Properties

Label 550.6.a.h.1.1
Level $550$
Weight $6$
Character 550.1
Self dual yes
Analytic conductor $88.211$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,6,Mod(1,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.2111008971\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{793}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 198 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(14.5801\) of defining polynomial
Character \(\chi\) \(=\) 550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -28.5801 q^{3} +16.0000 q^{4} +114.321 q^{6} +91.4808 q^{7} -64.0000 q^{8} +573.824 q^{9} -121.000 q^{11} -457.282 q^{12} +463.801 q^{13} -365.923 q^{14} +256.000 q^{16} -1641.94 q^{17} -2295.29 q^{18} -1693.53 q^{19} -2614.53 q^{21} +484.000 q^{22} -75.9391 q^{23} +1829.13 q^{24} -1855.21 q^{26} -9454.98 q^{27} +1463.69 q^{28} -2942.33 q^{29} +8443.63 q^{31} -1024.00 q^{32} +3458.20 q^{33} +6567.74 q^{34} +9181.18 q^{36} +35.5610 q^{37} +6774.10 q^{38} -13255.5 q^{39} +9222.25 q^{41} +10458.1 q^{42} +11516.7 q^{43} -1936.00 q^{44} +303.756 q^{46} -6179.00 q^{47} -7316.51 q^{48} -8438.27 q^{49} +46926.7 q^{51} +7420.82 q^{52} -25255.1 q^{53} +37819.9 q^{54} -5854.77 q^{56} +48401.2 q^{57} +11769.3 q^{58} +40786.8 q^{59} -7368.85 q^{61} -33774.5 q^{62} +52493.8 q^{63} +4096.00 q^{64} -13832.8 q^{66} +11024.7 q^{67} -26271.0 q^{68} +2170.35 q^{69} -46964.9 q^{71} -36724.7 q^{72} +60727.5 q^{73} -142.244 q^{74} -27096.4 q^{76} -11069.2 q^{77} +53022.0 q^{78} +18386.1 q^{79} +130785. q^{81} -36889.0 q^{82} +59321.9 q^{83} -41832.5 q^{84} -46066.6 q^{86} +84092.1 q^{87} +7744.00 q^{88} +5070.71 q^{89} +42428.9 q^{91} -1215.03 q^{92} -241320. q^{93} +24716.0 q^{94} +29266.1 q^{96} +130795. q^{97} +33753.1 q^{98} -69432.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 29 q^{3} + 32 q^{4} + 116 q^{6} + 14 q^{7} - 128 q^{8} + 331 q^{9} - 242 q^{11} - 464 q^{12} + 646 q^{13} - 56 q^{14} + 512 q^{16} + 208 q^{17} - 1324 q^{18} - 2148 q^{19} - 2582 q^{21}+ \cdots - 40051 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −28.5801 −1.83342 −0.916708 0.399558i \(-0.869164\pi\)
−0.916708 + 0.399558i \(0.869164\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 114.321 1.29642
\(7\) 91.4808 0.705642 0.352821 0.935691i \(-0.385222\pi\)
0.352821 + 0.935691i \(0.385222\pi\)
\(8\) −64.0000 −0.353553
\(9\) 573.824 2.36141
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) −457.282 −0.916708
\(13\) 463.801 0.761156 0.380578 0.924749i \(-0.375725\pi\)
0.380578 + 0.924749i \(0.375725\pi\)
\(14\) −365.923 −0.498965
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1641.94 −1.37795 −0.688976 0.724784i \(-0.741939\pi\)
−0.688976 + 0.724784i \(0.741939\pi\)
\(18\) −2295.29 −1.66977
\(19\) −1693.53 −1.07624 −0.538118 0.842869i \(-0.680865\pi\)
−0.538118 + 0.842869i \(0.680865\pi\)
\(20\) 0 0
\(21\) −2614.53 −1.29374
\(22\) 484.000 0.213201
\(23\) −75.9391 −0.0299327 −0.0149663 0.999888i \(-0.504764\pi\)
−0.0149663 + 0.999888i \(0.504764\pi\)
\(24\) 1829.13 0.648210
\(25\) 0 0
\(26\) −1855.21 −0.538218
\(27\) −9454.98 −2.49604
\(28\) 1463.69 0.352821
\(29\) −2942.33 −0.649675 −0.324837 0.945770i \(-0.605310\pi\)
−0.324837 + 0.945770i \(0.605310\pi\)
\(30\) 0 0
\(31\) 8443.63 1.57807 0.789033 0.614351i \(-0.210582\pi\)
0.789033 + 0.614351i \(0.210582\pi\)
\(32\) −1024.00 −0.176777
\(33\) 3458.20 0.552796
\(34\) 6567.74 0.974359
\(35\) 0 0
\(36\) 9181.18 1.18071
\(37\) 35.5610 0.00427041 0.00213520 0.999998i \(-0.499320\pi\)
0.00213520 + 0.999998i \(0.499320\pi\)
\(38\) 6774.10 0.761014
\(39\) −13255.5 −1.39552
\(40\) 0 0
\(41\) 9222.25 0.856796 0.428398 0.903590i \(-0.359078\pi\)
0.428398 + 0.903590i \(0.359078\pi\)
\(42\) 10458.1 0.914810
\(43\) 11516.7 0.949851 0.474925 0.880026i \(-0.342475\pi\)
0.474925 + 0.880026i \(0.342475\pi\)
\(44\) −1936.00 −0.150756
\(45\) 0 0
\(46\) 303.756 0.0211656
\(47\) −6179.00 −0.408013 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(48\) −7316.51 −0.458354
\(49\) −8438.27 −0.502069
\(50\) 0 0
\(51\) 46926.7 2.52636
\(52\) 7420.82 0.380578
\(53\) −25255.1 −1.23498 −0.617489 0.786579i \(-0.711850\pi\)
−0.617489 + 0.786579i \(0.711850\pi\)
\(54\) 37819.9 1.76497
\(55\) 0 0
\(56\) −5854.77 −0.249482
\(57\) 48401.2 1.97319
\(58\) 11769.3 0.459389
\(59\) 40786.8 1.52542 0.762711 0.646740i \(-0.223868\pi\)
0.762711 + 0.646740i \(0.223868\pi\)
\(60\) 0 0
\(61\) −7368.85 −0.253557 −0.126778 0.991931i \(-0.540464\pi\)
−0.126778 + 0.991931i \(0.540464\pi\)
\(62\) −33774.5 −1.11586
\(63\) 52493.8 1.66631
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −13832.8 −0.390886
\(67\) 11024.7 0.300041 0.150020 0.988683i \(-0.452066\pi\)
0.150020 + 0.988683i \(0.452066\pi\)
\(68\) −26271.0 −0.688976
\(69\) 2170.35 0.0548791
\(70\) 0 0
\(71\) −46964.9 −1.10567 −0.552837 0.833289i \(-0.686455\pi\)
−0.552837 + 0.833289i \(0.686455\pi\)
\(72\) −36724.7 −0.834886
\(73\) 60727.5 1.33376 0.666880 0.745165i \(-0.267629\pi\)
0.666880 + 0.745165i \(0.267629\pi\)
\(74\) −142.244 −0.00301963
\(75\) 0 0
\(76\) −27096.4 −0.538118
\(77\) −11069.2 −0.212759
\(78\) 53022.0 0.986778
\(79\) 18386.1 0.331452 0.165726 0.986172i \(-0.447003\pi\)
0.165726 + 0.986172i \(0.447003\pi\)
\(80\) 0 0
\(81\) 130785. 2.21486
\(82\) −36889.0 −0.605846
\(83\) 59321.9 0.945192 0.472596 0.881279i \(-0.343317\pi\)
0.472596 + 0.881279i \(0.343317\pi\)
\(84\) −41832.5 −0.646868
\(85\) 0 0
\(86\) −46066.6 −0.671646
\(87\) 84092.1 1.19112
\(88\) 7744.00 0.106600
\(89\) 5070.71 0.0678568 0.0339284 0.999424i \(-0.489198\pi\)
0.0339284 + 0.999424i \(0.489198\pi\)
\(90\) 0 0
\(91\) 42428.9 0.537104
\(92\) −1215.03 −0.0149663
\(93\) −241320. −2.89325
\(94\) 24716.0 0.288508
\(95\) 0 0
\(96\) 29266.1 0.324105
\(97\) 130795. 1.41143 0.705717 0.708494i \(-0.250625\pi\)
0.705717 + 0.708494i \(0.250625\pi\)
\(98\) 33753.1 0.355016
\(99\) −69432.7 −0.711993
\(100\) 0 0
\(101\) −27114.8 −0.264486 −0.132243 0.991217i \(-0.542218\pi\)
−0.132243 + 0.991217i \(0.542218\pi\)
\(102\) −187707. −1.78640
\(103\) 12802.9 0.118909 0.0594546 0.998231i \(-0.481064\pi\)
0.0594546 + 0.998231i \(0.481064\pi\)
\(104\) −29683.3 −0.269109
\(105\) 0 0
\(106\) 101020. 0.873261
\(107\) 64131.5 0.541516 0.270758 0.962647i \(-0.412726\pi\)
0.270758 + 0.962647i \(0.412726\pi\)
\(108\) −151280. −1.24802
\(109\) −126630. −1.02087 −0.510434 0.859917i \(-0.670515\pi\)
−0.510434 + 0.859917i \(0.670515\pi\)
\(110\) 0 0
\(111\) −1016.34 −0.00782943
\(112\) 23419.1 0.176411
\(113\) −131953. −0.972130 −0.486065 0.873923i \(-0.661568\pi\)
−0.486065 + 0.873923i \(0.661568\pi\)
\(114\) −193605. −1.39526
\(115\) 0 0
\(116\) −47077.2 −0.324837
\(117\) 266140. 1.79740
\(118\) −163147. −1.07864
\(119\) −150206. −0.972341
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 29475.4 0.179292
\(123\) −263573. −1.57086
\(124\) 135098. 0.789033
\(125\) 0 0
\(126\) −209975. −1.17826
\(127\) −118876. −0.654013 −0.327006 0.945022i \(-0.606040\pi\)
−0.327006 + 0.945022i \(0.606040\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −329148. −1.74147
\(130\) 0 0
\(131\) 205935. 1.04846 0.524229 0.851577i \(-0.324353\pi\)
0.524229 + 0.851577i \(0.324353\pi\)
\(132\) 55331.1 0.276398
\(133\) −154925. −0.759438
\(134\) −44098.8 −0.212161
\(135\) 0 0
\(136\) 105084. 0.487179
\(137\) 196568. 0.894769 0.447385 0.894342i \(-0.352355\pi\)
0.447385 + 0.894342i \(0.352355\pi\)
\(138\) −8681.40 −0.0388054
\(139\) −29936.4 −0.131420 −0.0657102 0.997839i \(-0.520931\pi\)
−0.0657102 + 0.997839i \(0.520931\pi\)
\(140\) 0 0
\(141\) 176597. 0.748057
\(142\) 187859. 0.781830
\(143\) −56120.0 −0.229497
\(144\) 146899. 0.590354
\(145\) 0 0
\(146\) −242910. −0.943111
\(147\) 241167. 0.920501
\(148\) 568.975 0.00213520
\(149\) −362800. −1.33876 −0.669379 0.742921i \(-0.733440\pi\)
−0.669379 + 0.742921i \(0.733440\pi\)
\(150\) 0 0
\(151\) 226244. 0.807485 0.403742 0.914873i \(-0.367709\pi\)
0.403742 + 0.914873i \(0.367709\pi\)
\(152\) 108386. 0.380507
\(153\) −942182. −3.25391
\(154\) 44276.7 0.150443
\(155\) 0 0
\(156\) −212088. −0.697758
\(157\) −392007. −1.26924 −0.634621 0.772824i \(-0.718844\pi\)
−0.634621 + 0.772824i \(0.718844\pi\)
\(158\) −73544.2 −0.234372
\(159\) 721794. 2.26423
\(160\) 0 0
\(161\) −6946.97 −0.0211218
\(162\) −523142. −1.56615
\(163\) 84380.4 0.248755 0.124378 0.992235i \(-0.460307\pi\)
0.124378 + 0.992235i \(0.460307\pi\)
\(164\) 147556. 0.428398
\(165\) 0 0
\(166\) −237288. −0.668352
\(167\) −543654. −1.50845 −0.754226 0.656615i \(-0.771988\pi\)
−0.754226 + 0.656615i \(0.771988\pi\)
\(168\) 167330. 0.457405
\(169\) −156181. −0.420642
\(170\) 0 0
\(171\) −971785. −2.54144
\(172\) 184267. 0.474925
\(173\) −356699. −0.906123 −0.453061 0.891479i \(-0.649668\pi\)
−0.453061 + 0.891479i \(0.649668\pi\)
\(174\) −336368. −0.842252
\(175\) 0 0
\(176\) −30976.0 −0.0753778
\(177\) −1.16569e6 −2.79673
\(178\) −20282.8 −0.0479820
\(179\) −521697. −1.21699 −0.608493 0.793559i \(-0.708226\pi\)
−0.608493 + 0.793559i \(0.708226\pi\)
\(180\) 0 0
\(181\) −698048. −1.58376 −0.791879 0.610678i \(-0.790897\pi\)
−0.791879 + 0.610678i \(0.790897\pi\)
\(182\) −169716. −0.379790
\(183\) 210603. 0.464875
\(184\) 4860.10 0.0105828
\(185\) 0 0
\(186\) 965280. 2.04584
\(187\) 198674. 0.415468
\(188\) −98864.0 −0.204006
\(189\) −864949. −1.76131
\(190\) 0 0
\(191\) 612931. 1.21571 0.607853 0.794050i \(-0.292031\pi\)
0.607853 + 0.794050i \(0.292031\pi\)
\(192\) −117064. −0.229177
\(193\) 184465. 0.356467 0.178234 0.983988i \(-0.442962\pi\)
0.178234 + 0.983988i \(0.442962\pi\)
\(194\) −523178. −0.998034
\(195\) 0 0
\(196\) −135012. −0.251034
\(197\) 1.03211e6 1.89479 0.947393 0.320074i \(-0.103708\pi\)
0.947393 + 0.320074i \(0.103708\pi\)
\(198\) 277731. 0.503455
\(199\) 244463. 0.437603 0.218801 0.975769i \(-0.429785\pi\)
0.218801 + 0.975769i \(0.429785\pi\)
\(200\) 0 0
\(201\) −315088. −0.550099
\(202\) 108459. 0.187020
\(203\) −269166. −0.458438
\(204\) 750828. 1.26318
\(205\) 0 0
\(206\) −51211.6 −0.0840814
\(207\) −43575.7 −0.0706835
\(208\) 118733. 0.190289
\(209\) 204917. 0.324498
\(210\) 0 0
\(211\) 1.12590e6 1.74098 0.870488 0.492190i \(-0.163803\pi\)
0.870488 + 0.492190i \(0.163803\pi\)
\(212\) −404081. −0.617489
\(213\) 1.34226e6 2.02716
\(214\) −256526. −0.382910
\(215\) 0 0
\(216\) 605119. 0.882483
\(217\) 772430. 1.11355
\(218\) 506519. 0.721863
\(219\) −1.73560e6 −2.44534
\(220\) 0 0
\(221\) −761532. −1.04884
\(222\) 4065.35 0.00553624
\(223\) −72016.8 −0.0969776 −0.0484888 0.998824i \(-0.515441\pi\)
−0.0484888 + 0.998824i \(0.515441\pi\)
\(224\) −93676.3 −0.124741
\(225\) 0 0
\(226\) 527813. 0.687400
\(227\) −1.13240e6 −1.45860 −0.729298 0.684196i \(-0.760153\pi\)
−0.729298 + 0.684196i \(0.760153\pi\)
\(228\) 774419. 0.986595
\(229\) −34423.7 −0.0433779 −0.0216890 0.999765i \(-0.506904\pi\)
−0.0216890 + 0.999765i \(0.506904\pi\)
\(230\) 0 0
\(231\) 316358. 0.390076
\(232\) 188309. 0.229695
\(233\) −689707. −0.832290 −0.416145 0.909298i \(-0.636619\pi\)
−0.416145 + 0.909298i \(0.636619\pi\)
\(234\) −1.06456e6 −1.27096
\(235\) 0 0
\(236\) 652589. 0.762711
\(237\) −525476. −0.607690
\(238\) 600822. 0.687549
\(239\) 289978. 0.328375 0.164188 0.986429i \(-0.447500\pi\)
0.164188 + 0.986429i \(0.447500\pi\)
\(240\) 0 0
\(241\) 1.40673e6 1.56016 0.780078 0.625682i \(-0.215179\pi\)
0.780078 + 0.625682i \(0.215179\pi\)
\(242\) −58564.0 −0.0642824
\(243\) −1.44030e6 −1.56473
\(244\) −117902. −0.126778
\(245\) 0 0
\(246\) 1.05429e6 1.11077
\(247\) −785459. −0.819184
\(248\) −540392. −0.557930
\(249\) −1.69543e6 −1.73293
\(250\) 0 0
\(251\) 580131. 0.581222 0.290611 0.956841i \(-0.406141\pi\)
0.290611 + 0.956841i \(0.406141\pi\)
\(252\) 839901. 0.833157
\(253\) 9188.63 0.00902505
\(254\) 475505. 0.462457
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 407104. 0.384479 0.192240 0.981348i \(-0.438425\pi\)
0.192240 + 0.981348i \(0.438425\pi\)
\(258\) 1.31659e6 1.23141
\(259\) 3253.14 0.00301338
\(260\) 0 0
\(261\) −1.68838e6 −1.53415
\(262\) −823739. −0.741372
\(263\) 1.57675e6 1.40564 0.702819 0.711369i \(-0.251924\pi\)
0.702819 + 0.711369i \(0.251924\pi\)
\(264\) −221325. −0.195443
\(265\) 0 0
\(266\) 619700. 0.537004
\(267\) −144921. −0.124410
\(268\) 176395. 0.150020
\(269\) −752593. −0.634132 −0.317066 0.948404i \(-0.602698\pi\)
−0.317066 + 0.948404i \(0.602698\pi\)
\(270\) 0 0
\(271\) −208553. −0.172501 −0.0862507 0.996273i \(-0.527489\pi\)
−0.0862507 + 0.996273i \(0.527489\pi\)
\(272\) −420336. −0.344488
\(273\) −1.21262e6 −0.984735
\(274\) −786272. −0.632698
\(275\) 0 0
\(276\) 34725.6 0.0274395
\(277\) −1.01926e6 −0.798151 −0.399075 0.916918i \(-0.630669\pi\)
−0.399075 + 0.916918i \(0.630669\pi\)
\(278\) 119746. 0.0929282
\(279\) 4.84516e6 3.72647
\(280\) 0 0
\(281\) 865597. 0.653958 0.326979 0.945032i \(-0.393969\pi\)
0.326979 + 0.945032i \(0.393969\pi\)
\(282\) −706386. −0.528956
\(283\) −1.72508e6 −1.28040 −0.640198 0.768210i \(-0.721148\pi\)
−0.640198 + 0.768210i \(0.721148\pi\)
\(284\) −751438. −0.552837
\(285\) 0 0
\(286\) 224480. 0.162279
\(287\) 843658. 0.604591
\(288\) −587595. −0.417443
\(289\) 1.27610e6 0.898750
\(290\) 0 0
\(291\) −3.73813e6 −2.58774
\(292\) 971639. 0.666880
\(293\) −1.25254e6 −0.852361 −0.426181 0.904638i \(-0.640141\pi\)
−0.426181 + 0.904638i \(0.640141\pi\)
\(294\) −964667. −0.650892
\(295\) 0 0
\(296\) −2275.90 −0.00150982
\(297\) 1.14405e6 0.752584
\(298\) 1.45120e6 0.946645
\(299\) −35220.7 −0.0227834
\(300\) 0 0
\(301\) 1.05355e6 0.670255
\(302\) −904975. −0.570978
\(303\) 774945. 0.484914
\(304\) −433543. −0.269059
\(305\) 0 0
\(306\) 3.76873e6 2.30086
\(307\) −2.69819e6 −1.63390 −0.816951 0.576707i \(-0.804337\pi\)
−0.816951 + 0.576707i \(0.804337\pi\)
\(308\) −177107. −0.106380
\(309\) −365908. −0.218010
\(310\) 0 0
\(311\) −1.74373e6 −1.02230 −0.511150 0.859491i \(-0.670780\pi\)
−0.511150 + 0.859491i \(0.670780\pi\)
\(312\) 848352. 0.493389
\(313\) 1.15038e6 0.663714 0.331857 0.943330i \(-0.392325\pi\)
0.331857 + 0.943330i \(0.392325\pi\)
\(314\) 1.56803e6 0.897489
\(315\) 0 0
\(316\) 294177. 0.165726
\(317\) 1.16110e6 0.648967 0.324484 0.945891i \(-0.394810\pi\)
0.324484 + 0.945891i \(0.394810\pi\)
\(318\) −2.88717e6 −1.60105
\(319\) 356022. 0.195884
\(320\) 0 0
\(321\) −1.83289e6 −0.992825
\(322\) 27787.9 0.0149354
\(323\) 2.78066e6 1.48300
\(324\) 2.09257e6 1.10743
\(325\) 0 0
\(326\) −337522. −0.175897
\(327\) 3.61910e6 1.87168
\(328\) −590224. −0.302923
\(329\) −565260. −0.287911
\(330\) 0 0
\(331\) −2.31915e6 −1.16348 −0.581740 0.813375i \(-0.697628\pi\)
−0.581740 + 0.813375i \(0.697628\pi\)
\(332\) 949151. 0.472596
\(333\) 20405.7 0.0100842
\(334\) 2.17462e6 1.06664
\(335\) 0 0
\(336\) −669320. −0.323434
\(337\) −1.43786e6 −0.689671 −0.344835 0.938663i \(-0.612065\pi\)
−0.344835 + 0.938663i \(0.612065\pi\)
\(338\) 624725. 0.297439
\(339\) 3.77124e6 1.78232
\(340\) 0 0
\(341\) −1.02168e6 −0.475805
\(342\) 3.88714e6 1.79707
\(343\) −2.30946e6 −1.05992
\(344\) −737066. −0.335823
\(345\) 0 0
\(346\) 1.42680e6 0.640726
\(347\) −575629. −0.256637 −0.128318 0.991733i \(-0.540958\pi\)
−0.128318 + 0.991733i \(0.540958\pi\)
\(348\) 1.34547e6 0.595562
\(349\) −2.77702e6 −1.22044 −0.610219 0.792233i \(-0.708919\pi\)
−0.610219 + 0.792233i \(0.708919\pi\)
\(350\) 0 0
\(351\) −4.38523e6 −1.89987
\(352\) 123904. 0.0533002
\(353\) −2.18172e6 −0.931885 −0.465942 0.884815i \(-0.654285\pi\)
−0.465942 + 0.884815i \(0.654285\pi\)
\(354\) 4.66277e6 1.97759
\(355\) 0 0
\(356\) 81131.3 0.0339284
\(357\) 4.29289e6 1.78271
\(358\) 2.08679e6 0.860539
\(359\) −2.14848e6 −0.879822 −0.439911 0.898041i \(-0.644990\pi\)
−0.439911 + 0.898041i \(0.644990\pi\)
\(360\) 0 0
\(361\) 391930. 0.158285
\(362\) 2.79219e6 1.11989
\(363\) −418442. −0.166674
\(364\) 678862. 0.268552
\(365\) 0 0
\(366\) −842411. −0.328716
\(367\) −15838.0 −0.00613813 −0.00306907 0.999995i \(-0.500977\pi\)
−0.00306907 + 0.999995i \(0.500977\pi\)
\(368\) −19440.4 −0.00748317
\(369\) 5.29195e6 2.02325
\(370\) 0 0
\(371\) −2.31035e6 −0.871453
\(372\) −3.86112e6 −1.44663
\(373\) 394343. 0.146758 0.0733791 0.997304i \(-0.476622\pi\)
0.0733791 + 0.997304i \(0.476622\pi\)
\(374\) −794697. −0.293780
\(375\) 0 0
\(376\) 395456. 0.144254
\(377\) −1.36465e6 −0.494504
\(378\) 3.45980e6 1.24544
\(379\) 1.68501e6 0.602567 0.301283 0.953535i \(-0.402585\pi\)
0.301283 + 0.953535i \(0.402585\pi\)
\(380\) 0 0
\(381\) 3.39750e6 1.19908
\(382\) −2.45172e6 −0.859633
\(383\) −3.94284e6 −1.37345 −0.686724 0.726918i \(-0.740952\pi\)
−0.686724 + 0.726918i \(0.740952\pi\)
\(384\) 468257. 0.162053
\(385\) 0 0
\(386\) −737859. −0.252061
\(387\) 6.60853e6 2.24299
\(388\) 2.09271e6 0.705717
\(389\) −571118. −0.191360 −0.0956801 0.995412i \(-0.530503\pi\)
−0.0956801 + 0.995412i \(0.530503\pi\)
\(390\) 0 0
\(391\) 124687. 0.0412458
\(392\) 540049. 0.177508
\(393\) −5.88564e6 −1.92226
\(394\) −4.12844e6 −1.33982
\(395\) 0 0
\(396\) −1.11092e6 −0.355997
\(397\) −6.17025e6 −1.96484 −0.982419 0.186689i \(-0.940224\pi\)
−0.982419 + 0.186689i \(0.940224\pi\)
\(398\) −977851. −0.309432
\(399\) 4.42778e6 1.39237
\(400\) 0 0
\(401\) 1.82838e6 0.567814 0.283907 0.958852i \(-0.408369\pi\)
0.283907 + 0.958852i \(0.408369\pi\)
\(402\) 1.26035e6 0.388979
\(403\) 3.91617e6 1.20115
\(404\) −433837. −0.132243
\(405\) 0 0
\(406\) 1.07667e6 0.324165
\(407\) −4302.88 −0.00128758
\(408\) −3.00331e6 −0.893202
\(409\) −5.94235e6 −1.75651 −0.878254 0.478195i \(-0.841291\pi\)
−0.878254 + 0.478195i \(0.841291\pi\)
\(410\) 0 0
\(411\) −5.61794e6 −1.64048
\(412\) 204846. 0.0594546
\(413\) 3.73121e6 1.07640
\(414\) 174303. 0.0499808
\(415\) 0 0
\(416\) −474933. −0.134555
\(417\) 855586. 0.240948
\(418\) −819666. −0.229454
\(419\) −2.80473e6 −0.780468 −0.390234 0.920716i \(-0.627606\pi\)
−0.390234 + 0.920716i \(0.627606\pi\)
\(420\) 0 0
\(421\) 3.57571e6 0.983234 0.491617 0.870812i \(-0.336406\pi\)
0.491617 + 0.870812i \(0.336406\pi\)
\(422\) −4.50359e6 −1.23106
\(423\) −3.54566e6 −0.963487
\(424\) 1.61633e6 0.436631
\(425\) 0 0
\(426\) −5.36905e6 −1.43342
\(427\) −674108. −0.178920
\(428\) 1.02610e6 0.270758
\(429\) 1.60392e6 0.420764
\(430\) 0 0
\(431\) −2.82711e6 −0.733078 −0.366539 0.930403i \(-0.619457\pi\)
−0.366539 + 0.930403i \(0.619457\pi\)
\(432\) −2.42048e6 −0.624010
\(433\) 765652. 0.196251 0.0981254 0.995174i \(-0.468715\pi\)
0.0981254 + 0.995174i \(0.468715\pi\)
\(434\) −3.08972e6 −0.787399
\(435\) 0 0
\(436\) −2.02608e6 −0.510434
\(437\) 128605. 0.0322147
\(438\) 6.94239e6 1.72912
\(439\) 4.65788e6 1.15352 0.576762 0.816912i \(-0.304316\pi\)
0.576762 + 0.816912i \(0.304316\pi\)
\(440\) 0 0
\(441\) −4.84208e6 −1.18559
\(442\) 3.04613e6 0.741639
\(443\) 4.99700e6 1.20976 0.604881 0.796316i \(-0.293221\pi\)
0.604881 + 0.796316i \(0.293221\pi\)
\(444\) −16261.4 −0.00391471
\(445\) 0 0
\(446\) 288067. 0.0685735
\(447\) 1.03689e7 2.45450
\(448\) 374705. 0.0882053
\(449\) 165769. 0.0388050 0.0194025 0.999812i \(-0.493824\pi\)
0.0194025 + 0.999812i \(0.493824\pi\)
\(450\) 0 0
\(451\) −1.11589e6 −0.258334
\(452\) −2.11125e6 −0.486065
\(453\) −6.46608e6 −1.48046
\(454\) 4.52960e6 1.03138
\(455\) 0 0
\(456\) −3.09768e6 −0.697628
\(457\) 8.07259e6 1.80810 0.904050 0.427428i \(-0.140580\pi\)
0.904050 + 0.427428i \(0.140580\pi\)
\(458\) 137695. 0.0306728
\(459\) 1.55245e7 3.43942
\(460\) 0 0
\(461\) −5.87512e6 −1.28755 −0.643776 0.765214i \(-0.722633\pi\)
−0.643776 + 0.765214i \(0.722633\pi\)
\(462\) −1.26543e6 −0.275825
\(463\) 1.02289e6 0.221757 0.110878 0.993834i \(-0.464634\pi\)
0.110878 + 0.993834i \(0.464634\pi\)
\(464\) −753236. −0.162419
\(465\) 0 0
\(466\) 2.75883e6 0.588518
\(467\) 6.17201e6 1.30959 0.654794 0.755807i \(-0.272755\pi\)
0.654794 + 0.755807i \(0.272755\pi\)
\(468\) 4.25824e6 0.898702
\(469\) 1.00855e6 0.211721
\(470\) 0 0
\(471\) 1.12036e7 2.32705
\(472\) −2.61036e6 −0.539318
\(473\) −1.39352e6 −0.286391
\(474\) 2.10190e6 0.429702
\(475\) 0 0
\(476\) −2.40329e6 −0.486170
\(477\) −1.44920e7 −2.91629
\(478\) −1.15991e6 −0.232196
\(479\) −7.00244e6 −1.39447 −0.697237 0.716841i \(-0.745588\pi\)
−0.697237 + 0.716841i \(0.745588\pi\)
\(480\) 0 0
\(481\) 16493.2 0.00325044
\(482\) −5.62692e6 −1.10320
\(483\) 198545. 0.0387250
\(484\) 234256. 0.0454545
\(485\) 0 0
\(486\) 5.76122e6 1.10643
\(487\) −365769. −0.0698852 −0.0349426 0.999389i \(-0.511125\pi\)
−0.0349426 + 0.999389i \(0.511125\pi\)
\(488\) 471607. 0.0896459
\(489\) −2.41160e6 −0.456072
\(490\) 0 0
\(491\) 5.00170e6 0.936297 0.468149 0.883650i \(-0.344921\pi\)
0.468149 + 0.883650i \(0.344921\pi\)
\(492\) −4.21717e6 −0.785431
\(493\) 4.83111e6 0.895220
\(494\) 3.14184e6 0.579250
\(495\) 0 0
\(496\) 2.16157e6 0.394516
\(497\) −4.29638e6 −0.780211
\(498\) 6.78171e6 1.22537
\(499\) −1.63517e6 −0.293976 −0.146988 0.989138i \(-0.546958\pi\)
−0.146988 + 0.989138i \(0.546958\pi\)
\(500\) 0 0
\(501\) 1.55377e7 2.76562
\(502\) −2.32053e6 −0.410986
\(503\) −5.20393e6 −0.917088 −0.458544 0.888672i \(-0.651629\pi\)
−0.458544 + 0.888672i \(0.651629\pi\)
\(504\) −3.35961e6 −0.589131
\(505\) 0 0
\(506\) −36754.5 −0.00638167
\(507\) 4.46368e6 0.771212
\(508\) −1.90202e6 −0.327006
\(509\) −8.62390e6 −1.47540 −0.737699 0.675130i \(-0.764088\pi\)
−0.737699 + 0.675130i \(0.764088\pi\)
\(510\) 0 0
\(511\) 5.55539e6 0.941158
\(512\) −262144. −0.0441942
\(513\) 1.60123e7 2.68633
\(514\) −1.62842e6 −0.271868
\(515\) 0 0
\(516\) −5.26636e6 −0.870736
\(517\) 747659. 0.123020
\(518\) −13012.6 −0.00213078
\(519\) 1.01945e7 1.66130
\(520\) 0 0
\(521\) 140764. 0.0227194 0.0113597 0.999935i \(-0.496384\pi\)
0.0113597 + 0.999935i \(0.496384\pi\)
\(522\) 6.75351e6 1.08481
\(523\) 9.29900e6 1.48656 0.743279 0.668981i \(-0.233269\pi\)
0.743279 + 0.668981i \(0.233269\pi\)
\(524\) 3.29496e6 0.524229
\(525\) 0 0
\(526\) −6.30700e6 −0.993936
\(527\) −1.38639e7 −2.17450
\(528\) 885298. 0.138199
\(529\) −6.43058e6 −0.999104
\(530\) 0 0
\(531\) 2.34044e7 3.60215
\(532\) −2.47880e6 −0.379719
\(533\) 4.27729e6 0.652155
\(534\) 579686. 0.0879710
\(535\) 0 0
\(536\) −705581. −0.106080
\(537\) 1.49102e7 2.23124
\(538\) 3.01037e6 0.448399
\(539\) 1.02103e6 0.151379
\(540\) 0 0
\(541\) −4.98590e6 −0.732403 −0.366202 0.930536i \(-0.619342\pi\)
−0.366202 + 0.930536i \(0.619342\pi\)
\(542\) 834211. 0.121977
\(543\) 1.99503e7 2.90369
\(544\) 1.68134e6 0.243590
\(545\) 0 0
\(546\) 4.85049e6 0.696313
\(547\) 3.57048e6 0.510221 0.255111 0.966912i \(-0.417888\pi\)
0.255111 + 0.966912i \(0.417888\pi\)
\(548\) 3.14509e6 0.447385
\(549\) −4.22842e6 −0.598753
\(550\) 0 0
\(551\) 4.98291e6 0.699204
\(552\) −138902. −0.0194027
\(553\) 1.68197e6 0.233887
\(554\) 4.07703e6 0.564378
\(555\) 0 0
\(556\) −478983. −0.0657102
\(557\) −1.24799e7 −1.70441 −0.852206 0.523207i \(-0.824736\pi\)
−0.852206 + 0.523207i \(0.824736\pi\)
\(558\) −1.93806e7 −2.63501
\(559\) 5.34144e6 0.722984
\(560\) 0 0
\(561\) −5.67814e6 −0.761726
\(562\) −3.46239e6 −0.462418
\(563\) 5.12581e6 0.681540 0.340770 0.940147i \(-0.389312\pi\)
0.340770 + 0.940147i \(0.389312\pi\)
\(564\) 2.82555e6 0.374028
\(565\) 0 0
\(566\) 6.90033e6 0.905376
\(567\) 1.19644e7 1.56290
\(568\) 3.00575e6 0.390915
\(569\) −1.09610e6 −0.141929 −0.0709645 0.997479i \(-0.522608\pi\)
−0.0709645 + 0.997479i \(0.522608\pi\)
\(570\) 0 0
\(571\) −1.08787e7 −1.39632 −0.698162 0.715940i \(-0.745998\pi\)
−0.698162 + 0.715940i \(0.745998\pi\)
\(572\) −897919. −0.114749
\(573\) −1.75176e7 −2.22889
\(574\) −3.37463e6 −0.427511
\(575\) 0 0
\(576\) 2.35038e6 0.295177
\(577\) −1.37408e7 −1.71820 −0.859101 0.511807i \(-0.828976\pi\)
−0.859101 + 0.511807i \(0.828976\pi\)
\(578\) −5.10439e6 −0.635512
\(579\) −5.27202e6 −0.653553
\(580\) 0 0
\(581\) 5.42681e6 0.666967
\(582\) 1.49525e7 1.82981
\(583\) 3.05587e6 0.372360
\(584\) −3.88656e6 −0.471556
\(585\) 0 0
\(586\) 5.01017e6 0.602711
\(587\) −7.50167e6 −0.898593 −0.449296 0.893383i \(-0.648325\pi\)
−0.449296 + 0.893383i \(0.648325\pi\)
\(588\) 3.85867e6 0.460250
\(589\) −1.42995e7 −1.69837
\(590\) 0 0
\(591\) −2.94978e7 −3.47393
\(592\) 9103.60 0.00106760
\(593\) −1.23281e7 −1.43966 −0.719829 0.694151i \(-0.755780\pi\)
−0.719829 + 0.694151i \(0.755780\pi\)
\(594\) −4.57621e6 −0.532157
\(595\) 0 0
\(596\) −5.80481e6 −0.669379
\(597\) −6.98677e6 −0.802308
\(598\) 140883. 0.0161103
\(599\) 3.71959e6 0.423573 0.211786 0.977316i \(-0.432072\pi\)
0.211786 + 0.977316i \(0.432072\pi\)
\(600\) 0 0
\(601\) −8.89207e6 −1.00419 −0.502096 0.864812i \(-0.667437\pi\)
−0.502096 + 0.864812i \(0.667437\pi\)
\(602\) −4.21421e6 −0.473942
\(603\) 6.32624e6 0.708520
\(604\) 3.61990e6 0.403742
\(605\) 0 0
\(606\) −3.09978e6 −0.342886
\(607\) −1.18740e7 −1.30805 −0.654027 0.756471i \(-0.726922\pi\)
−0.654027 + 0.756471i \(0.726922\pi\)
\(608\) 1.73417e6 0.190254
\(609\) 7.69281e6 0.840508
\(610\) 0 0
\(611\) −2.86583e6 −0.310561
\(612\) −1.50749e7 −1.62696
\(613\) −9.08062e6 −0.976033 −0.488016 0.872834i \(-0.662279\pi\)
−0.488016 + 0.872834i \(0.662279\pi\)
\(614\) 1.07927e7 1.15534
\(615\) 0 0
\(616\) 708427. 0.0752217
\(617\) 9.98190e6 1.05560 0.527801 0.849368i \(-0.323017\pi\)
0.527801 + 0.849368i \(0.323017\pi\)
\(618\) 1.46363e6 0.154156
\(619\) −3.86586e6 −0.405527 −0.202763 0.979228i \(-0.564992\pi\)
−0.202763 + 0.979228i \(0.564992\pi\)
\(620\) 0 0
\(621\) 718003. 0.0747132
\(622\) 6.97492e6 0.722876
\(623\) 463872. 0.0478827
\(624\) −3.39341e6 −0.348879
\(625\) 0 0
\(626\) −4.60152e6 −0.469316
\(627\) −5.85654e6 −0.594939
\(628\) −6.27211e6 −0.634621
\(629\) −58388.8 −0.00588441
\(630\) 0 0
\(631\) 1.45626e7 1.45601 0.728007 0.685570i \(-0.240447\pi\)
0.728007 + 0.685570i \(0.240447\pi\)
\(632\) −1.17671e6 −0.117186
\(633\) −3.21783e7 −3.19193
\(634\) −4.64441e6 −0.458889
\(635\) 0 0
\(636\) 1.15487e7 1.13211
\(637\) −3.91368e6 −0.382153
\(638\) −1.42409e6 −0.138511
\(639\) −2.69496e7 −2.61096
\(640\) 0 0
\(641\) −1.34201e7 −1.29006 −0.645032 0.764155i \(-0.723156\pi\)
−0.645032 + 0.764155i \(0.723156\pi\)
\(642\) 7.33154e6 0.702033
\(643\) −1.50895e7 −1.43929 −0.719644 0.694344i \(-0.755695\pi\)
−0.719644 + 0.694344i \(0.755695\pi\)
\(644\) −111151. −0.0105609
\(645\) 0 0
\(646\) −1.11226e7 −1.04864
\(647\) −1.42974e7 −1.34275 −0.671377 0.741116i \(-0.734297\pi\)
−0.671377 + 0.741116i \(0.734297\pi\)
\(648\) −8.37027e6 −0.783073
\(649\) −4.93520e6 −0.459932
\(650\) 0 0
\(651\) −2.20761e7 −2.04160
\(652\) 1.35009e6 0.124378
\(653\) 1.31607e6 0.120780 0.0603900 0.998175i \(-0.480766\pi\)
0.0603900 + 0.998175i \(0.480766\pi\)
\(654\) −1.44764e7 −1.32348
\(655\) 0 0
\(656\) 2.36090e6 0.214199
\(657\) 3.48469e7 3.14956
\(658\) 2.26104e6 0.203584
\(659\) 3.75917e6 0.337193 0.168596 0.985685i \(-0.446077\pi\)
0.168596 + 0.985685i \(0.446077\pi\)
\(660\) 0 0
\(661\) −8.95170e6 −0.796896 −0.398448 0.917191i \(-0.630451\pi\)
−0.398448 + 0.917191i \(0.630451\pi\)
\(662\) 9.27660e6 0.822705
\(663\) 2.17647e7 1.92295
\(664\) −3.79660e6 −0.334176
\(665\) 0 0
\(666\) −81622.9 −0.00713060
\(667\) 223438. 0.0194465
\(668\) −8.69847e6 −0.754226
\(669\) 2.05825e6 0.177800
\(670\) 0 0
\(671\) 891631. 0.0764503
\(672\) 2.67728e6 0.228702
\(673\) 519050. 0.0441745 0.0220873 0.999756i \(-0.492969\pi\)
0.0220873 + 0.999756i \(0.492969\pi\)
\(674\) 5.75144e6 0.487671
\(675\) 0 0
\(676\) −2.49890e6 −0.210321
\(677\) 4.12272e6 0.345711 0.172855 0.984947i \(-0.444701\pi\)
0.172855 + 0.984947i \(0.444701\pi\)
\(678\) −1.50850e7 −1.26029
\(679\) 1.19652e7 0.995967
\(680\) 0 0
\(681\) 3.23641e7 2.67421
\(682\) 4.08672e6 0.336445
\(683\) −8.35625e6 −0.685425 −0.342712 0.939440i \(-0.611346\pi\)
−0.342712 + 0.939440i \(0.611346\pi\)
\(684\) −1.55486e7 −1.27072
\(685\) 0 0
\(686\) 9.23783e6 0.749479
\(687\) 983834. 0.0795298
\(688\) 2.94826e6 0.237463
\(689\) −1.17133e7 −0.940011
\(690\) 0 0
\(691\) 9.40353e6 0.749197 0.374598 0.927187i \(-0.377781\pi\)
0.374598 + 0.927187i \(0.377781\pi\)
\(692\) −5.70719e6 −0.453061
\(693\) −6.35175e6 −0.502413
\(694\) 2.30252e6 0.181470
\(695\) 0 0
\(696\) −5.38189e6 −0.421126
\(697\) −1.51423e7 −1.18062
\(698\) 1.11081e7 0.862980
\(699\) 1.97119e7 1.52593
\(700\) 0 0
\(701\) −1.76888e7 −1.35957 −0.679787 0.733410i \(-0.737928\pi\)
−0.679787 + 0.733410i \(0.737928\pi\)
\(702\) 1.75409e7 1.34341
\(703\) −60223.4 −0.00459597
\(704\) −495616. −0.0376889
\(705\) 0 0
\(706\) 8.72688e6 0.658942
\(707\) −2.48049e6 −0.186633
\(708\) −1.86511e7 −1.39837
\(709\) −1.11343e7 −0.831853 −0.415926 0.909398i \(-0.636543\pi\)
−0.415926 + 0.909398i \(0.636543\pi\)
\(710\) 0 0
\(711\) 1.05504e7 0.782696
\(712\) −324525. −0.0239910
\(713\) −641202. −0.0472358
\(714\) −1.71716e7 −1.26056
\(715\) 0 0
\(716\) −8.34715e6 −0.608493
\(717\) −8.28761e6 −0.602048
\(718\) 8.59391e6 0.622128
\(719\) −9.55010e6 −0.688947 −0.344474 0.938796i \(-0.611943\pi\)
−0.344474 + 0.938796i \(0.611943\pi\)
\(720\) 0 0
\(721\) 1.17122e6 0.0839073
\(722\) −1.56772e6 −0.111925
\(723\) −4.02045e7 −2.86042
\(724\) −1.11688e7 −0.791879
\(725\) 0 0
\(726\) 1.67377e6 0.117856
\(727\) 1.89994e7 1.33322 0.666612 0.745405i \(-0.267744\pi\)
0.666612 + 0.745405i \(0.267744\pi\)
\(728\) −2.71545e6 −0.189895
\(729\) 9.38322e6 0.653933
\(730\) 0 0
\(731\) −1.89096e7 −1.30885
\(732\) 3.36964e6 0.232438
\(733\) 2.68111e7 1.84312 0.921561 0.388233i \(-0.126914\pi\)
0.921561 + 0.388233i \(0.126914\pi\)
\(734\) 63352.2 0.00434032
\(735\) 0 0
\(736\) 77761.6 0.00529140
\(737\) −1.33399e6 −0.0904657
\(738\) −2.11678e7 −1.43065
\(739\) −6.41899e6 −0.432370 −0.216185 0.976352i \(-0.569361\pi\)
−0.216185 + 0.976352i \(0.569361\pi\)
\(740\) 0 0
\(741\) 2.24485e7 1.50190
\(742\) 9.24142e6 0.616210
\(743\) −4.66177e6 −0.309798 −0.154899 0.987930i \(-0.549505\pi\)
−0.154899 + 0.987930i \(0.549505\pi\)
\(744\) 1.54445e7 1.02292
\(745\) 0 0
\(746\) −1.57737e6 −0.103774
\(747\) 3.40403e7 2.23199
\(748\) 3.17879e6 0.207734
\(749\) 5.86679e6 0.382117
\(750\) 0 0
\(751\) 2.39792e7 1.55144 0.775721 0.631076i \(-0.217386\pi\)
0.775721 + 0.631076i \(0.217386\pi\)
\(752\) −1.58182e6 −0.102003
\(753\) −1.65802e7 −1.06562
\(754\) 5.45862e6 0.349667
\(755\) 0 0
\(756\) −1.38392e7 −0.880656
\(757\) −4.65197e6 −0.295051 −0.147526 0.989058i \(-0.547131\pi\)
−0.147526 + 0.989058i \(0.547131\pi\)
\(758\) −6.74005e6 −0.426079
\(759\) −262612. −0.0165467
\(760\) 0 0
\(761\) −1.91952e7 −1.20152 −0.600760 0.799429i \(-0.705135\pi\)
−0.600760 + 0.799429i \(0.705135\pi\)
\(762\) −1.35900e7 −0.847876
\(763\) −1.15842e7 −0.720368
\(764\) 9.80690e6 0.607853
\(765\) 0 0
\(766\) 1.57714e7 0.971175
\(767\) 1.89170e7 1.16108
\(768\) −1.87303e6 −0.114589
\(769\) 1.47548e7 0.899743 0.449871 0.893093i \(-0.351470\pi\)
0.449871 + 0.893093i \(0.351470\pi\)
\(770\) 0 0
\(771\) −1.16351e7 −0.704910
\(772\) 2.95143e6 0.178234
\(773\) −1.48823e7 −0.895820 −0.447910 0.894079i \(-0.647831\pi\)
−0.447910 + 0.894079i \(0.647831\pi\)
\(774\) −2.64341e7 −1.58603
\(775\) 0 0
\(776\) −8.37085e6 −0.499017
\(777\) −92975.2 −0.00552478
\(778\) 2.28447e6 0.135312
\(779\) −1.56181e7 −0.922115
\(780\) 0 0
\(781\) 5.68275e6 0.333373
\(782\) −498749. −0.0291652
\(783\) 2.78197e7 1.62161
\(784\) −2.16020e6 −0.125517
\(785\) 0 0
\(786\) 2.35426e7 1.35924
\(787\) −1.56041e7 −0.898054 −0.449027 0.893518i \(-0.648229\pi\)
−0.449027 + 0.893518i \(0.648229\pi\)
\(788\) 1.65137e7 0.947393
\(789\) −4.50637e7 −2.57712
\(790\) 0 0
\(791\) −1.20712e7 −0.685976
\(792\) 4.44369e6 0.251728
\(793\) −3.41768e6 −0.192996
\(794\) 2.46810e7 1.38935
\(795\) 0 0
\(796\) 3.91140e6 0.218801
\(797\) −2.19852e7 −1.22599 −0.612993 0.790088i \(-0.710035\pi\)
−0.612993 + 0.790088i \(0.710035\pi\)
\(798\) −1.77111e7 −0.984552
\(799\) 1.01455e7 0.562221
\(800\) 0 0
\(801\) 2.90969e6 0.160238
\(802\) −7.31353e6 −0.401505
\(803\) −7.34802e6 −0.402144
\(804\) −5.04140e6 −0.275050
\(805\) 0 0
\(806\) −1.56647e7 −0.849344
\(807\) 2.15092e7 1.16263
\(808\) 1.73535e6 0.0935101
\(809\) 2.91738e7 1.56719 0.783596 0.621271i \(-0.213383\pi\)
0.783596 + 0.621271i \(0.213383\pi\)
\(810\) 0 0
\(811\) 2.59750e7 1.38677 0.693383 0.720569i \(-0.256119\pi\)
0.693383 + 0.720569i \(0.256119\pi\)
\(812\) −4.30666e6 −0.229219
\(813\) 5.96046e6 0.316267
\(814\) 17211.5 0.000910453 0
\(815\) 0 0
\(816\) 1.20132e7 0.631590
\(817\) −1.95038e7 −1.02226
\(818\) 2.37694e7 1.24204
\(819\) 2.43467e7 1.26832
\(820\) 0 0
\(821\) 3.42686e7 1.77435 0.887174 0.461436i \(-0.152666\pi\)
0.887174 + 0.461436i \(0.152666\pi\)
\(822\) 2.24717e7 1.16000
\(823\) 2.37132e7 1.22037 0.610184 0.792259i \(-0.291095\pi\)
0.610184 + 0.792259i \(0.291095\pi\)
\(824\) −819385. −0.0420407
\(825\) 0 0
\(826\) −1.49248e7 −0.761131
\(827\) −1.83274e7 −0.931833 −0.465916 0.884829i \(-0.654275\pi\)
−0.465916 + 0.884829i \(0.654275\pi\)
\(828\) −697211. −0.0353418
\(829\) −2.66383e7 −1.34623 −0.673115 0.739538i \(-0.735044\pi\)
−0.673115 + 0.739538i \(0.735044\pi\)
\(830\) 0 0
\(831\) 2.91305e7 1.46334
\(832\) 1.89973e6 0.0951445
\(833\) 1.38551e7 0.691826
\(834\) −3.42235e6 −0.170376
\(835\) 0 0
\(836\) 3.27867e6 0.162249
\(837\) −7.98344e7 −3.93891
\(838\) 1.12189e7 0.551874
\(839\) 1.46709e7 0.719537 0.359768 0.933042i \(-0.382856\pi\)
0.359768 + 0.933042i \(0.382856\pi\)
\(840\) 0 0
\(841\) −1.18539e7 −0.577923
\(842\) −1.43028e7 −0.695251
\(843\) −2.47389e7 −1.19898
\(844\) 1.80144e7 0.870488
\(845\) 0 0
\(846\) 1.41826e7 0.681288
\(847\) 1.33937e6 0.0641493
\(848\) −6.46530e6 −0.308745
\(849\) 4.93031e7 2.34750
\(850\) 0 0
\(851\) −2700.47 −0.000127825 0
\(852\) 2.14762e7 1.01358
\(853\) 1.74709e7 0.822133 0.411066 0.911605i \(-0.365156\pi\)
0.411066 + 0.911605i \(0.365156\pi\)
\(854\) 2.69643e6 0.126516
\(855\) 0 0
\(856\) −4.10441e6 −0.191455
\(857\) 2.49580e7 1.16080 0.580402 0.814330i \(-0.302896\pi\)
0.580402 + 0.814330i \(0.302896\pi\)
\(858\) −6.41566e6 −0.297525
\(859\) −1.42612e7 −0.659439 −0.329719 0.944079i \(-0.606954\pi\)
−0.329719 + 0.944079i \(0.606954\pi\)
\(860\) 0 0
\(861\) −2.41119e7 −1.10847
\(862\) 1.13085e7 0.518364
\(863\) −494514. −0.0226022 −0.0113011 0.999936i \(-0.503597\pi\)
−0.0113011 + 0.999936i \(0.503597\pi\)
\(864\) 9.68190e6 0.441242
\(865\) 0 0
\(866\) −3.06261e6 −0.138770
\(867\) −3.64710e7 −1.64778
\(868\) 1.23589e7 0.556775
\(869\) −2.22471e6 −0.0999366
\(870\) 0 0
\(871\) 5.11327e6 0.228378
\(872\) 8.10431e6 0.360932
\(873\) 7.50530e7 3.33298
\(874\) −514419. −0.0227792
\(875\) 0 0
\(876\) −2.77696e7 −1.22267
\(877\) 8.07539e6 0.354539 0.177270 0.984162i \(-0.443274\pi\)
0.177270 + 0.984162i \(0.443274\pi\)
\(878\) −1.86315e7 −0.815665
\(879\) 3.57979e7 1.56273
\(880\) 0 0
\(881\) −5.24166e6 −0.227525 −0.113763 0.993508i \(-0.536290\pi\)
−0.113763 + 0.993508i \(0.536290\pi\)
\(882\) 1.93683e7 0.838340
\(883\) 4.02805e7 1.73857 0.869287 0.494308i \(-0.164578\pi\)
0.869287 + 0.494308i \(0.164578\pi\)
\(884\) −1.21845e7 −0.524418
\(885\) 0 0
\(886\) −1.99880e7 −0.855431
\(887\) −1.38423e7 −0.590745 −0.295373 0.955382i \(-0.595444\pi\)
−0.295373 + 0.955382i \(0.595444\pi\)
\(888\) 65045.5 0.00276812
\(889\) −1.08749e7 −0.461499
\(890\) 0 0
\(891\) −1.58250e7 −0.667807
\(892\) −1.15227e6 −0.0484888
\(893\) 1.04643e7 0.439118
\(894\) −4.14755e7 −1.73559
\(895\) 0 0
\(896\) −1.49882e6 −0.0623706
\(897\) 1.00661e6 0.0417715
\(898\) −663076. −0.0274393
\(899\) −2.48439e7 −1.02523
\(900\) 0 0
\(901\) 4.14672e7 1.70174
\(902\) 4.46357e6 0.182669
\(903\) −3.01107e7 −1.22886
\(904\) 8.44501e6 0.343700
\(905\) 0 0
\(906\) 2.58643e7 1.04684
\(907\) 5.53908e6 0.223573 0.111786 0.993732i \(-0.464343\pi\)
0.111786 + 0.993732i \(0.464343\pi\)
\(908\) −1.81184e7 −0.729298
\(909\) −1.55591e7 −0.624562
\(910\) 0 0
\(911\) −1.76513e7 −0.704660 −0.352330 0.935876i \(-0.614611\pi\)
−0.352330 + 0.935876i \(0.614611\pi\)
\(912\) 1.23907e7 0.493297
\(913\) −7.17795e6 −0.284986
\(914\) −3.22903e7 −1.27852
\(915\) 0 0
\(916\) −550779. −0.0216890
\(917\) 1.88391e7 0.739837
\(918\) −6.20979e7 −2.43204
\(919\) −2.80718e7 −1.09643 −0.548215 0.836338i \(-0.684692\pi\)
−0.548215 + 0.836338i \(0.684692\pi\)
\(920\) 0 0
\(921\) 7.71145e7 2.99562
\(922\) 2.35005e7 0.910436
\(923\) −2.17824e7 −0.841591
\(924\) 5.06173e6 0.195038
\(925\) 0 0
\(926\) −4.09156e6 −0.156806
\(927\) 7.34660e6 0.280794
\(928\) 3.01294e6 0.114847
\(929\) −3.51046e6 −0.133452 −0.0667259 0.997771i \(-0.521255\pi\)
−0.0667259 + 0.997771i \(0.521255\pi\)
\(930\) 0 0
\(931\) 1.42904e7 0.540345
\(932\) −1.10353e7 −0.416145
\(933\) 4.98361e7 1.87430
\(934\) −2.46881e7 −0.926019
\(935\) 0 0
\(936\) −1.70330e7 −0.635478
\(937\) 3.60265e7 1.34052 0.670260 0.742126i \(-0.266182\pi\)
0.670260 + 0.742126i \(0.266182\pi\)
\(938\) −4.03420e6 −0.149710
\(939\) −3.28780e7 −1.21686
\(940\) 0 0
\(941\) 2.51917e7 0.927435 0.463717 0.885983i \(-0.346515\pi\)
0.463717 + 0.885983i \(0.346515\pi\)
\(942\) −4.48144e7 −1.64547
\(943\) −700329. −0.0256462
\(944\) 1.04414e7 0.381355
\(945\) 0 0
\(946\) 5.57406e6 0.202509
\(947\) −2.44815e6 −0.0887082 −0.0443541 0.999016i \(-0.514123\pi\)
−0.0443541 + 0.999016i \(0.514123\pi\)
\(948\) −8.40761e6 −0.303845
\(949\) 2.81655e7 1.01520
\(950\) 0 0
\(951\) −3.31845e7 −1.18983
\(952\) 9.61316e6 0.343774
\(953\) 4.51778e7 1.61136 0.805681 0.592349i \(-0.201800\pi\)
0.805681 + 0.592349i \(0.201800\pi\)
\(954\) 5.79679e7 2.06213
\(955\) 0 0
\(956\) 4.63965e6 0.164188
\(957\) −1.01751e7 −0.359137
\(958\) 2.80098e7 0.986042
\(959\) 1.79822e7 0.631387
\(960\) 0 0
\(961\) 4.26658e7 1.49029
\(962\) −65972.9 −0.00229841
\(963\) 3.68001e7 1.27874
\(964\) 2.25077e7 0.780078
\(965\) 0 0
\(966\) −794181. −0.0273827
\(967\) 1.09821e7 0.377676 0.188838 0.982008i \(-0.439528\pi\)
0.188838 + 0.982008i \(0.439528\pi\)
\(968\) −937024. −0.0321412
\(969\) −7.94716e7 −2.71896
\(970\) 0 0
\(971\) 8.62580e6 0.293597 0.146798 0.989166i \(-0.453103\pi\)
0.146798 + 0.989166i \(0.453103\pi\)
\(972\) −2.30449e7 −0.782364
\(973\) −2.73861e6 −0.0927358
\(974\) 1.46308e6 0.0494163
\(975\) 0 0
\(976\) −1.88643e6 −0.0633892
\(977\) −1.06350e7 −0.356451 −0.178226 0.983990i \(-0.557036\pi\)
−0.178226 + 0.983990i \(0.557036\pi\)
\(978\) 9.64641e6 0.322492
\(979\) −613556. −0.0204596
\(980\) 0 0
\(981\) −7.26632e7 −2.41069
\(982\) −2.00068e7 −0.662062
\(983\) −2.66620e7 −0.880053 −0.440026 0.897985i \(-0.645031\pi\)
−0.440026 + 0.897985i \(0.645031\pi\)
\(984\) 1.68687e7 0.555384
\(985\) 0 0
\(986\) −1.93244e7 −0.633016
\(987\) 1.61552e7 0.527861
\(988\) −1.25673e7 −0.409592
\(989\) −874565. −0.0284316
\(990\) 0 0
\(991\) 2.56353e7 0.829190 0.414595 0.910006i \(-0.363923\pi\)
0.414595 + 0.910006i \(0.363923\pi\)
\(992\) −8.64628e6 −0.278965
\(993\) 6.62816e7 2.13314
\(994\) 1.71855e7 0.551692
\(995\) 0 0
\(996\) −2.71268e7 −0.866465
\(997\) 588022. 0.0187351 0.00936754 0.999956i \(-0.497018\pi\)
0.00936754 + 0.999956i \(0.497018\pi\)
\(998\) 6.54069e6 0.207873
\(999\) −336228. −0.0106591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.6.a.h.1.1 2
5.2 odd 4 550.6.b.j.199.2 4
5.3 odd 4 550.6.b.j.199.3 4
5.4 even 2 22.6.a.d.1.2 2
15.14 odd 2 198.6.a.k.1.2 2
20.19 odd 2 176.6.a.f.1.1 2
35.34 odd 2 1078.6.a.h.1.1 2
40.19 odd 2 704.6.a.p.1.2 2
40.29 even 2 704.6.a.k.1.1 2
55.54 odd 2 242.6.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.6.a.d.1.2 2 5.4 even 2
176.6.a.f.1.1 2 20.19 odd 2
198.6.a.k.1.2 2 15.14 odd 2
242.6.a.g.1.2 2 55.54 odd 2
550.6.a.h.1.1 2 1.1 even 1 trivial
550.6.b.j.199.2 4 5.2 odd 4
550.6.b.j.199.3 4 5.3 odd 4
704.6.a.k.1.1 2 40.29 even 2
704.6.a.p.1.2 2 40.19 odd 2
1078.6.a.h.1.1 2 35.34 odd 2