Properties

Label 176.6.a.f.1.1
Level $176$
Weight $6$
Character 176.1
Self dual yes
Analytic conductor $28.228$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.2275522871\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{793}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 198 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(14.5801\) of defining polynomial
Character \(\chi\) \(=\) 176.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-28.5801 q^{3} -76.9006 q^{5} +91.4808 q^{7} +573.824 q^{9} +121.000 q^{11} -463.801 q^{13} +2197.83 q^{15} +1641.94 q^{17} +1693.53 q^{19} -2614.53 q^{21} -75.9391 q^{23} +2788.71 q^{25} -9454.98 q^{27} -2942.33 q^{29} -8443.63 q^{31} -3458.20 q^{33} -7034.93 q^{35} -35.5610 q^{37} +13255.5 q^{39} +9222.25 q^{41} +11516.7 q^{43} -44127.4 q^{45} -6179.00 q^{47} -8438.27 q^{49} -46926.7 q^{51} +25255.1 q^{53} -9304.98 q^{55} -48401.2 q^{57} -40786.8 q^{59} -7368.85 q^{61} +52493.8 q^{63} +35666.6 q^{65} +11024.7 q^{67} +2170.35 q^{69} +46964.9 q^{71} -60727.5 q^{73} -79701.6 q^{75} +11069.2 q^{77} -18386.1 q^{79} +130785. q^{81} +59321.9 q^{83} -126266. q^{85} +84092.1 q^{87} +5070.71 q^{89} -42428.9 q^{91} +241320. q^{93} -130233. q^{95} -130795. q^{97} +69432.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 29 q^{3} - 13 q^{5} + 14 q^{7} + 331 q^{9} + 242 q^{11} - 646 q^{13} + 2171 q^{15} - 208 q^{17} + 2148 q^{19} - 2582 q^{21} - 349 q^{23} + 3747 q^{25} - 9251 q^{27} + 4422 q^{29} - 14381 q^{31} - 3509 q^{33}+ \cdots + 40051 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −28.5801 −1.83342 −0.916708 0.399558i \(-0.869164\pi\)
−0.916708 + 0.399558i \(0.869164\pi\)
\(4\) 0 0
\(5\) −76.9006 −1.37564 −0.687820 0.725881i \(-0.741432\pi\)
−0.687820 + 0.725881i \(0.741432\pi\)
\(6\) 0 0
\(7\) 91.4808 0.705642 0.352821 0.935691i \(-0.385222\pi\)
0.352821 + 0.935691i \(0.385222\pi\)
\(8\) 0 0
\(9\) 573.824 2.36141
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) −463.801 −0.761156 −0.380578 0.924749i \(-0.624275\pi\)
−0.380578 + 0.924749i \(0.624275\pi\)
\(14\) 0 0
\(15\) 2197.83 2.52212
\(16\) 0 0
\(17\) 1641.94 1.37795 0.688976 0.724784i \(-0.258061\pi\)
0.688976 + 0.724784i \(0.258061\pi\)
\(18\) 0 0
\(19\) 1693.53 1.07624 0.538118 0.842869i \(-0.319135\pi\)
0.538118 + 0.842869i \(0.319135\pi\)
\(20\) 0 0
\(21\) −2614.53 −1.29374
\(22\) 0 0
\(23\) −75.9391 −0.0299327 −0.0149663 0.999888i \(-0.504764\pi\)
−0.0149663 + 0.999888i \(0.504764\pi\)
\(24\) 0 0
\(25\) 2788.71 0.892387
\(26\) 0 0
\(27\) −9454.98 −2.49604
\(28\) 0 0
\(29\) −2942.33 −0.649675 −0.324837 0.945770i \(-0.605310\pi\)
−0.324837 + 0.945770i \(0.605310\pi\)
\(30\) 0 0
\(31\) −8443.63 −1.57807 −0.789033 0.614351i \(-0.789418\pi\)
−0.789033 + 0.614351i \(0.789418\pi\)
\(32\) 0 0
\(33\) −3458.20 −0.552796
\(34\) 0 0
\(35\) −7034.93 −0.970710
\(36\) 0 0
\(37\) −35.5610 −0.00427041 −0.00213520 0.999998i \(-0.500680\pi\)
−0.00213520 + 0.999998i \(0.500680\pi\)
\(38\) 0 0
\(39\) 13255.5 1.39552
\(40\) 0 0
\(41\) 9222.25 0.856796 0.428398 0.903590i \(-0.359078\pi\)
0.428398 + 0.903590i \(0.359078\pi\)
\(42\) 0 0
\(43\) 11516.7 0.949851 0.474925 0.880026i \(-0.342475\pi\)
0.474925 + 0.880026i \(0.342475\pi\)
\(44\) 0 0
\(45\) −44127.4 −3.24846
\(46\) 0 0
\(47\) −6179.00 −0.408013 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(48\) 0 0
\(49\) −8438.27 −0.502069
\(50\) 0 0
\(51\) −46926.7 −2.52636
\(52\) 0 0
\(53\) 25255.1 1.23498 0.617489 0.786579i \(-0.288150\pi\)
0.617489 + 0.786579i \(0.288150\pi\)
\(54\) 0 0
\(55\) −9304.98 −0.414771
\(56\) 0 0
\(57\) −48401.2 −1.97319
\(58\) 0 0
\(59\) −40786.8 −1.52542 −0.762711 0.646740i \(-0.776132\pi\)
−0.762711 + 0.646740i \(0.776132\pi\)
\(60\) 0 0
\(61\) −7368.85 −0.253557 −0.126778 0.991931i \(-0.540464\pi\)
−0.126778 + 0.991931i \(0.540464\pi\)
\(62\) 0 0
\(63\) 52493.8 1.66631
\(64\) 0 0
\(65\) 35666.6 1.04708
\(66\) 0 0
\(67\) 11024.7 0.300041 0.150020 0.988683i \(-0.452066\pi\)
0.150020 + 0.988683i \(0.452066\pi\)
\(68\) 0 0
\(69\) 2170.35 0.0548791
\(70\) 0 0
\(71\) 46964.9 1.10567 0.552837 0.833289i \(-0.313545\pi\)
0.552837 + 0.833289i \(0.313545\pi\)
\(72\) 0 0
\(73\) −60727.5 −1.33376 −0.666880 0.745165i \(-0.732371\pi\)
−0.666880 + 0.745165i \(0.732371\pi\)
\(74\) 0 0
\(75\) −79701.6 −1.63612
\(76\) 0 0
\(77\) 11069.2 0.212759
\(78\) 0 0
\(79\) −18386.1 −0.331452 −0.165726 0.986172i \(-0.552997\pi\)
−0.165726 + 0.986172i \(0.552997\pi\)
\(80\) 0 0
\(81\) 130785. 2.21486
\(82\) 0 0
\(83\) 59321.9 0.945192 0.472596 0.881279i \(-0.343317\pi\)
0.472596 + 0.881279i \(0.343317\pi\)
\(84\) 0 0
\(85\) −126266. −1.89557
\(86\) 0 0
\(87\) 84092.1 1.19112
\(88\) 0 0
\(89\) 5070.71 0.0678568 0.0339284 0.999424i \(-0.489198\pi\)
0.0339284 + 0.999424i \(0.489198\pi\)
\(90\) 0 0
\(91\) −42428.9 −0.537104
\(92\) 0 0
\(93\) 241320. 2.89325
\(94\) 0 0
\(95\) −130233. −1.48051
\(96\) 0 0
\(97\) −130795. −1.41143 −0.705717 0.708494i \(-0.749375\pi\)
−0.705717 + 0.708494i \(0.749375\pi\)
\(98\) 0 0
\(99\) 69432.7 0.711993
\(100\) 0 0
\(101\) −27114.8 −0.264486 −0.132243 0.991217i \(-0.542218\pi\)
−0.132243 + 0.991217i \(0.542218\pi\)
\(102\) 0 0
\(103\) 12802.9 0.118909 0.0594546 0.998231i \(-0.481064\pi\)
0.0594546 + 0.998231i \(0.481064\pi\)
\(104\) 0 0
\(105\) 201059. 1.77972
\(106\) 0 0
\(107\) 64131.5 0.541516 0.270758 0.962647i \(-0.412726\pi\)
0.270758 + 0.962647i \(0.412726\pi\)
\(108\) 0 0
\(109\) −126630. −1.02087 −0.510434 0.859917i \(-0.670515\pi\)
−0.510434 + 0.859917i \(0.670515\pi\)
\(110\) 0 0
\(111\) 1016.34 0.00782943
\(112\) 0 0
\(113\) 131953. 0.972130 0.486065 0.873923i \(-0.338432\pi\)
0.486065 + 0.873923i \(0.338432\pi\)
\(114\) 0 0
\(115\) 5839.77 0.0411766
\(116\) 0 0
\(117\) −266140. −1.79740
\(118\) 0 0
\(119\) 150206. 0.972341
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) −263573. −1.57086
\(124\) 0 0
\(125\) 25861.0 0.148037
\(126\) 0 0
\(127\) −118876. −0.654013 −0.327006 0.945022i \(-0.606040\pi\)
−0.327006 + 0.945022i \(0.606040\pi\)
\(128\) 0 0
\(129\) −329148. −1.74147
\(130\) 0 0
\(131\) −205935. −1.04846 −0.524229 0.851577i \(-0.675647\pi\)
−0.524229 + 0.851577i \(0.675647\pi\)
\(132\) 0 0
\(133\) 154925. 0.759438
\(134\) 0 0
\(135\) 727094. 3.43365
\(136\) 0 0
\(137\) −196568. −0.894769 −0.447385 0.894342i \(-0.647645\pi\)
−0.447385 + 0.894342i \(0.647645\pi\)
\(138\) 0 0
\(139\) 29936.4 0.131420 0.0657102 0.997839i \(-0.479069\pi\)
0.0657102 + 0.997839i \(0.479069\pi\)
\(140\) 0 0
\(141\) 176597. 0.748057
\(142\) 0 0
\(143\) −56120.0 −0.229497
\(144\) 0 0
\(145\) 226267. 0.893719
\(146\) 0 0
\(147\) 241167. 0.920501
\(148\) 0 0
\(149\) −362800. −1.33876 −0.669379 0.742921i \(-0.733440\pi\)
−0.669379 + 0.742921i \(0.733440\pi\)
\(150\) 0 0
\(151\) −226244. −0.807485 −0.403742 0.914873i \(-0.632291\pi\)
−0.403742 + 0.914873i \(0.632291\pi\)
\(152\) 0 0
\(153\) 942182. 3.25391
\(154\) 0 0
\(155\) 649321. 2.17085
\(156\) 0 0
\(157\) 392007. 1.26924 0.634621 0.772824i \(-0.281156\pi\)
0.634621 + 0.772824i \(0.281156\pi\)
\(158\) 0 0
\(159\) −721794. −2.26423
\(160\) 0 0
\(161\) −6946.97 −0.0211218
\(162\) 0 0
\(163\) 84380.4 0.248755 0.124378 0.992235i \(-0.460307\pi\)
0.124378 + 0.992235i \(0.460307\pi\)
\(164\) 0 0
\(165\) 265937. 0.760448
\(166\) 0 0
\(167\) −543654. −1.50845 −0.754226 0.656615i \(-0.771988\pi\)
−0.754226 + 0.656615i \(0.771988\pi\)
\(168\) 0 0
\(169\) −156181. −0.420642
\(170\) 0 0
\(171\) 971785. 2.54144
\(172\) 0 0
\(173\) 356699. 0.906123 0.453061 0.891479i \(-0.350332\pi\)
0.453061 + 0.891479i \(0.350332\pi\)
\(174\) 0 0
\(175\) 255113. 0.629706
\(176\) 0 0
\(177\) 1.16569e6 2.79673
\(178\) 0 0
\(179\) 521697. 1.21699 0.608493 0.793559i \(-0.291774\pi\)
0.608493 + 0.793559i \(0.291774\pi\)
\(180\) 0 0
\(181\) −698048. −1.58376 −0.791879 0.610678i \(-0.790897\pi\)
−0.791879 + 0.610678i \(0.790897\pi\)
\(182\) 0 0
\(183\) 210603. 0.464875
\(184\) 0 0
\(185\) 2734.66 0.00587454
\(186\) 0 0
\(187\) 198674. 0.415468
\(188\) 0 0
\(189\) −864949. −1.76131
\(190\) 0 0
\(191\) −612931. −1.21571 −0.607853 0.794050i \(-0.707969\pi\)
−0.607853 + 0.794050i \(0.707969\pi\)
\(192\) 0 0
\(193\) −184465. −0.356467 −0.178234 0.983988i \(-0.557038\pi\)
−0.178234 + 0.983988i \(0.557038\pi\)
\(194\) 0 0
\(195\) −1.01936e6 −1.91973
\(196\) 0 0
\(197\) −1.03211e6 −1.89479 −0.947393 0.320074i \(-0.896292\pi\)
−0.947393 + 0.320074i \(0.896292\pi\)
\(198\) 0 0
\(199\) −244463. −0.437603 −0.218801 0.975769i \(-0.570215\pi\)
−0.218801 + 0.975769i \(0.570215\pi\)
\(200\) 0 0
\(201\) −315088. −0.550099
\(202\) 0 0
\(203\) −269166. −0.458438
\(204\) 0 0
\(205\) −709197. −1.17864
\(206\) 0 0
\(207\) −43575.7 −0.0706835
\(208\) 0 0
\(209\) 204917. 0.324498
\(210\) 0 0
\(211\) −1.12590e6 −1.74098 −0.870488 0.492190i \(-0.836197\pi\)
−0.870488 + 0.492190i \(0.836197\pi\)
\(212\) 0 0
\(213\) −1.34226e6 −2.02716
\(214\) 0 0
\(215\) −885639. −1.30665
\(216\) 0 0
\(217\) −772430. −1.11355
\(218\) 0 0
\(219\) 1.73560e6 2.44534
\(220\) 0 0
\(221\) −761532. −1.04884
\(222\) 0 0
\(223\) −72016.8 −0.0969776 −0.0484888 0.998824i \(-0.515441\pi\)
−0.0484888 + 0.998824i \(0.515441\pi\)
\(224\) 0 0
\(225\) 1.60023e6 2.10729
\(226\) 0 0
\(227\) −1.13240e6 −1.45860 −0.729298 0.684196i \(-0.760153\pi\)
−0.729298 + 0.684196i \(0.760153\pi\)
\(228\) 0 0
\(229\) −34423.7 −0.0433779 −0.0216890 0.999765i \(-0.506904\pi\)
−0.0216890 + 0.999765i \(0.506904\pi\)
\(230\) 0 0
\(231\) −316358. −0.390076
\(232\) 0 0
\(233\) 689707. 0.832290 0.416145 0.909298i \(-0.363381\pi\)
0.416145 + 0.909298i \(0.363381\pi\)
\(234\) 0 0
\(235\) 475169. 0.561279
\(236\) 0 0
\(237\) 525476. 0.607690
\(238\) 0 0
\(239\) −289978. −0.328375 −0.164188 0.986429i \(-0.552500\pi\)
−0.164188 + 0.986429i \(0.552500\pi\)
\(240\) 0 0
\(241\) 1.40673e6 1.56016 0.780078 0.625682i \(-0.215179\pi\)
0.780078 + 0.625682i \(0.215179\pi\)
\(242\) 0 0
\(243\) −1.44030e6 −1.56473
\(244\) 0 0
\(245\) 648908. 0.690666
\(246\) 0 0
\(247\) −785459. −0.819184
\(248\) 0 0
\(249\) −1.69543e6 −1.73293
\(250\) 0 0
\(251\) −580131. −0.581222 −0.290611 0.956841i \(-0.593859\pi\)
−0.290611 + 0.956841i \(0.593859\pi\)
\(252\) 0 0
\(253\) −9188.63 −0.00902505
\(254\) 0 0
\(255\) 3.60870e6 3.47536
\(256\) 0 0
\(257\) −407104. −0.384479 −0.192240 0.981348i \(-0.561575\pi\)
−0.192240 + 0.981348i \(0.561575\pi\)
\(258\) 0 0
\(259\) −3253.14 −0.00301338
\(260\) 0 0
\(261\) −1.68838e6 −1.53415
\(262\) 0 0
\(263\) 1.57675e6 1.40564 0.702819 0.711369i \(-0.251924\pi\)
0.702819 + 0.711369i \(0.251924\pi\)
\(264\) 0 0
\(265\) −1.94213e6 −1.69889
\(266\) 0 0
\(267\) −144921. −0.124410
\(268\) 0 0
\(269\) −752593. −0.634132 −0.317066 0.948404i \(-0.602698\pi\)
−0.317066 + 0.948404i \(0.602698\pi\)
\(270\) 0 0
\(271\) 208553. 0.172501 0.0862507 0.996273i \(-0.472511\pi\)
0.0862507 + 0.996273i \(0.472511\pi\)
\(272\) 0 0
\(273\) 1.21262e6 0.984735
\(274\) 0 0
\(275\) 337434. 0.269065
\(276\) 0 0
\(277\) 1.01926e6 0.798151 0.399075 0.916918i \(-0.369331\pi\)
0.399075 + 0.916918i \(0.369331\pi\)
\(278\) 0 0
\(279\) −4.84516e6 −3.72647
\(280\) 0 0
\(281\) 865597. 0.653958 0.326979 0.945032i \(-0.393969\pi\)
0.326979 + 0.945032i \(0.393969\pi\)
\(282\) 0 0
\(283\) −1.72508e6 −1.28040 −0.640198 0.768210i \(-0.721148\pi\)
−0.640198 + 0.768210i \(0.721148\pi\)
\(284\) 0 0
\(285\) 3.72208e6 2.71440
\(286\) 0 0
\(287\) 843658. 0.604591
\(288\) 0 0
\(289\) 1.27610e6 0.898750
\(290\) 0 0
\(291\) 3.73813e6 2.58774
\(292\) 0 0
\(293\) 1.25254e6 0.852361 0.426181 0.904638i \(-0.359859\pi\)
0.426181 + 0.904638i \(0.359859\pi\)
\(294\) 0 0
\(295\) 3.13653e6 2.09843
\(296\) 0 0
\(297\) −1.14405e6 −0.752584
\(298\) 0 0
\(299\) 35220.7 0.0227834
\(300\) 0 0
\(301\) 1.05355e6 0.670255
\(302\) 0 0
\(303\) 774945. 0.484914
\(304\) 0 0
\(305\) 566669. 0.348803
\(306\) 0 0
\(307\) −2.69819e6 −1.63390 −0.816951 0.576707i \(-0.804337\pi\)
−0.816951 + 0.576707i \(0.804337\pi\)
\(308\) 0 0
\(309\) −365908. −0.218010
\(310\) 0 0
\(311\) 1.74373e6 1.02230 0.511150 0.859491i \(-0.329220\pi\)
0.511150 + 0.859491i \(0.329220\pi\)
\(312\) 0 0
\(313\) −1.15038e6 −0.663714 −0.331857 0.943330i \(-0.607675\pi\)
−0.331857 + 0.943330i \(0.607675\pi\)
\(314\) 0 0
\(315\) −4.03681e6 −2.29225
\(316\) 0 0
\(317\) −1.16110e6 −0.648967 −0.324484 0.945891i \(-0.605190\pi\)
−0.324484 + 0.945891i \(0.605190\pi\)
\(318\) 0 0
\(319\) −356022. −0.195884
\(320\) 0 0
\(321\) −1.83289e6 −0.992825
\(322\) 0 0
\(323\) 2.78066e6 1.48300
\(324\) 0 0
\(325\) −1.29341e6 −0.679245
\(326\) 0 0
\(327\) 3.61910e6 1.87168
\(328\) 0 0
\(329\) −565260. −0.287911
\(330\) 0 0
\(331\) 2.31915e6 1.16348 0.581740 0.813375i \(-0.302372\pi\)
0.581740 + 0.813375i \(0.302372\pi\)
\(332\) 0 0
\(333\) −20405.7 −0.0100842
\(334\) 0 0
\(335\) −847807. −0.412748
\(336\) 0 0
\(337\) 1.43786e6 0.689671 0.344835 0.938663i \(-0.387935\pi\)
0.344835 + 0.938663i \(0.387935\pi\)
\(338\) 0 0
\(339\) −3.77124e6 −1.78232
\(340\) 0 0
\(341\) −1.02168e6 −0.475805
\(342\) 0 0
\(343\) −2.30946e6 −1.05992
\(344\) 0 0
\(345\) −166901. −0.0754939
\(346\) 0 0
\(347\) −575629. −0.256637 −0.128318 0.991733i \(-0.540958\pi\)
−0.128318 + 0.991733i \(0.540958\pi\)
\(348\) 0 0
\(349\) −2.77702e6 −1.22044 −0.610219 0.792233i \(-0.708919\pi\)
−0.610219 + 0.792233i \(0.708919\pi\)
\(350\) 0 0
\(351\) 4.38523e6 1.89987
\(352\) 0 0
\(353\) 2.18172e6 0.931885 0.465942 0.884815i \(-0.345715\pi\)
0.465942 + 0.884815i \(0.345715\pi\)
\(354\) 0 0
\(355\) −3.61163e6 −1.52101
\(356\) 0 0
\(357\) −4.29289e6 −1.78271
\(358\) 0 0
\(359\) 2.14848e6 0.879822 0.439911 0.898041i \(-0.355010\pi\)
0.439911 + 0.898041i \(0.355010\pi\)
\(360\) 0 0
\(361\) 391930. 0.158285
\(362\) 0 0
\(363\) −418442. −0.166674
\(364\) 0 0
\(365\) 4.66998e6 1.83478
\(366\) 0 0
\(367\) −15838.0 −0.00613813 −0.00306907 0.999995i \(-0.500977\pi\)
−0.00306907 + 0.999995i \(0.500977\pi\)
\(368\) 0 0
\(369\) 5.29195e6 2.02325
\(370\) 0 0
\(371\) 2.31035e6 0.871453
\(372\) 0 0
\(373\) −394343. −0.146758 −0.0733791 0.997304i \(-0.523378\pi\)
−0.0733791 + 0.997304i \(0.523378\pi\)
\(374\) 0 0
\(375\) −739112. −0.271414
\(376\) 0 0
\(377\) 1.36465e6 0.494504
\(378\) 0 0
\(379\) −1.68501e6 −0.602567 −0.301283 0.953535i \(-0.597415\pi\)
−0.301283 + 0.953535i \(0.597415\pi\)
\(380\) 0 0
\(381\) 3.39750e6 1.19908
\(382\) 0 0
\(383\) −3.94284e6 −1.37345 −0.686724 0.726918i \(-0.740952\pi\)
−0.686724 + 0.726918i \(0.740952\pi\)
\(384\) 0 0
\(385\) −851226. −0.292680
\(386\) 0 0
\(387\) 6.60853e6 2.24299
\(388\) 0 0
\(389\) −571118. −0.191360 −0.0956801 0.995412i \(-0.530503\pi\)
−0.0956801 + 0.995412i \(0.530503\pi\)
\(390\) 0 0
\(391\) −124687. −0.0412458
\(392\) 0 0
\(393\) 5.88564e6 1.92226
\(394\) 0 0
\(395\) 1.41390e6 0.455959
\(396\) 0 0
\(397\) 6.17025e6 1.96484 0.982419 0.186689i \(-0.0597756\pi\)
0.982419 + 0.186689i \(0.0597756\pi\)
\(398\) 0 0
\(399\) −4.42778e6 −1.39237
\(400\) 0 0
\(401\) 1.82838e6 0.567814 0.283907 0.958852i \(-0.408369\pi\)
0.283907 + 0.958852i \(0.408369\pi\)
\(402\) 0 0
\(403\) 3.91617e6 1.20115
\(404\) 0 0
\(405\) −1.00575e7 −3.04686
\(406\) 0 0
\(407\) −4302.88 −0.00128758
\(408\) 0 0
\(409\) −5.94235e6 −1.75651 −0.878254 0.478195i \(-0.841291\pi\)
−0.878254 + 0.478195i \(0.841291\pi\)
\(410\) 0 0
\(411\) 5.61794e6 1.64048
\(412\) 0 0
\(413\) −3.73121e6 −1.07640
\(414\) 0 0
\(415\) −4.56189e6 −1.30024
\(416\) 0 0
\(417\) −855586. −0.240948
\(418\) 0 0
\(419\) 2.80473e6 0.780468 0.390234 0.920716i \(-0.372394\pi\)
0.390234 + 0.920716i \(0.372394\pi\)
\(420\) 0 0
\(421\) 3.57571e6 0.983234 0.491617 0.870812i \(-0.336406\pi\)
0.491617 + 0.870812i \(0.336406\pi\)
\(422\) 0 0
\(423\) −3.54566e6 −0.963487
\(424\) 0 0
\(425\) 4.57888e6 1.22967
\(426\) 0 0
\(427\) −674108. −0.178920
\(428\) 0 0
\(429\) 1.60392e6 0.420764
\(430\) 0 0
\(431\) 2.82711e6 0.733078 0.366539 0.930403i \(-0.380543\pi\)
0.366539 + 0.930403i \(0.380543\pi\)
\(432\) 0 0
\(433\) −765652. −0.196251 −0.0981254 0.995174i \(-0.531285\pi\)
−0.0981254 + 0.995174i \(0.531285\pi\)
\(434\) 0 0
\(435\) −6.46673e6 −1.63856
\(436\) 0 0
\(437\) −128605. −0.0322147
\(438\) 0 0
\(439\) −4.65788e6 −1.15352 −0.576762 0.816912i \(-0.695684\pi\)
−0.576762 + 0.816912i \(0.695684\pi\)
\(440\) 0 0
\(441\) −4.84208e6 −1.18559
\(442\) 0 0
\(443\) 4.99700e6 1.20976 0.604881 0.796316i \(-0.293221\pi\)
0.604881 + 0.796316i \(0.293221\pi\)
\(444\) 0 0
\(445\) −389941. −0.0933466
\(446\) 0 0
\(447\) 1.03689e7 2.45450
\(448\) 0 0
\(449\) 165769. 0.0388050 0.0194025 0.999812i \(-0.493824\pi\)
0.0194025 + 0.999812i \(0.493824\pi\)
\(450\) 0 0
\(451\) 1.11589e6 0.258334
\(452\) 0 0
\(453\) 6.46608e6 1.48046
\(454\) 0 0
\(455\) 3.26281e6 0.738862
\(456\) 0 0
\(457\) −8.07259e6 −1.80810 −0.904050 0.427428i \(-0.859420\pi\)
−0.904050 + 0.427428i \(0.859420\pi\)
\(458\) 0 0
\(459\) −1.55245e7 −3.43942
\(460\) 0 0
\(461\) −5.87512e6 −1.28755 −0.643776 0.765214i \(-0.722633\pi\)
−0.643776 + 0.765214i \(0.722633\pi\)
\(462\) 0 0
\(463\) 1.02289e6 0.221757 0.110878 0.993834i \(-0.464634\pi\)
0.110878 + 0.993834i \(0.464634\pi\)
\(464\) 0 0
\(465\) −1.85577e7 −3.98007
\(466\) 0 0
\(467\) 6.17201e6 1.30959 0.654794 0.755807i \(-0.272755\pi\)
0.654794 + 0.755807i \(0.272755\pi\)
\(468\) 0 0
\(469\) 1.00855e6 0.211721
\(470\) 0 0
\(471\) −1.12036e7 −2.32705
\(472\) 0 0
\(473\) 1.39352e6 0.286391
\(474\) 0 0
\(475\) 4.72275e6 0.960419
\(476\) 0 0
\(477\) 1.44920e7 2.91629
\(478\) 0 0
\(479\) 7.00244e6 1.39447 0.697237 0.716841i \(-0.254412\pi\)
0.697237 + 0.716841i \(0.254412\pi\)
\(480\) 0 0
\(481\) 16493.2 0.00325044
\(482\) 0 0
\(483\) 198545. 0.0387250
\(484\) 0 0
\(485\) 1.00582e7 1.94163
\(486\) 0 0
\(487\) −365769. −0.0698852 −0.0349426 0.999389i \(-0.511125\pi\)
−0.0349426 + 0.999389i \(0.511125\pi\)
\(488\) 0 0
\(489\) −2.41160e6 −0.456072
\(490\) 0 0
\(491\) −5.00170e6 −0.936297 −0.468149 0.883650i \(-0.655079\pi\)
−0.468149 + 0.883650i \(0.655079\pi\)
\(492\) 0 0
\(493\) −4.83111e6 −0.895220
\(494\) 0 0
\(495\) −5.33942e6 −0.979447
\(496\) 0 0
\(497\) 4.29638e6 0.780211
\(498\) 0 0
\(499\) 1.63517e6 0.293976 0.146988 0.989138i \(-0.453042\pi\)
0.146988 + 0.989138i \(0.453042\pi\)
\(500\) 0 0
\(501\) 1.55377e7 2.76562
\(502\) 0 0
\(503\) −5.20393e6 −0.917088 −0.458544 0.888672i \(-0.651629\pi\)
−0.458544 + 0.888672i \(0.651629\pi\)
\(504\) 0 0
\(505\) 2.08515e6 0.363838
\(506\) 0 0
\(507\) 4.46368e6 0.771212
\(508\) 0 0
\(509\) −8.62390e6 −1.47540 −0.737699 0.675130i \(-0.764088\pi\)
−0.737699 + 0.675130i \(0.764088\pi\)
\(510\) 0 0
\(511\) −5.55539e6 −0.941158
\(512\) 0 0
\(513\) −1.60123e7 −2.68633
\(514\) 0 0
\(515\) −984551. −0.163576
\(516\) 0 0
\(517\) −747659. −0.123020
\(518\) 0 0
\(519\) −1.01945e7 −1.66130
\(520\) 0 0
\(521\) 140764. 0.0227194 0.0113597 0.999935i \(-0.496384\pi\)
0.0113597 + 0.999935i \(0.496384\pi\)
\(522\) 0 0
\(523\) 9.29900e6 1.48656 0.743279 0.668981i \(-0.233269\pi\)
0.743279 + 0.668981i \(0.233269\pi\)
\(524\) 0 0
\(525\) −7.29117e6 −1.15451
\(526\) 0 0
\(527\) −1.38639e7 −2.17450
\(528\) 0 0
\(529\) −6.43058e6 −0.999104
\(530\) 0 0
\(531\) −2.34044e7 −3.60215
\(532\) 0 0
\(533\) −4.27729e6 −0.652155
\(534\) 0 0
\(535\) −4.93175e6 −0.744932
\(536\) 0 0
\(537\) −1.49102e7 −2.23124
\(538\) 0 0
\(539\) −1.02103e6 −0.151379
\(540\) 0 0
\(541\) −4.98590e6 −0.732403 −0.366202 0.930536i \(-0.619342\pi\)
−0.366202 + 0.930536i \(0.619342\pi\)
\(542\) 0 0
\(543\) 1.99503e7 2.90369
\(544\) 0 0
\(545\) 9.73792e6 1.40435
\(546\) 0 0
\(547\) 3.57048e6 0.510221 0.255111 0.966912i \(-0.417888\pi\)
0.255111 + 0.966912i \(0.417888\pi\)
\(548\) 0 0
\(549\) −4.22842e6 −0.598753
\(550\) 0 0
\(551\) −4.98291e6 −0.699204
\(552\) 0 0
\(553\) −1.68197e6 −0.233887
\(554\) 0 0
\(555\) −78156.9 −0.0107705
\(556\) 0 0
\(557\) 1.24799e7 1.70441 0.852206 0.523207i \(-0.175264\pi\)
0.852206 + 0.523207i \(0.175264\pi\)
\(558\) 0 0
\(559\) −5.34144e6 −0.722984
\(560\) 0 0
\(561\) −5.67814e6 −0.761726
\(562\) 0 0
\(563\) 5.12581e6 0.681540 0.340770 0.940147i \(-0.389312\pi\)
0.340770 + 0.940147i \(0.389312\pi\)
\(564\) 0 0
\(565\) −1.01473e7 −1.33730
\(566\) 0 0
\(567\) 1.19644e7 1.56290
\(568\) 0 0
\(569\) −1.09610e6 −0.141929 −0.0709645 0.997479i \(-0.522608\pi\)
−0.0709645 + 0.997479i \(0.522608\pi\)
\(570\) 0 0
\(571\) 1.08787e7 1.39632 0.698162 0.715940i \(-0.254002\pi\)
0.698162 + 0.715940i \(0.254002\pi\)
\(572\) 0 0
\(573\) 1.75176e7 2.22889
\(574\) 0 0
\(575\) −211772. −0.0267115
\(576\) 0 0
\(577\) 1.37408e7 1.71820 0.859101 0.511807i \(-0.171024\pi\)
0.859101 + 0.511807i \(0.171024\pi\)
\(578\) 0 0
\(579\) 5.27202e6 0.653553
\(580\) 0 0
\(581\) 5.42681e6 0.666967
\(582\) 0 0
\(583\) 3.05587e6 0.372360
\(584\) 0 0
\(585\) 2.04663e7 2.47258
\(586\) 0 0
\(587\) −7.50167e6 −0.898593 −0.449296 0.893383i \(-0.648325\pi\)
−0.449296 + 0.893383i \(0.648325\pi\)
\(588\) 0 0
\(589\) −1.42995e7 −1.69837
\(590\) 0 0
\(591\) 2.94978e7 3.47393
\(592\) 0 0
\(593\) 1.23281e7 1.43966 0.719829 0.694151i \(-0.244220\pi\)
0.719829 + 0.694151i \(0.244220\pi\)
\(594\) 0 0
\(595\) −1.15509e7 −1.33759
\(596\) 0 0
\(597\) 6.98677e6 0.802308
\(598\) 0 0
\(599\) −3.71959e6 −0.423573 −0.211786 0.977316i \(-0.567928\pi\)
−0.211786 + 0.977316i \(0.567928\pi\)
\(600\) 0 0
\(601\) −8.89207e6 −1.00419 −0.502096 0.864812i \(-0.667437\pi\)
−0.502096 + 0.864812i \(0.667437\pi\)
\(602\) 0 0
\(603\) 6.32624e6 0.708520
\(604\) 0 0
\(605\) −1.12590e6 −0.125058
\(606\) 0 0
\(607\) −1.18740e7 −1.30805 −0.654027 0.756471i \(-0.726922\pi\)
−0.654027 + 0.756471i \(0.726922\pi\)
\(608\) 0 0
\(609\) 7.69281e6 0.840508
\(610\) 0 0
\(611\) 2.86583e6 0.310561
\(612\) 0 0
\(613\) 9.08062e6 0.976033 0.488016 0.872834i \(-0.337721\pi\)
0.488016 + 0.872834i \(0.337721\pi\)
\(614\) 0 0
\(615\) 2.02689e7 2.16094
\(616\) 0 0
\(617\) −9.98190e6 −1.05560 −0.527801 0.849368i \(-0.676983\pi\)
−0.527801 + 0.849368i \(0.676983\pi\)
\(618\) 0 0
\(619\) 3.86586e6 0.405527 0.202763 0.979228i \(-0.435008\pi\)
0.202763 + 0.979228i \(0.435008\pi\)
\(620\) 0 0
\(621\) 718003. 0.0747132
\(622\) 0 0
\(623\) 463872. 0.0478827
\(624\) 0 0
\(625\) −1.07034e7 −1.09603
\(626\) 0 0
\(627\) −5.85654e6 −0.594939
\(628\) 0 0
\(629\) −58388.8 −0.00588441
\(630\) 0 0
\(631\) −1.45626e7 −1.45601 −0.728007 0.685570i \(-0.759553\pi\)
−0.728007 + 0.685570i \(0.759553\pi\)
\(632\) 0 0
\(633\) 3.21783e7 3.19193
\(634\) 0 0
\(635\) 9.14167e6 0.899686
\(636\) 0 0
\(637\) 3.91368e6 0.382153
\(638\) 0 0
\(639\) 2.69496e7 2.61096
\(640\) 0 0
\(641\) −1.34201e7 −1.29006 −0.645032 0.764155i \(-0.723156\pi\)
−0.645032 + 0.764155i \(0.723156\pi\)
\(642\) 0 0
\(643\) −1.50895e7 −1.43929 −0.719644 0.694344i \(-0.755695\pi\)
−0.719644 + 0.694344i \(0.755695\pi\)
\(644\) 0 0
\(645\) 2.53117e7 2.39564
\(646\) 0 0
\(647\) −1.42974e7 −1.34275 −0.671377 0.741116i \(-0.734297\pi\)
−0.671377 + 0.741116i \(0.734297\pi\)
\(648\) 0 0
\(649\) −4.93520e6 −0.459932
\(650\) 0 0
\(651\) 2.20761e7 2.04160
\(652\) 0 0
\(653\) −1.31607e6 −0.120780 −0.0603900 0.998175i \(-0.519234\pi\)
−0.0603900 + 0.998175i \(0.519234\pi\)
\(654\) 0 0
\(655\) 1.58365e7 1.44230
\(656\) 0 0
\(657\) −3.48469e7 −3.14956
\(658\) 0 0
\(659\) −3.75917e6 −0.337193 −0.168596 0.985685i \(-0.553923\pi\)
−0.168596 + 0.985685i \(0.553923\pi\)
\(660\) 0 0
\(661\) −8.95170e6 −0.796896 −0.398448 0.917191i \(-0.630451\pi\)
−0.398448 + 0.917191i \(0.630451\pi\)
\(662\) 0 0
\(663\) 2.17647e7 1.92295
\(664\) 0 0
\(665\) −1.19138e7 −1.04471
\(666\) 0 0
\(667\) 223438. 0.0194465
\(668\) 0 0
\(669\) 2.05825e6 0.177800
\(670\) 0 0
\(671\) −891631. −0.0764503
\(672\) 0 0
\(673\) −519050. −0.0441745 −0.0220873 0.999756i \(-0.507031\pi\)
−0.0220873 + 0.999756i \(0.507031\pi\)
\(674\) 0 0
\(675\) −2.63672e7 −2.22743
\(676\) 0 0
\(677\) −4.12272e6 −0.345711 −0.172855 0.984947i \(-0.555299\pi\)
−0.172855 + 0.984947i \(0.555299\pi\)
\(678\) 0 0
\(679\) −1.19652e7 −0.995967
\(680\) 0 0
\(681\) 3.23641e7 2.67421
\(682\) 0 0
\(683\) −8.35625e6 −0.685425 −0.342712 0.939440i \(-0.611346\pi\)
−0.342712 + 0.939440i \(0.611346\pi\)
\(684\) 0 0
\(685\) 1.51162e7 1.23088
\(686\) 0 0
\(687\) 983834. 0.0795298
\(688\) 0 0
\(689\) −1.17133e7 −0.940011
\(690\) 0 0
\(691\) −9.40353e6 −0.749197 −0.374598 0.927187i \(-0.622219\pi\)
−0.374598 + 0.927187i \(0.622219\pi\)
\(692\) 0 0
\(693\) 6.35175e6 0.502413
\(694\) 0 0
\(695\) −2.30213e6 −0.180787
\(696\) 0 0
\(697\) 1.51423e7 1.18062
\(698\) 0 0
\(699\) −1.97119e7 −1.52593
\(700\) 0 0
\(701\) −1.76888e7 −1.35957 −0.679787 0.733410i \(-0.737928\pi\)
−0.679787 + 0.733410i \(0.737928\pi\)
\(702\) 0 0
\(703\) −60223.4 −0.00459597
\(704\) 0 0
\(705\) −1.35804e7 −1.02906
\(706\) 0 0
\(707\) −2.48049e6 −0.186633
\(708\) 0 0
\(709\) −1.11343e7 −0.831853 −0.415926 0.909398i \(-0.636543\pi\)
−0.415926 + 0.909398i \(0.636543\pi\)
\(710\) 0 0
\(711\) −1.05504e7 −0.782696
\(712\) 0 0
\(713\) 641202. 0.0472358
\(714\) 0 0
\(715\) 4.31566e6 0.315706
\(716\) 0 0
\(717\) 8.28761e6 0.602048
\(718\) 0 0
\(719\) 9.55010e6 0.688947 0.344474 0.938796i \(-0.388057\pi\)
0.344474 + 0.938796i \(0.388057\pi\)
\(720\) 0 0
\(721\) 1.17122e6 0.0839073
\(722\) 0 0
\(723\) −4.02045e7 −2.86042
\(724\) 0 0
\(725\) −8.20529e6 −0.579761
\(726\) 0 0
\(727\) 1.89994e7 1.33322 0.666612 0.745405i \(-0.267744\pi\)
0.666612 + 0.745405i \(0.267744\pi\)
\(728\) 0 0
\(729\) 9.38322e6 0.653933
\(730\) 0 0
\(731\) 1.89096e7 1.30885
\(732\) 0 0
\(733\) −2.68111e7 −1.84312 −0.921561 0.388233i \(-0.873086\pi\)
−0.921561 + 0.388233i \(0.873086\pi\)
\(734\) 0 0
\(735\) −1.85459e7 −1.26628
\(736\) 0 0
\(737\) 1.33399e6 0.0904657
\(738\) 0 0
\(739\) 6.41899e6 0.432370 0.216185 0.976352i \(-0.430639\pi\)
0.216185 + 0.976352i \(0.430639\pi\)
\(740\) 0 0
\(741\) 2.24485e7 1.50190
\(742\) 0 0
\(743\) −4.66177e6 −0.309798 −0.154899 0.987930i \(-0.549505\pi\)
−0.154899 + 0.987930i \(0.549505\pi\)
\(744\) 0 0
\(745\) 2.78996e7 1.84165
\(746\) 0 0
\(747\) 3.40403e7 2.23199
\(748\) 0 0
\(749\) 5.86679e6 0.382117
\(750\) 0 0
\(751\) −2.39792e7 −1.55144 −0.775721 0.631076i \(-0.782614\pi\)
−0.775721 + 0.631076i \(0.782614\pi\)
\(752\) 0 0
\(753\) 1.65802e7 1.06562
\(754\) 0 0
\(755\) 1.73983e7 1.11081
\(756\) 0 0
\(757\) 4.65197e6 0.295051 0.147526 0.989058i \(-0.452869\pi\)
0.147526 + 0.989058i \(0.452869\pi\)
\(758\) 0 0
\(759\) 262612. 0.0165467
\(760\) 0 0
\(761\) −1.91952e7 −1.20152 −0.600760 0.799429i \(-0.705135\pi\)
−0.600760 + 0.799429i \(0.705135\pi\)
\(762\) 0 0
\(763\) −1.15842e7 −0.720368
\(764\) 0 0
\(765\) −7.24544e7 −4.47622
\(766\) 0 0
\(767\) 1.89170e7 1.16108
\(768\) 0 0
\(769\) 1.47548e7 0.899743 0.449871 0.893093i \(-0.351470\pi\)
0.449871 + 0.893093i \(0.351470\pi\)
\(770\) 0 0
\(771\) 1.16351e7 0.704910
\(772\) 0 0
\(773\) 1.48823e7 0.895820 0.447910 0.894079i \(-0.352169\pi\)
0.447910 + 0.894079i \(0.352169\pi\)
\(774\) 0 0
\(775\) −2.35468e7 −1.40824
\(776\) 0 0
\(777\) 92975.2 0.00552478
\(778\) 0 0
\(779\) 1.56181e7 0.922115
\(780\) 0 0
\(781\) 5.68275e6 0.333373
\(782\) 0 0
\(783\) 2.78197e7 1.62161
\(784\) 0 0
\(785\) −3.01456e7 −1.74602
\(786\) 0 0
\(787\) −1.56041e7 −0.898054 −0.449027 0.893518i \(-0.648229\pi\)
−0.449027 + 0.893518i \(0.648229\pi\)
\(788\) 0 0
\(789\) −4.50637e7 −2.57712
\(790\) 0 0
\(791\) 1.20712e7 0.685976
\(792\) 0 0
\(793\) 3.41768e6 0.192996
\(794\) 0 0
\(795\) 5.55064e7 3.11476
\(796\) 0 0
\(797\) 2.19852e7 1.22599 0.612993 0.790088i \(-0.289965\pi\)
0.612993 + 0.790088i \(0.289965\pi\)
\(798\) 0 0
\(799\) −1.01455e7 −0.562221
\(800\) 0 0
\(801\) 2.90969e6 0.160238
\(802\) 0 0
\(803\) −7.34802e6 −0.402144
\(804\) 0 0
\(805\) 534226. 0.0290560
\(806\) 0 0
\(807\) 2.15092e7 1.16263
\(808\) 0 0
\(809\) 2.91738e7 1.56719 0.783596 0.621271i \(-0.213383\pi\)
0.783596 + 0.621271i \(0.213383\pi\)
\(810\) 0 0
\(811\) −2.59750e7 −1.38677 −0.693383 0.720569i \(-0.743881\pi\)
−0.693383 + 0.720569i \(0.743881\pi\)
\(812\) 0 0
\(813\) −5.96046e6 −0.316267
\(814\) 0 0
\(815\) −6.48891e6 −0.342198
\(816\) 0 0
\(817\) 1.95038e7 1.02226
\(818\) 0 0
\(819\) −2.43467e7 −1.26832
\(820\) 0 0
\(821\) 3.42686e7 1.77435 0.887174 0.461436i \(-0.152666\pi\)
0.887174 + 0.461436i \(0.152666\pi\)
\(822\) 0 0
\(823\) 2.37132e7 1.22037 0.610184 0.792259i \(-0.291095\pi\)
0.610184 + 0.792259i \(0.291095\pi\)
\(824\) 0 0
\(825\) −9.64390e6 −0.493308
\(826\) 0 0
\(827\) −1.83274e7 −0.931833 −0.465916 0.884829i \(-0.654275\pi\)
−0.465916 + 0.884829i \(0.654275\pi\)
\(828\) 0 0
\(829\) −2.66383e7 −1.34623 −0.673115 0.739538i \(-0.735044\pi\)
−0.673115 + 0.739538i \(0.735044\pi\)
\(830\) 0 0
\(831\) −2.91305e7 −1.46334
\(832\) 0 0
\(833\) −1.38551e7 −0.691826
\(834\) 0 0
\(835\) 4.18074e7 2.07509
\(836\) 0 0
\(837\) 7.98344e7 3.93891
\(838\) 0 0
\(839\) −1.46709e7 −0.719537 −0.359768 0.933042i \(-0.617144\pi\)
−0.359768 + 0.933042i \(0.617144\pi\)
\(840\) 0 0
\(841\) −1.18539e7 −0.577923
\(842\) 0 0
\(843\) −2.47389e7 −1.19898
\(844\) 0 0
\(845\) 1.20104e7 0.578652
\(846\) 0 0
\(847\) 1.33937e6 0.0641493
\(848\) 0 0
\(849\) 4.93031e7 2.34750
\(850\) 0 0
\(851\) 2700.47 0.000127825 0
\(852\) 0 0
\(853\) −1.74709e7 −0.822133 −0.411066 0.911605i \(-0.634844\pi\)
−0.411066 + 0.911605i \(0.634844\pi\)
\(854\) 0 0
\(855\) −7.47309e7 −3.49611
\(856\) 0 0
\(857\) −2.49580e7 −1.16080 −0.580402 0.814330i \(-0.697104\pi\)
−0.580402 + 0.814330i \(0.697104\pi\)
\(858\) 0 0
\(859\) 1.42612e7 0.659439 0.329719 0.944079i \(-0.393046\pi\)
0.329719 + 0.944079i \(0.393046\pi\)
\(860\) 0 0
\(861\) −2.41119e7 −1.10847
\(862\) 0 0
\(863\) −494514. −0.0226022 −0.0113011 0.999936i \(-0.503597\pi\)
−0.0113011 + 0.999936i \(0.503597\pi\)
\(864\) 0 0
\(865\) −2.74304e7 −1.24650
\(866\) 0 0
\(867\) −3.64710e7 −1.64778
\(868\) 0 0
\(869\) −2.22471e6 −0.0999366
\(870\) 0 0
\(871\) −5.11327e6 −0.228378
\(872\) 0 0
\(873\) −7.50530e7 −3.33298
\(874\) 0 0
\(875\) 2.36579e6 0.104461
\(876\) 0 0
\(877\) −8.07539e6 −0.354539 −0.177270 0.984162i \(-0.556726\pi\)
−0.177270 + 0.984162i \(0.556726\pi\)
\(878\) 0 0
\(879\) −3.57979e7 −1.56273
\(880\) 0 0
\(881\) −5.24166e6 −0.227525 −0.113763 0.993508i \(-0.536290\pi\)
−0.113763 + 0.993508i \(0.536290\pi\)
\(882\) 0 0
\(883\) 4.02805e7 1.73857 0.869287 0.494308i \(-0.164578\pi\)
0.869287 + 0.494308i \(0.164578\pi\)
\(884\) 0 0
\(885\) −8.96425e7 −3.84730
\(886\) 0 0
\(887\) −1.38423e7 −0.590745 −0.295373 0.955382i \(-0.595444\pi\)
−0.295373 + 0.955382i \(0.595444\pi\)
\(888\) 0 0
\(889\) −1.08749e7 −0.461499
\(890\) 0 0
\(891\) 1.58250e7 0.667807
\(892\) 0 0
\(893\) −1.04643e7 −0.439118
\(894\) 0 0
\(895\) −4.01188e7 −1.67413
\(896\) 0 0
\(897\) −1.00661e6 −0.0417715
\(898\) 0 0
\(899\) 2.48439e7 1.02523
\(900\) 0 0
\(901\) 4.14672e7 1.70174
\(902\) 0 0
\(903\) −3.01107e7 −1.22886
\(904\) 0 0
\(905\) 5.36803e7 2.17868
\(906\) 0 0
\(907\) 5.53908e6 0.223573 0.111786 0.993732i \(-0.464343\pi\)
0.111786 + 0.993732i \(0.464343\pi\)
\(908\) 0 0
\(909\) −1.55591e7 −0.624562
\(910\) 0 0
\(911\) 1.76513e7 0.704660 0.352330 0.935876i \(-0.385389\pi\)
0.352330 + 0.935876i \(0.385389\pi\)
\(912\) 0 0
\(913\) 7.17795e6 0.284986
\(914\) 0 0
\(915\) −1.61955e7 −0.639501
\(916\) 0 0
\(917\) −1.88391e7 −0.739837
\(918\) 0 0
\(919\) 2.80718e7 1.09643 0.548215 0.836338i \(-0.315308\pi\)
0.548215 + 0.836338i \(0.315308\pi\)
\(920\) 0 0
\(921\) 7.71145e7 2.99562
\(922\) 0 0
\(923\) −2.17824e7 −0.841591
\(924\) 0 0
\(925\) −99169.1 −0.00381085
\(926\) 0 0
\(927\) 7.34660e6 0.280794
\(928\) 0 0
\(929\) −3.51046e6 −0.133452 −0.0667259 0.997771i \(-0.521255\pi\)
−0.0667259 + 0.997771i \(0.521255\pi\)
\(930\) 0 0
\(931\) −1.42904e7 −0.540345
\(932\) 0 0
\(933\) −4.98361e7 −1.87430
\(934\) 0 0
\(935\) −1.52782e7 −0.571535
\(936\) 0 0
\(937\) −3.60265e7 −1.34052 −0.670260 0.742126i \(-0.733818\pi\)
−0.670260 + 0.742126i \(0.733818\pi\)
\(938\) 0 0
\(939\) 3.28780e7 1.21686
\(940\) 0 0
\(941\) 2.51917e7 0.927435 0.463717 0.885983i \(-0.346515\pi\)
0.463717 + 0.885983i \(0.346515\pi\)
\(942\) 0 0
\(943\) −700329. −0.0256462
\(944\) 0 0
\(945\) 6.65151e7 2.42293
\(946\) 0 0
\(947\) −2.44815e6 −0.0887082 −0.0443541 0.999016i \(-0.514123\pi\)
−0.0443541 + 0.999016i \(0.514123\pi\)
\(948\) 0 0
\(949\) 2.81655e7 1.01520
\(950\) 0 0
\(951\) 3.31845e7 1.18983
\(952\) 0 0
\(953\) −4.51778e7 −1.61136 −0.805681 0.592349i \(-0.798200\pi\)
−0.805681 + 0.592349i \(0.798200\pi\)
\(954\) 0 0
\(955\) 4.71348e7 1.67237
\(956\) 0 0
\(957\) 1.01751e7 0.359137
\(958\) 0 0
\(959\) −1.79822e7 −0.631387
\(960\) 0 0
\(961\) 4.26658e7 1.49029
\(962\) 0 0
\(963\) 3.68001e7 1.27874
\(964\) 0 0
\(965\) 1.41855e7 0.490371
\(966\) 0 0
\(967\) 1.09821e7 0.377676 0.188838 0.982008i \(-0.439528\pi\)
0.188838 + 0.982008i \(0.439528\pi\)
\(968\) 0 0
\(969\) −7.94716e7 −2.71896
\(970\) 0 0
\(971\) −8.62580e6 −0.293597 −0.146798 0.989166i \(-0.546897\pi\)
−0.146798 + 0.989166i \(0.546897\pi\)
\(972\) 0 0
\(973\) 2.73861e6 0.0927358
\(974\) 0 0
\(975\) 3.69657e7 1.24534
\(976\) 0 0
\(977\) 1.06350e7 0.356451 0.178226 0.983990i \(-0.442964\pi\)
0.178226 + 0.983990i \(0.442964\pi\)
\(978\) 0 0
\(979\) 613556. 0.0204596
\(980\) 0 0
\(981\) −7.26632e7 −2.41069
\(982\) 0 0
\(983\) −2.66620e7 −0.880053 −0.440026 0.897985i \(-0.645031\pi\)
−0.440026 + 0.897985i \(0.645031\pi\)
\(984\) 0 0
\(985\) 7.93698e7 2.60654
\(986\) 0 0
\(987\) 1.61552e7 0.527861
\(988\) 0 0
\(989\) −874565. −0.0284316
\(990\) 0 0
\(991\) −2.56353e7 −0.829190 −0.414595 0.910006i \(-0.636077\pi\)
−0.414595 + 0.910006i \(0.636077\pi\)
\(992\) 0 0
\(993\) −6.62816e7 −2.13314
\(994\) 0 0
\(995\) 1.87993e7 0.601984
\(996\) 0 0
\(997\) −588022. −0.0187351 −0.00936754 0.999956i \(-0.502982\pi\)
−0.00936754 + 0.999956i \(0.502982\pi\)
\(998\) 0 0
\(999\) 336228. 0.0106591
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.6.a.f.1.1 2
4.3 odd 2 22.6.a.d.1.2 2
8.3 odd 2 704.6.a.k.1.1 2
8.5 even 2 704.6.a.p.1.2 2
12.11 even 2 198.6.a.k.1.2 2
20.3 even 4 550.6.b.j.199.2 4
20.7 even 4 550.6.b.j.199.3 4
20.19 odd 2 550.6.a.h.1.1 2
28.27 even 2 1078.6.a.h.1.1 2
44.43 even 2 242.6.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.6.a.d.1.2 2 4.3 odd 2
176.6.a.f.1.1 2 1.1 even 1 trivial
198.6.a.k.1.2 2 12.11 even 2
242.6.a.g.1.2 2 44.43 even 2
550.6.a.h.1.1 2 20.19 odd 2
550.6.b.j.199.2 4 20.3 even 4
550.6.b.j.199.3 4 20.7 even 4
704.6.a.k.1.1 2 8.3 odd 2
704.6.a.p.1.2 2 8.5 even 2
1078.6.a.h.1.1 2 28.27 even 2