Properties

Label 880.2.bo.a.641.1
Level $880$
Weight $2$
Character 880.641
Analytic conductor $7.027$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 641.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 880.641
Dual form 880.2.bo.a.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 3.07768i) q^{3} +(0.809017 + 0.587785i) q^{5} +(-0.809017 + 2.48990i) q^{7} +(-6.04508 + 4.39201i) q^{9} +(2.54508 + 2.12663i) q^{11} +(1.30902 - 0.951057i) q^{13} +(1.00000 - 3.07768i) q^{15} +(4.23607 + 3.07768i) q^{17} +(1.26393 + 3.88998i) q^{19} +8.47214 q^{21} -0.145898 q^{23} +(0.309017 + 0.951057i) q^{25} +(11.7082 + 8.50651i) q^{27} +(-0.381966 + 1.17557i) q^{29} +(-5.85410 + 4.25325i) q^{31} +(4.00000 - 9.95959i) q^{33} +(-2.11803 + 1.53884i) q^{35} +(-0.263932 + 0.812299i) q^{37} +(-4.23607 - 3.07768i) q^{39} +(-0.572949 - 1.76336i) q^{41} +9.23607 q^{43} -7.47214 q^{45} +(-3.50000 - 10.7719i) q^{47} +(0.118034 + 0.0857567i) q^{49} +(5.23607 - 16.1150i) q^{51} +(-0.736068 + 0.534785i) q^{53} +(0.809017 + 3.21644i) q^{55} +(10.7082 - 7.77997i) q^{57} +(-0.736068 + 2.26538i) q^{59} +(-7.23607 - 5.25731i) q^{61} +(-6.04508 - 18.6049i) q^{63} +1.61803 q^{65} -0.763932 q^{67} +(0.145898 + 0.449028i) q^{69} +(10.7082 + 7.77997i) q^{71} +(-0.527864 + 1.62460i) q^{73} +(2.61803 - 1.90211i) q^{75} +(-7.35410 + 4.61653i) q^{77} +(-1.23607 + 0.898056i) q^{79} +(7.54508 - 23.2214i) q^{81} +(12.7082 + 9.23305i) q^{83} +(1.61803 + 4.97980i) q^{85} +4.00000 q^{87} -12.0344 q^{89} +(1.30902 + 4.02874i) q^{91} +(18.9443 + 13.7638i) q^{93} +(-1.26393 + 3.88998i) q^{95} +(9.70820 - 7.05342i) q^{97} +(-24.7254 - 1.67760i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + q^{5} - q^{7} - 13 q^{9} - q^{11} + 3 q^{13} + 4 q^{15} + 8 q^{17} + 14 q^{19} + 16 q^{21} - 14 q^{23} - q^{25} + 20 q^{27} - 6 q^{29} - 10 q^{31} + 16 q^{33} - 4 q^{35} - 10 q^{37}+ \cdots - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 3.07768i −0.577350 1.77690i −0.628033 0.778187i \(-0.716140\pi\)
0.0506828 0.998715i \(-0.483860\pi\)
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −0.809017 + 2.48990i −0.305780 + 0.941093i 0.673605 + 0.739091i \(0.264745\pi\)
−0.979385 + 0.202002i \(0.935255\pi\)
\(8\) 0 0
\(9\) −6.04508 + 4.39201i −2.01503 + 1.46400i
\(10\) 0 0
\(11\) 2.54508 + 2.12663i 0.767372 + 0.641202i
\(12\) 0 0
\(13\) 1.30902 0.951057i 0.363056 0.263776i −0.391270 0.920276i \(-0.627964\pi\)
0.754326 + 0.656500i \(0.227964\pi\)
\(14\) 0 0
\(15\) 1.00000 3.07768i 0.258199 0.794654i
\(16\) 0 0
\(17\) 4.23607 + 3.07768i 1.02740 + 0.746448i 0.967786 0.251774i \(-0.0810139\pi\)
0.0596113 + 0.998222i \(0.481014\pi\)
\(18\) 0 0
\(19\) 1.26393 + 3.88998i 0.289966 + 0.892423i 0.984866 + 0.173317i \(0.0554485\pi\)
−0.694900 + 0.719106i \(0.744551\pi\)
\(20\) 0 0
\(21\) 8.47214 1.84877
\(22\) 0 0
\(23\) −0.145898 −0.0304218 −0.0152109 0.999884i \(-0.504842\pi\)
−0.0152109 + 0.999884i \(0.504842\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 11.7082 + 8.50651i 2.25324 + 1.63708i
\(28\) 0 0
\(29\) −0.381966 + 1.17557i −0.0709293 + 0.218298i −0.980237 0.197826i \(-0.936612\pi\)
0.909308 + 0.416124i \(0.136612\pi\)
\(30\) 0 0
\(31\) −5.85410 + 4.25325i −1.05143 + 0.763907i −0.972483 0.232972i \(-0.925155\pi\)
−0.0789443 + 0.996879i \(0.525155\pi\)
\(32\) 0 0
\(33\) 4.00000 9.95959i 0.696311 1.73374i
\(34\) 0 0
\(35\) −2.11803 + 1.53884i −0.358013 + 0.260112i
\(36\) 0 0
\(37\) −0.263932 + 0.812299i −0.0433902 + 0.133541i −0.970405 0.241484i \(-0.922366\pi\)
0.927015 + 0.375025i \(0.122366\pi\)
\(38\) 0 0
\(39\) −4.23607 3.07768i −0.678314 0.492824i
\(40\) 0 0
\(41\) −0.572949 1.76336i −0.0894796 0.275390i 0.896296 0.443456i \(-0.146248\pi\)
−0.985776 + 0.168066i \(0.946248\pi\)
\(42\) 0 0
\(43\) 9.23607 1.40849 0.704244 0.709958i \(-0.251286\pi\)
0.704244 + 0.709958i \(0.251286\pi\)
\(44\) 0 0
\(45\) −7.47214 −1.11388
\(46\) 0 0
\(47\) −3.50000 10.7719i −0.510527 1.57124i −0.791275 0.611460i \(-0.790582\pi\)
0.280748 0.959782i \(-0.409418\pi\)
\(48\) 0 0
\(49\) 0.118034 + 0.0857567i 0.0168620 + 0.0122510i
\(50\) 0 0
\(51\) 5.23607 16.1150i 0.733196 2.25655i
\(52\) 0 0
\(53\) −0.736068 + 0.534785i −0.101107 + 0.0734583i −0.637190 0.770707i \(-0.719903\pi\)
0.536083 + 0.844165i \(0.319903\pi\)
\(54\) 0 0
\(55\) 0.809017 + 3.21644i 0.109088 + 0.433705i
\(56\) 0 0
\(57\) 10.7082 7.77997i 1.41834 1.03048i
\(58\) 0 0
\(59\) −0.736068 + 2.26538i −0.0958279 + 0.294928i −0.987469 0.157816i \(-0.949555\pi\)
0.891641 + 0.452744i \(0.149555\pi\)
\(60\) 0 0
\(61\) −7.23607 5.25731i −0.926484 0.673130i 0.0186458 0.999826i \(-0.494065\pi\)
−0.945129 + 0.326696i \(0.894065\pi\)
\(62\) 0 0
\(63\) −6.04508 18.6049i −0.761609 2.34399i
\(64\) 0 0
\(65\) 1.61803 0.200692
\(66\) 0 0
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) 0 0
\(69\) 0.145898 + 0.449028i 0.0175641 + 0.0540566i
\(70\) 0 0
\(71\) 10.7082 + 7.77997i 1.27083 + 0.923312i 0.999235 0.0390997i \(-0.0124490\pi\)
0.271595 + 0.962412i \(0.412449\pi\)
\(72\) 0 0
\(73\) −0.527864 + 1.62460i −0.0617818 + 0.190145i −0.977184 0.212397i \(-0.931873\pi\)
0.915402 + 0.402542i \(0.131873\pi\)
\(74\) 0 0
\(75\) 2.61803 1.90211i 0.302305 0.219637i
\(76\) 0 0
\(77\) −7.35410 + 4.61653i −0.838078 + 0.526102i
\(78\) 0 0
\(79\) −1.23607 + 0.898056i −0.139069 + 0.101039i −0.655144 0.755504i \(-0.727392\pi\)
0.516076 + 0.856543i \(0.327392\pi\)
\(80\) 0 0
\(81\) 7.54508 23.2214i 0.838343 2.58015i
\(82\) 0 0
\(83\) 12.7082 + 9.23305i 1.39491 + 1.01346i 0.995307 + 0.0967693i \(0.0308509\pi\)
0.399600 + 0.916690i \(0.369149\pi\)
\(84\) 0 0
\(85\) 1.61803 + 4.97980i 0.175500 + 0.540135i
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) −12.0344 −1.27565 −0.637824 0.770182i \(-0.720165\pi\)
−0.637824 + 0.770182i \(0.720165\pi\)
\(90\) 0 0
\(91\) 1.30902 + 4.02874i 0.137222 + 0.422327i
\(92\) 0 0
\(93\) 18.9443 + 13.7638i 1.96443 + 1.42724i
\(94\) 0 0
\(95\) −1.26393 + 3.88998i −0.129677 + 0.399104i
\(96\) 0 0
\(97\) 9.70820 7.05342i 0.985719 0.716167i 0.0267394 0.999642i \(-0.491488\pi\)
0.958979 + 0.283476i \(0.0914876\pi\)
\(98\) 0 0
\(99\) −24.7254 1.67760i −2.48500 0.168605i
\(100\) 0 0
\(101\) −3.00000 + 2.17963i −0.298511 + 0.216881i −0.726951 0.686689i \(-0.759063\pi\)
0.428440 + 0.903570i \(0.359063\pi\)
\(102\) 0 0
\(103\) 3.50000 10.7719i 0.344865 1.06139i −0.616791 0.787127i \(-0.711567\pi\)
0.961656 0.274259i \(-0.0884325\pi\)
\(104\) 0 0
\(105\) 6.85410 + 4.97980i 0.668892 + 0.485978i
\(106\) 0 0
\(107\) 2.32624 + 7.15942i 0.224886 + 0.692128i 0.998303 + 0.0582304i \(0.0185458\pi\)
−0.773417 + 0.633897i \(0.781454\pi\)
\(108\) 0 0
\(109\) 7.52786 0.721039 0.360519 0.932752i \(-0.382599\pi\)
0.360519 + 0.932752i \(0.382599\pi\)
\(110\) 0 0
\(111\) 2.76393 0.262341
\(112\) 0 0
\(113\) 1.94427 + 5.98385i 0.182902 + 0.562914i 0.999906 0.0137181i \(-0.00436676\pi\)
−0.817004 + 0.576632i \(0.804367\pi\)
\(114\) 0 0
\(115\) −0.118034 0.0857567i −0.0110067 0.00799685i
\(116\) 0 0
\(117\) −3.73607 + 11.4984i −0.345400 + 1.06303i
\(118\) 0 0
\(119\) −11.0902 + 8.05748i −1.01663 + 0.738628i
\(120\) 0 0
\(121\) 1.95492 + 10.8249i 0.177720 + 0.984081i
\(122\) 0 0
\(123\) −4.85410 + 3.52671i −0.437680 + 0.317993i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −1.92705 1.40008i −0.170998 0.124237i 0.498995 0.866605i \(-0.333703\pi\)
−0.669993 + 0.742368i \(0.733703\pi\)
\(128\) 0 0
\(129\) −9.23607 28.4257i −0.813190 2.50274i
\(130\) 0 0
\(131\) −11.4164 −0.997456 −0.498728 0.866758i \(-0.666199\pi\)
−0.498728 + 0.866758i \(0.666199\pi\)
\(132\) 0 0
\(133\) −10.7082 −0.928519
\(134\) 0 0
\(135\) 4.47214 + 13.7638i 0.384900 + 1.18460i
\(136\) 0 0
\(137\) 4.23607 + 3.07768i 0.361912 + 0.262944i 0.753849 0.657048i \(-0.228195\pi\)
−0.391937 + 0.919992i \(0.628195\pi\)
\(138\) 0 0
\(139\) 2.51722 7.74721i 0.213508 0.657110i −0.785748 0.618546i \(-0.787722\pi\)
0.999256 0.0385633i \(-0.0122781\pi\)
\(140\) 0 0
\(141\) −29.6525 + 21.5438i −2.49719 + 1.81431i
\(142\) 0 0
\(143\) 5.35410 + 0.363271i 0.447732 + 0.0303783i
\(144\) 0 0
\(145\) −1.00000 + 0.726543i −0.0830455 + 0.0603361i
\(146\) 0 0
\(147\) 0.145898 0.449028i 0.0120335 0.0370352i
\(148\) 0 0
\(149\) 3.23607 + 2.35114i 0.265109 + 0.192613i 0.712396 0.701777i \(-0.247610\pi\)
−0.447287 + 0.894390i \(0.647610\pi\)
\(150\) 0 0
\(151\) −3.90983 12.0332i −0.318177 0.979250i −0.974427 0.224705i \(-0.927858\pi\)
0.656249 0.754544i \(-0.272142\pi\)
\(152\) 0 0
\(153\) −39.1246 −3.16304
\(154\) 0 0
\(155\) −7.23607 −0.581215
\(156\) 0 0
\(157\) 2.66312 + 8.19624i 0.212540 + 0.654131i 0.999319 + 0.0368962i \(0.0117471\pi\)
−0.786779 + 0.617235i \(0.788253\pi\)
\(158\) 0 0
\(159\) 2.38197 + 1.73060i 0.188902 + 0.137245i
\(160\) 0 0
\(161\) 0.118034 0.363271i 0.00930238 0.0286298i
\(162\) 0 0
\(163\) −5.85410 + 4.25325i −0.458529 + 0.333141i −0.792954 0.609282i \(-0.791458\pi\)
0.334425 + 0.942422i \(0.391458\pi\)
\(164\) 0 0
\(165\) 9.09017 5.70634i 0.707669 0.444238i
\(166\) 0 0
\(167\) 6.39919 4.64928i 0.495184 0.359772i −0.311990 0.950085i \(-0.600996\pi\)
0.807174 + 0.590313i \(0.200996\pi\)
\(168\) 0 0
\(169\) −3.20820 + 9.87384i −0.246785 + 0.759526i
\(170\) 0 0
\(171\) −24.7254 17.9641i −1.89080 1.37375i
\(172\) 0 0
\(173\) −3.89919 12.0005i −0.296450 0.912378i −0.982731 0.185042i \(-0.940758\pi\)
0.686281 0.727337i \(-0.259242\pi\)
\(174\) 0 0
\(175\) −2.61803 −0.197905
\(176\) 0 0
\(177\) 7.70820 0.579384
\(178\) 0 0
\(179\) 0.899187 + 2.76741i 0.0672084 + 0.206846i 0.979021 0.203761i \(-0.0653167\pi\)
−0.911812 + 0.410607i \(0.865317\pi\)
\(180\) 0 0
\(181\) 16.5623 + 12.0332i 1.23107 + 0.894422i 0.996970 0.0777911i \(-0.0247867\pi\)
0.234097 + 0.972213i \(0.424787\pi\)
\(182\) 0 0
\(183\) −8.94427 + 27.5276i −0.661180 + 2.03490i
\(184\) 0 0
\(185\) −0.690983 + 0.502029i −0.0508021 + 0.0369099i
\(186\) 0 0
\(187\) 4.23607 + 16.8415i 0.309772 + 1.23157i
\(188\) 0 0
\(189\) −30.6525 + 22.2703i −2.22964 + 1.61993i
\(190\) 0 0
\(191\) −7.85410 + 24.1724i −0.568303 + 1.74906i 0.0896251 + 0.995976i \(0.471433\pi\)
−0.657928 + 0.753081i \(0.728567\pi\)
\(192\) 0 0
\(193\) 4.38197 + 3.18368i 0.315421 + 0.229167i 0.734219 0.678913i \(-0.237549\pi\)
−0.418798 + 0.908079i \(0.637549\pi\)
\(194\) 0 0
\(195\) −1.61803 4.97980i −0.115870 0.356611i
\(196\) 0 0
\(197\) −4.90983 −0.349811 −0.174905 0.984585i \(-0.555962\pi\)
−0.174905 + 0.984585i \(0.555962\pi\)
\(198\) 0 0
\(199\) −1.70820 −0.121091 −0.0605457 0.998165i \(-0.519284\pi\)
−0.0605457 + 0.998165i \(0.519284\pi\)
\(200\) 0 0
\(201\) 0.763932 + 2.35114i 0.0538836 + 0.165837i
\(202\) 0 0
\(203\) −2.61803 1.90211i −0.183750 0.133502i
\(204\) 0 0
\(205\) 0.572949 1.76336i 0.0400165 0.123158i
\(206\) 0 0
\(207\) 0.881966 0.640786i 0.0613009 0.0445377i
\(208\) 0 0
\(209\) −5.05573 + 12.5882i −0.349712 + 0.870747i
\(210\) 0 0
\(211\) 16.9443 12.3107i 1.16649 0.847506i 0.175907 0.984407i \(-0.443714\pi\)
0.990585 + 0.136901i \(0.0437142\pi\)
\(212\) 0 0
\(213\) 13.2361 40.7364i 0.906920 2.79121i
\(214\) 0 0
\(215\) 7.47214 + 5.42882i 0.509595 + 0.370243i
\(216\) 0 0
\(217\) −5.85410 18.0171i −0.397402 1.22308i
\(218\) 0 0
\(219\) 5.52786 0.373538
\(220\) 0 0
\(221\) 8.47214 0.569898
\(222\) 0 0
\(223\) −2.98936 9.20029i −0.200182 0.616097i −0.999877 0.0156905i \(-0.995005\pi\)
0.799695 0.600407i \(-0.204995\pi\)
\(224\) 0 0
\(225\) −6.04508 4.39201i −0.403006 0.292801i
\(226\) 0 0
\(227\) 5.09017 15.6659i 0.337846 1.03978i −0.627456 0.778652i \(-0.715904\pi\)
0.965303 0.261133i \(-0.0840960\pi\)
\(228\) 0 0
\(229\) 22.7984 16.5640i 1.50656 1.09458i 0.538884 0.842380i \(-0.318846\pi\)
0.967675 0.252199i \(-0.0811537\pi\)
\(230\) 0 0
\(231\) 21.5623 + 18.0171i 1.41870 + 1.18544i
\(232\) 0 0
\(233\) −12.3262 + 8.95554i −0.807519 + 0.586697i −0.913110 0.407713i \(-0.866326\pi\)
0.105591 + 0.994410i \(0.466326\pi\)
\(234\) 0 0
\(235\) 3.50000 10.7719i 0.228315 0.702681i
\(236\) 0 0
\(237\) 4.00000 + 2.90617i 0.259828 + 0.188776i
\(238\) 0 0
\(239\) −2.94427 9.06154i −0.190449 0.586142i 0.809550 0.587050i \(-0.199711\pi\)
−1.00000 0.000908170i \(0.999711\pi\)
\(240\) 0 0
\(241\) −1.85410 −0.119433 −0.0597166 0.998215i \(-0.519020\pi\)
−0.0597166 + 0.998215i \(0.519020\pi\)
\(242\) 0 0
\(243\) −35.5967 −2.28353
\(244\) 0 0
\(245\) 0.0450850 + 0.138757i 0.00288037 + 0.00886488i
\(246\) 0 0
\(247\) 5.35410 + 3.88998i 0.340673 + 0.247514i
\(248\) 0 0
\(249\) 15.7082 48.3449i 0.995467 3.06373i
\(250\) 0 0
\(251\) −8.11803 + 5.89810i −0.512406 + 0.372285i −0.813735 0.581235i \(-0.802570\pi\)
0.301330 + 0.953520i \(0.402570\pi\)
\(252\) 0 0
\(253\) −0.371323 0.310271i −0.0233449 0.0195066i
\(254\) 0 0
\(255\) 13.7082 9.95959i 0.858441 0.623694i
\(256\) 0 0
\(257\) −3.70820 + 11.4127i −0.231311 + 0.711903i 0.766278 + 0.642509i \(0.222107\pi\)
−0.997589 + 0.0693940i \(0.977893\pi\)
\(258\) 0 0
\(259\) −1.80902 1.31433i −0.112407 0.0816684i
\(260\) 0 0
\(261\) −2.85410 8.78402i −0.176664 0.543717i
\(262\) 0 0
\(263\) −25.7984 −1.59080 −0.795398 0.606088i \(-0.792738\pi\)
−0.795398 + 0.606088i \(0.792738\pi\)
\(264\) 0 0
\(265\) −0.909830 −0.0558904
\(266\) 0 0
\(267\) 12.0344 + 37.0382i 0.736496 + 2.26670i
\(268\) 0 0
\(269\) −14.2361 10.3431i −0.867988 0.630630i 0.0620580 0.998073i \(-0.480234\pi\)
−0.930046 + 0.367442i \(0.880234\pi\)
\(270\) 0 0
\(271\) −4.14590 + 12.7598i −0.251845 + 0.775100i 0.742589 + 0.669747i \(0.233597\pi\)
−0.994435 + 0.105353i \(0.966403\pi\)
\(272\) 0 0
\(273\) 11.0902 8.05748i 0.671208 0.487661i
\(274\) 0 0
\(275\) −1.23607 + 3.07768i −0.0745377 + 0.185591i
\(276\) 0 0
\(277\) 0.500000 0.363271i 0.0300421 0.0218269i −0.572663 0.819791i \(-0.694090\pi\)
0.602705 + 0.797964i \(0.294090\pi\)
\(278\) 0 0
\(279\) 16.7082 51.4226i 1.00029 3.07859i
\(280\) 0 0
\(281\) −14.5623 10.5801i −0.868714 0.631158i 0.0615273 0.998105i \(-0.480403\pi\)
−0.930242 + 0.366947i \(0.880403\pi\)
\(282\) 0 0
\(283\) −7.67376 23.6174i −0.456158 1.40391i −0.869771 0.493456i \(-0.835733\pi\)
0.413613 0.910453i \(-0.364267\pi\)
\(284\) 0 0
\(285\) 13.2361 0.784037
\(286\) 0 0
\(287\) 4.85410 0.286529
\(288\) 0 0
\(289\) 3.21885 + 9.90659i 0.189344 + 0.582741i
\(290\) 0 0
\(291\) −31.4164 22.8254i −1.84166 1.33805i
\(292\) 0 0
\(293\) −7.33688 + 22.5806i −0.428625 + 1.31917i 0.470855 + 0.882211i \(0.343946\pi\)
−0.899480 + 0.436962i \(0.856054\pi\)
\(294\) 0 0
\(295\) −1.92705 + 1.40008i −0.112197 + 0.0815161i
\(296\) 0 0
\(297\) 11.7082 + 46.5488i 0.679379 + 2.70103i
\(298\) 0 0
\(299\) −0.190983 + 0.138757i −0.0110448 + 0.00802454i
\(300\) 0 0
\(301\) −7.47214 + 22.9969i −0.430687 + 1.32552i
\(302\) 0 0
\(303\) 9.70820 + 7.05342i 0.557722 + 0.405209i
\(304\) 0 0
\(305\) −2.76393 8.50651i −0.158262 0.487081i
\(306\) 0 0
\(307\) 26.9443 1.53779 0.768895 0.639375i \(-0.220807\pi\)
0.768895 + 0.639375i \(0.220807\pi\)
\(308\) 0 0
\(309\) −36.6525 −2.08509
\(310\) 0 0
\(311\) 0.763932 + 2.35114i 0.0433186 + 0.133321i 0.970377 0.241597i \(-0.0776710\pi\)
−0.927058 + 0.374917i \(0.877671\pi\)
\(312\) 0 0
\(313\) −22.1803 16.1150i −1.25371 0.910871i −0.255276 0.966868i \(-0.582166\pi\)
−0.998431 + 0.0559968i \(0.982166\pi\)
\(314\) 0 0
\(315\) 6.04508 18.6049i 0.340602 1.04827i
\(316\) 0 0
\(317\) −5.01722 + 3.64522i −0.281795 + 0.204736i −0.719700 0.694285i \(-0.755721\pi\)
0.437905 + 0.899021i \(0.355721\pi\)
\(318\) 0 0
\(319\) −3.47214 + 2.17963i −0.194402 + 0.122036i
\(320\) 0 0
\(321\) 19.7082 14.3188i 1.10000 0.799200i
\(322\) 0 0
\(323\) −6.61803 + 20.3682i −0.368237 + 1.13332i
\(324\) 0 0
\(325\) 1.30902 + 0.951057i 0.0726112 + 0.0527551i
\(326\) 0 0
\(327\) −7.52786 23.1684i −0.416292 1.28121i
\(328\) 0 0
\(329\) 29.6525 1.63479
\(330\) 0 0
\(331\) 14.3820 0.790504 0.395252 0.918573i \(-0.370657\pi\)
0.395252 + 0.918573i \(0.370657\pi\)
\(332\) 0 0
\(333\) −1.97214 6.06961i −0.108072 0.332613i
\(334\) 0 0
\(335\) −0.618034 0.449028i −0.0337668 0.0245330i
\(336\) 0 0
\(337\) 10.9443 33.6830i 0.596172 1.83483i 0.0473712 0.998877i \(-0.484916\pi\)
0.548801 0.835953i \(-0.315084\pi\)
\(338\) 0 0
\(339\) 16.4721 11.9677i 0.894644 0.649997i
\(340\) 0 0
\(341\) −23.9443 1.62460i −1.29666 0.0879769i
\(342\) 0 0
\(343\) −15.1353 + 10.9964i −0.817227 + 0.593750i
\(344\) 0 0
\(345\) −0.145898 + 0.449028i −0.00785489 + 0.0241749i
\(346\) 0 0
\(347\) −21.9443 15.9434i −1.17803 0.855889i −0.186082 0.982534i \(-0.559579\pi\)
−0.991948 + 0.126645i \(0.959579\pi\)
\(348\) 0 0
\(349\) 9.56231 + 29.4298i 0.511858 + 1.57534i 0.788926 + 0.614488i \(0.210637\pi\)
−0.277068 + 0.960850i \(0.589363\pi\)
\(350\) 0 0
\(351\) 23.4164 1.24988
\(352\) 0 0
\(353\) 11.7082 0.623165 0.311582 0.950219i \(-0.399141\pi\)
0.311582 + 0.950219i \(0.399141\pi\)
\(354\) 0 0
\(355\) 4.09017 + 12.5882i 0.217084 + 0.668115i
\(356\) 0 0
\(357\) 35.8885 + 26.0746i 1.89942 + 1.38001i
\(358\) 0 0
\(359\) 9.41641 28.9807i 0.496979 1.52954i −0.316871 0.948469i \(-0.602632\pi\)
0.813850 0.581075i \(-0.197368\pi\)
\(360\) 0 0
\(361\) 1.83688 1.33457i 0.0966779 0.0702406i
\(362\) 0 0
\(363\) 31.3607 16.8415i 1.64601 0.883950i
\(364\) 0 0
\(365\) −1.38197 + 1.00406i −0.0723354 + 0.0525547i
\(366\) 0 0
\(367\) −3.23607 + 9.95959i −0.168921 + 0.519887i −0.999304 0.0373073i \(-0.988122\pi\)
0.830382 + 0.557194i \(0.188122\pi\)
\(368\) 0 0
\(369\) 11.2082 + 8.14324i 0.583476 + 0.423920i
\(370\) 0 0
\(371\) −0.736068 2.26538i −0.0382147 0.117613i
\(372\) 0 0
\(373\) 6.96556 0.360663 0.180331 0.983606i \(-0.442283\pi\)
0.180331 + 0.983606i \(0.442283\pi\)
\(374\) 0 0
\(375\) 3.23607 0.167110
\(376\) 0 0
\(377\) 0.618034 + 1.90211i 0.0318304 + 0.0979638i
\(378\) 0 0
\(379\) −8.35410 6.06961i −0.429121 0.311775i 0.352176 0.935934i \(-0.385442\pi\)
−0.781297 + 0.624159i \(0.785442\pi\)
\(380\) 0 0
\(381\) −2.38197 + 7.33094i −0.122032 + 0.375575i
\(382\) 0 0
\(383\) −12.8262 + 9.31881i −0.655390 + 0.476169i −0.865103 0.501594i \(-0.832747\pi\)
0.209713 + 0.977763i \(0.432747\pi\)
\(384\) 0 0
\(385\) −8.66312 0.587785i −0.441513 0.0299563i
\(386\) 0 0
\(387\) −55.8328 + 40.5649i −2.83814 + 2.06203i
\(388\) 0 0
\(389\) 3.76393 11.5842i 0.190839 0.587342i −0.809161 0.587587i \(-0.800078\pi\)
1.00000 0.000245108i \(7.80203e-5\pi\)
\(390\) 0 0
\(391\) −0.618034 0.449028i −0.0312553 0.0227083i
\(392\) 0 0
\(393\) 11.4164 + 35.1361i 0.575882 + 1.77238i
\(394\) 0 0
\(395\) −1.52786 −0.0768752
\(396\) 0 0
\(397\) 6.79837 0.341201 0.170600 0.985340i \(-0.445429\pi\)
0.170600 + 0.985340i \(0.445429\pi\)
\(398\) 0 0
\(399\) 10.7082 + 32.9565i 0.536081 + 1.64989i
\(400\) 0 0
\(401\) 8.69098 + 6.31437i 0.434007 + 0.315325i 0.783249 0.621708i \(-0.213561\pi\)
−0.349242 + 0.937033i \(0.613561\pi\)
\(402\) 0 0
\(403\) −3.61803 + 11.1352i −0.180227 + 0.554682i
\(404\) 0 0
\(405\) 19.7533 14.3516i 0.981549 0.713137i
\(406\) 0 0
\(407\) −2.39919 + 1.50609i −0.118923 + 0.0746539i
\(408\) 0 0
\(409\) 18.8713 13.7108i 0.933127 0.677956i −0.0136296 0.999907i \(-0.504339\pi\)
0.946756 + 0.321951i \(0.104339\pi\)
\(410\) 0 0
\(411\) 5.23607 16.1150i 0.258276 0.794892i
\(412\) 0 0
\(413\) −5.04508 3.66547i −0.248252 0.180366i
\(414\) 0 0
\(415\) 4.85410 + 14.9394i 0.238278 + 0.733346i
\(416\) 0 0
\(417\) −26.3607 −1.29089
\(418\) 0 0
\(419\) 1.61803 0.0790461 0.0395231 0.999219i \(-0.487416\pi\)
0.0395231 + 0.999219i \(0.487416\pi\)
\(420\) 0 0
\(421\) −5.76393 17.7396i −0.280917 0.864573i −0.987593 0.157036i \(-0.949806\pi\)
0.706676 0.707537i \(-0.250194\pi\)
\(422\) 0 0
\(423\) 68.4681 + 49.7450i 3.32903 + 2.41868i
\(424\) 0 0
\(425\) −1.61803 + 4.97980i −0.0784862 + 0.241556i
\(426\) 0 0
\(427\) 18.9443 13.7638i 0.916778 0.666078i
\(428\) 0 0
\(429\) −4.23607 16.8415i −0.204519 0.813115i
\(430\) 0 0
\(431\) −21.1803 + 15.3884i −1.02022 + 0.741234i −0.966328 0.257313i \(-0.917163\pi\)
−0.0538929 + 0.998547i \(0.517163\pi\)
\(432\) 0 0
\(433\) 2.94427 9.06154i 0.141493 0.435470i −0.855051 0.518545i \(-0.826474\pi\)
0.996543 + 0.0830748i \(0.0264741\pi\)
\(434\) 0 0
\(435\) 3.23607 + 2.35114i 0.155158 + 0.112729i
\(436\) 0 0
\(437\) −0.184405 0.567541i −0.00882130 0.0271492i
\(438\) 0 0
\(439\) 13.1246 0.626404 0.313202 0.949687i \(-0.398598\pi\)
0.313202 + 0.949687i \(0.398598\pi\)
\(440\) 0 0
\(441\) −1.09017 −0.0519129
\(442\) 0 0
\(443\) −0.416408 1.28157i −0.0197841 0.0608893i 0.940677 0.339303i \(-0.110191\pi\)
−0.960461 + 0.278414i \(0.910191\pi\)
\(444\) 0 0
\(445\) −9.73607 7.07367i −0.461534 0.335324i
\(446\) 0 0
\(447\) 4.00000 12.3107i 0.189194 0.582278i
\(448\) 0 0
\(449\) −2.54508 + 1.84911i −0.120110 + 0.0872650i −0.646219 0.763152i \(-0.723651\pi\)
0.526109 + 0.850417i \(0.323651\pi\)
\(450\) 0 0
\(451\) 2.29180 5.70634i 0.107916 0.268701i
\(452\) 0 0
\(453\) −33.1246 + 24.0664i −1.55633 + 1.13074i
\(454\) 0 0
\(455\) −1.30902 + 4.02874i −0.0613677 + 0.188870i
\(456\) 0 0
\(457\) −26.3262 19.1271i −1.23149 0.894729i −0.234489 0.972119i \(-0.575342\pi\)
−0.997001 + 0.0773894i \(0.975342\pi\)
\(458\) 0 0
\(459\) 23.4164 + 72.0683i 1.09298 + 3.36386i
\(460\) 0 0
\(461\) 28.5410 1.32929 0.664644 0.747160i \(-0.268583\pi\)
0.664644 + 0.747160i \(0.268583\pi\)
\(462\) 0 0
\(463\) −15.5066 −0.720652 −0.360326 0.932826i \(-0.617335\pi\)
−0.360326 + 0.932826i \(0.617335\pi\)
\(464\) 0 0
\(465\) 7.23607 + 22.2703i 0.335565 + 1.03276i
\(466\) 0 0
\(467\) 13.9443 + 10.1311i 0.645264 + 0.468812i 0.861655 0.507495i \(-0.169428\pi\)
−0.216391 + 0.976307i \(0.569428\pi\)
\(468\) 0 0
\(469\) 0.618034 1.90211i 0.0285382 0.0878314i
\(470\) 0 0
\(471\) 22.5623 16.3925i 1.03962 0.755325i
\(472\) 0 0
\(473\) 23.5066 + 19.6417i 1.08083 + 0.903125i
\(474\) 0 0
\(475\) −3.30902 + 2.40414i −0.151828 + 0.110310i
\(476\) 0 0
\(477\) 2.10081 6.46564i 0.0961896 0.296041i
\(478\) 0 0
\(479\) −23.9443 17.3965i −1.09404 0.794868i −0.113965 0.993485i \(-0.536355\pi\)
−0.980077 + 0.198617i \(0.936355\pi\)
\(480\) 0 0
\(481\) 0.427051 + 1.31433i 0.0194718 + 0.0599282i
\(482\) 0 0
\(483\) −1.23607 −0.0562430
\(484\) 0 0
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) −11.4164 35.1361i −0.517327 1.59217i −0.779008 0.627014i \(-0.784277\pi\)
0.261681 0.965154i \(-0.415723\pi\)
\(488\) 0 0
\(489\) 18.9443 + 13.7638i 0.856690 + 0.622421i
\(490\) 0 0
\(491\) −11.2639 + 34.6668i −0.508334 + 1.56449i 0.286758 + 0.958003i \(0.407422\pi\)
−0.795092 + 0.606489i \(0.792578\pi\)
\(492\) 0 0
\(493\) −5.23607 + 3.80423i −0.235821 + 0.171334i
\(494\) 0 0
\(495\) −19.0172 15.8904i −0.854761 0.714222i
\(496\) 0 0
\(497\) −28.0344 + 20.3682i −1.25752 + 0.913639i
\(498\) 0 0
\(499\) 3.95492 12.1720i 0.177046 0.544893i −0.822675 0.568512i \(-0.807519\pi\)
0.999721 + 0.0236199i \(0.00751914\pi\)
\(500\) 0 0
\(501\) −20.7082 15.0454i −0.925174 0.672178i
\(502\) 0 0
\(503\) −2.31966 7.13918i −0.103429 0.318320i 0.885930 0.463819i \(-0.153521\pi\)
−0.989358 + 0.145499i \(0.953521\pi\)
\(504\) 0 0
\(505\) −3.70820 −0.165013
\(506\) 0 0
\(507\) 33.5967 1.49208
\(508\) 0 0
\(509\) −9.61803 29.6013i −0.426312 1.31205i −0.901733 0.432294i \(-0.857704\pi\)
0.475421 0.879759i \(-0.342296\pi\)
\(510\) 0 0
\(511\) −3.61803 2.62866i −0.160052 0.116285i
\(512\) 0 0
\(513\) −18.2918 + 56.2964i −0.807603 + 2.48554i
\(514\) 0 0
\(515\) 9.16312 6.65740i 0.403775 0.293360i
\(516\) 0 0
\(517\) 14.0000 34.8586i 0.615719 1.53308i
\(518\) 0 0
\(519\) −33.0344 + 24.0009i −1.45005 + 1.05352i
\(520\) 0 0
\(521\) −2.66312 + 8.19624i −0.116673 + 0.359084i −0.992292 0.123919i \(-0.960454\pi\)
0.875619 + 0.483002i \(0.160454\pi\)
\(522\) 0 0
\(523\) −5.94427 4.31877i −0.259925 0.188846i 0.450189 0.892933i \(-0.351357\pi\)
−0.710114 + 0.704087i \(0.751357\pi\)
\(524\) 0 0
\(525\) 2.61803 + 8.05748i 0.114260 + 0.351657i
\(526\) 0 0
\(527\) −37.8885 −1.65045
\(528\) 0 0
\(529\) −22.9787 −0.999075
\(530\) 0 0
\(531\) −5.50000 16.9273i −0.238680 0.734580i
\(532\) 0 0
\(533\) −2.42705 1.76336i −0.105127 0.0763794i
\(534\) 0 0
\(535\) −2.32624 + 7.15942i −0.100572 + 0.309529i
\(536\) 0 0
\(537\) 7.61803 5.53483i 0.328742 0.238845i
\(538\) 0 0
\(539\) 0.118034 + 0.469272i 0.00508408 + 0.0202130i
\(540\) 0 0
\(541\) 6.47214 4.70228i 0.278259 0.202167i −0.439899 0.898047i \(-0.644986\pi\)
0.718158 + 0.695880i \(0.244986\pi\)
\(542\) 0 0
\(543\) 20.4721 63.0068i 0.878543 2.70388i
\(544\) 0 0
\(545\) 6.09017 + 4.42477i 0.260874 + 0.189536i
\(546\) 0 0
\(547\) 4.81966 + 14.8334i 0.206074 + 0.634230i 0.999668 + 0.0257820i \(0.00820757\pi\)
−0.793594 + 0.608448i \(0.791792\pi\)
\(548\) 0 0
\(549\) 66.8328 2.85236
\(550\) 0 0
\(551\) −5.05573 −0.215381
\(552\) 0 0
\(553\) −1.23607 3.80423i −0.0525630 0.161772i
\(554\) 0 0
\(555\) 2.23607 + 1.62460i 0.0949158 + 0.0689604i
\(556\) 0 0
\(557\) 10.2639 31.5891i 0.434897 1.33847i −0.458296 0.888800i \(-0.651540\pi\)
0.893192 0.449675i \(-0.148460\pi\)
\(558\) 0 0
\(559\) 12.0902 8.78402i 0.511360 0.371525i
\(560\) 0 0
\(561\) 47.5967 29.8788i 2.00954 1.26148i
\(562\) 0 0
\(563\) 19.3262 14.0413i 0.814504 0.591772i −0.100629 0.994924i \(-0.532086\pi\)
0.915133 + 0.403152i \(0.132086\pi\)
\(564\) 0 0
\(565\) −1.94427 + 5.98385i −0.0817961 + 0.251743i
\(566\) 0 0
\(567\) 51.7148 + 37.5730i 2.17182 + 1.57792i
\(568\) 0 0
\(569\) 2.57295 + 7.91872i 0.107864 + 0.331970i 0.990392 0.138289i \(-0.0441604\pi\)
−0.882528 + 0.470259i \(0.844160\pi\)
\(570\) 0 0
\(571\) 29.0902 1.21739 0.608693 0.793406i \(-0.291694\pi\)
0.608693 + 0.793406i \(0.291694\pi\)
\(572\) 0 0
\(573\) 82.2492 3.43601
\(574\) 0 0
\(575\) −0.0450850 0.138757i −0.00188017 0.00578658i
\(576\) 0 0
\(577\) −12.0902 8.78402i −0.503320 0.365684i 0.306963 0.951721i \(-0.400687\pi\)
−0.810284 + 0.586038i \(0.800687\pi\)
\(578\) 0 0
\(579\) 5.41641 16.6700i 0.225098 0.692781i
\(580\) 0 0
\(581\) −33.2705 + 24.1724i −1.38029 + 1.00284i
\(582\) 0 0
\(583\) −3.01064 0.204270i −0.124688 0.00845998i
\(584\) 0 0
\(585\) −9.78115 + 7.10642i −0.404401 + 0.293814i
\(586\) 0 0
\(587\) 6.41641 19.7477i 0.264833 0.815074i −0.726898 0.686745i \(-0.759039\pi\)
0.991732 0.128328i \(-0.0409612\pi\)
\(588\) 0 0
\(589\) −23.9443 17.3965i −0.986607 0.716812i
\(590\) 0 0
\(591\) 4.90983 + 15.1109i 0.201963 + 0.621579i
\(592\) 0 0
\(593\) −19.7082 −0.809319 −0.404659 0.914467i \(-0.632610\pi\)
−0.404659 + 0.914467i \(0.632610\pi\)
\(594\) 0 0
\(595\) −13.7082 −0.561982
\(596\) 0 0
\(597\) 1.70820 + 5.25731i 0.0699121 + 0.215167i
\(598\) 0 0
\(599\) 13.3262 + 9.68208i 0.544495 + 0.395599i 0.825752 0.564034i \(-0.190751\pi\)
−0.281257 + 0.959633i \(0.590751\pi\)
\(600\) 0 0
\(601\) 6.97214 21.4580i 0.284399 0.875291i −0.702179 0.712001i \(-0.747789\pi\)
0.986578 0.163290i \(-0.0522108\pi\)
\(602\) 0 0
\(603\) 4.61803 3.35520i 0.188061 0.136634i
\(604\) 0 0
\(605\) −4.78115 + 9.90659i −0.194382 + 0.402760i
\(606\) 0 0
\(607\) 26.1803 19.0211i 1.06263 0.772044i 0.0880546 0.996116i \(-0.471935\pi\)
0.974573 + 0.224072i \(0.0719350\pi\)
\(608\) 0 0
\(609\) −3.23607 + 9.95959i −0.131132 + 0.403583i
\(610\) 0 0
\(611\) −14.8262 10.7719i −0.599805 0.435784i
\(612\) 0 0
\(613\) 3.56231 + 10.9637i 0.143880 + 0.442818i 0.996865 0.0791176i \(-0.0252103\pi\)
−0.852985 + 0.521935i \(0.825210\pi\)
\(614\) 0 0
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 32.9443 1.32629 0.663143 0.748493i \(-0.269222\pi\)
0.663143 + 0.748493i \(0.269222\pi\)
\(618\) 0 0
\(619\) −7.02786 21.6295i −0.282474 0.869365i −0.987145 0.159830i \(-0.948905\pi\)
0.704671 0.709534i \(-0.251095\pi\)
\(620\) 0 0
\(621\) −1.70820 1.24108i −0.0685479 0.0498029i
\(622\) 0 0
\(623\) 9.73607 29.9645i 0.390067 1.20050i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 43.7984 + 2.97168i 1.74914 + 0.118678i
\(628\) 0 0
\(629\) −3.61803 + 2.62866i −0.144260 + 0.104811i
\(630\) 0 0
\(631\) −2.29180 + 7.05342i −0.0912350 + 0.280792i −0.986254 0.165235i \(-0.947162\pi\)
0.895019 + 0.446028i \(0.147162\pi\)
\(632\) 0 0
\(633\) −54.8328 39.8384i −2.17941 1.58343i
\(634\) 0 0
\(635\) −0.736068 2.26538i −0.0292100 0.0898990i
\(636\) 0 0
\(637\) 0.236068 0.00935335
\(638\) 0 0
\(639\) −98.9017 −3.91249
\(640\) 0 0
\(641\) 11.7918 + 36.2914i 0.465748 + 1.43342i 0.858039 + 0.513584i \(0.171682\pi\)
−0.392291 + 0.919841i \(0.628318\pi\)
\(642\) 0 0
\(643\) −10.8541 7.88597i −0.428044 0.310992i 0.352822 0.935690i \(-0.385222\pi\)
−0.780866 + 0.624698i \(0.785222\pi\)
\(644\) 0 0
\(645\) 9.23607 28.4257i 0.363670 1.11926i
\(646\) 0 0
\(647\) −5.70820 + 4.14725i −0.224413 + 0.163045i −0.694311 0.719675i \(-0.744291\pi\)
0.469898 + 0.882721i \(0.344291\pi\)
\(648\) 0 0
\(649\) −6.69098 + 4.20025i −0.262644 + 0.164874i
\(650\) 0 0
\(651\) −49.5967 + 36.0341i −1.94385 + 1.41229i
\(652\) 0 0
\(653\) 7.97214 24.5357i 0.311974 0.960157i −0.665008 0.746836i \(-0.731572\pi\)
0.976982 0.213321i \(-0.0684279\pi\)
\(654\) 0 0
\(655\) −9.23607 6.71040i −0.360883 0.262197i
\(656\) 0 0
\(657\) −3.94427 12.1392i −0.153881 0.473596i
\(658\) 0 0
\(659\) 13.3820 0.521287 0.260644 0.965435i \(-0.416065\pi\)
0.260644 + 0.965435i \(0.416065\pi\)
\(660\) 0 0
\(661\) 2.18034 0.0848054 0.0424027 0.999101i \(-0.486499\pi\)
0.0424027 + 0.999101i \(0.486499\pi\)
\(662\) 0 0
\(663\) −8.47214 26.0746i −0.329030 1.01265i
\(664\) 0 0
\(665\) −8.66312 6.29412i −0.335941 0.244076i
\(666\) 0 0
\(667\) 0.0557281 0.171513i 0.00215780 0.00664103i
\(668\) 0 0
\(669\) −25.3262 + 18.4006i −0.979169 + 0.711408i
\(670\) 0 0
\(671\) −7.23607 28.7687i −0.279345 1.11060i
\(672\) 0 0
\(673\) 3.23607 2.35114i 0.124741 0.0906298i −0.523665 0.851924i \(-0.675436\pi\)
0.648407 + 0.761294i \(0.275436\pi\)
\(674\) 0 0
\(675\) −4.47214 + 13.7638i −0.172133 + 0.529770i
\(676\) 0 0
\(677\) 8.09017 + 5.87785i 0.310930 + 0.225904i 0.732296 0.680987i \(-0.238449\pi\)
−0.421365 + 0.906891i \(0.638449\pi\)
\(678\) 0 0
\(679\) 9.70820 + 29.8788i 0.372567 + 1.14664i
\(680\) 0 0
\(681\) −53.3050 −2.04265
\(682\) 0 0
\(683\) 47.0132 1.79891 0.899454 0.437015i \(-0.143964\pi\)
0.899454 + 0.437015i \(0.143964\pi\)
\(684\) 0 0
\(685\) 1.61803 + 4.97980i 0.0618219 + 0.190268i
\(686\) 0 0
\(687\) −73.7771 53.6022i −2.81477 2.04505i
\(688\) 0 0
\(689\) −0.454915 + 1.40008i −0.0173309 + 0.0533390i
\(690\) 0 0
\(691\) 11.1180 8.07772i 0.422950 0.307291i −0.355874 0.934534i \(-0.615817\pi\)
0.778824 + 0.627243i \(0.215817\pi\)
\(692\) 0 0
\(693\) 24.1803 60.2066i 0.918535 2.28706i
\(694\) 0 0
\(695\) 6.59017 4.78804i 0.249979 0.181621i
\(696\) 0 0
\(697\) 3.00000 9.23305i 0.113633 0.349727i
\(698\) 0 0
\(699\) 39.8885 + 28.9807i 1.50872 + 1.09615i
\(700\) 0 0
\(701\) 1.79837 + 5.53483i 0.0679236 + 0.209047i 0.979257 0.202621i \(-0.0649461\pi\)
−0.911334 + 0.411669i \(0.864946\pi\)
\(702\) 0 0
\(703\) −3.49342 −0.131757
\(704\) 0 0
\(705\) −36.6525 −1.38041
\(706\) 0 0
\(707\) −3.00000 9.23305i −0.112827 0.347245i
\(708\) 0 0
\(709\) −8.79837 6.39239i −0.330430 0.240071i 0.410183 0.912003i \(-0.365465\pi\)
−0.740613 + 0.671932i \(0.765465\pi\)
\(710\) 0 0
\(711\) 3.52786 10.8576i 0.132305 0.407194i
\(712\) 0 0
\(713\) 0.854102 0.620541i 0.0319864 0.0232395i
\(714\) 0 0
\(715\) 4.11803 + 3.44095i 0.154006 + 0.128684i
\(716\) 0 0
\(717\) −24.9443 + 18.1231i −0.931561 + 0.676819i
\(718\) 0 0
\(719\) −7.36068 + 22.6538i −0.274507 + 0.844846i 0.714842 + 0.699286i \(0.246498\pi\)
−0.989349 + 0.145560i \(0.953502\pi\)
\(720\) 0 0
\(721\) 23.9894 + 17.4293i 0.893410 + 0.649101i
\(722\) 0 0
\(723\) 1.85410 + 5.70634i 0.0689548 + 0.212221i
\(724\) 0 0
\(725\) −1.23607 −0.0459064
\(726\) 0 0
\(727\) 8.79837 0.326314 0.163157 0.986600i \(-0.447832\pi\)
0.163157 + 0.986600i \(0.447832\pi\)
\(728\) 0 0
\(729\) 12.9615 + 39.8914i 0.480055 + 1.47746i
\(730\) 0 0
\(731\) 39.1246 + 28.4257i 1.44708 + 1.05136i
\(732\) 0 0
\(733\) 11.2016 34.4751i 0.413742 1.27337i −0.499630 0.866239i \(-0.666531\pi\)
0.913372 0.407127i \(-0.133469\pi\)
\(734\) 0 0
\(735\) 0.381966 0.277515i 0.0140890 0.0102363i
\(736\) 0 0
\(737\) −1.94427 1.62460i −0.0716182 0.0598429i
\(738\) 0 0
\(739\) −25.7705 + 18.7234i −0.947984 + 0.688750i −0.950329 0.311247i \(-0.899253\pi\)
0.00234556 + 0.999997i \(0.499253\pi\)
\(740\) 0 0
\(741\) 6.61803 20.3682i 0.243120 0.748245i
\(742\) 0 0
\(743\) −14.3541 10.4289i −0.526601 0.382598i 0.292484 0.956270i \(-0.405518\pi\)
−0.819085 + 0.573672i \(0.805518\pi\)
\(744\) 0 0
\(745\) 1.23607 + 3.80423i 0.0452860 + 0.139376i
\(746\) 0 0
\(747\) −117.374 −4.29448
\(748\) 0 0
\(749\) −19.7082 −0.720122
\(750\) 0 0
\(751\) 3.38197 + 10.4086i 0.123410 + 0.379816i 0.993608 0.112886i \(-0.0360094\pi\)
−0.870198 + 0.492702i \(0.836009\pi\)
\(752\) 0 0
\(753\) 26.2705 + 19.0866i 0.957351 + 0.695556i
\(754\) 0 0
\(755\) 3.90983 12.0332i 0.142293 0.437934i
\(756\) 0 0
\(757\) −17.9615 + 13.0498i −0.652822 + 0.474303i −0.864231 0.503095i \(-0.832195\pi\)
0.211410 + 0.977398i \(0.432195\pi\)
\(758\) 0 0
\(759\) −0.583592 + 1.45309i −0.0211831 + 0.0527436i
\(760\) 0 0
\(761\) −5.32624 + 3.86974i −0.193076 + 0.140278i −0.680123 0.733098i \(-0.738074\pi\)
0.487048 + 0.873375i \(0.338074\pi\)
\(762\) 0 0
\(763\) −6.09017 + 18.7436i −0.220479 + 0.678564i
\(764\) 0 0
\(765\) −31.6525 22.9969i −1.14440 0.831454i
\(766\) 0 0
\(767\) 1.19098 + 3.66547i 0.0430039 + 0.132352i
\(768\) 0 0
\(769\) −32.0902 −1.15720 −0.578601 0.815611i \(-0.696401\pi\)
−0.578601 + 0.815611i \(0.696401\pi\)
\(770\) 0 0
\(771\) 38.8328 1.39853
\(772\) 0 0
\(773\) −11.6074 35.7239i −0.417489 1.28490i −0.910006 0.414596i \(-0.863923\pi\)
0.492517 0.870303i \(-0.336077\pi\)
\(774\) 0 0
\(775\) −5.85410 4.25325i −0.210286 0.152781i
\(776\) 0 0
\(777\) −2.23607 + 6.88191i −0.0802185 + 0.246887i
\(778\) 0 0
\(779\) 6.13525 4.45752i 0.219818 0.159707i
\(780\) 0 0
\(781\) 10.7082 + 42.5730i 0.383170 + 1.52338i
\(782\) 0 0
\(783\) −14.4721 + 10.5146i −0.517192 + 0.375762i
\(784\) 0 0
\(785\) −2.66312 + 8.19624i −0.0950508 + 0.292536i
\(786\) 0 0
\(787\) −29.1246 21.1603i −1.03818 0.754282i −0.0682508 0.997668i \(-0.521742\pi\)
−0.969929 + 0.243386i \(0.921742\pi\)
\(788\) 0 0
\(789\) 25.7984 + 79.3992i 0.918446 + 2.82669i
\(790\) 0 0
\(791\) −16.4721 −0.585682
\(792\) 0 0
\(793\) −14.4721 −0.513921
\(794\) 0 0
\(795\) 0.909830 + 2.80017i 0.0322683 + 0.0993118i
\(796\) 0 0
\(797\) −29.9615 21.7683i −1.06129 0.771073i −0.0869638 0.996211i \(-0.527716\pi\)
−0.974327 + 0.225139i \(0.927716\pi\)
\(798\) 0 0
\(799\) 18.3262 56.4024i 0.648336 1.99537i
\(800\) 0 0
\(801\) 72.7492 52.8554i 2.57047 1.86755i
\(802\) 0 0
\(803\) −4.79837 + 3.01217i −0.169331 + 0.106297i
\(804\) 0 0
\(805\) 0.309017 0.224514i 0.0108914 0.00791308i
\(806\) 0 0
\(807\) −17.5967 + 54.1572i −0.619435 + 1.90642i
\(808\) 0 0
\(809\) 7.30902 + 5.31031i 0.256971 + 0.186701i 0.708811 0.705399i \(-0.249232\pi\)
−0.451839 + 0.892099i \(0.649232\pi\)
\(810\) 0 0
\(811\) 14.4058 + 44.3364i 0.505855 + 1.55686i 0.799329 + 0.600894i \(0.205189\pi\)
−0.293474 + 0.955967i \(0.594811\pi\)
\(812\) 0 0
\(813\) 43.4164 1.52268
\(814\) 0 0
\(815\) −7.23607 −0.253468
\(816\) 0 0
\(817\) 11.6738 + 35.9281i 0.408413 + 1.25697i
\(818\) 0 0
\(819\) −25.6074 18.6049i −0.894795 0.650106i
\(820\) 0 0
\(821\) −7.52786 + 23.1684i −0.262724 + 0.808582i 0.729485 + 0.683997i \(0.239760\pi\)
−0.992209 + 0.124585i \(0.960240\pi\)
\(822\) 0 0
\(823\) −13.7812 + 10.0126i −0.480381 + 0.349017i −0.801473 0.598031i \(-0.795950\pi\)
0.321092 + 0.947048i \(0.395950\pi\)
\(824\) 0 0
\(825\) 10.7082 + 0.726543i 0.372812 + 0.0252950i
\(826\) 0 0
\(827\) 17.7984 12.9313i 0.618910 0.449665i −0.233631 0.972325i \(-0.575061\pi\)
0.852541 + 0.522661i \(0.175061\pi\)
\(828\) 0 0
\(829\) −4.00000 + 12.3107i −0.138926 + 0.427569i −0.996180 0.0873239i \(-0.972168\pi\)
0.857254 + 0.514893i \(0.172168\pi\)
\(830\) 0 0
\(831\) −1.61803 1.17557i −0.0561290 0.0407801i
\(832\) 0 0
\(833\) 0.236068 + 0.726543i 0.00817927 + 0.0251732i
\(834\) 0 0
\(835\) 7.90983 0.273731
\(836\) 0 0
\(837\) −104.721 −3.61970
\(838\) 0 0
\(839\) 16.2361 + 49.9695i 0.560531 + 1.72514i 0.680869 + 0.732405i \(0.261602\pi\)
−0.120338 + 0.992733i \(0.538398\pi\)
\(840\) 0 0
\(841\) 22.2254 + 16.1477i 0.766394 + 0.556818i
\(842\) 0 0
\(843\) −18.0000 + 55.3983i −0.619953 + 1.90802i
\(844\) 0 0
\(845\) −8.39919 + 6.10237i −0.288941 + 0.209928i
\(846\) 0 0
\(847\) −28.5344 3.88998i −0.980455 0.133661i
\(848\) 0 0
\(849\) −65.0132 + 47.2348i −2.23125 + 1.62109i
\(850\) 0 0
\(851\) 0.0385072 0.118513i 0.00132001 0.00406257i
\(852\) 0 0
\(853\) −12.9164 9.38432i −0.442249 0.321313i 0.344279 0.938867i \(-0.388123\pi\)
−0.786528 + 0.617555i \(0.788123\pi\)
\(854\) 0 0
\(855\) −9.44427 29.0665i −0.322987 0.994053i
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) 30.9098 1.05463 0.527315 0.849670i \(-0.323199\pi\)
0.527315 + 0.849670i \(0.323199\pi\)
\(860\) 0 0
\(861\) −4.85410 14.9394i −0.165427 0.509133i
\(862\) 0 0
\(863\) −5.01722 3.64522i −0.170788 0.124085i 0.499108 0.866540i \(-0.333661\pi\)
−0.669896 + 0.742455i \(0.733661\pi\)
\(864\) 0 0
\(865\) 3.89919 12.0005i 0.132576 0.408028i
\(866\) 0 0
\(867\) 27.2705 19.8132i 0.926155 0.672891i
\(868\) 0 0
\(869\) −5.05573 0.343027i −0.171504 0.0116364i
\(870\) 0 0
\(871\) −1.00000 + 0.726543i −0.0338837 + 0.0246180i
\(872\) 0 0
\(873\) −27.7082 + 85.2771i −0.937781 + 2.88619i
\(874\) 0 0
\(875\) −2.11803 1.53884i −0.0716026 0.0520223i
\(876\) 0 0
\(877\) 0.736068 + 2.26538i 0.0248552 + 0.0764966i 0.962715 0.270519i \(-0.0871952\pi\)
−0.937859 + 0.347015i \(0.887195\pi\)
\(878\) 0 0
\(879\) 76.8328 2.59151
\(880\) 0 0
\(881\) −27.4508 −0.924843 −0.462421 0.886660i \(-0.653019\pi\)
−0.462421 + 0.886660i \(0.653019\pi\)
\(882\) 0 0
\(883\) −9.47214 29.1522i −0.318763 0.981051i −0.974178 0.225782i \(-0.927506\pi\)
0.655415 0.755269i \(-0.272494\pi\)
\(884\) 0 0
\(885\) 6.23607 + 4.53077i 0.209623 + 0.152300i
\(886\) 0 0
\(887\) −14.6074 + 44.9569i −0.490468 + 1.50951i 0.333434 + 0.942774i \(0.391793\pi\)
−0.823902 + 0.566732i \(0.808207\pi\)
\(888\) 0 0
\(889\) 5.04508 3.66547i 0.169207 0.122936i
\(890\) 0 0
\(891\) 68.5861 43.0548i 2.29772 1.44239i
\(892\) 0 0
\(893\) 37.4787 27.2299i 1.25418 0.911213i
\(894\) 0 0
\(895\) −0.899187 + 2.76741i −0.0300565 + 0.0925044i
\(896\) 0 0
\(897\) 0.618034 + 0.449028i 0.0206356 + 0.0149926i
\(898\) 0 0
\(899\) −2.76393 8.50651i −0.0921823 0.283708i
\(900\) 0 0
\(901\) −4.76393 −0.158710
\(902\) 0 0
\(903\) 78.2492 2.60397
\(904\) 0 0
\(905\) 6.32624 + 19.4702i 0.210291 + 0.647210i
\(906\) 0 0
\(907\) −10.2361 7.43694i −0.339883 0.246939i 0.404729 0.914436i \(-0.367366\pi\)
−0.744612 + 0.667497i \(0.767366\pi\)
\(908\) 0 0
\(909\) 8.56231 26.3521i 0.283994 0.874043i
\(910\) 0 0
\(911\) −16.9443 + 12.3107i −0.561389 + 0.407873i −0.831967 0.554825i \(-0.812785\pi\)
0.270578 + 0.962698i \(0.412785\pi\)
\(912\) 0 0
\(913\) 12.7082 + 50.5245i 0.420580 + 1.67212i
\(914\) 0 0
\(915\) −23.4164 + 17.0130i −0.774123 + 0.562433i
\(916\) 0 0
\(917\) 9.23607 28.4257i 0.305002 0.938699i
\(918\) 0 0
\(919\) −9.70820 7.05342i −0.320244 0.232671i 0.416036 0.909348i \(-0.363419\pi\)
−0.736280 + 0.676677i \(0.763419\pi\)
\(920\) 0 0
\(921\) −26.9443 82.9259i −0.887844 2.73250i
\(922\) 0 0
\(923\) 21.4164 0.704930
\(924\) 0 0
\(925\) −0.854102 −0.0280827
\(926\) 0 0
\(927\) 26.1525 + 80.4890i 0.858960 + 2.64361i
\(928\) 0 0
\(929\) −43.0967 31.3116i −1.41396 1.02730i −0.992732 0.120345i \(-0.961600\pi\)
−0.421226 0.906956i \(-0.638400\pi\)
\(930\) 0 0
\(931\) −0.184405 + 0.567541i −0.00604364 + 0.0186004i
\(932\) 0 0
\(933\) 6.47214 4.70228i 0.211888 0.153946i
\(934\) 0 0
\(935\) −6.47214 + 16.1150i −0.211661 + 0.527016i
\(936\) 0 0
\(937\) 38.9787 28.3197i 1.27338 0.925164i 0.274047 0.961716i \(-0.411638\pi\)
0.999332 + 0.0365522i \(0.0116375\pi\)
\(938\) 0 0
\(939\) −27.4164 + 84.3790i −0.894701 + 2.75361i
\(940\) 0 0
\(941\) −45.3607 32.9565i −1.47872 1.07435i −0.977968 0.208757i \(-0.933058\pi\)
−0.500748 0.865593i \(-0.666942\pi\)
\(942\) 0 0
\(943\) 0.0835921 + 0.257270i 0.00272213 + 0.00837787i
\(944\) 0 0
\(945\) −37.8885 −1.23251
\(946\) 0 0
\(947\) −49.9574 −1.62340 −0.811699 0.584076i \(-0.801457\pi\)
−0.811699 + 0.584076i \(0.801457\pi\)
\(948\) 0 0
\(949\) 0.854102 + 2.62866i 0.0277253 + 0.0853298i
\(950\) 0 0
\(951\) 16.2361 + 11.7962i 0.526491 + 0.382518i
\(952\) 0 0
\(953\) 4.85410 14.9394i 0.157240 0.483934i −0.841141 0.540816i \(-0.818116\pi\)
0.998381 + 0.0568813i \(0.0181157\pi\)
\(954\) 0 0
\(955\) −20.5623 + 14.9394i −0.665381 + 0.483427i
\(956\) 0 0
\(957\) 10.1803 + 8.50651i 0.329084 + 0.274976i
\(958\) 0 0
\(959\) −11.0902 + 8.05748i −0.358120 + 0.260190i
\(960\) 0 0
\(961\) 6.60081 20.3152i 0.212929 0.655329i
\(962\) 0 0
\(963\) −45.5066 33.0625i −1.46643 1.06542i
\(964\) 0 0
\(965\) 1.67376 + 5.15131i 0.0538803 + 0.165827i
\(966\) 0 0
\(967\) −3.90983 −0.125732 −0.0628658 0.998022i \(-0.520024\pi\)
−0.0628658 + 0.998022i \(0.520024\pi\)
\(968\) 0 0
\(969\) 69.3050 2.22640
\(970\) 0 0
\(971\) −12.1565 37.4140i −0.390122 1.20067i −0.932696 0.360664i \(-0.882550\pi\)
0.542574 0.840008i \(-0.317450\pi\)
\(972\) 0 0
\(973\) 17.2533 + 12.5352i 0.553115 + 0.401862i
\(974\) 0 0
\(975\) 1.61803 4.97980i 0.0518186 0.159481i
\(976\) 0 0
\(977\) 3.38197 2.45714i 0.108199 0.0786109i −0.532370 0.846512i \(-0.678699\pi\)
0.640569 + 0.767901i \(0.278699\pi\)
\(978\) 0 0
\(979\) −30.6287 25.5928i −0.978897 0.817948i
\(980\) 0 0
\(981\) −45.5066 + 33.0625i −1.45291 + 1.05560i
\(982\) 0 0
\(983\) −3.10081 + 9.54332i −0.0989006 + 0.304385i −0.988251 0.152842i \(-0.951157\pi\)
0.889350 + 0.457227i \(0.151157\pi\)
\(984\) 0 0
\(985\) −3.97214 2.88593i −0.126563 0.0919532i
\(986\) 0 0
\(987\) −29.6525 91.2609i −0.943849 2.90487i
\(988\) 0 0
\(989\) −1.34752 −0.0428488
\(990\) 0 0
\(991\) −54.7214 −1.73828 −0.869141 0.494565i \(-0.835327\pi\)
−0.869141 + 0.494565i \(0.835327\pi\)
\(992\) 0 0
\(993\) −14.3820 44.2631i −0.456398 1.40465i
\(994\) 0 0
\(995\) −1.38197 1.00406i −0.0438113 0.0318307i
\(996\) 0 0
\(997\) −16.2148 + 49.9040i −0.513527 + 1.58047i 0.272418 + 0.962179i \(0.412177\pi\)
−0.785946 + 0.618296i \(0.787823\pi\)
\(998\) 0 0
\(999\) −10.0000 + 7.26543i −0.316386 + 0.229868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.a.641.1 4
4.3 odd 2 110.2.g.a.91.1 yes 4
11.2 odd 10 9680.2.a.bi.1.1 2
11.4 even 5 inner 880.2.bo.a.81.1 4
11.9 even 5 9680.2.a.bh.1.1 2
12.11 even 2 990.2.n.f.91.1 4
20.3 even 4 550.2.ba.a.399.2 8
20.7 even 4 550.2.ba.a.399.1 8
20.19 odd 2 550.2.h.f.201.1 4
44.15 odd 10 110.2.g.a.81.1 4
44.31 odd 10 1210.2.a.t.1.2 2
44.35 even 10 1210.2.a.p.1.2 2
132.59 even 10 990.2.n.f.631.1 4
220.59 odd 10 550.2.h.f.301.1 4
220.79 even 10 6050.2.a.cm.1.1 2
220.103 even 20 550.2.ba.a.499.1 8
220.119 odd 10 6050.2.a.bu.1.1 2
220.147 even 20 550.2.ba.a.499.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.a.81.1 4 44.15 odd 10
110.2.g.a.91.1 yes 4 4.3 odd 2
550.2.h.f.201.1 4 20.19 odd 2
550.2.h.f.301.1 4 220.59 odd 10
550.2.ba.a.399.1 8 20.7 even 4
550.2.ba.a.399.2 8 20.3 even 4
550.2.ba.a.499.1 8 220.103 even 20
550.2.ba.a.499.2 8 220.147 even 20
880.2.bo.a.81.1 4 11.4 even 5 inner
880.2.bo.a.641.1 4 1.1 even 1 trivial
990.2.n.f.91.1 4 12.11 even 2
990.2.n.f.631.1 4 132.59 even 10
1210.2.a.p.1.2 2 44.35 even 10
1210.2.a.t.1.2 2 44.31 odd 10
6050.2.a.bu.1.1 2 220.119 odd 10
6050.2.a.cm.1.1 2 220.79 even 10
9680.2.a.bh.1.1 2 11.9 even 5
9680.2.a.bi.1.1 2 11.2 odd 10