 2018.78 + 6213.17i 0.428578 + 1.31903i 0.899526 + 0.436867i \(0.143912\pi\)
−0.470948 + 0.882161i \(0.656088\pi\)
\(282\) −1678.56 1219.54i −0.354457 0.257528i
\(283\) −1170.46 + 850.389i −0.245854 + 0.178623i −0.703887 0.710312i \(-0.748554\pi\)
0.458033 + 0.888935i \(0.348554\pi\)
\(284\) 1723.40 5304.09i 0.360088 1.10824i
\(285\) 219.734 0.0456698
\(286\) 13650.3 + 3391.22i 2.82223 + 0.701144i
\(287\) −2732.25 −0.561950
\(288\) −4.97612 + 15.3149i −0.00101813 + 0.00313347i
\(289\) −3031.26 + 2202.34i −0.616987 + 0.448267i
\(290\) 2374.75 + 1725.36i 0.480862 + 0.349367i
\(291\) −1949.30 5999.32i −0.392680 1.20854i
\(292\) 2407.14 + 7408.40i 0.482421 + 1.48474i
\(293\) 1203.41 + 874.327i 0.239945 + 0.174330i 0.701259 0.712907i \(-0.252622\pi\)
−0.461314 + 0.887237i \(0.652622\pi\)
\(294\) −6435.91 + 4675.97i −1.27670 + 0.927578i
\(295\) −896.591 + 2759.42i −0.176954 + 0.544609i
\(296\) −4132.60 −0.811495
\(297\) 3251.37 + 3868.23i 0.635231 + 0.755749i
\(298\) −9615.64 −1.86919
\(299\) −626.508 + 1928.19i −0.121177 + 0.372944i
\(300\) 1668.56 1212.28i 0.321114 0.233303i
\(301\) −1566.20 1137.91i −0.299914 0.217900i
\(302\) −702.584 2162.33i −0.133871 0.412014i
\(303\) −2741.45 8437.33i −0.519777 1.59971i
\(304\) 382.008 + 277.545i 0.0720713 + 0.0523629i
\(305\) 1792.03 1301.98i 0.336430 0.244431i
\(306\) −93.4411 + 287.582i −0.0174565 + 0.0537254i
\(307\) −9022.24 −1.67729 −0.838643 0.544682i \(-0.816650\pi\)
−0.838643 + 0.544682i \(0.816650\pi\)
\(308\) −2090.17 2486.72i −0.386684 0.460046i
\(309\) −9872.67 −1.81759
\(310\) 1239.53 3814.89i 0.227099 0.698940i
\(311\) 1313.76 954.504i 0.239539 0.174035i −0.461539 0.887120i \(-0.652703\pi\)
0.701078 + 0.713085i \(0.252703\pi\)
\(312\) −12606.4 9159.09i −2.28749 1.66196i
\(313\) 939.967 + 2892.92i 0.169745 + 0.522420i 0.999355 0.0359231i \(-0.0114371\pi\)
−0.829610 + 0.558343i \(0.811437\pi\)
\(314\) 344.658 + 1060.75i 0.0619433 + 0.190642i
\(315\) 15.3333 + 11.1403i 0.00274264 + 0.00199264i
\(316\) 5190.10 3770.83i 0.923943 0.671284i
\(317\) 1655.49 5095.08i 0.293318 0.902739i −0.690464 0.723367i \(-0.742593\pi\)
0.983781 0.179372i \(-0.0574066\pi\)
\(318\) 14878.5 2.62372
\(319\) 4271.16 + 1061.11i 0.749653 + 0.186241i
\(320\) −2847.52 −0.497441
\(321\) −2048.39 + 6304.29i −0.356168 + 1.09617i
\(322\) 572.049 415.618i 0.0990032 0.0719300i
\(323\) −629.003 456.997i −0.108355 0.0787245i
\(324\) −3618.41 11136.3i −0.620440 1.90952i
\(325\) −612.002 1883.55i −0.104455 0.321478i
\(326\) 5109.91 + 3712.57i 0.868134 + 0.630737i
\(327\) 3162.14 2297.43i 0.534761 0.388526i
\(328\) 5561.43 17116.3i 0.936215 2.88137i
\(329\) 460.149 0.0771089
\(330\) 2471.15 3962.06i 0.412219 0.660923i
\(331\) 7332.86 1.21768 0.608838 0.793295i \(-0.291636\pi\)
0.608838 + 0.793295i \(0.291636\pi\)
\(332\) −5694.66 + 17526.4i −0.941371 + 2.89724i
\(333\) 59.6950 43.3709i 0.00982362 0.00713728i
\(334\) 13375.1 + 9717.55i 2.19117 + 1.59198i
\(335\) 73.0433 + 224.804i 0.0119128 + 0.0366638i
\(336\) 521.528 + 1605.10i 0.0846776 + 0.260611i
\(337\) 1655.35 + 1202.68i 0.267575 + 0.194405i 0.713480 0.700676i \(-0.247118\pi\)
−0.445905 + 0.895080i \(0.647118\pi\)
\(338\) −16058.5 + 11667.2i −2.58422 + 1.87755i
\(339\) 1298.60 3996.68i 0.208054 0.640324i
\(340\) −7297.64 −1.16403
\(341\) −424.559 5999.05i −0.0674228 0.952689i
\(342\) −27.1482 −0.00429242
\(343\) 1146.94 3529.92i 0.180551 0.555678i
\(344\) 10316.4 7495.34i 1.61693 1.17477i
\(345\) 544.538 + 395.630i 0.0849766 + 0.0617391i
\(346\) 2442.77 + 7518.08i 0.379550 + 1.16813i
\(347\) −990.450 3048.29i −0.153228 0.471588i 0.844749 0.535163i \(-0.179750\pi\)
−0.997977 + 0.0635752i \(0.979750\pi\)
\(348\) −8051.26 5849.59i −1.24021 0.901065i
\(349\) 3833.32 2785.07i 0.587946 0.427168i −0.253634 0.967300i \(-0.581626\pi\)
0.841580 + 0.540133i \(0.181626\pi\)
\(350\) −213.444 + 656.913i −0.0325973 + 0.100324i
\(351\) −10972.5 −1.66857
\(352\) −815.535 + 330.295i −0.123489 + 0.0500136i
\(353\) −1082.00 −0.163141 −0.0815706 0.996668i \(-0.525994\pi\)
−0.0815706 + 0.996668i \(0.525994\pi\)
\(354\) 4590.27 14127.4i 0.689181 2.12108i
\(355\) −1438.38 + 1045.05i −0.215046 + 0.156240i
\(356\) −14570.3 10585.9i −2.16917 1.57599i
\(357\) −858.731 2642.90i −0.127308 0.391813i
\(358\) 644.585 + 1983.83i 0.0951602 + 0.292873i
\(359\) 3384.42 + 2458.92i 0.497556 + 0.361496i 0.808083 0.589069i \(-0.200505\pi\)
−0.310527 + 0.950565i \(0.600505\pi\)
\(360\) −100.999 + 73.3801i −0.0147864 + 0.0107430i
\(361\) −2097.98 + 6456.91i −0.305872 + 0.941378i
\(362\) 6002.57 0.871513
\(363\) 1204.14 6896.74i 0.174107 0.997204i
\(364\) 7053.77 1.01571
\(365\) 767.384 2361.77i 0.110046 0.338686i
\(366\) −9174.63 + 6665.76i −1.31029 + 0.951981i
\(367\) 2271.70 + 1650.49i 0.323112 + 0.234754i 0.737502 0.675345i \(-0.236005\pi\)
−0.414390 + 0.910099i \(0.636005\pi\)
\(368\) 446.963 + 1375.61i 0.0633140 + 0.194860i
\(369\) 99.2985 + 305.610i 0.0140089 + 0.0431149i
\(370\) 2175.52 + 1580.61i 0.305675 + 0.222086i
\(371\) −2669.53 + 1939.53i −0.373572 + 0.271416i
\(372\) −4202.47 + 12933.9i −0.585721 + 1.80266i
\(373\) 3221.19 0.447150 0.223575 0.974687i \(-0.428227\pi\)
0.223575 + 0.974687i \(0.428227\pi\)
\(374\) −15314.0 + 6202.25i −2.11730 + 0.857515i
\(375\) −657.501 −0.0905419
\(376\) −936.621 + 2882.62i −0.128464 + 0.395372i
\(377\) −7731.26 + 5617.09i −1.05618 + 0.767360i
\(378\) 3095.95 + 2249.34i 0.421266 + 0.306068i
\(379\) −292.628 900.617i −0.0396604 0.122062i 0.929266 0.369411i \(-0.120441\pi\)
−0.968926 + 0.247349i \(0.920441\pi\)
\(380\) −202.465 623.123i −0.0273322 0.0841199i
\(381\) −2878.57 2091.40i −0.387070 0.281223i
\(382\) 6428.18 4670.35i 0.860980 0.625539i
\(383\) −3405.73 + 10481.8i −0.454372 + 1.39841i 0.417499 + 0.908678i \(0.362907\pi\)
−0.871871 + 0.489736i \(0.837093\pi\)
\(384\) 13563.6 1.80251
\(385\) 73.1077 + 1033.02i 0.00967770 + 0.136747i
\(386\) 4273.00 0.563446
\(387\) −70.3576 + 216.539i −0.00924155 + 0.0284426i
\(388\) −15216.8 + 11055.7i −1.99103 + 1.44657i
\(389\) −755.199 548.684i −0.0984321 0.0715151i 0.537481 0.843276i \(-0.319376\pi\)
−0.635913 + 0.771761i \(0.719376\pi\)
\(390\) 3133.26 + 9643.19i 0.406818 + 1.25206i
\(391\) −735.955 2265.04i −0.0951889 0.292961i
\(392\) 9401.84 + 6830.83i 1.21139 + 0.880126i
\(393\) −81.5194 + 59.2273i −0.0104634 + 0.00760210i
\(394\) 4227.05 13009.5i 0.540497 1.66348i
\(395\) −2045.17 −0.260516
\(396\) −202.183 + 324.166i −0.0256568 + 0.0411363i
\(397\) 13382.7 1.69183 0.845916 0.533317i \(-0.179055\pi\)
0.845916 + 0.533317i \(0.179055\pi\)
\(398\) 4943.37 15214.1i 0.622584 1.91612i
\(399\) 201.845 146.649i 0.0253255 0.0184001i
\(400\) −1143.07 830.489i −0.142884 0.103811i
\(401\) −4598.70 14153.3i −0.572688 1.76255i −0.643920 0.765093i \(-0.722693\pi\)
0.0712323 0.997460i \(-0.477307\pi\)
\(402\) −373.959 1150.93i −0.0463965 0.142794i
\(403\) 10564.9 + 7675.87i 1.30590 + 0.948790i
\(404\) −21400.7 + 15548.5i −2.63545 + 1.91477i
\(405\) −1153.53 + 3550.21i −0.141530 + 0.435583i
\(406\) 3332.91 0.407413
\(407\) 3912.83 + 972.087i 0.476540 + 0.118390i
\(408\) 18304.5 2.22110
\(409\) −153.388 + 472.080i −0.0185442 + 0.0570730i −0.959900 0.280341i \(-0.909552\pi\)
0.941356 + 0.337414i \(0.109552\pi\)
\(410\) −9474.21 + 6883.41i −1.14121 + 0.829140i
\(411\) −1917.17 1392.91i −0.230091 0.167171i
\(412\) 9096.79 + 27997.0i 1.08778 + 3.34785i
\(413\) 1018.02 + 3133.15i 0.121292 + 0.373299i
\(414\) −67.2779 48.8803i −0.00798679 0.00580274i
\(415\) 4752.86 3453.16i 0.562190 0.408455i
\(416\) 590.402 1817.07i 0.0695838 0.214157i
\(417\) 2056.87 0.241548
\(418\) −954.463 1135.55i −0.111685 0.132874i
\(419\) 11470.0 1.33734 0.668672 0.743558i \(-0.266863\pi\)
0.668672 + 0.743558i \(0.266863\pi\)
\(420\) 723.652 2227.17i 0.0840729 0.258750i
\(421\) 1947.36 1414.84i 0.225436 0.163789i −0.469334 0.883021i \(-0.655506\pi\)
0.694770 + 0.719232i \(0.255506\pi\)
\(422\) −3183.78 2313.15i −0.367260 0.266830i
\(423\) −16.7232 51.4688i −0.00192225 0.00591608i
\(424\) −6716.49 20671.2i −0.769297 2.36765i
\(425\) 1882.14 + 1367.46i 0.214817 + 0.156074i
\(426\) 7364.08 5350.32i 0.837537 0.608506i
\(427\) 777.200 2391.98i 0.0880828 0.271091i
\(428\) 19765.2 2.23221
\(429\) 9781.55 + 11637.3i 1.10083 + 1.30969i
\(430\) −8297.62 −0.930574
\(431\) 2511.96 7731.02i 0.280735 0.864014i −0.706910 0.707304i \(-0.749911\pi\)
0.987645 0.156710i \(-0.0500888\pi\)
\(432\) −6332.98 + 4601.18i −0.705314 + 0.512441i
\(433\) −5426.17 3942.34i −0.602229 0.437545i 0.244441 0.969664i \(-0.421396\pi\)
−0.846669 + 0.532120i \(0.821396\pi\)
\(434\) −1407.41 4331.58i −0.155664 0.479084i
\(435\) 980.395 + 3017.35i 0.108061 + 0.332576i
\(436\) −9428.71 6850.36i −1.03567 0.752460i
\(437\) 172.986 125.682i 0.0189361 0.0137579i
\(438\) −3928.78 + 12091.5i −0.428594 + 1.31908i
\(439\) −9060.70 −0.985066 −0.492533 0.870294i \(-0.663929\pi\)
−0.492533 + 0.870294i \(0.663929\pi\)
\(440\) −6620.19 1644.69i −0.717285 0.178199i
\(441\) −207.497 −0.0224054
\(442\) 11086.5 34120.8i 1.19306 3.67186i
\(443\) 15038.0 10925.7i 1.61281 1.17178i 0.759214 0.650840i \(-0.225583\pi\)
0.853596 0.520935i \(-0.174417\pi\)
\(444\) −7375.79 5358.83i −0.788377 0.572790i
\(445\) 1774.21 + 5460.45i 0.189001 + 0.581686i
\(446\) −3843.61 11829.4i −0.408072 1.25592i
\(447\) −8408.04 6108.80i −0.889679 0.646390i
\(448\) −2615.70 + 1900.42i −0.275848 + 0.200416i
\(449\) −3247.52 + 9994.83i −0.341336 + 1.05052i 0.622180 + 0.782874i \(0.286247\pi\)
−0.963516 + 0.267650i \(0.913753\pi\)
\(450\) 81.2346 0.00850985
\(451\) −9291.84 + 14897.9i −0.970146 + 1.55546i
\(452\) −12530.4 −1.30394
\(453\) 759.376 2337.12i 0.0787607 0.242400i
\(454\) 11051.6 8029.48i 1.14246 0.830049i
\(455\) −1819.25 1321.76i −0.187445 0.136187i
\(456\) 507.838 + 1562.97i 0.0521529 + 0.160510i
\(457\) 2612.65 + 8040.90i 0.267428 + 0.823058i 0.991124 + 0.132939i \(0.0424415\pi\)
−0.723697 + 0.690118i \(0.757558\pi\)
\(458\) −8192.79 5952.41i −0.835861 0.607288i
\(459\) 10427.7 7576.16i 1.06040 0.770424i
\(460\) 620.189 1908.75i 0.0628619 0.193469i
\(461\) 2027.25 0.204812 0.102406 0.994743i \(-0.467346\pi\)
0.102406 + 0.994743i \(0.467346\pi\)
\(462\) −374.289 5288.74i −0.0376916 0.532585i
\(463\) −15889.4 −1.59491 −0.797455 0.603379i \(-0.793821\pi\)
−0.797455 + 0.603379i \(0.793821\pi\)
\(464\) −2106.78 + 6484.01i −0.210787 + 0.648734i
\(465\) 3507.46 2548.32i 0.349795 0.254141i
\(466\) 12308.3 + 8942.48i 1.22354 + 0.888953i
\(467\) −676.276 2081.36i −0.0670114 0.206240i 0.911944 0.410315i \(-0.134581\pi\)
−0.978955 + 0.204075i \(0.934581\pi\)
\(468\) −256.356 788.983i −0.0253206 0.0779289i
\(469\) 217.130 + 157.754i 0.0213776 + 0.0155318i
\(470\) 1595.59 1159.26i 0.156593 0.113772i
\(471\) −372.518 + 1146.49i −0.0364432 + 0.112161i
\(472\) −21699.9 −2.11615
\(473\) −11530.9 + 4670.06i −1.12091 + 0.453973i
\(474\) 10470.7 1.01463
\(475\) −64.5450 + 198.649i −0.00623479 + 0.0191887i
\(476\) −6703.53 + 4870.40i −0.645495 + 0.468980i
\(477\) 313.960 + 228.105i 0.0301368 + 0.0218957i
\(478\) −6071.99 18687.7i −0.581017 1.78819i
\(479\) 1410.35 + 4340.61i 0.134531 + 0.414045i 0.995517 0.0945847i \(-0.0301523\pi\)
−0.860986 + 0.508629i \(0.830152\pi\)
\(480\) −513.156 372.830i −0.0487964 0.0354526i
\(481\) −7082.64 + 5145.84i −0.671394 + 0.487796i
\(482\) −7949.95 + 24467.4i −0.751266 + 2.31216i
\(483\) 764.247 0.0719968
\(484\) −20667.4 + 2940.03i −1.94096 + 0.276111i
\(485\) 5996.25 0.561393
\(486\) 281.683 866.930i 0.0262909 0.0809151i
\(487\) −15160.7 + 11014.9i −1.41067 + 1.02491i −0.417447 + 0.908701i \(0.637075\pi\)
−0.993224 + 0.116212i \(0.962925\pi\)
\(488\) 13402.7 + 9737.61i 1.24326 + 0.903280i
\(489\) 2109.58 + 6492.63i 0.195089 + 0.600423i
\(490\) −2336.78 7191.88i −0.215439 0.663053i
\(491\) 9822.65 + 7136.57i 0.902831 + 0.655945i 0.939192 0.343393i \(-0.111576\pi\)
−0.0363604 + 0.999339i \(0.511576\pi\)
\(492\) 32121.0 23337.3i 2.94335 2.13847i
\(493\) 3468.96 10676.4i 0.316905 0.975334i
\(494\) 3221.06 0.293365
\(495\) 112.889 45.7203i 0.0102504 0.00415147i
\(496\) 9316.52 0.843395
\(497\) −623.825 + 1919.93i −0.0563025 + 0.173281i
\(498\) −24333.2 + 17679.1i −2.18955 + 1.59080i
\(499\) 6955.00 + 5053.11i 0.623945 + 0.453323i 0.854297 0.519785i \(-0.173988\pi\)
−0.230352 + 0.973107i \(0.573988\pi\)
\(500\) 605.829 + 1864.55i 0.0541870 + 0.166770i
\(501\) 5521.78 + 16994.3i 0.492405 + 1.51547i
\(502\) 6208.00 + 4510.37i 0.551945 + 0.401012i
\(503\) 14179.0 10301.6i 1.25688 0.913174i 0.258277 0.966071i \(-0.416845\pi\)
0.998600 + 0.0528966i \(0.0168454\pi\)
\(504\) −43.8032 + 134.812i −0.00387133 + 0.0119147i
\(505\) 8433.00 0.743096
\(506\) −320.776 4532.59i −0.0281823 0.398217i
\(507\) −21453.9 −1.87929
\(508\) −3278.48 + 10090.1i −0.286337 + 0.881254i
\(509\) −10579.8 + 7686.65i −0.921297 + 0.669361i −0.943846 0.330384i \(-0.892822\pi\)
0.0225495 + 0.999746i \(0.492822\pi\)
\(510\) −9636.00 7000.96i −0.836645 0.607859i
\(511\) −871.318 2681.64i −0.0754302 0.232150i
\(512\) −5645.94 17376.4i −0.487339 1.49988i
\(513\) 936.210 + 680.196i 0.0805744 + 0.0585407i
\(514\) −16434.2 + 11940.1i −1.41027 + 1.02462i
\(515\) 2900.02 8925.33i 0.248136 0.763684i
\(516\) 28131.9 2.40008
\(517\) 1564.87 2509.01i 0.133120 0.213435i
\(518\) 3053.29 0.258984
\(519\) −2640.23 + 8125.79i −0.223301 + 0.687250i
\(520\) 11983.3 8706.34i 1.01058 0.734228i
\(521\) 4324.43 + 3141.88i 0.363640 + 0.264200i 0.754569 0.656221i \(-0.227846\pi\)
−0.390929 + 0.920421i \(0.627846\pi\)
\(522\) −121.128 372.795i −0.0101564 0.0312582i
\(523\) −1635.65 5034.00i −0.136753 0.420882i 0.859106 0.511798i \(-0.171021\pi\)
−0.995859 + 0.0909160i \(0.971021\pi\)
\(524\) 243.071 + 176.601i 0.0202645 + 0.0147230i
\(525\) −603.973 + 438.812i −0.0502087 + 0.0364787i
\(526\) 4817.08 14825.5i 0.399306 1.22894i
\(527\) −15340.3 −1.26799
\(528\) 10525.6 + 2614.93i 0.867550 + 0.215531i
\(529\) −11512.0 −0.946167
\(530\) −4370.43 + 13450.8i −0.358187 + 1.10239i
\(531\) 313.453 227.737i 0.0256171 0.0186119i
\(532\) −601.851 437.270i −0.0490480 0.0356355i
\(533\) −11781.5 36259.7i −0.957435 2.94668i
\(534\) −9083.41 27955.9i −0.736101 2.26548i
\(535\) −5097.66 3703.67i −0.411946 0.299296i
\(536\) −1430.22 + 1039.11i −0.115254 + 0.0837367i
\(537\) −696.688 + 2144.19i −0.0559857 + 0.172306i
\(538\) −11956.7 −0.958161
\(539\) −7295.07 8679.11i −0.582970 0.693572i
\(540\) 10861.8 0.865590
\(541\) −4177.35 + 12856.6i −0.331975 + 1.02171i 0.636218 + 0.771509i \(0.280498\pi\)
−0.968193 + 0.250204i \(0.919502\pi\)
\(542\) 1226.57 891.157i 0.0972063 0.0706245i
\(543\) 5248.72 + 3813.42i 0.414814 + 0.301380i
\(544\) 693.542 + 2134.50i 0.0546606 + 0.168228i
\(545\) 1148.13 + 3533.57i 0.0902391 + 0.277727i
\(546\) 9313.99 + 6767.01i 0.730040 + 0.530405i
\(547\) 5609.79 4075.75i 0.438496 0.318586i −0.346541 0.938035i \(-0.612644\pi\)
0.785037 + 0.619449i \(0.212644\pi\)
\(548\) −2183.52 + 6720.19i −0.170211 + 0.523854i
\(549\) −295.794 −0.0229949
\(550\) 2856.00 + 3397.85i 0.221419 + 0.263427i
\(551\) 1007.87 0.0779247
\(552\) −1555.61 + 4787.66i −0.119947 + 0.369160i
\(553\) −1878.67 + 1364.94i −0.144465 + 0.104960i
\(554\) 17763.3 + 12905.8i 1.36226 + 0.989740i
\(555\) 898.144 + 2764.20i 0.0686920 + 0.211412i
\(556\) −1895.23 5832.90i −0.144560 0.444910i
\(557\) 14838.5 + 10780.8i 1.12877 + 0.820102i 0.985516 0.169583i \(-0.0542422\pi\)
0.143258 + 0.989685i \(0.454242\pi\)
\(558\) −433.348 + 314.846i −0.0328765 + 0.0238862i
\(559\) 8347.73 25691.7i 0.631613 1.94390i
\(560\) −1604.27 −0.121059
\(561\) −17331.1 4305.66i −1.30431 0.324038i
\(562\) 31793.2 2.38633
\(563\) −2086.86 + 6422.71i −0.156218 + 0.480790i −0.998282 0.0585874i \(-0.981340\pi\)
0.842064 + 0.539377i \(0.181340\pi\)
\(564\) −5409.62 + 3930.32i −0.403876 + 0.293433i
\(565\) 3231.72 + 2347.98i 0.240637 + 0.174833i
\(566\) 2175.75 + 6696.27i 0.161579 + 0.497288i
\(567\) 1309.76 + 4031.04i 0.0970105 + 0.298568i
\(568\) −10757.7 7815.95i −0.794691 0.577377i
\(569\) −2166.02 + 1573.71i −0.159586 + 0.115946i −0.664712 0.747099i \(-0.731446\pi\)
0.505126 + 0.863045i \(0.331446\pi\)
\(570\) 330.451 1017.02i 0.0242826 0.0747340i
\(571\) 24529.5 1.79777 0.898886 0.438183i \(-0.144378\pi\)
0.898886 + 0.438183i \(0.144378\pi\)
\(572\) 23988.5 38461.4i 1.75351 2.81146i
\(573\) 8587.94 0.626120
\(574\) −4108.95 + 12646.1i −0.298788 + 0.919575i
\(575\) −517.621 + 376.074i −0.0375414 + 0.0272754i
\(576\) 307.629 + 223.506i 0.0222533 + 0.0161679i
\(577\) −4273.27 13151.8i −0.308317 0.948901i −0.978419 0.206632i \(-0.933750\pi\)
0.670102 0.742269i \(-0.266250\pi\)
\(578\) 5634.76 + 17342.0i 0.405493 + 1.24798i
\(579\) 3736.36 + 2714.63i 0.268183 + 0.194846i
\(580\) 7653.28 5560.43i 0.547905 0.398077i
\(581\) 2061.31 6344.06i 0.147190 0.453005i
\(582\) −30699.0 −2.18645
\(583\) 1496.94 + 21151.8i 0.106341 + 1.50261i
\(584\) 18572.8 1.31601
\(585\) −81.7252 + 251.524i −0.00577593 + 0.0177765i
\(586\) 5856.54 4255.02i 0.412852 0.299955i
\(587\) −6783.84 4928.75i −0.477000 0.346561i 0.323163 0.946343i \(-0.395254\pi\)
−0.800163 + 0.599783i \(0.795254\pi\)
\(588\) 7922.55 + 24383.1i 0.555647 + 1.71010i
\(589\) −425.599 1309.86i −0.0297734 0.0916330i
\(590\) 11423.4 + 8299.62i 0.797112 + 0.579136i
\(591\) 11961.1 8690.25i 0.832511 0.604855i
\(592\) −1930.03 + 5940.03i −0.133993 + 0.412388i
\(593\) −12692.8 −0.878970 −0.439485 0.898250i \(-0.644839\pi\)
−0.439485 + 0.898250i \(0.644839\pi\)
\(594\) 22793.5 9231.44i 1.57446 0.637661i
\(595\) 2641.55 0.182005
\(596\) −9576.14 + 29472.3i −0.658144 + 2.02556i
\(597\) 13988.0 10162.9i 0.958948 0.696717i
\(598\) 7982.33 + 5799.50i 0.545856 + 0.396588i
\(599\) 7039.98 + 21666.8i 0.480210 + 1.47793i 0.838800 + 0.544439i \(0.183257\pi\)
−0.358590 + 0.933495i \(0.616743\pi\)
\(600\) −1519.59 4676.81i −0.103395 0.318216i
\(601\) −21236.2 15429.0i −1.44133 1.04719i −0.987762 0.155969i \(-0.950150\pi\)
−0.453571 0.891220i \(-0.649850\pi\)
\(602\) −7622.10 + 5537.78i −0.516036 + 0.374922i
\(603\) 9.75401 30.0198i 0.000658730 0.00202736i
\(604\) −7327.32 −0.493617
\(605\) 5881.26 + 3114.46i 0.395218 + 0.209290i
\(606\) −43174.4 −2.89413
\(607\) −2697.37 + 8301.64i −0.180367 + 0.555113i −0.999838 0.0180083i \(-0.994267\pi\)
0.819471 + 0.573121i \(0.194267\pi\)
\(608\) −163.017 + 118.439i −0.0108737 + 0.00790021i
\(609\) 2914.34 + 2117.39i 0.193916 + 0.140888i
\(610\) −3331.17 10252.3i −0.221107 0.680497i
\(611\) 1984.16 + 6106.63i 0.131376 + 0.404334i
\(612\) 788.394 + 572.802i 0.0520734 + 0.0378336i
\(613\) −7496.32 + 5446.40i −0.493921 + 0.358855i −0.806690 0.590974i \(-0.798743\pi\)
0.312769 + 0.949829i \(0.398743\pi\)
\(614\) −13568.3 + 41758.9i −0.891809 + 2.74471i
\(615\) −12657.4 −0.829910
\(616\) −7178.89 + 2907.48i −0.469555 + 0.190171i
\(617\) −25207.7 −1.64477 −0.822387 0.568929i \(-0.807358\pi\)
−0.822387 + 0.568929i \(0.807358\pi\)
\(618\) −14847.2 + 45695.0i −0.966411 + 2.97431i
\(619\) −4918.18 + 3573.27i −0.319351 + 0.232022i −0.735898 0.677092i \(-0.763240\pi\)
0.416548 + 0.909114i \(0.363240\pi\)
\(620\) −10458.4 7598.45i −0.677448 0.492195i
\(621\) 1095.40 + 3371.29i 0.0707839 + 0.217850i
\(622\) −2442.13 7516.11i −0.157429 0.484516i
\(623\) 5274.04 + 3831.82i 0.339165 + 0.246418i
\(624\) −19052.4 + 13842.4i −1.22229 + 0.888042i
\(625\) 193.136 594.410i 0.0123607 0.0380423i
\(626\) 14803.3 0.945141
\(627\) −113.184 1599.30i −0.00720916 0.101866i
\(628\) 3594.48 0.228400
\(629\) 3177.93 9780.66i 0.201450 0.620001i
\(630\) 74.6212 54.2154i 0.00471901 0.00342856i
\(631\) −22756.6 16533.6i −1.43570 1.04310i −0.988919 0.148453i \(-0.952571\pi\)
−0.446780 0.894644i \(-0.647429\pi\)
\(632\) −4726.71 14547.3i −0.297498 0.915604i
\(633\) −1314.39 4045.29i −0.0825316 0.254006i
\(634\) −21092.6 15324.7i −1.32128 0.959970i
\(635\) 2736.28 1988.02i 0.171001 0.124240i
\(636\) 14817.3 45603.1i 0.923814 2.84321i
\(637\) 24618.9 1.53130
\(638\) 11334.6 18173.0i 0.703353 1.12771i
\(639\) 237.421 0.0146983
\(640\) −3984.18 + 12262.1i −0.246076 + 0.757344i
\(641\) 2309.39 1677.87i 0.142302 0.103388i −0.514357 0.857576i \(-0.671969\pi\)
0.656659 + 0.754188i \(0.271969\pi\)
\(642\) 26098.5 + 18961.7i 1.60440 + 1.16566i
\(643\) −3239.10 9968.92i −0.198659 0.611409i −0.999914 0.0130865i \(-0.995834\pi\)
0.801256 0.598322i \(-0.204166\pi\)
\(644\) −704.186 2167.26i −0.0430882 0.132612i
\(645\) −7255.54 5271.46i −0.442925 0.321804i
\(646\) −3061.12 + 2224.03i −0.186437 + 0.135454i
\(647\) −421.036 + 1295.81i −0.0255836 + 0.0787384i −0.963033 0.269383i \(-0.913180\pi\)
0.937449 + 0.348121i \(0.113180\pi\)
\(648\) −27918.6 −1.69251
\(649\) 20545.9 + 5104.35i 1.24268 + 0.308726i
\(650\) −9638.25 −0.581605
\(651\) 1521.18 4681.71i 0.0915818 0.281860i
\(652\) 16468.1 11964.8i 0.989172 0.718676i
\(653\) 7899.31 + 5739.18i 0.473390 + 0.343938i 0.798761 0.601648i \(-0.205489\pi\)
−0.325371 + 0.945586i \(0.605489\pi\)
\(654\) −5878.05 18090.8i −0.351453 1.08166i
\(655\) −29.5985 91.0948i −0.00176566 0.00543415i
\(656\) −22004.9 15987.5i −1.30968 0.951537i
\(657\) −268.282 + 194.918i −0.0159310 + 0.0115746i
\(658\) 692.004 2129.77i 0.0409987 0.126181i
\(659\) −12471.8 −0.737225 −0.368613 0.929583i \(-0.620167\pi\)
−0.368613 + 0.929583i \(0.620167\pi\)
\(660\) −9682.89 11520.0i −0.571070 0.679414i
\(661\) −14284.1 −0.840523 −0.420261 0.907403i \(-0.638062\pi\)
−0.420261 + 0.907403i \(0.638062\pi\)
\(662\) 11027.7 33939.7i 0.647436 1.99260i
\(663\) 31371.1 22792.4i 1.83763 1.33512i
\(664\) 35546.9 + 25826.4i 2.07754 + 1.50942i
\(665\) 73.2868 + 225.554i 0.00427360 + 0.0131528i
\(666\) −110.966 341.518i −0.00645623 0.0198702i
\(667\) 2497.66 + 1814.66i 0.144992 + 0.105343i
\(668\) 43104.8 31317.5i 2.49667 1.81394i
\(669\) 4154.30 12785.6i 0.240081 0.738894i
\(670\) 1150.34 0.0663305
\(671\) −10399.4 12372.4i −0.598307 0.711819i
\(672\) −720.204 −0.0413429
\(673\) −2471.53 + 7606.60i −0.141561 + 0.435680i −0.996553 0.0829614i \(-0.973562\pi\)
0.854992 + 0.518642i \(0.173562\pi\)
\(674\) 8055.98 5853.01i 0.460393 0.334495i
\(675\) −2801.39 2035.33i −0.159741 0.116059i
\(676\) 19767.9 + 60839.2i 1.12471 + 3.46149i
\(677\) −3422.26 10532.6i −0.194281 0.597936i −0.999984 0.00561605i \(-0.998212\pi\)
0.805703 0.592319i \(-0.201788\pi\)
\(678\) −16545.4 12021.0i −0.937204 0.680918i
\(679\) 5508.08 4001.86i 0.311312 0.226181i
\(680\) −5376.80 + 16548.1i −0.303222 + 0.933221i
\(681\) 14764.8 0.830820
\(682\) −28404.7 7056.75i −1.59483 0.396212i
\(683\) 22433.9 1.25682 0.628411 0.777882i \(-0.283706\pi\)
0.628411 + 0.777882i \(0.283706\pi\)
\(684\) −27.0367 + 83.2103i −0.00151136 + 0.00465150i
\(685\) 1822.41 1324.06i 0.101650 0.0738534i
\(686\) −14613.1 10617.1i −0.813312 0.590906i
\(687\) −3382.33 10409.7i −0.187837 0.578102i
\(688\) −5955.43 18328.9i −0.330013 1.01567i
\(689\) −37250.5 27064.0i −2.05969 1.49646i
\(690\) 2650.06 1925.38i 0.146212 0.106229i
\(691\) −9780.24 + 30100.5i −0.538434 + 1.65713i 0.197677 + 0.980267i \(0.436660\pi\)
−0.736110 + 0.676862i \(0.763340\pi\)
\(692\) 25476.0 1.39950
\(693\) 73.1848 117.339i 0.00401163 0.00643197i
\(694\) −15598.3 −0.853176
\(695\) −604.190 + 1859.50i −0.0329759 + 0.101489i
\(696\) −19196.5 + 13947.1i −1.04546 + 0.759574i
\(697\) 36232.6 + 26324.6i 1.96902 + 1.43058i
\(698\) −7125.71 21930.7i −0.386407 1.18924i
\(699\) 5081.36 + 15638.8i 0.274957 + 0.846230i
\(700\) 1800.90 + 1308.43i 0.0972393 + 0.0706485i
\(701\) 11367.7 8259.11i 0.612485 0.444996i −0.237804 0.971313i \(-0.576427\pi\)
0.850288 + 0.526317i \(0.176427\pi\)
\(702\) −16501.2 + 50785.5i −0.887177 + 2.73045i
\(703\) 923.309 0.0495352
\(704\) 1466.75 + 20725.3i 0.0785230 + 1.10954i
\(705\) 2131.68 0.113877
\(706\) −1627.18 + 5007.95i −0.0867418 + 0.266964i
\(707\) 7746.46 5628.13i 0.412073 0.299389i
\(708\) −38729.6 28138.7i −2.05586 1.49367i
\(709\) −4304.63 13248.3i −0.228017 0.701763i −0.997971 0.0636644i \(-0.979721\pi\)
0.769955 0.638098i \(-0.220279\pi\)
\(710\) 2673.79 + 8229.07i 0.141332 + 0.434974i
\(711\) 220.949 + 160.529i 0.0116543 + 0.00846736i
\(712\) −34739.8 + 25239.9i −1.82855 + 1.32852i
\(713\) 1303.69 4012.35i 0.0684764 0.210749i
\(714\) −13523.9 −0.708851
\(715\) −13393.9 + 5424.59i −0.700565 + 0.283732i
\(716\) 6722.45 0.350879
\(717\) 6562.81 20198.2i 0.341831 1.05205i
\(718\) 16470.7 11966.7i 0.856101 0.621994i
\(719\) 5452.60 + 3961.54i 0.282820 + 0.205481i 0.720146 0.693822i \(-0.244075\pi\)
−0.437326 + 0.899303i \(0.644075\pi\)
\(720\) 58.3043 + 179.442i 0.00301788 + 0.00928808i
\(721\) −3292.79 10134.2i −0.170083 0.523462i
\(722\) 26730.3 + 19420.7i 1.37784 + 1.00106i
\(723\) −22495.6 + 16344.0i −1.15715 + 0.840721i
\(724\) 5977.91 18398.1i 0.306861 0.944420i
\(725\) −3015.80 −0.154488
\(726\) −30110.3 15945.1i −1.53925 0.815120i
\(727\) 11175.6 0.570122 0.285061 0.958509i \(-0.407986\pi\)
0.285061 + 0.958509i \(0.407986\pi\)
\(728\) 5197.12 15995.1i 0.264585 0.814310i
\(729\) −15510.9 + 11269.3i −0.788033 + 0.572540i
\(730\) −9777.23 7103.58i −0.495715 0.360158i
\(731\) 9806.03 + 30179.8i 0.496155 + 1.52701i
\(732\) 11293.9 + 34759.0i 0.570265 + 1.75509i
\(733\) 3176.16 + 2307.62i 0.160047 + 0.116281i 0.664926 0.746909i \(-0.268463\pi\)
−0.504879 + 0.863190i \(0.668463\pi\)
\(734\) 11055.5 8032.31i 0.555950 0.403921i
\(735\) 2525.67 7773.22i 0.126749 0.390095i
\(736\) −617.233 −0.0309124
\(737\) 1598.58 647.432i 0.0798976 0.0323588i
\(738\) 1563.83 0.0780016
\(739\) 10559.0 32497.3i 0.525601 1.61763i −0.237524 0.971382i \(-0.576336\pi\)
0.763125 0.646251i \(-0.223664\pi\)
\(740\) 7011.20 5093.93i 0.348293 0.253050i
\(741\) 2816.53 + 2046.33i 0.139633 + 0.101449i
\(742\) 4962.35 + 15272.5i 0.245517 + 0.755623i
\(743\) 7406.04 + 22793.4i 0.365681 + 1.12545i 0.949553 + 0.313606i \(0.101537\pi\)
−0.583872 + 0.811846i \(0.698463\pi\)
\(744\) 26232.5 + 19059.0i 1.29265 + 0.939163i
\(745\) 7992.42 5806.83i 0.393046 0.285565i
\(746\) 4844.25 14909.1i 0.237749 0.731715i
\(747\) −784.514 −0.0384255
\(748\) 3759.00 + 53114.9i 0.183747 + 2.59636i
\(749\) −7154.46 −0.349023
\(750\) −988.796 + 3043.20i −0.0481410 + 0.148163i
\(751\) 6387.30 4640.65i 0.310354 0.225485i −0.421694 0.906738i \(-0.638564\pi\)
0.732048 + 0.681253i \(0.238564\pi\)
\(752\) 3705.93 + 2692.52i 0.179709 + 0.130567i
\(753\) 2562.92 + 7887.85i 0.124034 + 0.381739i
\(754\) 14371.5 + 44231.0i 0.694138 + 2.13634i
\(755\) 1889.80 + 1373.02i 0.0910951 + 0.0661845i
\(756\) 9977.55 7249.12i 0.480000 0.348741i
\(757\) −4135.04 + 12726.3i −0.198534 + 0.611026i 0.801383 + 0.598152i \(0.204098\pi\)
−0.999917 + 0.0128743i \(0.995902\pi\)
\(758\) −4608.52 −0.220830
\(759\) 2599.05 4167.14i 0.124295 0.199285i
\(760\) −1562.16 −0.0745601
\(761\) 7562.39 23274.7i 0.360232 1.10868i −0.592681 0.805437i \(-0.701931\pi\)
0.952913 0.303243i \(-0.0980694\pi\)
\(762\) −14008.9 + 10178.1i −0.665996 + 0.483875i
\(763\) 3412.94 + 2479.64i 0.161935 + 0.117653i
\(764\) −7913.03 24353.8i −0.374716 1.15326i
\(765\) −96.0020 295.464i −0.00453720 0.0139641i
\(766\) 43392.3 + 31526.4i 2.04677 + 1.48707i
\(767\) −37190.3 + 27020.3i −1.75080 + 1.27203i
\(768\) 12992.3 39986.2i 0.610442 1.87875i
\(769\) −5952.47 −0.279131 −0.139565 0.990213i \(-0.544571\pi\)
−0.139565 + 0.990213i \(0.544571\pi\)
\(770\) 4891.20 + 1215.15i 0.228918 + 0.0568713i
\(771\) −21955.8 −1.02558
\(772\) 4255.45 13096.9i 0.198390 0.610581i
\(773\) −18761.8 + 13631.2i −0.872980 + 0.634257i −0.931385 0.364036i \(-0.881399\pi\)
0.0584047 + 0.998293i \(0.481399\pi\)
\(774\) 896.426 + 651.291i 0.0416297 + 0.0302457i
\(775\) 1273.51 + 3919.45i 0.0590267 + 0.181665i
\(776\) 13858.3 + 42651.3i 0.641085 + 1.97306i
\(777\) 2669.84 + 1939.75i 0.123269 + 0.0895600i
\(778\) −3675.27 + 2670.24i −0.169363 + 0.123050i
\(779\) −1242.54 + 3824.14i −0.0571484 + 0.175885i
\(780\) 32677.2 1.50004
\(781\) 8347.14 + 9930.78i 0.382438 + 0.454995i
\(782\) −11590.4 −0.530013
\(783\) −5163.21 + 15890.7i −0.235655 + 0.725273i
\(784\) 14209.3 10323.6i 0.647287 0.470282i
\(785\) −927.057 673.546i −0.0421504 0.0306241i
\(786\) 151.535 + 466.378i 0.00687670 + 0.0211643i
\(787\) −9368.90 28834.5i −0.424352 1.30602i −0.903613 0.428349i \(-0.859095\pi\)
0.479261 0.877672i \(-0.340905\pi\)
\(788\) −35665.0 25912.2i −1.61233 1.17142i
\(789\) 13630.7 9903.28i 0.615039 0.446852i
\(790\) −3075.68 + 9465.96i −0.138516 + 0.426308i
\(791\) 4535.66 0.203880
\(792\) 586.112 + 697.311i 0.0262962 + 0.0312852i
\(793\) 35095.2 1.57158
\(794\) 20125.8 61940.8i 0.899543 2.76851i
\(795\) −12366.8 + 8985.01i −0.551705 + 0.400837i
\(796\) −41708.8 30303.2i −1.85720 1.34933i
\(797\) −2912.97 8965.20i −0.129464 0.398449i 0.865224 0.501385i \(-0.167176\pi\)
−0.994688 + 0.102937i \(0.967176\pi\)
\(798\) −375.206 1154.77i −0.0166443 0.0512259i
\(799\) −6102.07 4433.42i −0.270183 0.196299i
\(800\) 487.790 354.400i 0.0215575 0.0156624i
\(801\) 236.923 729.175i 0.0104510 0.0321650i
\(802\) −72423.6 −3.18874
\(803\) −17585.1 4368.77i −0.772807 0.191993i
\(804\) −3900.07 −0.171076
\(805\) −224.491 + 690.914i −0.00982893 + 0.0302503i
\(806\) 51415.5 37355.6i 2.24694 1.63250i
\(807\) −10455.1 7596.07i −0.456056 0.331344i
\(808\) 19490.0 + 59984.0i 0.848583 + 2.61167i
\(809\) −899.741 2769.12i −0.0391016 0.120342i 0.929600 0.368569i \(-0.120152\pi\)
−0.968702 + 0.248227i \(0.920152\pi\)
\(810\) 14697.1 + 10678.1i 0.637537 + 0.463198i
\(811\) −3614.34 + 2625.97i −0.156494 + 0.113700i −0.663277 0.748374i \(-0.730835\pi\)
0.506783 + 0.862074i \(0.330835\pi\)
\(812\) 3319.22 10215.5i 0.143450 0.441495i
\(813\) 1638.68 0.0706901
\(814\) 10383.6 16648.4i 0.447108 0.716862i
\(815\) −6489.30 −0.278908
\(816\) 8548.68 26310.1i 0.366744 1.12872i
\(817\) −2304.91 + 1674.61i −0.0987008 + 0.0717103i
\(818\) 1954.32 + 1419.89i 0.0835343 + 0.0606912i
\(819\) 92.7939 + 285.590i 0.00395907 + 0.0121848i
\(820\) 11662.7 + 35894.0i 0.496680 + 1.52862i
\(821\) −9230.00 6705.99i −0.392362 0.285068i 0.374061 0.927404i \(-0.377965\pi\)
−0.766423 + 0.642337i \(0.777965\pi\)
\(822\) −9330.17 + 6778.76i −0.395897 + 0.287636i
\(823\) −4427.87 + 13627.6i −0.187540 + 0.577190i −0.999983 0.00585144i \(-0.998137\pi\)
0.812443 + 0.583041i \(0.198137\pi\)
\(824\) 70188.3 2.96739
\(825\) 338.677 + 4785.54i 0.0142924 + 0.201953i
\(826\) 16032.6 0.675356
\(827\) −6223.83 + 19155.0i −0.261698 + 0.805422i 0.730738 + 0.682658i \(0.239176\pi\)
−0.992436 + 0.122764i \(0.960824\pi\)
\(828\) −216.822 + 157.530i −0.00910033 + 0.00661177i
\(829\) 6763.38 + 4913.88i 0.283356 + 0.205870i 0.720380 0.693580i \(-0.243968\pi\)
−0.437024 + 0.899450i \(0.643968\pi\)
\(830\) −8835.03 27191.4i −0.369480 1.13714i
\(831\) 7333.45 + 22570.0i 0.306130 + 0.942173i
\(832\) −36499.3 26518.3i −1.52090 1.10500i
\(833\) −23396.5 + 16998.6i −0.973158 + 0.707041i
\(834\) 3093.27 9520.10i 0.128431 0.395269i
\(835\) −16985.6 −0.703964
\(836\) −4431.03 + 1794.59i −0.183314 + 0.0742429i
\(837\) 22832.5 0.942900
\(838\) 17249.4 53088.2i 0.711063 2.18843i
\(839\) −30657.8 + 22274.2i −1.26153 + 0.916555i −0.998832 0.0483235i \(-0.984612\pi\)
−0.262698 + 0.964878i \(0.584612\pi\)
\(840\) −4517.15 3281.90i −0.185543 0.134805i
\(841\) −3039.78 9355.48i −0.124637 0.383594i
\(842\) −3619.92 11141.0i −0.148160 0.455990i
\(843\) 27800.4 + 20198.2i 1.13582 + 0.825222i
\(844\) −10260.6 + 7454.75i −0.418464 + 0.304032i
\(845\) 6301.91 19395.3i 0.256559 0.789607i
\(846\) −263.370 −0.0107031
\(847\) 7481.03 1064.21i 0.303484 0.0431720i
\(848\) −32848.7 −1.33022
\(849\) −2351.62 + 7237.55i −0.0950618 + 0.292570i
\(850\) 9159.68 6654.90i 0.369617 0.268542i
\(851\) 2288.12 + 1662.42i 0.0921689 + 0.0669646i
\(852\) −9065.11 27899.5i −0.364514 1.12186i
\(853\) −10853.6 33404.1i −0.435664 1.34084i −0.892404 0.451236i \(-0.850983\pi\)
0.456740 0.889600i \(-0.349017\pi\)
\(854\) −9902.29 7194.44i −0.396779 0.288277i
\(855\) 22.5653 16.3946i 0.000902593 0.000655772i
\(856\) 14562.7 44819.4i 0.581476 1.78960i
\(857\) 7629.45 0.304104 0.152052 0.988373i \(-0.451412\pi\)
0.152052 + 0.988373i \(0.451412\pi\)
\(858\) 68572.8 27772.2i 2.72848 1.10505i
\(859\) −38905.3 −1.54532 −0.772662 0.634818i \(-0.781075\pi\)
−0.772662 + 0.634818i \(0.781075\pi\)
\(860\) −8263.53 + 25432.5i −0.327656 + 1.00842i
\(861\) −11626.9 + 8447.46i −0.460214 + 0.334365i
\(862\) −32004.8 23252.9i −1.26460 0.918789i
\(863\) 3990.85 + 12282.6i 0.157416 + 0.484477i 0.998398 0.0565870i \(-0.0180218\pi\)
−0.840982 + 0.541064i \(0.818022\pi\)
\(864\) −1032.27 3177.00i −0.0406464 0.125097i
\(865\) −6570.53 4773.77i −0.258272 0.187645i
\(866\) −26407.1 + 19185.9i −1.03620 + 0.752844i
\(867\) −6090.23 + 18743.8i −0.238564 + 0.734225i
\(868\) −14678.1 −0.573971
\(869\) 1053.46 + 14885.5i 0.0411235 + 0.581079i
\(870\) 15440.0 0.601683
\(871\) −1157.29 + 3561.76i −0.0450208 + 0.138560i
\(872\) −22480.8 + 16333.2i −0.873045 + 0.634304i
\(873\) −647.799 470.653i −0.0251142 0.0182465i
\(874\) −321.562 989.665i −0.0124451 0.0383020i
\(875\) −219.294 674.916i −0.00847254 0.0260758i
\(876\) 33148.4 + 24083.7i 1.27852 + 0.928896i
\(877\) −2936.36 + 2133.39i −0.113060 + 0.0821431i −0.642879 0.765968i \(-0.722260\pi\)
0.529818 + 0.848111i \(0.322260\pi\)
\(878\) −13626.1 + 41936.9i −0.523758 + 1.61196i
\(879\) 7824.23 0.300233
\(880\) −5455.81 + 8747.47i −0.208995 + 0.335088i
\(881\) 47324.3 1.80976 0.904878 0.425671i \(-0.139962\pi\)
0.904878 + 0.425671i \(0.139962\pi\)
\(882\) −312.048 + 960.386i −0.0119129 + 0.0366642i
\(883\) −4342.41 + 3154.94i −0.165497 + 0.120240i −0.667451 0.744654i \(-0.732615\pi\)
0.501954 + 0.864894i \(0.332615\pi\)
\(884\) −93540.7 67961.3i −3.55895 2.58573i
\(885\) 4716.07 + 14514.6i 0.179129 + 0.551302i
\(886\) −27953.8 86033.1i −1.05996 3.26223i
\(887\) 36734.0 + 26688.8i 1.39054 + 1.01028i 0.995806 + 0.0914864i \(0.0291618\pi\)
0.394730 + 0.918797i \(0.370838\pi\)
\(888\) −17586.0 + 12777.0i −0.664581 + 0.482847i
\(889\) 1186.72 3652.35i 0.0447709 0.137791i
\(890\) 27941.5 1.05236
\(891\) 26433.9 + 6567.13i 0.993905 + 0.246922i
\(892\) −40085.4 −1.50466
\(893\) 209.261 644.038i 0.00784170 0.0241343i
\(894\) −40918.7 + 29729.2i −1.53079 + 1.11219i
\(895\) −1733.79 1259.67i −0.0647534 0.0470461i
\(896\) 4523.79 + 13922.8i 0.168671 + 0.519116i
\(897\) 3295.44 + 10142.3i 0.122666 + 0.377527i
\(898\) 41376.6 + 30061.8i 1.53759 + 1.11712i
\(899\) 16087.9 11688.5i 0.596841 0.433631i
\(900\) 80.9008 248.987i 0.00299633 0.00922175i
\(901\) 54087.7 1.99991
\(902\) 54980.2 + 65411.1i 2.02953 + 2.41458i
\(903\) −10183.0 −0.375270
\(904\) −9232.21 + 28413.8i −0.339667 + 1.04539i
\(905\) −4989.27 + 3624.91i −0.183258 + 0.133145i
\(906\) −9675.19 7029.44i −0.354787 0.257768i
\(907\) 1271.28 + 3912.60i 0.0465404 + 0.143237i 0.971626 0.236521i \(-0.0760073\pi\)
−0.925086 + 0.379758i \(0.876007\pi\)
\(908\) −13604.4 41870.2i −0.497224 1.53030i
\(909\) −911.052 661.918i −0.0332428 0.0241523i
\(910\) −8853.59 + 6432.51i −0.322520 + 0.234325i
\(911\) −1591.06 + 4896.78i −0.0578641 + 0.178087i −0.975811 0.218616i \(-0.929846\pi\)
0.917947 + 0.396703i \(0.129846\pi\)
\(912\) 2483.71 0.0901798
\(913\) −27581.6 32814.4i −0.999799 1.18948i
\(914\) 41145.8 1.48904
\(915\) 3600.44 11081.0i 0.130084 0.400358i
\(916\) −26403.5 + 19183.3i −0.952398 + 0.691958i
\(917\) −87.9849 63.9248i −0.00316850 0.00230205i
\(918\) −19383.9 59657.4i −0.696910 2.14487i
\(919\) −9491.84 29212.9i −0.340704 1.04858i −0.963844 0.266468i \(-0.914143\pi\)
0.623140 0.782110i \(-0.285857\pi\)
\(920\) −3871.31 2812.67i −0.138732 0.100795i
\(921\) −38393.6 + 27894.6i −1.37363 + 0.997999i
\(922\) 3048.72 9382.98i 0.108898 0.335154i
\(923\) −28169.4 −1.00456
\(924\) −16582.9 4119.80i −0.590410 0.146679i
\(925\) −2762.78 −0.0982052
\(926\) −23895.6 + 73543.1i −0.848011 + 2.60991i
\(927\) −1013.86 + 736.614i −0.0359219 + 0.0260988i
\(928\) −2353.72 1710.08i −0.0832594 0.0604915i
\(929\) 9054.46 + 27866.7i 0.319771 + 0.984153i 0.973746 + 0.227637i \(0.0731000\pi\)
−0.653975 + 0.756516i \(0.726900\pi\)
\(930\) −6519.96 20066.4i −0.229890 0.707530i
\(931\) −2100.57 1526.15i −0.0739455 0.0537245i
\(932\) 39666.8 28819.6i 1.39413 1.01289i
\(933\) 2639.54 8123.66i 0.0926202 0.285056i
\(934\) −10650.5 −0.373121
\(935\) 8983.37 14403.3i 0.314211 0.503784i
\(936\) −1977.97 −0.0690727
\(937\) 5485.86 16883.8i 0.191265 0.588653i −0.808735 0.588173i \(-0.799847\pi\)
1.00000 0.000479951i \(-0.000152773\pi\)
\(938\) 1056.69 767.729i 0.0367826 0.0267241i
\(939\) 12944.2 + 9404.49i 0.449859 + 0.326841i
\(940\) −1964.15 6045.04i −0.0681527 0.209752i
\(941\) −4039.07 12431.0i −0.139926 0.430647i 0.856398 0.516316i \(-0.172697\pi\)
−0.996324 + 0.0856694i \(0.972697\pi\)
\(942\) 4746.25 + 3448.35i 0.164163 + 0.119271i
\(943\) −9964.58 + 7239.69i −0.344105 + 0.250007i
\(944\) −10134.4 + 31190.6i −0.349415 + 1.07539i
\(945\) −3931.69 −0.135342
\(946\) 4274.09 + 60393.2i 0.146895 + 2.07564i
\(947\) −22310.6 −0.765573 −0.382787 0.923837i \(-0.625036\pi\)
−0.382787 + 0.923837i \(0.625036\pi\)
\(948\) 10427.7 32093.0i 0.357252 1.09951i
\(949\) 31830.9 23126.5i 1.08880 0.791062i
\(950\) 822.367 + 597.484i 0.0280854 + 0.0204052i
\(951\) −8707.90 26800.2i −0.296922 0.913833i
\(952\) 6105.02 + 18789.3i 0.207841 + 0.639670i
\(953\) 31556.7 + 22927.3i 1.07263 + 0.779315i 0.976384 0.216042i \(-0.0693149\pi\)
0.0962509 + 0.995357i \(0.469315\pi\)
\(954\) 1527.93 1110.10i 0.0518537 0.0376739i
\(955\) −2522.64 + 7763.89i −0.0854772 + 0.263072i
\(956\) −63325.5 −2.14236
\(957\) 21456.4 8689.91i 0.724750 0.293526i
\(958\) 22211.2 0.749072
\(959\) 790.375 2432.53i 0.0266137 0.0819086i
\(960\) −12117.4 + 8803.83i −0.407384 + 0.295982i
\(961\) 2117.03 + 1538.11i 0.0710626 + 0.0516300i
\(962\) 13165.8 + 40520.2i 0.441250 + 1.35803i
\(963\) 260.015 + 800.245i 0.00870080 + 0.0267783i
\(964\) 67076.4 + 48733.8i 2.24106 + 1.62823i
\(965\) −3551.67 + 2580.44i −0.118479 + 0.0860801i
\(966\) 1149.33 3537.27i 0.0382806 0.117815i
\(967\) 16332.2 0.543132 0.271566 0.962420i \(-0.412459\pi\)
0.271566 + 0.962420i \(0.412459\pi\)
\(968\) −8560.64 + 49031.4i −0.284245 + 1.62803i
\(969\) −4089.61 −0.135580
\(970\) 9017.57 27753.2i 0.298492 0.918662i
\(971\) 13251.0 9627.45i 0.437947 0.318187i −0.346872 0.937913i \(-0.612756\pi\)
0.784819 + 0.619726i \(0.212756\pi\)
\(972\) −2376.65 1726.74i −0.0784270 0.0569806i
\(973\) 686.020 + 2111.35i 0.0226031 + 0.0695651i
\(974\) 28182.0 + 86735.3i 0.927115 + 2.85337i
\(975\) −8427.80 6123.16i −0.276826 0.201126i
\(976\) 20255.8 14716.7i 0.664316 0.482654i
\(977\) 12909.4 39731.2i 0.422732 1.30104i −0.482417 0.875942i \(-0.660241\pi\)
0.905149 0.425094i \(-0.139759\pi\)
\(978\) 33223.3 1.08626
\(979\) 38829.3 15726.0i 1.26761 0.513387i
\(980\) −24370.6 −0.794377
\(981\) 153.318 471.864i 0.00498987 0.0153572i
\(982\) 47803.2 34731.0i 1.55342 1.12863i
\(983\) −10650.7 7738.16i −0.345578 0.251077i 0.401434 0.915888i \(-0.368512\pi\)
−0.747012 + 0.664811i \(0.768512\pi\)
\(984\) −29253.2 90032.0i −0.947720 2.91678i
\(985\) 4342.90 + 13366.1i 0.140484 + 0.432364i
\(986\) −44198.0 32111.7i −1.42754 1.03717i
\(987\) 1958.13 1422.67i 0.0631490 0.0458805i
\(988\) 3207.82 9872.67i 0.103294 0.317906i
\(989\) −8727.10 −0.280592
\(990\) −41.8437 591.255i −0.00134331 0.0189811i
\(991\) 5827.02 0.186782 0.0933911 0.995629i \(-0.470229\pi\)
0.0933911 + 0.995629i \(0.470229\pi\)
\(992\) −1228.56 + 3781.12i −0.0393214 + 0.121019i
\(993\) 31204.5 22671.4i 0.997226 0.724527i
\(994\) 7948.14 + 5774.66i 0.253621 + 0.184267i
\(995\) 5078.84 + 15631.1i 0.161819 + 0.498029i
\(996\) 29954.0 + 92188.8i 0.952939 + 2.93285i
\(997\) −9001.86 6540.24i −0.285950 0.207755i 0.435559 0.900160i \(-0.356551\pi\)
−0.721508 + 0.692406i \(0.756551\pi\)
\(998\) 33847.4 24591.6i 1.07357 0.779992i
\(999\) −4730.04 + 14557.6i −0.149802 + 0.461042i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.4.g.b.31.6 yes 24
11.4 even 5 605.4.a.p.1.12 12
11.5 even 5 inner 55.4.g.b.16.6 24
11.7 odd 10 605.4.a.t.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.4.g.b.16.6 24 11.5 even 5 inner
55.4.g.b.31.6 yes 24 1.1 even 1 trivial
605.4.a.p.1.12 12 11.4 even 5
605.4.a.t.1.1 12 11.7 odd 10