Properties

Label 550.2.h.f.301.1
Level $550$
Weight $2$
Character 550.301
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 550.301
Dual form 550.2.h.f.201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(-1.00000 + 3.07768i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-2.61803 + 1.90211i) q^{6} +(-0.809017 - 2.48990i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(-6.04508 - 4.39201i) q^{9} +(-2.54508 + 2.12663i) q^{11} -3.23607 q^{12} +(-1.30902 - 0.951057i) q^{13} +(0.809017 - 2.48990i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-4.23607 + 3.07768i) q^{17} +(-2.30902 - 7.10642i) q^{18} +(-1.26393 + 3.88998i) q^{19} +8.47214 q^{21} +(-3.30902 + 0.224514i) q^{22} -0.145898 q^{23} +(-2.61803 - 1.90211i) q^{24} +(-0.500000 - 1.53884i) q^{26} +(11.7082 - 8.50651i) q^{27} +(2.11803 - 1.53884i) q^{28} +(-0.381966 - 1.17557i) q^{29} +(5.85410 + 4.25325i) q^{31} -1.00000 q^{32} +(-4.00000 - 9.95959i) q^{33} -5.23607 q^{34} +(2.30902 - 7.10642i) q^{36} +(0.263932 + 0.812299i) q^{37} +(-3.30902 + 2.40414i) q^{38} +(4.23607 - 3.07768i) q^{39} +(-0.572949 + 1.76336i) q^{41} +(6.85410 + 4.97980i) q^{42} +9.23607 q^{43} +(-2.80902 - 1.76336i) q^{44} +(-0.118034 - 0.0857567i) q^{46} +(-3.50000 + 10.7719i) q^{47} +(-1.00000 - 3.07768i) q^{48} +(0.118034 - 0.0857567i) q^{49} +(-5.23607 - 16.1150i) q^{51} +(0.500000 - 1.53884i) q^{52} +(0.736068 + 0.534785i) q^{53} +14.4721 q^{54} +2.61803 q^{56} +(-10.7082 - 7.77997i) q^{57} +(0.381966 - 1.17557i) q^{58} +(0.736068 + 2.26538i) q^{59} +(-7.23607 + 5.25731i) q^{61} +(2.23607 + 6.88191i) q^{62} +(-6.04508 + 18.6049i) q^{63} +(-0.809017 - 0.587785i) q^{64} +(2.61803 - 10.4086i) q^{66} -0.763932 q^{67} +(-4.23607 - 3.07768i) q^{68} +(0.145898 - 0.449028i) q^{69} +(-10.7082 + 7.77997i) q^{71} +(6.04508 - 4.39201i) q^{72} +(0.527864 + 1.62460i) q^{73} +(-0.263932 + 0.812299i) q^{74} -4.09017 q^{76} +(7.35410 + 4.61653i) q^{77} +5.23607 q^{78} +(1.23607 + 0.898056i) q^{79} +(7.54508 + 23.2214i) q^{81} +(-1.50000 + 1.08981i) q^{82} +(12.7082 - 9.23305i) q^{83} +(2.61803 + 8.05748i) q^{84} +(7.47214 + 5.42882i) q^{86} +4.00000 q^{87} +(-1.23607 - 3.07768i) q^{88} -12.0344 q^{89} +(-1.30902 + 4.02874i) q^{91} +(-0.0450850 - 0.138757i) q^{92} +(-18.9443 + 13.7638i) q^{93} +(-9.16312 + 6.65740i) q^{94} +(1.00000 - 3.07768i) q^{96} +(-9.70820 - 7.05342i) q^{97} +0.145898 q^{98} +(24.7254 - 1.67760i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 4 q^{3} - q^{4} - 6 q^{6} - q^{7} + q^{8} - 13 q^{9} + q^{11} - 4 q^{12} - 3 q^{13} + q^{14} - q^{16} - 8 q^{17} - 7 q^{18} - 14 q^{19} + 16 q^{21} - 11 q^{22} - 14 q^{23} - 6 q^{24}+ \cdots + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) −1.00000 + 3.07768i −0.577350 + 1.77690i 0.0506828 + 0.998715i \(0.483860\pi\)
−0.628033 + 0.778187i \(0.716140\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0
\(6\) −2.61803 + 1.90211i −1.06881 + 0.776534i
\(7\) −0.809017 2.48990i −0.305780 0.941093i −0.979385 0.202002i \(-0.935255\pi\)
0.673605 0.739091i \(-0.264745\pi\)
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) −6.04508 4.39201i −2.01503 1.46400i
\(10\) 0 0
\(11\) −2.54508 + 2.12663i −0.767372 + 0.641202i
\(12\) −3.23607 −0.934172
\(13\) −1.30902 0.951057i −0.363056 0.263776i 0.391270 0.920276i \(-0.372036\pi\)
−0.754326 + 0.656500i \(0.772036\pi\)
\(14\) 0.809017 2.48990i 0.216219 0.665453i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −4.23607 + 3.07768i −1.02740 + 0.746448i −0.967786 0.251774i \(-0.918986\pi\)
−0.0596113 + 0.998222i \(0.518986\pi\)
\(18\) −2.30902 7.10642i −0.544241 1.67500i
\(19\) −1.26393 + 3.88998i −0.289966 + 0.892423i 0.694900 + 0.719106i \(0.255449\pi\)
−0.984866 + 0.173317i \(0.944551\pi\)
\(20\) 0 0
\(21\) 8.47214 1.84877
\(22\) −3.30902 + 0.224514i −0.705485 + 0.0478665i
\(23\) −0.145898 −0.0304218 −0.0152109 0.999884i \(-0.504842\pi\)
−0.0152109 + 0.999884i \(0.504842\pi\)
\(24\) −2.61803 1.90211i −0.534404 0.388267i
\(25\) 0 0
\(26\) −0.500000 1.53884i −0.0980581 0.301792i
\(27\) 11.7082 8.50651i 2.25324 1.63708i
\(28\) 2.11803 1.53884i 0.400271 0.290814i
\(29\) −0.381966 1.17557i −0.0709293 0.218298i 0.909308 0.416124i \(-0.136612\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(30\) 0 0
\(31\) 5.85410 + 4.25325i 1.05143 + 0.763907i 0.972483 0.232972i \(-0.0748451\pi\)
0.0789443 + 0.996879i \(0.474845\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.00000 9.95959i −0.696311 1.73374i
\(34\) −5.23607 −0.897978
\(35\) 0 0
\(36\) 2.30902 7.10642i 0.384836 1.18440i
\(37\) 0.263932 + 0.812299i 0.0433902 + 0.133541i 0.970405 0.241484i \(-0.0776341\pi\)
−0.927015 + 0.375025i \(0.877634\pi\)
\(38\) −3.30902 + 2.40414i −0.536793 + 0.390003i
\(39\) 4.23607 3.07768i 0.678314 0.492824i
\(40\) 0 0
\(41\) −0.572949 + 1.76336i −0.0894796 + 0.275390i −0.985776 0.168066i \(-0.946248\pi\)
0.896296 + 0.443456i \(0.146248\pi\)
\(42\) 6.85410 + 4.97980i 1.05761 + 0.768399i
\(43\) 9.23607 1.40849 0.704244 0.709958i \(-0.251286\pi\)
0.704244 + 0.709958i \(0.251286\pi\)
\(44\) −2.80902 1.76336i −0.423475 0.265836i
\(45\) 0 0
\(46\) −0.118034 0.0857567i −0.0174032 0.0126441i
\(47\) −3.50000 + 10.7719i −0.510527 + 1.57124i 0.280748 + 0.959782i \(0.409418\pi\)
−0.791275 + 0.611460i \(0.790582\pi\)
\(48\) −1.00000 3.07768i −0.144338 0.444225i
\(49\) 0.118034 0.0857567i 0.0168620 0.0122510i
\(50\) 0 0
\(51\) −5.23607 16.1150i −0.733196 2.25655i
\(52\) 0.500000 1.53884i 0.0693375 0.213399i
\(53\) 0.736068 + 0.534785i 0.101107 + 0.0734583i 0.637190 0.770707i \(-0.280097\pi\)
−0.536083 + 0.844165i \(0.680097\pi\)
\(54\) 14.4721 1.96941
\(55\) 0 0
\(56\) 2.61803 0.349850
\(57\) −10.7082 7.77997i −1.41834 1.03048i
\(58\) 0.381966 1.17557i 0.0501546 0.154360i
\(59\) 0.736068 + 2.26538i 0.0958279 + 0.294928i 0.987469 0.157816i \(-0.0504452\pi\)
−0.891641 + 0.452744i \(0.850445\pi\)
\(60\) 0 0
\(61\) −7.23607 + 5.25731i −0.926484 + 0.673130i −0.945129 0.326696i \(-0.894065\pi\)
0.0186458 + 0.999826i \(0.494065\pi\)
\(62\) 2.23607 + 6.88191i 0.283981 + 0.874003i
\(63\) −6.04508 + 18.6049i −0.761609 + 2.34399i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) 2.61803 10.4086i 0.322258 1.28121i
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) −4.23607 3.07768i −0.513699 0.373224i
\(69\) 0.145898 0.449028i 0.0175641 0.0540566i
\(70\) 0 0
\(71\) −10.7082 + 7.77997i −1.27083 + 0.923312i −0.999235 0.0390997i \(-0.987551\pi\)
−0.271595 + 0.962412i \(0.587551\pi\)
\(72\) 6.04508 4.39201i 0.712420 0.517603i
\(73\) 0.527864 + 1.62460i 0.0617818 + 0.190145i 0.977184 0.212397i \(-0.0681269\pi\)
−0.915402 + 0.402542i \(0.868127\pi\)
\(74\) −0.263932 + 0.812299i −0.0306815 + 0.0944279i
\(75\) 0 0
\(76\) −4.09017 −0.469175
\(77\) 7.35410 + 4.61653i 0.838078 + 0.526102i
\(78\) 5.23607 0.592868
\(79\) 1.23607 + 0.898056i 0.139069 + 0.101039i 0.655144 0.755504i \(-0.272608\pi\)
−0.516076 + 0.856543i \(0.672608\pi\)
\(80\) 0 0
\(81\) 7.54508 + 23.2214i 0.838343 + 2.58015i
\(82\) −1.50000 + 1.08981i −0.165647 + 0.120350i
\(83\) 12.7082 9.23305i 1.39491 1.01346i 0.399600 0.916690i \(-0.369149\pi\)
0.995307 0.0967693i \(-0.0308509\pi\)
\(84\) 2.61803 + 8.05748i 0.285651 + 0.879143i
\(85\) 0 0
\(86\) 7.47214 + 5.42882i 0.805741 + 0.585405i
\(87\) 4.00000 0.428845
\(88\) −1.23607 3.07768i −0.131765 0.328082i
\(89\) −12.0344 −1.27565 −0.637824 0.770182i \(-0.720165\pi\)
−0.637824 + 0.770182i \(0.720165\pi\)
\(90\) 0 0
\(91\) −1.30902 + 4.02874i −0.137222 + 0.422327i
\(92\) −0.0450850 0.138757i −0.00470043 0.0144664i
\(93\) −18.9443 + 13.7638i −1.96443 + 1.42724i
\(94\) −9.16312 + 6.65740i −0.945104 + 0.686658i
\(95\) 0 0
\(96\) 1.00000 3.07768i 0.102062 0.314115i
\(97\) −9.70820 7.05342i −0.985719 0.716167i −0.0267394 0.999642i \(-0.508512\pi\)
−0.958979 + 0.283476i \(0.908512\pi\)
\(98\) 0.145898 0.0147379
\(99\) 24.7254 1.67760i 2.48500 0.168605i
\(100\) 0 0
\(101\) −3.00000 2.17963i −0.298511 0.216881i 0.428440 0.903570i \(-0.359063\pi\)
−0.726951 + 0.686689i \(0.759063\pi\)
\(102\) 5.23607 16.1150i 0.518448 1.59562i
\(103\) 3.50000 + 10.7719i 0.344865 + 1.06139i 0.961656 + 0.274259i \(0.0884325\pi\)
−0.616791 + 0.787127i \(0.711567\pi\)
\(104\) 1.30902 0.951057i 0.128360 0.0932588i
\(105\) 0 0
\(106\) 0.281153 + 0.865300i 0.0273080 + 0.0840453i
\(107\) 2.32624 7.15942i 0.224886 0.692128i −0.773417 0.633897i \(-0.781454\pi\)
0.998303 0.0582304i \(-0.0185458\pi\)
\(108\) 11.7082 + 8.50651i 1.12662 + 0.818539i
\(109\) 7.52786 0.721039 0.360519 0.932752i \(-0.382599\pi\)
0.360519 + 0.932752i \(0.382599\pi\)
\(110\) 0 0
\(111\) −2.76393 −0.262341
\(112\) 2.11803 + 1.53884i 0.200135 + 0.145407i
\(113\) −1.94427 + 5.98385i −0.182902 + 0.562914i −0.999906 0.0137181i \(-0.995633\pi\)
0.817004 + 0.576632i \(0.195633\pi\)
\(114\) −4.09017 12.5882i −0.383080 1.17900i
\(115\) 0 0
\(116\) 1.00000 0.726543i 0.0928477 0.0674578i
\(117\) 3.73607 + 11.4984i 0.345400 + 1.06303i
\(118\) −0.736068 + 2.26538i −0.0677605 + 0.208546i
\(119\) 11.0902 + 8.05748i 1.01663 + 0.738628i
\(120\) 0 0
\(121\) 1.95492 10.8249i 0.177720 0.984081i
\(122\) −8.94427 −0.809776
\(123\) −4.85410 3.52671i −0.437680 0.317993i
\(124\) −2.23607 + 6.88191i −0.200805 + 0.618014i
\(125\) 0 0
\(126\) −15.8262 + 11.4984i −1.40991 + 1.02436i
\(127\) −1.92705 + 1.40008i −0.170998 + 0.124237i −0.669993 0.742368i \(-0.733703\pi\)
0.498995 + 0.866605i \(0.333703\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) −9.23607 + 28.4257i −0.813190 + 2.50274i
\(130\) 0 0
\(131\) 11.4164 0.997456 0.498728 0.866758i \(-0.333801\pi\)
0.498728 + 0.866758i \(0.333801\pi\)
\(132\) 8.23607 6.88191i 0.716858 0.598993i
\(133\) 10.7082 0.928519
\(134\) −0.618034 0.449028i −0.0533900 0.0387901i
\(135\) 0 0
\(136\) −1.61803 4.97980i −0.138745 0.427014i
\(137\) −4.23607 + 3.07768i −0.361912 + 0.262944i −0.753849 0.657048i \(-0.771805\pi\)
0.391937 + 0.919992i \(0.371805\pi\)
\(138\) 0.381966 0.277515i 0.0325151 0.0236236i
\(139\) −2.51722 7.74721i −0.213508 0.657110i −0.999256 0.0385633i \(-0.987722\pi\)
0.785748 0.618546i \(-0.212278\pi\)
\(140\) 0 0
\(141\) −29.6525 21.5438i −2.49719 1.81431i
\(142\) −13.2361 −1.11075
\(143\) 5.35410 0.363271i 0.447732 0.0303783i
\(144\) 7.47214 0.622678
\(145\) 0 0
\(146\) −0.527864 + 1.62460i −0.0436863 + 0.134453i
\(147\) 0.145898 + 0.449028i 0.0120335 + 0.0370352i
\(148\) −0.690983 + 0.502029i −0.0567985 + 0.0412665i
\(149\) 3.23607 2.35114i 0.265109 0.192613i −0.447287 0.894390i \(-0.647610\pi\)
0.712396 + 0.701777i \(0.247610\pi\)
\(150\) 0 0
\(151\) 3.90983 12.0332i 0.318177 0.979250i −0.656249 0.754544i \(-0.727858\pi\)
0.974427 0.224705i \(-0.0721420\pi\)
\(152\) −3.30902 2.40414i −0.268397 0.195002i
\(153\) 39.1246 3.16304
\(154\) 3.23607 + 8.05748i 0.260770 + 0.649290i
\(155\) 0 0
\(156\) 4.23607 + 3.07768i 0.339157 + 0.246412i
\(157\) −2.66312 + 8.19624i −0.212540 + 0.654131i 0.786779 + 0.617235i \(0.211747\pi\)
−0.999319 + 0.0368962i \(0.988253\pi\)
\(158\) 0.472136 + 1.45309i 0.0375611 + 0.115601i
\(159\) −2.38197 + 1.73060i −0.188902 + 0.137245i
\(160\) 0 0
\(161\) 0.118034 + 0.363271i 0.00930238 + 0.0286298i
\(162\) −7.54508 + 23.2214i −0.592798 + 1.82444i
\(163\) −5.85410 4.25325i −0.458529 0.333141i 0.334425 0.942422i \(-0.391458\pi\)
−0.792954 + 0.609282i \(0.791458\pi\)
\(164\) −1.85410 −0.144781
\(165\) 0 0
\(166\) 15.7082 1.21919
\(167\) 6.39919 + 4.64928i 0.495184 + 0.359772i 0.807174 0.590313i \(-0.200996\pi\)
−0.311990 + 0.950085i \(0.600996\pi\)
\(168\) −2.61803 + 8.05748i −0.201986 + 0.621648i
\(169\) −3.20820 9.87384i −0.246785 0.759526i
\(170\) 0 0
\(171\) 24.7254 17.9641i 1.89080 1.37375i
\(172\) 2.85410 + 8.78402i 0.217623 + 0.669775i
\(173\) 3.89919 12.0005i 0.296450 0.912378i −0.686281 0.727337i \(-0.740758\pi\)
0.982731 0.185042i \(-0.0592421\pi\)
\(174\) 3.23607 + 2.35114i 0.245326 + 0.178240i
\(175\) 0 0
\(176\) 0.809017 3.21644i 0.0609820 0.242448i
\(177\) −7.70820 −0.579384
\(178\) −9.73607 7.07367i −0.729749 0.530194i
\(179\) −0.899187 + 2.76741i −0.0672084 + 0.206846i −0.979021 0.203761i \(-0.934683\pi\)
0.911812 + 0.410607i \(0.134683\pi\)
\(180\) 0 0
\(181\) 16.5623 12.0332i 1.23107 0.894422i 0.234097 0.972213i \(-0.424787\pi\)
0.996970 + 0.0777911i \(0.0247867\pi\)
\(182\) −3.42705 + 2.48990i −0.254030 + 0.184564i
\(183\) −8.94427 27.5276i −0.661180 2.03490i
\(184\) 0.0450850 0.138757i 0.00332371 0.0102293i
\(185\) 0 0
\(186\) −23.4164 −1.71697
\(187\) 4.23607 16.8415i 0.309772 1.23157i
\(188\) −11.3262 −0.826051
\(189\) −30.6525 22.2703i −2.22964 1.61993i
\(190\) 0 0
\(191\) 7.85410 + 24.1724i 0.568303 + 1.74906i 0.657928 + 0.753081i \(0.271433\pi\)
−0.0896251 + 0.995976i \(0.528567\pi\)
\(192\) 2.61803 1.90211i 0.188940 0.137273i
\(193\) −4.38197 + 3.18368i −0.315421 + 0.229167i −0.734219 0.678913i \(-0.762451\pi\)
0.418798 + 0.908079i \(0.362451\pi\)
\(194\) −3.70820 11.4127i −0.266234 0.819383i
\(195\) 0 0
\(196\) 0.118034 + 0.0857567i 0.00843100 + 0.00612548i
\(197\) 4.90983 0.349811 0.174905 0.984585i \(-0.444038\pi\)
0.174905 + 0.984585i \(0.444038\pi\)
\(198\) 20.9894 + 13.1760i 1.49165 + 0.936380i
\(199\) 1.70820 0.121091 0.0605457 0.998165i \(-0.480716\pi\)
0.0605457 + 0.998165i \(0.480716\pi\)
\(200\) 0 0
\(201\) 0.763932 2.35114i 0.0538836 0.165837i
\(202\) −1.14590 3.52671i −0.0806251 0.248139i
\(203\) −2.61803 + 1.90211i −0.183750 + 0.133502i
\(204\) 13.7082 9.95959i 0.959766 0.697311i
\(205\) 0 0
\(206\) −3.50000 + 10.7719i −0.243857 + 0.750513i
\(207\) 0.881966 + 0.640786i 0.0613009 + 0.0445377i
\(208\) 1.61803 0.112190
\(209\) −5.05573 12.5882i −0.349712 0.870747i
\(210\) 0 0
\(211\) −16.9443 12.3107i −1.16649 0.847506i −0.175907 0.984407i \(-0.556286\pi\)
−0.990585 + 0.136901i \(0.956286\pi\)
\(212\) −0.281153 + 0.865300i −0.0193097 + 0.0594290i
\(213\) −13.2361 40.7364i −0.906920 2.79121i
\(214\) 6.09017 4.42477i 0.416315 0.302471i
\(215\) 0 0
\(216\) 4.47214 + 13.7638i 0.304290 + 0.936509i
\(217\) 5.85410 18.0171i 0.397402 1.22308i
\(218\) 6.09017 + 4.42477i 0.412478 + 0.299683i
\(219\) −5.52786 −0.373538
\(220\) 0 0
\(221\) 8.47214 0.569898
\(222\) −2.23607 1.62460i −0.150075 0.109036i
\(223\) −2.98936 + 9.20029i −0.200182 + 0.616097i 0.799695 + 0.600407i \(0.204995\pi\)
−0.999877 + 0.0156905i \(0.995005\pi\)
\(224\) 0.809017 + 2.48990i 0.0540547 + 0.166363i
\(225\) 0 0
\(226\) −5.09017 + 3.69822i −0.338593 + 0.246002i
\(227\) 5.09017 + 15.6659i 0.337846 + 1.03978i 0.965303 + 0.261133i \(0.0840960\pi\)
−0.627456 + 0.778652i \(0.715904\pi\)
\(228\) 4.09017 12.5882i 0.270878 0.833677i
\(229\) 22.7984 + 16.5640i 1.50656 + 1.09458i 0.967675 + 0.252199i \(0.0811537\pi\)
0.538884 + 0.842380i \(0.318846\pi\)
\(230\) 0 0
\(231\) −21.5623 + 18.0171i −1.41870 + 1.18544i
\(232\) 1.23607 0.0811518
\(233\) 12.3262 + 8.95554i 0.807519 + 0.586697i 0.913110 0.407713i \(-0.133674\pi\)
−0.105591 + 0.994410i \(0.533674\pi\)
\(234\) −3.73607 + 11.4984i −0.244234 + 0.751676i
\(235\) 0 0
\(236\) −1.92705 + 1.40008i −0.125440 + 0.0911377i
\(237\) −4.00000 + 2.90617i −0.259828 + 0.188776i
\(238\) 4.23607 + 13.0373i 0.274584 + 0.845081i
\(239\) 2.94427 9.06154i 0.190449 0.586142i −0.809550 0.587050i \(-0.800289\pi\)
1.00000 0.000908170i \(0.000289080\pi\)
\(240\) 0 0
\(241\) −1.85410 −0.119433 −0.0597166 0.998215i \(-0.519020\pi\)
−0.0597166 + 0.998215i \(0.519020\pi\)
\(242\) 7.94427 7.60845i 0.510677 0.489090i
\(243\) −35.5967 −2.28353
\(244\) −7.23607 5.25731i −0.463242 0.336565i
\(245\) 0 0
\(246\) −1.85410 5.70634i −0.118213 0.363823i
\(247\) 5.35410 3.88998i 0.340673 0.247514i
\(248\) −5.85410 + 4.25325i −0.371736 + 0.270082i
\(249\) 15.7082 + 48.3449i 0.995467 + 3.06373i
\(250\) 0 0
\(251\) 8.11803 + 5.89810i 0.512406 + 0.372285i 0.813735 0.581235i \(-0.197430\pi\)
−0.301330 + 0.953520i \(0.597430\pi\)
\(252\) −19.5623 −1.23231
\(253\) 0.371323 0.310271i 0.0233449 0.0195066i
\(254\) −2.38197 −0.149458
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 3.70820 + 11.4127i 0.231311 + 0.711903i 0.997589 + 0.0693940i \(0.0221066\pi\)
−0.766278 + 0.642509i \(0.777893\pi\)
\(258\) −24.1803 + 17.5680i −1.50540 + 1.09374i
\(259\) 1.80902 1.31433i 0.112407 0.0816684i
\(260\) 0 0
\(261\) −2.85410 + 8.78402i −0.176664 + 0.543717i
\(262\) 9.23607 + 6.71040i 0.570606 + 0.414570i
\(263\) −25.7984 −1.59080 −0.795398 0.606088i \(-0.792738\pi\)
−0.795398 + 0.606088i \(0.792738\pi\)
\(264\) 10.7082 0.726543i 0.659044 0.0447156i
\(265\) 0 0
\(266\) 8.66312 + 6.29412i 0.531170 + 0.385918i
\(267\) 12.0344 37.0382i 0.736496 2.26670i
\(268\) −0.236068 0.726543i −0.0144201 0.0443806i
\(269\) −14.2361 + 10.3431i −0.867988 + 0.630630i −0.930046 0.367442i \(-0.880234\pi\)
0.0620580 + 0.998073i \(0.480234\pi\)
\(270\) 0 0
\(271\) 4.14590 + 12.7598i 0.251845 + 0.775100i 0.994435 + 0.105353i \(0.0335974\pi\)
−0.742589 + 0.669747i \(0.766403\pi\)
\(272\) 1.61803 4.97980i 0.0981077 0.301945i
\(273\) −11.0902 8.05748i −0.671208 0.487661i
\(274\) −5.23607 −0.316322
\(275\) 0 0
\(276\) 0.472136 0.0284192
\(277\) −0.500000 0.363271i −0.0300421 0.0218269i 0.572663 0.819791i \(-0.305910\pi\)
−0.602705 + 0.797964i \(0.705910\pi\)
\(278\) 2.51722 7.74721i 0.150973 0.464647i
\(279\) −16.7082 51.4226i −1.00029 3.07859i
\(280\) 0 0
\(281\) −14.5623 + 10.5801i −0.868714 + 0.631158i −0.930242 0.366947i \(-0.880403\pi\)
0.0615273 + 0.998105i \(0.480403\pi\)
\(282\) −11.3262 34.8586i −0.674468 2.07580i
\(283\) −7.67376 + 23.6174i −0.456158 + 1.40391i 0.413613 + 0.910453i \(0.364267\pi\)
−0.869771 + 0.493456i \(0.835733\pi\)
\(284\) −10.7082 7.77997i −0.635415 0.461656i
\(285\) 0 0
\(286\) 4.54508 + 2.85317i 0.268757 + 0.168711i
\(287\) 4.85410 0.286529
\(288\) 6.04508 + 4.39201i 0.356210 + 0.258802i
\(289\) 3.21885 9.90659i 0.189344 0.582741i
\(290\) 0 0
\(291\) 31.4164 22.8254i 1.84166 1.33805i
\(292\) −1.38197 + 1.00406i −0.0808734 + 0.0587580i
\(293\) 7.33688 + 22.5806i 0.428625 + 1.31917i 0.899480 + 0.436962i \(0.143946\pi\)
−0.470855 + 0.882211i \(0.656054\pi\)
\(294\) −0.145898 + 0.449028i −0.00850895 + 0.0261878i
\(295\) 0 0
\(296\) −0.854102 −0.0496437
\(297\) −11.7082 + 46.5488i −0.679379 + 2.70103i
\(298\) 4.00000 0.231714
\(299\) 0.190983 + 0.138757i 0.0110448 + 0.00802454i
\(300\) 0 0
\(301\) −7.47214 22.9969i −0.430687 1.32552i
\(302\) 10.2361 7.43694i 0.589020 0.427948i
\(303\) 9.70820 7.05342i 0.557722 0.405209i
\(304\) −1.26393 3.88998i −0.0724915 0.223106i
\(305\) 0 0
\(306\) 31.6525 + 22.9969i 1.80945 + 1.31464i
\(307\) 26.9443 1.53779 0.768895 0.639375i \(-0.220807\pi\)
0.768895 + 0.639375i \(0.220807\pi\)
\(308\) −2.11803 + 8.42075i −0.120686 + 0.479817i
\(309\) −36.6525 −2.08509
\(310\) 0 0
\(311\) −0.763932 + 2.35114i −0.0433186 + 0.133321i −0.970377 0.241597i \(-0.922329\pi\)
0.927058 + 0.374917i \(0.122329\pi\)
\(312\) 1.61803 + 4.97980i 0.0916031 + 0.281925i
\(313\) 22.1803 16.1150i 1.25371 0.910871i 0.255276 0.966868i \(-0.417834\pi\)
0.998431 + 0.0559968i \(0.0178337\pi\)
\(314\) −6.97214 + 5.06555i −0.393460 + 0.285866i
\(315\) 0 0
\(316\) −0.472136 + 1.45309i −0.0265597 + 0.0817424i
\(317\) 5.01722 + 3.64522i 0.281795 + 0.204736i 0.719700 0.694285i \(-0.244279\pi\)
−0.437905 + 0.899021i \(0.644279\pi\)
\(318\) −2.94427 −0.165107
\(319\) 3.47214 + 2.17963i 0.194402 + 0.122036i
\(320\) 0 0
\(321\) 19.7082 + 14.3188i 1.10000 + 0.799200i
\(322\) −0.118034 + 0.363271i −0.00657778 + 0.0202443i
\(323\) −6.61803 20.3682i −0.368237 1.13332i
\(324\) −19.7533 + 14.3516i −1.09740 + 0.797311i
\(325\) 0 0
\(326\) −2.23607 6.88191i −0.123844 0.381154i
\(327\) −7.52786 + 23.1684i −0.416292 + 1.28121i
\(328\) −1.50000 1.08981i −0.0828236 0.0601749i
\(329\) 29.6525 1.63479
\(330\) 0 0
\(331\) −14.3820 −0.790504 −0.395252 0.918573i \(-0.629343\pi\)
−0.395252 + 0.918573i \(0.629343\pi\)
\(332\) 12.7082 + 9.23305i 0.697453 + 0.506729i
\(333\) 1.97214 6.06961i 0.108072 0.332613i
\(334\) 2.44427 + 7.52270i 0.133745 + 0.411624i
\(335\) 0 0
\(336\) −6.85410 + 4.97980i −0.373922 + 0.271670i
\(337\) −10.9443 33.6830i −0.596172 1.83483i −0.548801 0.835953i \(-0.684916\pi\)
−0.0473712 0.998877i \(-0.515084\pi\)
\(338\) 3.20820 9.87384i 0.174503 0.537066i
\(339\) −16.4721 11.9677i −0.894644 0.649997i
\(340\) 0 0
\(341\) −23.9443 + 1.62460i −1.29666 + 0.0879769i
\(342\) 30.5623 1.65262
\(343\) −15.1353 10.9964i −0.817227 0.593750i
\(344\) −2.85410 + 8.78402i −0.153883 + 0.473603i
\(345\) 0 0
\(346\) 10.2082 7.41669i 0.548796 0.398724i
\(347\) −21.9443 + 15.9434i −1.17803 + 0.855889i −0.991948 0.126645i \(-0.959579\pi\)
−0.186082 + 0.982534i \(0.559579\pi\)
\(348\) 1.23607 + 3.80423i 0.0662602 + 0.203928i
\(349\) 9.56231 29.4298i 0.511858 1.57534i −0.277068 0.960850i \(-0.589363\pi\)
0.788926 0.614488i \(-0.210637\pi\)
\(350\) 0 0
\(351\) −23.4164 −1.24988
\(352\) 2.54508 2.12663i 0.135653 0.113350i
\(353\) −11.7082 −0.623165 −0.311582 0.950219i \(-0.600859\pi\)
−0.311582 + 0.950219i \(0.600859\pi\)
\(354\) −6.23607 4.53077i −0.331443 0.240808i
\(355\) 0 0
\(356\) −3.71885 11.4454i −0.197098 0.606607i
\(357\) −35.8885 + 26.0746i −1.89942 + 1.38001i
\(358\) −2.35410 + 1.71036i −0.124418 + 0.0903951i
\(359\) −9.41641 28.9807i −0.496979 1.52954i −0.813850 0.581075i \(-0.802632\pi\)
0.316871 0.948469i \(-0.397368\pi\)
\(360\) 0 0
\(361\) 1.83688 + 1.33457i 0.0966779 + 0.0702406i
\(362\) 20.4721 1.07599
\(363\) 31.3607 + 16.8415i 1.64601 + 0.883950i
\(364\) −4.23607 −0.222030
\(365\) 0 0
\(366\) 8.94427 27.5276i 0.467525 1.43889i
\(367\) −3.23607 9.95959i −0.168921 0.519887i 0.830382 0.557194i \(-0.188122\pi\)
−0.999304 + 0.0373073i \(0.988122\pi\)
\(368\) 0.118034 0.0857567i 0.00615295 0.00447038i
\(369\) 11.2082 8.14324i 0.583476 0.423920i
\(370\) 0 0
\(371\) 0.736068 2.26538i 0.0382147 0.117613i
\(372\) −18.9443 13.7638i −0.982215 0.713621i
\(373\) −6.96556 −0.360663 −0.180331 0.983606i \(-0.557717\pi\)
−0.180331 + 0.983606i \(0.557717\pi\)
\(374\) 13.3262 11.1352i 0.689083 0.575786i
\(375\) 0 0
\(376\) −9.16312 6.65740i −0.472552 0.343329i
\(377\) −0.618034 + 1.90211i −0.0318304 + 0.0979638i
\(378\) −11.7082 36.0341i −0.602205 1.85340i
\(379\) 8.35410 6.06961i 0.429121 0.311775i −0.352176 0.935934i \(-0.614558\pi\)
0.781297 + 0.624159i \(0.214558\pi\)
\(380\) 0 0
\(381\) −2.38197 7.33094i −0.122032 0.375575i
\(382\) −7.85410 + 24.1724i −0.401851 + 1.23677i
\(383\) −12.8262 9.31881i −0.655390 0.476169i 0.209713 0.977763i \(-0.432747\pi\)
−0.865103 + 0.501594i \(0.832747\pi\)
\(384\) 3.23607 0.165140
\(385\) 0 0
\(386\) −5.41641 −0.275688
\(387\) −55.8328 40.5649i −2.83814 2.06203i
\(388\) 3.70820 11.4127i 0.188256 0.579391i
\(389\) 3.76393 + 11.5842i 0.190839 + 0.587342i 1.00000 0.000245108i \(-7.80203e-5\pi\)
−0.809161 + 0.587587i \(0.800078\pi\)
\(390\) 0 0
\(391\) 0.618034 0.449028i 0.0312553 0.0227083i
\(392\) 0.0450850 + 0.138757i 0.00227713 + 0.00700830i
\(393\) −11.4164 + 35.1361i −0.575882 + 1.77238i
\(394\) 3.97214 + 2.88593i 0.200113 + 0.145391i
\(395\) 0 0
\(396\) 9.23607 + 22.9969i 0.464130 + 1.15564i
\(397\) −6.79837 −0.341201 −0.170600 0.985340i \(-0.554571\pi\)
−0.170600 + 0.985340i \(0.554571\pi\)
\(398\) 1.38197 + 1.00406i 0.0692717 + 0.0503288i
\(399\) −10.7082 + 32.9565i −0.536081 + 1.64989i
\(400\) 0 0
\(401\) 8.69098 6.31437i 0.434007 0.315325i −0.349242 0.937033i \(-0.613561\pi\)
0.783249 + 0.621708i \(0.213561\pi\)
\(402\) 2.00000 1.45309i 0.0997509 0.0724733i
\(403\) −3.61803 11.1352i −0.180227 0.554682i
\(404\) 1.14590 3.52671i 0.0570106 0.175460i
\(405\) 0 0
\(406\) −3.23607 −0.160603
\(407\) −2.39919 1.50609i −0.118923 0.0746539i
\(408\) 16.9443 0.838866
\(409\) 18.8713 + 13.7108i 0.933127 + 0.677956i 0.946756 0.321951i \(-0.104339\pi\)
−0.0136296 + 0.999907i \(0.504339\pi\)
\(410\) 0 0
\(411\) −5.23607 16.1150i −0.258276 0.794892i
\(412\) −9.16312 + 6.65740i −0.451434 + 0.327986i
\(413\) 5.04508 3.66547i 0.248252 0.180366i
\(414\) 0.336881 + 1.03681i 0.0165568 + 0.0509566i
\(415\) 0 0
\(416\) 1.30902 + 0.951057i 0.0641798 + 0.0466294i
\(417\) 26.3607 1.29089
\(418\) 3.30902 13.1558i 0.161849 0.643471i
\(419\) −1.61803 −0.0790461 −0.0395231 0.999219i \(-0.512584\pi\)
−0.0395231 + 0.999219i \(0.512584\pi\)
\(420\) 0 0
\(421\) −5.76393 + 17.7396i −0.280917 + 0.864573i 0.706676 + 0.707537i \(0.250194\pi\)
−0.987593 + 0.157036i \(0.949806\pi\)
\(422\) −6.47214 19.9192i −0.315059 0.969651i
\(423\) 68.4681 49.7450i 3.32903 2.41868i
\(424\) −0.736068 + 0.534785i −0.0357466 + 0.0259714i
\(425\) 0 0
\(426\) 13.2361 40.7364i 0.641290 1.97369i
\(427\) 18.9443 + 13.7638i 0.916778 + 0.666078i
\(428\) 7.52786 0.363873
\(429\) −4.23607 + 16.8415i −0.204519 + 0.813115i
\(430\) 0 0
\(431\) 21.1803 + 15.3884i 1.02022 + 0.741234i 0.966328 0.257313i \(-0.0828370\pi\)
0.0538929 + 0.998547i \(0.482837\pi\)
\(432\) −4.47214 + 13.7638i −0.215166 + 0.662212i
\(433\) −2.94427 9.06154i −0.141493 0.435470i 0.855051 0.518545i \(-0.173526\pi\)
−0.996543 + 0.0830748i \(0.973526\pi\)
\(434\) 15.3262 11.1352i 0.735683 0.534505i
\(435\) 0 0
\(436\) 2.32624 + 7.15942i 0.111407 + 0.342874i
\(437\) 0.184405 0.567541i 0.00882130 0.0271492i
\(438\) −4.47214 3.24920i −0.213687 0.155253i
\(439\) −13.1246 −0.626404 −0.313202 0.949687i \(-0.601402\pi\)
−0.313202 + 0.949687i \(0.601402\pi\)
\(440\) 0 0
\(441\) −1.09017 −0.0519129
\(442\) 6.85410 + 4.97980i 0.326016 + 0.236865i
\(443\) −0.416408 + 1.28157i −0.0197841 + 0.0608893i −0.960461 0.278414i \(-0.910191\pi\)
0.940677 + 0.339303i \(0.110191\pi\)
\(444\) −0.854102 2.62866i −0.0405339 0.124750i
\(445\) 0 0
\(446\) −7.82624 + 5.68609i −0.370583 + 0.269244i
\(447\) 4.00000 + 12.3107i 0.189194 + 0.582278i
\(448\) −0.809017 + 2.48990i −0.0382225 + 0.117637i
\(449\) −2.54508 1.84911i −0.120110 0.0872650i 0.526109 0.850417i \(-0.323651\pi\)
−0.646219 + 0.763152i \(0.723651\pi\)
\(450\) 0 0
\(451\) −2.29180 5.70634i −0.107916 0.268701i
\(452\) −6.29180 −0.295941
\(453\) 33.1246 + 24.0664i 1.55633 + 1.13074i
\(454\) −5.09017 + 15.6659i −0.238894 + 0.735239i
\(455\) 0 0
\(456\) 10.7082 7.77997i 0.501458 0.364330i
\(457\) 26.3262 19.1271i 1.23149 0.894729i 0.234489 0.972119i \(-0.424658\pi\)
0.997001 + 0.0773894i \(0.0246585\pi\)
\(458\) 8.70820 + 26.8011i 0.406908 + 1.25233i
\(459\) −23.4164 + 72.0683i −1.09298 + 3.36386i
\(460\) 0 0
\(461\) 28.5410 1.32929 0.664644 0.747160i \(-0.268583\pi\)
0.664644 + 0.747160i \(0.268583\pi\)
\(462\) −28.0344 + 1.90211i −1.30428 + 0.0884943i
\(463\) −15.5066 −0.720652 −0.360326 0.932826i \(-0.617335\pi\)
−0.360326 + 0.932826i \(0.617335\pi\)
\(464\) 1.00000 + 0.726543i 0.0464238 + 0.0337289i
\(465\) 0 0
\(466\) 4.70820 + 14.4904i 0.218103 + 0.671253i
\(467\) 13.9443 10.1311i 0.645264 0.468812i −0.216391 0.976307i \(-0.569428\pi\)
0.861655 + 0.507495i \(0.169428\pi\)
\(468\) −9.78115 + 7.10642i −0.452134 + 0.328495i
\(469\) 0.618034 + 1.90211i 0.0285382 + 0.0878314i
\(470\) 0 0
\(471\) −22.5623 16.3925i −1.03962 0.755325i
\(472\) −2.38197 −0.109639
\(473\) −23.5066 + 19.6417i −1.08083 + 0.903125i
\(474\) −4.94427 −0.227098
\(475\) 0 0
\(476\) −4.23607 + 13.0373i −0.194160 + 0.597563i
\(477\) −2.10081 6.46564i −0.0961896 0.296041i
\(478\) 7.70820 5.60034i 0.352565 0.256153i
\(479\) 23.9443 17.3965i 1.09404 0.794868i 0.113965 0.993485i \(-0.463645\pi\)
0.980077 + 0.198617i \(0.0636450\pi\)
\(480\) 0 0
\(481\) 0.427051 1.31433i 0.0194718 0.0599282i
\(482\) −1.50000 1.08981i −0.0683231 0.0496397i
\(483\) −1.23607 −0.0562430
\(484\) 10.8992 1.48584i 0.495418 0.0675382i
\(485\) 0 0
\(486\) −28.7984 20.9232i −1.30632 0.949098i
\(487\) −11.4164 + 35.1361i −0.517327 + 1.59217i 0.261681 + 0.965154i \(0.415723\pi\)
−0.779008 + 0.627014i \(0.784277\pi\)
\(488\) −2.76393 8.50651i −0.125117 0.385072i
\(489\) 18.9443 13.7638i 0.856690 0.622421i
\(490\) 0 0
\(491\) 11.2639 + 34.6668i 0.508334 + 1.56449i 0.795092 + 0.606489i \(0.207422\pi\)
−0.286758 + 0.958003i \(0.592578\pi\)
\(492\) 1.85410 5.70634i 0.0835894 0.257262i
\(493\) 5.23607 + 3.80423i 0.235821 + 0.171334i
\(494\) 6.61803 0.297759
\(495\) 0 0
\(496\) −7.23607 −0.324909
\(497\) 28.0344 + 20.3682i 1.25752 + 0.913639i
\(498\) −15.7082 + 48.3449i −0.703901 + 2.16639i
\(499\) −3.95492 12.1720i −0.177046 0.544893i 0.822675 0.568512i \(-0.192481\pi\)
−0.999721 + 0.0236199i \(0.992481\pi\)
\(500\) 0 0
\(501\) −20.7082 + 15.0454i −0.925174 + 0.672178i
\(502\) 3.10081 + 9.54332i 0.138396 + 0.425939i
\(503\) −2.31966 + 7.13918i −0.103429 + 0.318320i −0.989358 0.145499i \(-0.953521\pi\)
0.885930 + 0.463819i \(0.153521\pi\)
\(504\) −15.8262 11.4984i −0.704957 0.512181i
\(505\) 0 0
\(506\) 0.482779 0.0327561i 0.0214621 0.00145619i
\(507\) 33.5967 1.49208
\(508\) −1.92705 1.40008i −0.0854991 0.0621187i
\(509\) −9.61803 + 29.6013i −0.426312 + 1.31205i 0.475421 + 0.879759i \(0.342296\pi\)
−0.901733 + 0.432294i \(0.857704\pi\)
\(510\) 0 0
\(511\) 3.61803 2.62866i 0.160052 0.116285i
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) 18.2918 + 56.2964i 0.807603 + 2.48554i
\(514\) −3.70820 + 11.4127i −0.163562 + 0.503392i
\(515\) 0 0
\(516\) −29.8885 −1.31577
\(517\) −14.0000 34.8586i −0.615719 1.53308i
\(518\) 2.23607 0.0982472
\(519\) 33.0344 + 24.0009i 1.45005 + 1.05352i
\(520\) 0 0
\(521\) −2.66312 8.19624i −0.116673 0.359084i 0.875619 0.483002i \(-0.160454\pi\)
−0.992292 + 0.123919i \(0.960454\pi\)
\(522\) −7.47214 + 5.42882i −0.327047 + 0.237613i
\(523\) −5.94427 + 4.31877i −0.259925 + 0.188846i −0.710114 0.704087i \(-0.751357\pi\)
0.450189 + 0.892933i \(0.351357\pi\)
\(524\) 3.52786 + 10.8576i 0.154115 + 0.474319i
\(525\) 0 0
\(526\) −20.8713 15.1639i −0.910033 0.661178i
\(527\) −37.8885 −1.65045
\(528\) 9.09017 + 5.70634i 0.395599 + 0.248337i
\(529\) −22.9787 −0.999075
\(530\) 0 0
\(531\) 5.50000 16.9273i 0.238680 0.734580i
\(532\) 3.30902 + 10.1841i 0.143464 + 0.441537i
\(533\) 2.42705 1.76336i 0.105127 0.0763794i
\(534\) 31.5066 22.8909i 1.36342 0.990585i
\(535\) 0 0
\(536\) 0.236068 0.726543i 0.0101966 0.0313819i
\(537\) −7.61803 5.53483i −0.328742 0.238845i
\(538\) −17.5967 −0.758650
\(539\) −0.118034 + 0.469272i −0.00508408 + 0.0202130i
\(540\) 0 0
\(541\) 6.47214 + 4.70228i 0.278259 + 0.202167i 0.718158 0.695880i \(-0.244986\pi\)
−0.439899 + 0.898047i \(0.644986\pi\)
\(542\) −4.14590 + 12.7598i −0.178082 + 0.548079i
\(543\) 20.4721 + 63.0068i 0.878543 + 2.70388i
\(544\) 4.23607 3.07768i 0.181620 0.131955i
\(545\) 0 0
\(546\) −4.23607 13.0373i −0.181287 0.557944i
\(547\) 4.81966 14.8334i 0.206074 0.634230i −0.793594 0.608448i \(-0.791792\pi\)
0.999668 0.0257820i \(-0.00820757\pi\)
\(548\) −4.23607 3.07768i −0.180956 0.131472i
\(549\) 66.8328 2.85236
\(550\) 0 0
\(551\) 5.05573 0.215381
\(552\) 0.381966 + 0.277515i 0.0162576 + 0.0118118i
\(553\) 1.23607 3.80423i 0.0525630 0.161772i
\(554\) −0.190983 0.587785i −0.00811409 0.0249726i
\(555\) 0 0
\(556\) 6.59017 4.78804i 0.279485 0.203058i
\(557\) −10.2639 31.5891i −0.434897 1.33847i −0.893192 0.449675i \(-0.851540\pi\)
0.458296 0.888800i \(-0.348460\pi\)
\(558\) 16.7082 51.4226i 0.707315 2.17689i
\(559\) −12.0902 8.78402i −0.511360 0.371525i
\(560\) 0 0
\(561\) 47.5967 + 29.8788i 2.00954 + 1.26148i
\(562\) −18.0000 −0.759284
\(563\) 19.3262 + 14.0413i 0.814504 + 0.591772i 0.915133 0.403152i \(-0.132086\pi\)
−0.100629 + 0.994924i \(0.532086\pi\)
\(564\) 11.3262 34.8586i 0.476921 1.46781i
\(565\) 0 0
\(566\) −20.0902 + 14.5964i −0.844453 + 0.613531i
\(567\) 51.7148 37.5730i 2.17182 1.57792i
\(568\) −4.09017 12.5882i −0.171620 0.528191i
\(569\) 2.57295 7.91872i 0.107864 0.331970i −0.882528 0.470259i \(-0.844160\pi\)
0.990392 + 0.138289i \(0.0441604\pi\)
\(570\) 0 0
\(571\) −29.0902 −1.21739 −0.608693 0.793406i \(-0.708306\pi\)
−0.608693 + 0.793406i \(0.708306\pi\)
\(572\) 2.00000 + 4.97980i 0.0836242 + 0.208216i
\(573\) −82.2492 −3.43601
\(574\) 3.92705 + 2.85317i 0.163912 + 0.119089i
\(575\) 0 0
\(576\) 2.30902 + 7.10642i 0.0962090 + 0.296101i
\(577\) 12.0902 8.78402i 0.503320 0.365684i −0.306963 0.951721i \(-0.599313\pi\)
0.810284 + 0.586038i \(0.199313\pi\)
\(578\) 8.42705 6.12261i 0.350519 0.254667i
\(579\) −5.41641 16.6700i −0.225098 0.692781i
\(580\) 0 0
\(581\) −33.2705 24.1724i −1.38029 1.00284i
\(582\) 38.8328 1.60967
\(583\) −3.01064 + 0.204270i −0.124688 + 0.00845998i
\(584\) −1.70820 −0.0706860
\(585\) 0 0
\(586\) −7.33688 + 22.5806i −0.303084 + 0.932796i
\(587\) 6.41641 + 19.7477i 0.264833 + 0.815074i 0.991732 + 0.128328i \(0.0409612\pi\)
−0.726898 + 0.686745i \(0.759039\pi\)
\(588\) −0.381966 + 0.277515i −0.0157520 + 0.0114445i
\(589\) −23.9443 + 17.3965i −0.986607 + 0.716812i
\(590\) 0 0
\(591\) −4.90983 + 15.1109i −0.201963 + 0.621579i
\(592\) −0.690983 0.502029i −0.0283992 0.0206332i
\(593\) 19.7082 0.809319 0.404659 0.914467i \(-0.367390\pi\)
0.404659 + 0.914467i \(0.367390\pi\)
\(594\) −36.8328 + 30.7768i −1.51127 + 1.26279i
\(595\) 0 0
\(596\) 3.23607 + 2.35114i 0.132555 + 0.0963065i
\(597\) −1.70820 + 5.25731i −0.0699121 + 0.215167i
\(598\) 0.0729490 + 0.224514i 0.00298311 + 0.00918106i
\(599\) −13.3262 + 9.68208i −0.544495 + 0.395599i −0.825752 0.564034i \(-0.809249\pi\)
0.281257 + 0.959633i \(0.409249\pi\)
\(600\) 0 0
\(601\) 6.97214 + 21.4580i 0.284399 + 0.875291i 0.986578 + 0.163290i \(0.0522108\pi\)
−0.702179 + 0.712001i \(0.747789\pi\)
\(602\) 7.47214 22.9969i 0.304542 0.937282i
\(603\) 4.61803 + 3.35520i 0.188061 + 0.136634i
\(604\) 12.6525 0.514822
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) 26.1803 + 19.0211i 1.06263 + 0.772044i 0.974573 0.224072i \(-0.0719350\pi\)
0.0880546 + 0.996116i \(0.471935\pi\)
\(608\) 1.26393 3.88998i 0.0512592 0.157760i
\(609\) −3.23607 9.95959i −0.131132 0.403583i
\(610\) 0 0
\(611\) 14.8262 10.7719i 0.599805 0.435784i
\(612\) 12.0902 + 37.2097i 0.488716 + 1.50411i
\(613\) −3.56231 + 10.9637i −0.143880 + 0.442818i −0.996865 0.0791176i \(-0.974790\pi\)
0.852985 + 0.521935i \(0.174790\pi\)
\(614\) 21.7984 + 15.8374i 0.879711 + 0.639147i
\(615\) 0 0
\(616\) −6.66312 + 5.56758i −0.268465 + 0.224324i
\(617\) −32.9443 −1.32629 −0.663143 0.748493i \(-0.730778\pi\)
−0.663143 + 0.748493i \(0.730778\pi\)
\(618\) −29.6525 21.5438i −1.19280 0.866618i
\(619\) 7.02786 21.6295i 0.282474 0.869365i −0.704671 0.709534i \(-0.748905\pi\)
0.987145 0.159830i \(-0.0510947\pi\)
\(620\) 0 0
\(621\) −1.70820 + 1.24108i −0.0685479 + 0.0498029i
\(622\) −2.00000 + 1.45309i −0.0801927 + 0.0582634i
\(623\) 9.73607 + 29.9645i 0.390067 + 1.20050i
\(624\) −1.61803 + 4.97980i −0.0647732 + 0.199351i
\(625\) 0 0
\(626\) 27.4164 1.09578
\(627\) 43.7984 2.97168i 1.74914 0.118678i
\(628\) −8.61803 −0.343897
\(629\) −3.61803 2.62866i −0.144260 0.104811i
\(630\) 0 0
\(631\) 2.29180 + 7.05342i 0.0912350 + 0.280792i 0.986254 0.165235i \(-0.0528383\pi\)
−0.895019 + 0.446028i \(0.852838\pi\)
\(632\) −1.23607 + 0.898056i −0.0491681 + 0.0357227i
\(633\) 54.8328 39.8384i 2.17941 1.58343i
\(634\) 1.91641 + 5.89810i 0.0761103 + 0.234243i
\(635\) 0 0
\(636\) −2.38197 1.73060i −0.0944511 0.0686227i
\(637\) −0.236068 −0.00935335
\(638\) 1.52786 + 3.80423i 0.0604887 + 0.150611i
\(639\) 98.9017 3.91249
\(640\) 0 0
\(641\) 11.7918 36.2914i 0.465748 1.43342i −0.392291 0.919841i \(-0.628318\pi\)
0.858039 0.513584i \(-0.171682\pi\)
\(642\) 7.52786 + 23.1684i 0.297101 + 0.914383i
\(643\) −10.8541 + 7.88597i −0.428044 + 0.310992i −0.780866 0.624698i \(-0.785222\pi\)
0.352822 + 0.935690i \(0.385222\pi\)
\(644\) −0.309017 + 0.224514i −0.0121770 + 0.00884709i
\(645\) 0 0
\(646\) 6.61803 20.3682i 0.260383 0.801377i
\(647\) −5.70820 4.14725i −0.224413 0.163045i 0.469898 0.882721i \(-0.344291\pi\)
−0.694311 + 0.719675i \(0.744291\pi\)
\(648\) −24.4164 −0.959167
\(649\) −6.69098 4.20025i −0.262644 0.164874i
\(650\) 0 0
\(651\) 49.5967 + 36.0341i 1.94385 + 1.41229i
\(652\) 2.23607 6.88191i 0.0875712 0.269516i
\(653\) −7.97214 24.5357i −0.311974 0.960157i −0.976982 0.213321i \(-0.931572\pi\)
0.665008 0.746836i \(-0.268428\pi\)
\(654\) −19.7082 + 14.3188i −0.770652 + 0.559911i
\(655\) 0 0
\(656\) −0.572949 1.76336i −0.0223699 0.0688475i
\(657\) 3.94427 12.1392i 0.153881 0.473596i
\(658\) 23.9894 + 17.4293i 0.935202 + 0.679464i
\(659\) −13.3820 −0.521287 −0.260644 0.965435i \(-0.583935\pi\)
−0.260644 + 0.965435i \(0.583935\pi\)
\(660\) 0 0
\(661\) 2.18034 0.0848054 0.0424027 0.999101i \(-0.486499\pi\)
0.0424027 + 0.999101i \(0.486499\pi\)
\(662\) −11.6353 8.45351i −0.452217 0.328555i
\(663\) −8.47214 + 26.0746i −0.329030 + 1.01265i
\(664\) 4.85410 + 14.9394i 0.188376 + 0.579761i
\(665\) 0 0
\(666\) 5.16312 3.75123i 0.200067 0.145357i
\(667\) 0.0557281 + 0.171513i 0.00215780 + 0.00664103i
\(668\) −2.44427 + 7.52270i −0.0945717 + 0.291062i
\(669\) −25.3262 18.4006i −0.979169 0.711408i
\(670\) 0 0
\(671\) 7.23607 28.7687i 0.279345 1.11060i
\(672\) −8.47214 −0.326820
\(673\) −3.23607 2.35114i −0.124741 0.0906298i 0.523665 0.851924i \(-0.324564\pi\)
−0.648407 + 0.761294i \(0.724564\pi\)
\(674\) 10.9443 33.6830i 0.421558 1.29742i
\(675\) 0 0
\(676\) 8.39919 6.10237i 0.323046 0.234706i
\(677\) −8.09017 + 5.87785i −0.310930 + 0.225904i −0.732296 0.680987i \(-0.761551\pi\)
0.421365 + 0.906891i \(0.361551\pi\)
\(678\) −6.29180 19.3642i −0.241635 0.743676i
\(679\) −9.70820 + 29.8788i −0.372567 + 1.14664i
\(680\) 0 0
\(681\) −53.3050 −2.04265
\(682\) −20.3262 12.7598i −0.778332 0.488597i
\(683\) 47.0132 1.79891 0.899454 0.437015i \(-0.143964\pi\)
0.899454 + 0.437015i \(0.143964\pi\)
\(684\) 24.7254 + 17.9641i 0.945400 + 0.686873i
\(685\) 0 0
\(686\) −5.78115 17.7926i −0.220725 0.679323i
\(687\) −73.7771 + 53.6022i −2.81477 + 2.04505i
\(688\) −7.47214 + 5.42882i −0.284873 + 0.206972i
\(689\) −0.454915 1.40008i −0.0173309 0.0533390i
\(690\) 0 0
\(691\) −11.1180 8.07772i −0.422950 0.307291i 0.355874 0.934534i \(-0.384183\pi\)
−0.778824 + 0.627243i \(0.784183\pi\)
\(692\) 12.6180 0.479666
\(693\) −24.1803 60.2066i −0.918535 2.28706i
\(694\) −27.1246 −1.02964
\(695\) 0 0
\(696\) −1.23607 + 3.80423i −0.0468530 + 0.144199i
\(697\) −3.00000 9.23305i −0.113633 0.349727i
\(698\) 25.0344 18.1886i 0.947568 0.688448i
\(699\) −39.8885 + 28.9807i −1.50872 + 1.09615i
\(700\) 0 0
\(701\) 1.79837 5.53483i 0.0679236 0.209047i −0.911334 0.411669i \(-0.864946\pi\)
0.979257 + 0.202621i \(0.0649461\pi\)
\(702\) −18.9443 13.7638i −0.715005 0.519482i
\(703\) −3.49342 −0.131757
\(704\) 3.30902 0.224514i 0.124713 0.00846169i
\(705\) 0 0
\(706\) −9.47214 6.88191i −0.356489 0.259004i
\(707\) −3.00000 + 9.23305i −0.112827 + 0.347245i
\(708\) −2.38197 7.33094i −0.0895198 0.275514i
\(709\) −8.79837 + 6.39239i −0.330430 + 0.240071i −0.740613 0.671932i \(-0.765465\pi\)
0.410183 + 0.912003i \(0.365465\pi\)
\(710\) 0 0
\(711\) −3.52786 10.8576i −0.132305 0.407194i
\(712\) 3.71885 11.4454i 0.139370 0.428936i
\(713\) −0.854102 0.620541i −0.0319864 0.0232395i
\(714\) −44.3607 −1.66016
\(715\) 0 0
\(716\) −2.90983 −0.108745
\(717\) 24.9443 + 18.1231i 0.931561 + 0.676819i
\(718\) 9.41641 28.9807i 0.351417 1.08155i
\(719\) 7.36068 + 22.6538i 0.274507 + 0.844846i 0.989349 + 0.145560i \(0.0464984\pi\)
−0.714842 + 0.699286i \(0.753502\pi\)
\(720\) 0 0
\(721\) 23.9894 17.4293i 0.893410 0.649101i
\(722\) 0.701626 + 2.15938i 0.0261118 + 0.0803639i
\(723\) 1.85410 5.70634i 0.0689548 0.212221i
\(724\) 16.5623 + 12.0332i 0.615533 + 0.447211i
\(725\) 0 0
\(726\) 15.4721 + 32.0584i 0.574225 + 1.18980i
\(727\) 8.79837 0.326314 0.163157 0.986600i \(-0.447832\pi\)
0.163157 + 0.986600i \(0.447832\pi\)
\(728\) −3.42705 2.48990i −0.127015 0.0922818i
\(729\) 12.9615 39.8914i 0.480055 1.47746i
\(730\) 0 0
\(731\) −39.1246 + 28.4257i −1.44708 + 1.05136i
\(732\) 23.4164 17.0130i 0.865495 0.628819i
\(733\) −11.2016 34.4751i −0.413742 1.27337i −0.913372 0.407127i \(-0.866531\pi\)
0.499630 0.866239i \(-0.333469\pi\)
\(734\) 3.23607 9.95959i 0.119445 0.367615i
\(735\) 0 0
\(736\) 0.145898 0.00537787
\(737\) 1.94427 1.62460i 0.0716182 0.0598429i
\(738\) 13.8541 0.509977
\(739\) 25.7705 + 18.7234i 0.947984 + 0.688750i 0.950329 0.311247i \(-0.100747\pi\)
−0.00234556 + 0.999997i \(0.500747\pi\)
\(740\) 0 0
\(741\) 6.61803 + 20.3682i 0.243120 + 0.748245i
\(742\) 1.92705 1.40008i 0.0707443 0.0513987i
\(743\) −14.3541 + 10.4289i −0.526601 + 0.382598i −0.819085 0.573672i \(-0.805518\pi\)
0.292484 + 0.956270i \(0.405518\pi\)
\(744\) −7.23607 22.2703i −0.265287 0.816470i
\(745\) 0 0
\(746\) −5.63525 4.09425i −0.206321 0.149901i
\(747\) −117.374 −4.29448
\(748\) 17.3262 1.17557i 0.633510 0.0429831i
\(749\) −19.7082 −0.720122
\(750\) 0 0
\(751\) −3.38197 + 10.4086i −0.123410 + 0.379816i −0.993608 0.112886i \(-0.963991\pi\)
0.870198 + 0.492702i \(0.163991\pi\)
\(752\) −3.50000 10.7719i −0.127632 0.392810i
\(753\) −26.2705 + 19.0866i −0.957351 + 0.695556i
\(754\) −1.61803 + 1.17557i −0.0589253 + 0.0428118i
\(755\) 0 0
\(756\) 11.7082 36.0341i 0.425823 1.31055i
\(757\) 17.9615 + 13.0498i 0.652822 + 0.474303i 0.864231 0.503095i \(-0.167805\pi\)
−0.211410 + 0.977398i \(0.567805\pi\)
\(758\) 10.3262 0.375066
\(759\) 0.583592 + 1.45309i 0.0211831 + 0.0527436i
\(760\) 0 0
\(761\) −5.32624 3.86974i −0.193076 0.140278i 0.487048 0.873375i \(-0.338074\pi\)
−0.680123 + 0.733098i \(0.738074\pi\)
\(762\) 2.38197 7.33094i 0.0862895 0.265572i
\(763\) −6.09017 18.7436i −0.220479 0.678564i
\(764\) −20.5623 + 14.9394i −0.743918 + 0.540488i
\(765\) 0 0
\(766\) −4.89919 15.0781i −0.177015 0.544796i
\(767\) 1.19098 3.66547i 0.0430039 0.132352i
\(768\) 2.61803 + 1.90211i 0.0944702 + 0.0686366i
\(769\) −32.0902 −1.15720 −0.578601 0.815611i \(-0.696401\pi\)
−0.578601 + 0.815611i \(0.696401\pi\)
\(770\) 0 0
\(771\) −38.8328 −1.39853
\(772\) −4.38197 3.18368i −0.157710 0.114583i
\(773\) 11.6074 35.7239i 0.417489 1.28490i −0.492517 0.870303i \(-0.663923\pi\)
0.910006 0.414596i \(-0.136077\pi\)
\(774\) −21.3262 65.6354i −0.766556 2.35922i
\(775\) 0 0
\(776\) 9.70820 7.05342i 0.348504 0.253203i
\(777\) 2.23607 + 6.88191i 0.0802185 + 0.246887i
\(778\) −3.76393 + 11.5842i −0.134944 + 0.415313i
\(779\) −6.13525 4.45752i −0.219818 0.159707i
\(780\) 0 0
\(781\) 10.7082 42.5730i 0.383170 1.52338i
\(782\) 0.763932 0.0273182
\(783\) −14.4721 10.5146i −0.517192 0.375762i
\(784\) −0.0450850 + 0.138757i −0.00161018 + 0.00495562i
\(785\) 0 0
\(786\) −29.8885 + 21.7153i −1.06609 + 0.774559i
\(787\) −29.1246 + 21.1603i −1.03818 + 0.754282i −0.969929 0.243386i \(-0.921742\pi\)
−0.0682508 + 0.997668i \(0.521742\pi\)
\(788\) 1.51722 + 4.66953i 0.0540488 + 0.166345i
\(789\) 25.7984 79.3992i 0.918446 2.82669i
\(790\) 0 0
\(791\) 16.4721 0.585682
\(792\) −6.04508 + 24.0337i −0.214803 + 0.854000i
\(793\) 14.4721 0.513921
\(794\) −5.50000 3.99598i −0.195188 0.141812i
\(795\) 0 0
\(796\) 0.527864 + 1.62460i 0.0187096 + 0.0575824i
\(797\) 29.9615 21.7683i 1.06129 0.771073i 0.0869638 0.996211i \(-0.472284\pi\)
0.974327 + 0.225139i \(0.0722835\pi\)
\(798\) −28.0344 + 20.3682i −0.992408 + 0.721027i
\(799\) −18.3262 56.4024i −0.648336 1.99537i
\(800\) 0 0
\(801\) 72.7492 + 52.8554i 2.57047 + 1.86755i
\(802\) 10.7426 0.379336
\(803\) −4.79837 3.01217i −0.169331 0.106297i
\(804\) 2.47214 0.0871855
\(805\) 0 0
\(806\) 3.61803 11.1352i 0.127440 0.392219i
\(807\) −17.5967 54.1572i −0.619435 1.90642i
\(808\) 3.00000 2.17963i 0.105540 0.0766790i
\(809\) 7.30902 5.31031i 0.256971 0.186701i −0.451839 0.892099i \(-0.649232\pi\)
0.708811 + 0.705399i \(0.249232\pi\)
\(810\) 0 0
\(811\) −14.4058 + 44.3364i −0.505855 + 1.55686i 0.293474 + 0.955967i \(0.405189\pi\)
−0.799329 + 0.600894i \(0.794811\pi\)
\(812\) −2.61803 1.90211i −0.0918750 0.0667511i
\(813\) −43.4164 −1.52268
\(814\) −1.05573 2.62866i −0.0370033 0.0921343i
\(815\) 0 0
\(816\) 13.7082 + 9.95959i 0.479883 + 0.348655i
\(817\) −11.6738 + 35.9281i −0.408413 + 1.25697i
\(818\) 7.20820 + 22.1846i 0.252029 + 0.775665i
\(819\) 25.6074 18.6049i 0.894795 0.650106i
\(820\) 0 0
\(821\) −7.52786 23.1684i −0.262724 0.808582i −0.992209 0.124585i \(-0.960240\pi\)
0.729485 0.683997i \(-0.239760\pi\)
\(822\) 5.23607 16.1150i 0.182629 0.562074i
\(823\) −13.7812 10.0126i −0.480381 0.349017i 0.321092 0.947048i \(-0.395950\pi\)
−0.801473 + 0.598031i \(0.795950\pi\)
\(824\) −11.3262 −0.394568
\(825\) 0 0
\(826\) 6.23607 0.216981
\(827\) 17.7984 + 12.9313i 0.618910 + 0.449665i 0.852541 0.522661i \(-0.175061\pi\)
−0.233631 + 0.972325i \(0.575061\pi\)
\(828\) −0.336881 + 1.03681i −0.0117074 + 0.0360318i
\(829\) −4.00000 12.3107i −0.138926 0.427569i 0.857254 0.514893i \(-0.172168\pi\)
−0.996180 + 0.0873239i \(0.972168\pi\)
\(830\) 0 0
\(831\) 1.61803 1.17557i 0.0561290 0.0407801i
\(832\) 0.500000 + 1.53884i 0.0173344 + 0.0533497i
\(833\) −0.236068 + 0.726543i −0.00817927 + 0.0251732i
\(834\) 21.3262 + 15.4944i 0.738467 + 0.536528i
\(835\) 0 0
\(836\) 10.4098 8.69827i 0.360032 0.300836i
\(837\) 104.721 3.61970
\(838\) −1.30902 0.951057i −0.0452192 0.0328537i
\(839\) −16.2361 + 49.9695i −0.560531 + 1.72514i 0.120338 + 0.992733i \(0.461602\pi\)
−0.680869 + 0.732405i \(0.738398\pi\)
\(840\) 0 0
\(841\) 22.2254 16.1477i 0.766394 0.556818i
\(842\) −15.0902 + 10.9637i −0.520042 + 0.377832i
\(843\) −18.0000 55.3983i −0.619953 1.90802i
\(844\) 6.47214 19.9192i 0.222780 0.685647i
\(845\) 0 0
\(846\) 84.6312 2.90968
\(847\) −28.5344 + 3.88998i −0.980455 + 0.133661i
\(848\) −0.909830 −0.0312437
\(849\) −65.0132 47.2348i −2.23125 1.62109i
\(850\) 0 0
\(851\) −0.0385072 0.118513i −0.00132001 0.00406257i
\(852\) 34.6525 25.1765i 1.18717 0.862533i
\(853\) 12.9164 9.38432i 0.442249 0.321313i −0.344279 0.938867i \(-0.611877\pi\)
0.786528 + 0.617555i \(0.211877\pi\)
\(854\) 7.23607 + 22.2703i 0.247613 + 0.762075i
\(855\) 0 0
\(856\) 6.09017 + 4.42477i 0.208158 + 0.151235i
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) −13.3262 + 11.1352i −0.454950 + 0.380148i
\(859\) −30.9098 −1.05463 −0.527315 0.849670i \(-0.676801\pi\)
−0.527315 + 0.849670i \(0.676801\pi\)
\(860\) 0 0
\(861\) −4.85410 + 14.9394i −0.165427 + 0.509133i
\(862\) 8.09017 + 24.8990i 0.275552 + 0.848063i
\(863\) −5.01722 + 3.64522i −0.170788 + 0.124085i −0.669896 0.742455i \(-0.733661\pi\)
0.499108 + 0.866540i \(0.333661\pi\)
\(864\) −11.7082 + 8.50651i −0.398321 + 0.289397i
\(865\) 0 0
\(866\) 2.94427 9.06154i 0.100050 0.307924i
\(867\) 27.2705 + 19.8132i 0.926155 + 0.672891i
\(868\) 18.9443 0.643010
\(869\) −5.05573 + 0.343027i −0.171504 + 0.0116364i
\(870\) 0 0
\(871\) 1.00000 + 0.726543i 0.0338837 + 0.0246180i
\(872\) −2.32624 + 7.15942i −0.0787764 + 0.242449i
\(873\) 27.7082 + 85.2771i 0.937781 + 2.88619i
\(874\) 0.482779 0.350760i 0.0163302 0.0118646i
\(875\) 0 0
\(876\) −1.70820 5.25731i −0.0577149 0.177628i
\(877\) −0.736068 + 2.26538i −0.0248552 + 0.0764966i −0.962715 0.270519i \(-0.912805\pi\)
0.937859 + 0.347015i \(0.112805\pi\)
\(878\) −10.6180 7.71445i −0.358341 0.260350i
\(879\) −76.8328 −2.59151
\(880\) 0 0
\(881\) −27.4508 −0.924843 −0.462421 0.886660i \(-0.653019\pi\)
−0.462421 + 0.886660i \(0.653019\pi\)
\(882\) −0.881966 0.640786i −0.0296973 0.0215764i
\(883\) −9.47214 + 29.1522i −0.318763 + 0.981051i 0.655415 + 0.755269i \(0.272494\pi\)
−0.974178 + 0.225782i \(0.927506\pi\)
\(884\) 2.61803 + 8.05748i 0.0880540 + 0.271002i
\(885\) 0 0
\(886\) −1.09017 + 0.792055i −0.0366250 + 0.0266096i
\(887\) −14.6074 44.9569i −0.490468 1.50951i −0.823902 0.566732i \(-0.808207\pi\)
0.333434 0.942774i \(-0.391793\pi\)
\(888\) 0.854102 2.62866i 0.0286618 0.0882119i
\(889\) 5.04508 + 3.66547i 0.169207 + 0.122936i
\(890\) 0 0
\(891\) −68.5861 43.0548i −2.29772 1.44239i
\(892\) −9.67376 −0.323902
\(893\) −37.4787 27.2299i −1.25418 0.911213i
\(894\) −4.00000 + 12.3107i −0.133780 + 0.411733i
\(895\) 0 0
\(896\) −2.11803 + 1.53884i −0.0707585 + 0.0514091i
\(897\) −0.618034 + 0.449028i −0.0206356 + 0.0149926i
\(898\) −0.972136 2.99193i −0.0324406 0.0998419i
\(899\) 2.76393 8.50651i 0.0921823 0.283708i
\(900\) 0 0
\(901\) −4.76393 −0.158710
\(902\) 1.50000 5.96361i 0.0499445 0.198566i
\(903\) 78.2492 2.60397
\(904\) −5.09017 3.69822i −0.169297 0.123001i
\(905\) 0 0
\(906\) 12.6525 + 38.9403i 0.420350 + 1.29371i
\(907\) −10.2361 + 7.43694i −0.339883 + 0.246939i −0.744612 0.667497i \(-0.767366\pi\)
0.404729 + 0.914436i \(0.367366\pi\)
\(908\) −13.3262 + 9.68208i −0.442247 + 0.321311i
\(909\) 8.56231 + 26.3521i 0.283994 + 0.874043i
\(910\) 0 0
\(911\) 16.9443 + 12.3107i 0.561389 + 0.407873i 0.831967 0.554825i \(-0.187215\pi\)
−0.270578 + 0.962698i \(0.587215\pi\)
\(912\) 13.2361 0.438290
\(913\) −12.7082 + 50.5245i −0.420580 + 1.67212i
\(914\) 32.5410 1.07636
\(915\) 0 0
\(916\) −8.70820 + 26.8011i −0.287727 + 0.885533i
\(917\) −9.23607 28.4257i −0.305002 0.938699i
\(918\) −61.3050 + 44.5407i −2.02336 + 1.47006i
\(919\) 9.70820 7.05342i 0.320244 0.232671i −0.416036 0.909348i \(-0.636581\pi\)
0.736280 + 0.676677i \(0.236581\pi\)
\(920\) 0 0
\(921\) −26.9443 + 82.9259i −0.887844 + 2.73250i
\(922\) 23.0902 + 16.7760i 0.760434 + 0.552488i
\(923\) 21.4164 0.704930
\(924\) −23.7984 14.9394i −0.782909 0.491470i
\(925\) 0 0
\(926\) −12.5451 9.11454i −0.412257 0.299522i
\(927\) 26.1525 80.4890i 0.858960 2.64361i
\(928\) 0.381966 + 1.17557i 0.0125386 + 0.0385900i
\(929\) −43.0967 + 31.3116i −1.41396 + 1.02730i −0.421226 + 0.906956i \(0.638400\pi\)
−0.992732 + 0.120345i \(0.961600\pi\)
\(930\) 0 0
\(931\) 0.184405 + 0.567541i 0.00604364 + 0.0186004i
\(932\) −4.70820 + 14.4904i −0.154222 + 0.474648i
\(933\) −6.47214 4.70228i −0.211888 0.153946i
\(934\) 17.2361 0.563981
\(935\) 0 0
\(936\) −12.0902 −0.395180
\(937\) −38.9787 28.3197i −1.27338 0.925164i −0.274047 0.961716i \(-0.588362\pi\)
−0.999332 + 0.0365522i \(0.988362\pi\)
\(938\) −0.618034 + 1.90211i −0.0201795 + 0.0621062i
\(939\) 27.4164 + 84.3790i 0.894701 + 2.75361i
\(940\) 0 0
\(941\) −45.3607 + 32.9565i −1.47872 + 1.07435i −0.500748 + 0.865593i \(0.666942\pi\)
−0.977968 + 0.208757i \(0.933058\pi\)
\(942\) −8.61803 26.5236i −0.280791 0.864185i
\(943\) 0.0835921 0.257270i 0.00272213 0.00837787i
\(944\) −1.92705 1.40008i −0.0627202 0.0455689i
\(945\) 0 0
\(946\) −30.5623 + 2.07363i −0.993666 + 0.0674194i
\(947\) −49.9574 −1.62340 −0.811699 0.584076i \(-0.801457\pi\)
−0.811699 + 0.584076i \(0.801457\pi\)
\(948\) −4.00000 2.90617i −0.129914 0.0943880i
\(949\) 0.854102 2.62866i 0.0277253 0.0853298i
\(950\) 0 0
\(951\) −16.2361 + 11.7962i −0.526491 + 0.382518i
\(952\) −11.0902 + 8.05748i −0.359434 + 0.261144i
\(953\) −4.85410 14.9394i −0.157240 0.483934i 0.841141 0.540816i \(-0.181884\pi\)
−0.998381 + 0.0568813i \(0.981884\pi\)
\(954\) 2.10081 6.46564i 0.0680163 0.209333i
\(955\) 0 0
\(956\) 9.52786 0.308153
\(957\) −10.1803 + 8.50651i −0.329084 + 0.274976i
\(958\) 29.5967 0.956228
\(959\) 11.0902 + 8.05748i 0.358120 + 0.260190i
\(960\) 0 0
\(961\) 6.60081 + 20.3152i 0.212929 + 0.655329i
\(962\) 1.11803 0.812299i 0.0360469 0.0261896i
\(963\) −45.5066 + 33.0625i −1.46643 + 1.06542i
\(964\) −0.572949 1.76336i −0.0184534 0.0567939i
\(965\) 0 0
\(966\) −1.00000 0.726543i −0.0321745 0.0233761i
\(967\) −3.90983 −0.125732 −0.0628658 0.998022i \(-0.520024\pi\)
−0.0628658 + 0.998022i \(0.520024\pi\)
\(968\) 9.69098 + 5.20431i 0.311480 + 0.167273i
\(969\) 69.3050 2.22640
\(970\) 0 0
\(971\) 12.1565 37.4140i 0.390122 1.20067i −0.542574 0.840008i \(-0.682550\pi\)
0.932696 0.360664i \(-0.117450\pi\)
\(972\) −11.0000 33.8545i −0.352825 1.08588i
\(973\) −17.2533 + 12.5352i −0.553115 + 0.401862i
\(974\) −29.8885 + 21.7153i −0.957691 + 0.695803i
\(975\) 0 0
\(976\) 2.76393 8.50651i 0.0884713 0.272287i
\(977\) −3.38197 2.45714i −0.108199 0.0786109i 0.532370 0.846512i \(-0.321301\pi\)
−0.640569 + 0.767901i \(0.721301\pi\)
\(978\) 23.4164 0.748774
\(979\) 30.6287 25.5928i 0.978897 0.817948i
\(980\) 0 0
\(981\) −45.5066 33.0625i −1.45291 1.05560i
\(982\) −11.2639 + 34.6668i −0.359447 + 1.10626i
\(983\) −3.10081 9.54332i −0.0989006 0.304385i 0.889350 0.457227i \(-0.151157\pi\)
−0.988251 + 0.152842i \(0.951157\pi\)
\(984\) 4.85410 3.52671i 0.154743 0.112427i
\(985\) 0 0
\(986\) 2.00000 + 6.15537i 0.0636930 + 0.196027i
\(987\) −29.6525 + 91.2609i −0.943849 + 2.90487i
\(988\) 5.35410 + 3.88998i 0.170337 + 0.123757i
\(989\) −1.34752 −0.0428488
\(990\) 0 0
\(991\) 54.7214 1.73828 0.869141 0.494565i \(-0.164673\pi\)
0.869141 + 0.494565i \(0.164673\pi\)
\(992\) −5.85410 4.25325i −0.185868 0.135041i
\(993\) 14.3820 44.2631i 0.456398 1.40465i
\(994\) 10.7082 + 32.9565i 0.339644 + 1.04532i
\(995\) 0 0
\(996\) −41.1246 + 29.8788i −1.30308 + 0.946745i
\(997\) 16.2148 + 49.9040i 0.513527 + 1.58047i 0.785946 + 0.618296i \(0.212177\pi\)
−0.272418 + 0.962179i \(0.587823\pi\)
\(998\) 3.95492 12.1720i 0.125191 0.385297i
\(999\) 10.0000 + 7.26543i 0.316386 + 0.229868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.f.301.1 4
5.2 odd 4 550.2.ba.a.499.1 8
5.3 odd 4 550.2.ba.a.499.2 8
5.4 even 2 110.2.g.a.81.1 4
11.3 even 5 inner 550.2.h.f.201.1 4
11.5 even 5 6050.2.a.bu.1.1 2
11.6 odd 10 6050.2.a.cm.1.1 2
15.14 odd 2 990.2.n.f.631.1 4
20.19 odd 2 880.2.bo.a.81.1 4
55.3 odd 20 550.2.ba.a.399.1 8
55.14 even 10 110.2.g.a.91.1 yes 4
55.39 odd 10 1210.2.a.p.1.2 2
55.47 odd 20 550.2.ba.a.399.2 8
55.49 even 10 1210.2.a.t.1.2 2
165.14 odd 10 990.2.n.f.91.1 4
220.39 even 10 9680.2.a.bi.1.1 2
220.159 odd 10 9680.2.a.bh.1.1 2
220.179 odd 10 880.2.bo.a.641.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.a.81.1 4 5.4 even 2
110.2.g.a.91.1 yes 4 55.14 even 10
550.2.h.f.201.1 4 11.3 even 5 inner
550.2.h.f.301.1 4 1.1 even 1 trivial
550.2.ba.a.399.1 8 55.3 odd 20
550.2.ba.a.399.2 8 55.47 odd 20
550.2.ba.a.499.1 8 5.2 odd 4
550.2.ba.a.499.2 8 5.3 odd 4
880.2.bo.a.81.1 4 20.19 odd 2
880.2.bo.a.641.1 4 220.179 odd 10
990.2.n.f.91.1 4 165.14 odd 10
990.2.n.f.631.1 4 15.14 odd 2
1210.2.a.p.1.2 2 55.39 odd 10
1210.2.a.t.1.2 2 55.49 even 10
6050.2.a.bu.1.1 2 11.5 even 5
6050.2.a.cm.1.1 2 11.6 odd 10
9680.2.a.bh.1.1 2 220.159 odd 10
9680.2.a.bi.1.1 2 220.39 even 10