Properties

Label 550.6.b.h.199.3
Level $550$
Weight $6$
Character 550.199
Analytic conductor $88.211$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,6,Mod(199,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.199");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 550.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(88.2111008971\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{889})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 445x^{2} + 49284 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(-14.4081i\) of defining polynomial
Character \(\chi\) \(=\) 550.199
Dual form 550.6.b.h.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -4.40805i q^{3} -16.0000 q^{4} +17.6322 q^{6} -92.0403i q^{7} -64.0000i q^{8} +223.569 q^{9} +121.000 q^{11} +70.5288i q^{12} -64.2415i q^{13} +368.161 q^{14} +256.000 q^{16} +1394.03i q^{17} +894.276i q^{18} -813.224 q^{19} -405.718 q^{21} +484.000i q^{22} +2668.06i q^{23} -282.115 q^{24} +256.966 q^{26} -2056.66i q^{27} +1472.64i q^{28} -1880.55 q^{29} +3679.50 q^{31} +1024.00i q^{32} -533.374i q^{33} -5576.12 q^{34} -3577.11 q^{36} -15375.8i q^{37} -3252.90i q^{38} -283.180 q^{39} +2875.24 q^{41} -1622.87i q^{42} +20405.3i q^{43} -1936.00 q^{44} -10672.2 q^{46} -26141.6i q^{47} -1128.46i q^{48} +8335.59 q^{49} +6144.95 q^{51} +1027.86i q^{52} +491.587i q^{53} +8226.64 q^{54} -5890.58 q^{56} +3584.73i q^{57} -7522.18i q^{58} +30775.7 q^{59} -12688.8 q^{61} +14718.0i q^{62} -20577.4i q^{63} -4096.00 q^{64} +2133.50 q^{66} -3915.60i q^{67} -22304.5i q^{68} +11760.9 q^{69} -23656.8 q^{71} -14308.4i q^{72} +49810.0i q^{73} +61503.2 q^{74} +13011.6 q^{76} -11136.9i q^{77} -1132.72i q^{78} -5846.55 q^{79} +45261.4 q^{81} +11501.0i q^{82} -29846.2i q^{83} +6491.49 q^{84} -81621.4 q^{86} +8289.54i q^{87} -7744.00i q^{88} +110688. q^{89} -5912.81 q^{91} -42688.9i q^{92} -16219.4i q^{93} +104566. q^{94} +4513.84 q^{96} +65866.2i q^{97} +33342.4i q^{98} +27051.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{4} - 168 q^{6} - 358 q^{9} + 484 q^{11} + 280 q^{14} + 1024 q^{16} - 3074 q^{19} - 3710 q^{21} + 2688 q^{24} - 6128 q^{26} - 15334 q^{29} + 9530 q^{31} + 2264 q^{34} + 5728 q^{36} - 42756 q^{39}+ \cdots - 43318 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) − 4.40805i − 0.282777i −0.989954 0.141388i \(-0.954843\pi\)
0.989954 0.141388i \(-0.0451566\pi\)
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 17.6322 0.199953
\(7\) − 92.0403i − 0.709958i −0.934874 0.354979i \(-0.884488\pi\)
0.934874 0.354979i \(-0.115512\pi\)
\(8\) − 64.0000i − 0.353553i
\(9\) 223.569 0.920037
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 70.5288i 0.141388i
\(13\) − 64.2415i − 0.105428i −0.998610 0.0527142i \(-0.983213\pi\)
0.998610 0.0527142i \(-0.0167872\pi\)
\(14\) 368.161 0.502016
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1394.03i 1.16990i 0.811069 + 0.584951i \(0.198886\pi\)
−0.811069 + 0.584951i \(0.801114\pi\)
\(18\) 894.276i 0.650565i
\(19\) −813.224 −0.516804 −0.258402 0.966037i \(-0.583196\pi\)
−0.258402 + 0.966037i \(0.583196\pi\)
\(20\) 0 0
\(21\) −405.718 −0.200760
\(22\) 484.000i 0.213201i
\(23\) 2668.06i 1.05166i 0.850589 + 0.525831i \(0.176245\pi\)
−0.850589 + 0.525831i \(0.823755\pi\)
\(24\) −282.115 −0.0999766
\(25\) 0 0
\(26\) 256.966 0.0745491
\(27\) − 2056.66i − 0.542942i
\(28\) 1472.64i 0.354979i
\(29\) −1880.55 −0.415230 −0.207615 0.978211i \(-0.566570\pi\)
−0.207615 + 0.978211i \(0.566570\pi\)
\(30\) 0 0
\(31\) 3679.50 0.687677 0.343839 0.939029i \(-0.388273\pi\)
0.343839 + 0.939029i \(0.388273\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 533.374i − 0.0852604i
\(34\) −5576.12 −0.827246
\(35\) 0 0
\(36\) −3577.11 −0.460019
\(37\) − 15375.8i − 1.84643i −0.384283 0.923215i \(-0.625551\pi\)
0.384283 0.923215i \(-0.374449\pi\)
\(38\) − 3252.90i − 0.365436i
\(39\) −283.180 −0.0298127
\(40\) 0 0
\(41\) 2875.24 0.267125 0.133563 0.991040i \(-0.457358\pi\)
0.133563 + 0.991040i \(0.457358\pi\)
\(42\) − 1622.87i − 0.141958i
\(43\) 20405.3i 1.68296i 0.540291 + 0.841478i \(0.318314\pi\)
−0.540291 + 0.841478i \(0.681686\pi\)
\(44\) −1936.00 −0.150756
\(45\) 0 0
\(46\) −10672.2 −0.743637
\(47\) − 26141.6i − 1.72619i −0.505045 0.863093i \(-0.668524\pi\)
0.505045 0.863093i \(-0.331476\pi\)
\(48\) − 1128.46i − 0.0706942i
\(49\) 8335.59 0.495959
\(50\) 0 0
\(51\) 6144.95 0.330821
\(52\) 1027.86i 0.0527142i
\(53\) 491.587i 0.0240387i 0.999928 + 0.0120193i \(0.00382597\pi\)
−0.999928 + 0.0120193i \(0.996174\pi\)
\(54\) 8226.64 0.383918
\(55\) 0 0
\(56\) −5890.58 −0.251008
\(57\) 3584.73i 0.146140i
\(58\) − 7522.18i − 0.293612i
\(59\) 30775.7 1.15101 0.575504 0.817799i \(-0.304806\pi\)
0.575504 + 0.817799i \(0.304806\pi\)
\(60\) 0 0
\(61\) −12688.8 −0.436613 −0.218307 0.975880i \(-0.570053\pi\)
−0.218307 + 0.975880i \(0.570053\pi\)
\(62\) 14718.0i 0.486261i
\(63\) − 20577.4i − 0.653188i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 2133.50 0.0602882
\(67\) − 3915.60i − 0.106564i −0.998579 0.0532822i \(-0.983032\pi\)
0.998579 0.0532822i \(-0.0169683\pi\)
\(68\) − 22304.5i − 0.584951i
\(69\) 11760.9 0.297385
\(70\) 0 0
\(71\) −23656.8 −0.556942 −0.278471 0.960445i \(-0.589828\pi\)
−0.278471 + 0.960445i \(0.589828\pi\)
\(72\) − 14308.4i − 0.325282i
\(73\) 49810.0i 1.09398i 0.837139 + 0.546990i \(0.184226\pi\)
−0.837139 + 0.546990i \(0.815774\pi\)
\(74\) 61503.2 1.30562
\(75\) 0 0
\(76\) 13011.6 0.258402
\(77\) − 11136.9i − 0.214060i
\(78\) − 1132.72i − 0.0210808i
\(79\) −5846.55 −0.105398 −0.0526990 0.998610i \(-0.516782\pi\)
−0.0526990 + 0.998610i \(0.516782\pi\)
\(80\) 0 0
\(81\) 45261.4 0.766506
\(82\) 11501.0i 0.188886i
\(83\) − 29846.2i − 0.475547i −0.971321 0.237774i \(-0.923582\pi\)
0.971321 0.237774i \(-0.0764177\pi\)
\(84\) 6491.49 0.100380
\(85\) 0 0
\(86\) −81621.4 −1.19003
\(87\) 8289.54i 0.117417i
\(88\) − 7744.00i − 0.106600i
\(89\) 110688. 1.48124 0.740621 0.671923i \(-0.234531\pi\)
0.740621 + 0.671923i \(0.234531\pi\)
\(90\) 0 0
\(91\) −5912.81 −0.0748497
\(92\) − 42688.9i − 0.525831i
\(93\) − 16219.4i − 0.194459i
\(94\) 104566. 1.22060
\(95\) 0 0
\(96\) 4513.84 0.0499883
\(97\) 65866.2i 0.710777i 0.934719 + 0.355389i \(0.115651\pi\)
−0.934719 + 0.355389i \(0.884349\pi\)
\(98\) 33342.4i 0.350696i
\(99\) 27051.9 0.277402
\(100\) 0 0
\(101\) 170816. 1.66619 0.833097 0.553127i \(-0.186565\pi\)
0.833097 + 0.553127i \(0.186565\pi\)
\(102\) 24579.8i 0.233926i
\(103\) − 3350.44i − 0.0311178i −0.999879 0.0155589i \(-0.995047\pi\)
0.999879 0.0155589i \(-0.00495275\pi\)
\(104\) −4111.46 −0.0372746
\(105\) 0 0
\(106\) −1966.35 −0.0169979
\(107\) 43688.4i 0.368898i 0.982842 + 0.184449i \(0.0590501\pi\)
−0.982842 + 0.184449i \(0.940950\pi\)
\(108\) 32906.6i 0.271471i
\(109\) −49375.4 −0.398056 −0.199028 0.979994i \(-0.563778\pi\)
−0.199028 + 0.979994i \(0.563778\pi\)
\(110\) 0 0
\(111\) −67777.3 −0.522128
\(112\) − 23562.3i − 0.177490i
\(113\) 113388.i 0.835356i 0.908595 + 0.417678i \(0.137156\pi\)
−0.908595 + 0.417678i \(0.862844\pi\)
\(114\) −14338.9 −0.103337
\(115\) 0 0
\(116\) 30088.7 0.207615
\(117\) − 14362.4i − 0.0969981i
\(118\) 123103.i 0.813886i
\(119\) 128307. 0.830582
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) − 50755.3i − 0.308732i
\(123\) − 12674.2i − 0.0755367i
\(124\) −58872.0 −0.343839
\(125\) 0 0
\(126\) 82309.4 0.461874
\(127\) − 315137.i − 1.73377i −0.498512 0.866883i \(-0.666120\pi\)
0.498512 0.866883i \(-0.333880\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 89947.8 0.475901
\(130\) 0 0
\(131\) 263284. 1.34044 0.670218 0.742165i \(-0.266201\pi\)
0.670218 + 0.742165i \(0.266201\pi\)
\(132\) 8533.99i 0.0426302i
\(133\) 74849.4i 0.366910i
\(134\) 15662.4 0.0753524
\(135\) 0 0
\(136\) 89217.9 0.413623
\(137\) − 101284.i − 0.461039i −0.973068 0.230519i \(-0.925957\pi\)
0.973068 0.230519i \(-0.0740425\pi\)
\(138\) 47043.8i 0.210283i
\(139\) 156014. 0.684897 0.342449 0.939537i \(-0.388744\pi\)
0.342449 + 0.939537i \(0.388744\pi\)
\(140\) 0 0
\(141\) −115234. −0.488125
\(142\) − 94627.2i − 0.393818i
\(143\) − 7773.23i − 0.0317879i
\(144\) 57233.7 0.230009
\(145\) 0 0
\(146\) −199240. −0.773560
\(147\) − 36743.7i − 0.140246i
\(148\) 246013.i 0.923215i
\(149\) 132795. 0.490024 0.245012 0.969520i \(-0.421208\pi\)
0.245012 + 0.969520i \(0.421208\pi\)
\(150\) 0 0
\(151\) 224845. 0.802491 0.401245 0.915971i \(-0.368577\pi\)
0.401245 + 0.915971i \(0.368577\pi\)
\(152\) 52046.3i 0.182718i
\(153\) 311662.i 1.07635i
\(154\) 44547.5 0.151364
\(155\) 0 0
\(156\) 4530.88 0.0149063
\(157\) − 200959.i − 0.650667i −0.945599 0.325333i \(-0.894524\pi\)
0.945599 0.325333i \(-0.105476\pi\)
\(158\) − 23386.2i − 0.0745276i
\(159\) 2166.94 0.00679758
\(160\) 0 0
\(161\) 245569. 0.746635
\(162\) 181046.i 0.542002i
\(163\) − 315221.i − 0.929278i −0.885500 0.464639i \(-0.846184\pi\)
0.885500 0.464639i \(-0.153816\pi\)
\(164\) −46003.8 −0.133563
\(165\) 0 0
\(166\) 119385. 0.336263
\(167\) 461946.i 1.28174i 0.767650 + 0.640870i \(0.221426\pi\)
−0.767650 + 0.640870i \(0.778574\pi\)
\(168\) 25966.0i 0.0709792i
\(169\) 367166. 0.988885
\(170\) 0 0
\(171\) −181812. −0.475479
\(172\) − 326486.i − 0.841478i
\(173\) − 284609.i − 0.722992i −0.932374 0.361496i \(-0.882266\pi\)
0.932374 0.361496i \(-0.117734\pi\)
\(174\) −33158.2 −0.0830266
\(175\) 0 0
\(176\) 30976.0 0.0753778
\(177\) − 135661.i − 0.325478i
\(178\) 442753.i 1.04740i
\(179\) 616210. 1.43746 0.718731 0.695289i \(-0.244723\pi\)
0.718731 + 0.695289i \(0.244723\pi\)
\(180\) 0 0
\(181\) 156628. 0.355364 0.177682 0.984088i \(-0.443140\pi\)
0.177682 + 0.984088i \(0.443140\pi\)
\(182\) − 23651.2i − 0.0529268i
\(183\) 55933.0i 0.123464i
\(184\) 170756. 0.371818
\(185\) 0 0
\(186\) 64877.7 0.137503
\(187\) 168678.i 0.352739i
\(188\) 418266.i 0.863093i
\(189\) −189296. −0.385466
\(190\) 0 0
\(191\) 95586.9 0.189590 0.0947949 0.995497i \(-0.469780\pi\)
0.0947949 + 0.995497i \(0.469780\pi\)
\(192\) 18055.4i 0.0353471i
\(193\) 748658.i 1.44674i 0.690461 + 0.723370i \(0.257408\pi\)
−0.690461 + 0.723370i \(0.742592\pi\)
\(194\) −263465. −0.502595
\(195\) 0 0
\(196\) −133369. −0.247980
\(197\) 456491.i 0.838043i 0.907976 + 0.419022i \(0.137627\pi\)
−0.907976 + 0.419022i \(0.862373\pi\)
\(198\) 108207.i 0.196153i
\(199\) −591303. −1.05847 −0.529234 0.848476i \(-0.677521\pi\)
−0.529234 + 0.848476i \(0.677521\pi\)
\(200\) 0 0
\(201\) −17260.2 −0.0301339
\(202\) 683265.i 1.17818i
\(203\) 173086.i 0.294796i
\(204\) −98319.2 −0.165411
\(205\) 0 0
\(206\) 13401.7 0.0220036
\(207\) 596495.i 0.967567i
\(208\) − 16445.8i − 0.0263571i
\(209\) −98400.1 −0.155822
\(210\) 0 0
\(211\) −568294. −0.878754 −0.439377 0.898303i \(-0.644801\pi\)
−0.439377 + 0.898303i \(0.644801\pi\)
\(212\) − 7865.39i − 0.0120193i
\(213\) 104280.i 0.157490i
\(214\) −174754. −0.260850
\(215\) 0 0
\(216\) −131626. −0.191959
\(217\) − 338662.i − 0.488222i
\(218\) − 197501.i − 0.281468i
\(219\) 219565. 0.309352
\(220\) 0 0
\(221\) 89554.6 0.123341
\(222\) − 271109.i − 0.369200i
\(223\) 355316.i 0.478468i 0.970962 + 0.239234i \(0.0768962\pi\)
−0.970962 + 0.239234i \(0.923104\pi\)
\(224\) 94249.2 0.125504
\(225\) 0 0
\(226\) −453553. −0.590686
\(227\) − 627531.i − 0.808297i −0.914693 0.404148i \(-0.867568\pi\)
0.914693 0.404148i \(-0.132432\pi\)
\(228\) − 57355.7i − 0.0730701i
\(229\) 987980. 1.24497 0.622486 0.782631i \(-0.286123\pi\)
0.622486 + 0.782631i \(0.286123\pi\)
\(230\) 0 0
\(231\) −49091.9 −0.0605313
\(232\) 120355.i 0.146806i
\(233\) − 147032.i − 0.177428i −0.996057 0.0887139i \(-0.971724\pi\)
0.996057 0.0887139i \(-0.0282757\pi\)
\(234\) 57449.7 0.0685880
\(235\) 0 0
\(236\) −492412. −0.575504
\(237\) 25771.9i 0.0298041i
\(238\) 513227.i 0.587310i
\(239\) 1.36202e6 1.54237 0.771186 0.636610i \(-0.219664\pi\)
0.771186 + 0.636610i \(0.219664\pi\)
\(240\) 0 0
\(241\) 1.54270e6 1.71096 0.855478 0.517839i \(-0.173263\pi\)
0.855478 + 0.517839i \(0.173263\pi\)
\(242\) 58564.0i 0.0642824i
\(243\) − 699283.i − 0.759692i
\(244\) 203021. 0.218307
\(245\) 0 0
\(246\) 50696.8 0.0534125
\(247\) 52242.8i 0.0544859i
\(248\) − 235488.i − 0.243131i
\(249\) −131564. −0.134474
\(250\) 0 0
\(251\) −551214. −0.552250 −0.276125 0.961122i \(-0.589050\pi\)
−0.276125 + 0.961122i \(0.589050\pi\)
\(252\) 329238.i 0.326594i
\(253\) 322835.i 0.317088i
\(254\) 1.26055e6 1.22596
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.50798e6i 1.42417i 0.702094 + 0.712085i \(0.252249\pi\)
−0.702094 + 0.712085i \(0.747751\pi\)
\(258\) 359791.i 0.336513i
\(259\) −1.41519e6 −1.31089
\(260\) 0 0
\(261\) −420432. −0.382027
\(262\) 1.05313e6i 0.947831i
\(263\) 413554.i 0.368675i 0.982863 + 0.184337i \(0.0590139\pi\)
−0.982863 + 0.184337i \(0.940986\pi\)
\(264\) −34136.0 −0.0301441
\(265\) 0 0
\(266\) −299397. −0.259444
\(267\) − 487919.i − 0.418861i
\(268\) 62649.7i 0.0532822i
\(269\) −1.92394e6 −1.62110 −0.810551 0.585668i \(-0.800832\pi\)
−0.810551 + 0.585668i \(0.800832\pi\)
\(270\) 0 0
\(271\) 1.36505e6 1.12908 0.564540 0.825405i \(-0.309053\pi\)
0.564540 + 0.825405i \(0.309053\pi\)
\(272\) 356872.i 0.292476i
\(273\) 26064.0i 0.0211658i
\(274\) 405134. 0.326004
\(275\) 0 0
\(276\) −188175. −0.148693
\(277\) − 462704.i − 0.362330i −0.983453 0.181165i \(-0.942013\pi\)
0.983453 0.181165i \(-0.0579867\pi\)
\(278\) 624055.i 0.484296i
\(279\) 822623. 0.632689
\(280\) 0 0
\(281\) 1.31617e6 0.994367 0.497183 0.867645i \(-0.334368\pi\)
0.497183 + 0.867645i \(0.334368\pi\)
\(282\) − 460934.i − 0.345157i
\(283\) − 1.19241e6i − 0.885035i −0.896760 0.442517i \(-0.854086\pi\)
0.896760 0.442517i \(-0.145914\pi\)
\(284\) 378509. 0.278471
\(285\) 0 0
\(286\) 31092.9 0.0224774
\(287\) − 264638.i − 0.189648i
\(288\) 228935.i 0.162641i
\(289\) −523461. −0.368671
\(290\) 0 0
\(291\) 290342. 0.200991
\(292\) − 796960.i − 0.546990i
\(293\) − 644118.i − 0.438325i −0.975688 0.219163i \(-0.929668\pi\)
0.975688 0.219163i \(-0.0703325\pi\)
\(294\) 146975. 0.0991687
\(295\) 0 0
\(296\) −984050. −0.652812
\(297\) − 248856.i − 0.163703i
\(298\) 531181.i 0.346499i
\(299\) 171400. 0.110875
\(300\) 0 0
\(301\) 1.87811e6 1.19483
\(302\) 899379.i 0.567447i
\(303\) − 752967.i − 0.471161i
\(304\) −208185. −0.129201
\(305\) 0 0
\(306\) −1.24665e6 −0.761097
\(307\) − 1.19044e6i − 0.720875i −0.932783 0.360437i \(-0.882627\pi\)
0.932783 0.360437i \(-0.117373\pi\)
\(308\) 178190.i 0.107030i
\(309\) −14768.9 −0.00879938
\(310\) 0 0
\(311\) 1.25938e6 0.738341 0.369170 0.929362i \(-0.379642\pi\)
0.369170 + 0.929362i \(0.379642\pi\)
\(312\) 18123.5i 0.0105404i
\(313\) 2.23658e6i 1.29040i 0.764014 + 0.645200i \(0.223226\pi\)
−0.764014 + 0.645200i \(0.776774\pi\)
\(314\) 803836. 0.460091
\(315\) 0 0
\(316\) 93544.8 0.0526990
\(317\) − 2.36125e6i − 1.31976i −0.751373 0.659878i \(-0.770608\pi\)
0.751373 0.659878i \(-0.229392\pi\)
\(318\) 8667.76i 0.00480661i
\(319\) −227546. −0.125197
\(320\) 0 0
\(321\) 192581. 0.104316
\(322\) 982275.i 0.527951i
\(323\) − 1.13366e6i − 0.604611i
\(324\) −724183. −0.383253
\(325\) 0 0
\(326\) 1.26088e6 0.657099
\(327\) 217649.i 0.112561i
\(328\) − 184015.i − 0.0944430i
\(329\) −2.40608e6 −1.22552
\(330\) 0 0
\(331\) −3.06002e6 −1.53516 −0.767580 0.640953i \(-0.778539\pi\)
−0.767580 + 0.640953i \(0.778539\pi\)
\(332\) 477539.i 0.237774i
\(333\) − 3.43755e6i − 1.69879i
\(334\) −1.84778e6 −0.906327
\(335\) 0 0
\(336\) −103864. −0.0501899
\(337\) − 4.08324e6i − 1.95853i −0.202588 0.979264i \(-0.564935\pi\)
0.202588 0.979264i \(-0.435065\pi\)
\(338\) 1.46866e6i 0.699247i
\(339\) 499821. 0.236219
\(340\) 0 0
\(341\) 445220. 0.207342
\(342\) − 727247.i − 0.336215i
\(343\) − 2.31413e6i − 1.06207i
\(344\) 1.30594e6 0.595015
\(345\) 0 0
\(346\) 1.13844e6 0.511232
\(347\) − 2.25118e6i − 1.00366i −0.864966 0.501830i \(-0.832660\pi\)
0.864966 0.501830i \(-0.167340\pi\)
\(348\) − 132633.i − 0.0587087i
\(349\) −1.09341e6 −0.480531 −0.240265 0.970707i \(-0.577234\pi\)
−0.240265 + 0.970707i \(0.577234\pi\)
\(350\) 0 0
\(351\) −132123. −0.0572415
\(352\) 123904.i 0.0533002i
\(353\) − 1.73879e6i − 0.742694i −0.928494 0.371347i \(-0.878896\pi\)
0.928494 0.371347i \(-0.121104\pi\)
\(354\) 542644. 0.230148
\(355\) 0 0
\(356\) −1.77101e6 −0.740621
\(357\) − 565583.i − 0.234869i
\(358\) 2.46484e6i 1.01644i
\(359\) −1.93636e6 −0.792959 −0.396480 0.918044i \(-0.629768\pi\)
−0.396480 + 0.918044i \(0.629768\pi\)
\(360\) 0 0
\(361\) −1.81477e6 −0.732913
\(362\) 626513.i 0.251280i
\(363\) − 64538.3i − 0.0257070i
\(364\) 94604.9 0.0374249
\(365\) 0 0
\(366\) −223732. −0.0873022
\(367\) 1.36996e6i 0.530937i 0.964119 + 0.265469i \(0.0855267\pi\)
−0.964119 + 0.265469i \(0.914473\pi\)
\(368\) 683023.i 0.262915i
\(369\) 642815. 0.245765
\(370\) 0 0
\(371\) 45245.8 0.0170665
\(372\) 259511.i 0.0972295i
\(373\) 1.02270e6i 0.380608i 0.981725 + 0.190304i \(0.0609473\pi\)
−0.981725 + 0.190304i \(0.939053\pi\)
\(374\) −674710. −0.249424
\(375\) 0 0
\(376\) −1.67306e6 −0.610299
\(377\) 120809.i 0.0437770i
\(378\) − 757182.i − 0.272566i
\(379\) −2.30604e6 −0.824650 −0.412325 0.911037i \(-0.635283\pi\)
−0.412325 + 0.911037i \(0.635283\pi\)
\(380\) 0 0
\(381\) −1.38914e6 −0.490269
\(382\) 382348.i 0.134060i
\(383\) − 4.44660e6i − 1.54893i −0.632618 0.774464i \(-0.718020\pi\)
0.632618 0.774464i \(-0.281980\pi\)
\(384\) −72221.5 −0.0249942
\(385\) 0 0
\(386\) −2.99463e6 −1.02300
\(387\) 4.56201e6i 1.54838i
\(388\) − 1.05386e6i − 0.355389i
\(389\) 3.04391e6 1.01990 0.509951 0.860204i \(-0.329664\pi\)
0.509951 + 0.860204i \(0.329664\pi\)
\(390\) 0 0
\(391\) −3.71935e6 −1.23034
\(392\) − 533478.i − 0.175348i
\(393\) − 1.16057e6i − 0.379044i
\(394\) −1.82596e6 −0.592586
\(395\) 0 0
\(396\) −432830. −0.138701
\(397\) 2.97167e6i 0.946289i 0.880985 + 0.473145i \(0.156881\pi\)
−0.880985 + 0.473145i \(0.843119\pi\)
\(398\) − 2.36521e6i − 0.748450i
\(399\) 329940. 0.103753
\(400\) 0 0
\(401\) 4.34955e6 1.35078 0.675388 0.737463i \(-0.263976\pi\)
0.675388 + 0.737463i \(0.263976\pi\)
\(402\) − 69040.7i − 0.0213079i
\(403\) − 236377.i − 0.0725007i
\(404\) −2.73306e6 −0.833097
\(405\) 0 0
\(406\) −692343. −0.208452
\(407\) − 1.86047e6i − 0.556720i
\(408\) − 393277.i − 0.116963i
\(409\) −89191.8 −0.0263643 −0.0131822 0.999913i \(-0.504196\pi\)
−0.0131822 + 0.999913i \(0.504196\pi\)
\(410\) 0 0
\(411\) −446463. −0.130371
\(412\) 53607.0i 0.0155589i
\(413\) − 2.83261e6i − 0.817168i
\(414\) −2.38598e6 −0.684173
\(415\) 0 0
\(416\) 65783.3 0.0186373
\(417\) − 687716.i − 0.193673i
\(418\) − 393600.i − 0.110183i
\(419\) 4.18567e6 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(420\) 0 0
\(421\) 1.96388e6 0.540020 0.270010 0.962857i \(-0.412973\pi\)
0.270010 + 0.962857i \(0.412973\pi\)
\(422\) − 2.27318e6i − 0.621373i
\(423\) − 5.84445e6i − 1.58816i
\(424\) 31461.6 0.00849895
\(425\) 0 0
\(426\) −417122. −0.111362
\(427\) 1.16788e6i 0.309977i
\(428\) − 699014.i − 0.184449i
\(429\) −34264.8 −0.00898886
\(430\) 0 0
\(431\) −1.32562e6 −0.343736 −0.171868 0.985120i \(-0.554980\pi\)
−0.171868 + 0.985120i \(0.554980\pi\)
\(432\) − 526505.i − 0.135735i
\(433\) − 5.16016e6i − 1.32265i −0.750101 0.661323i \(-0.769995\pi\)
0.750101 0.661323i \(-0.230005\pi\)
\(434\) 1.35465e6 0.345225
\(435\) 0 0
\(436\) 790006. 0.199028
\(437\) − 2.16973e6i − 0.543503i
\(438\) 878260.i 0.218745i
\(439\) −3.93148e6 −0.973632 −0.486816 0.873504i \(-0.661842\pi\)
−0.486816 + 0.873504i \(0.661842\pi\)
\(440\) 0 0
\(441\) 1.86358e6 0.456301
\(442\) 358218.i 0.0872152i
\(443\) 3.06674e6i 0.742452i 0.928543 + 0.371226i \(0.121062\pi\)
−0.928543 + 0.371226i \(0.878938\pi\)
\(444\) 1.08444e6 0.261064
\(445\) 0 0
\(446\) −1.42126e6 −0.338328
\(447\) − 585369.i − 0.138567i
\(448\) 376997.i 0.0887448i
\(449\) −4.68097e6 −1.09577 −0.547886 0.836553i \(-0.684567\pi\)
−0.547886 + 0.836553i \(0.684567\pi\)
\(450\) 0 0
\(451\) 347904. 0.0805412
\(452\) − 1.81421e6i − 0.417678i
\(453\) − 991127.i − 0.226926i
\(454\) 2.51013e6 0.571552
\(455\) 0 0
\(456\) 229423. 0.0516684
\(457\) 6.86401e6i 1.53740i 0.639608 + 0.768701i \(0.279097\pi\)
−0.639608 + 0.768701i \(0.720903\pi\)
\(458\) 3.95192e6i 0.880328i
\(459\) 2.86705e6 0.635189
\(460\) 0 0
\(461\) −3.85378e6 −0.844569 −0.422284 0.906463i \(-0.638772\pi\)
−0.422284 + 0.906463i \(0.638772\pi\)
\(462\) − 196368.i − 0.0428021i
\(463\) − 3.15825e6i − 0.684689i −0.939574 0.342345i \(-0.888779\pi\)
0.939574 0.342345i \(-0.111221\pi\)
\(464\) −481420. −0.103808
\(465\) 0 0
\(466\) 588127. 0.125460
\(467\) − 196109.i − 0.0416107i −0.999784 0.0208054i \(-0.993377\pi\)
0.999784 0.0208054i \(-0.00662303\pi\)
\(468\) 229799.i 0.0484990i
\(469\) −360393. −0.0756562
\(470\) 0 0
\(471\) −885838. −0.183993
\(472\) − 1.96965e6i − 0.406943i
\(473\) 2.46905e6i 0.507430i
\(474\) −103088. −0.0210747
\(475\) 0 0
\(476\) −2.05291e6 −0.415291
\(477\) 109904.i 0.0221165i
\(478\) 5.44808e6i 1.09062i
\(479\) −5.13528e6 −1.02265 −0.511323 0.859389i \(-0.670844\pi\)
−0.511323 + 0.859389i \(0.670844\pi\)
\(480\) 0 0
\(481\) −987764. −0.194666
\(482\) 6.17080e6i 1.20983i
\(483\) − 1.08248e6i − 0.211131i
\(484\) −234256. −0.0454545
\(485\) 0 0
\(486\) 2.79713e6 0.537183
\(487\) − 2.43868e6i − 0.465943i −0.972484 0.232971i \(-0.925155\pi\)
0.972484 0.232971i \(-0.0748448\pi\)
\(488\) 812085.i 0.154366i
\(489\) −1.38951e6 −0.262778
\(490\) 0 0
\(491\) 4.07687e6 0.763173 0.381587 0.924333i \(-0.375378\pi\)
0.381587 + 0.924333i \(0.375378\pi\)
\(492\) 202787.i 0.0377684i
\(493\) − 2.62154e6i − 0.485779i
\(494\) −208971. −0.0385273
\(495\) 0 0
\(496\) 941952. 0.171919
\(497\) 2.17738e6i 0.395406i
\(498\) − 526254.i − 0.0950873i
\(499\) −878791. −0.157992 −0.0789958 0.996875i \(-0.525171\pi\)
−0.0789958 + 0.996875i \(0.525171\pi\)
\(500\) 0 0
\(501\) 2.03628e6 0.362446
\(502\) − 2.20486e6i − 0.390500i
\(503\) 7.00187e6i 1.23394i 0.786987 + 0.616970i \(0.211640\pi\)
−0.786987 + 0.616970i \(0.788360\pi\)
\(504\) −1.31695e6 −0.230937
\(505\) 0 0
\(506\) −1.29134e6 −0.224215
\(507\) − 1.61849e6i − 0.279634i
\(508\) 5.04220e6i 0.866883i
\(509\) −5.54203e6 −0.948144 −0.474072 0.880486i \(-0.657216\pi\)
−0.474072 + 0.880486i \(0.657216\pi\)
\(510\) 0 0
\(511\) 4.58452e6 0.776680
\(512\) 262144.i 0.0441942i
\(513\) 1.67253e6i 0.280595i
\(514\) −6.03190e6 −1.00704
\(515\) 0 0
\(516\) −1.43917e6 −0.237950
\(517\) − 3.16313e6i − 0.520465i
\(518\) − 5.66077e6i − 0.926938i
\(519\) −1.25457e6 −0.204445
\(520\) 0 0
\(521\) −5.22863e6 −0.843905 −0.421953 0.906618i \(-0.638655\pi\)
−0.421953 + 0.906618i \(0.638655\pi\)
\(522\) − 1.68173e6i − 0.270134i
\(523\) 2.80925e6i 0.449092i 0.974463 + 0.224546i \(0.0720900\pi\)
−0.974463 + 0.224546i \(0.927910\pi\)
\(524\) −4.21254e6 −0.670218
\(525\) 0 0
\(526\) −1.65422e6 −0.260692
\(527\) 5.12933e6i 0.804515i
\(528\) − 136544.i − 0.0213151i
\(529\) −682194. −0.105991
\(530\) 0 0
\(531\) 6.88050e6 1.05897
\(532\) − 1.19759e6i − 0.183455i
\(533\) − 184710.i − 0.0281626i
\(534\) 1.95168e6 0.296179
\(535\) 0 0
\(536\) −250599. −0.0376762
\(537\) − 2.71629e6i − 0.406480i
\(538\) − 7.69575e6i − 1.14629i
\(539\) 1.00861e6 0.149537
\(540\) 0 0
\(541\) −7.28856e6 −1.07065 −0.535326 0.844645i \(-0.679811\pi\)
−0.535326 + 0.844645i \(0.679811\pi\)
\(542\) 5.46020e6i 0.798381i
\(543\) − 690425.i − 0.100489i
\(544\) −1.42749e6 −0.206811
\(545\) 0 0
\(546\) −104256. −0.0149665
\(547\) 9.33502e6i 1.33397i 0.745070 + 0.666986i \(0.232416\pi\)
−0.745070 + 0.666986i \(0.767584\pi\)
\(548\) 1.62054e6i 0.230519i
\(549\) −2.83683e6 −0.401700
\(550\) 0 0
\(551\) 1.52930e6 0.214593
\(552\) − 752700.i − 0.105142i
\(553\) 538118.i 0.0748281i
\(554\) 1.85082e6 0.256206
\(555\) 0 0
\(556\) −2.49622e6 −0.342449
\(557\) 87187.2i 0.0119073i 0.999982 + 0.00595367i \(0.00189512\pi\)
−0.999982 + 0.00595367i \(0.998105\pi\)
\(558\) 3.29049e6i 0.447378i
\(559\) 1.31087e6 0.177431
\(560\) 0 0
\(561\) 743539. 0.0997463
\(562\) 5.26468e6i 0.703123i
\(563\) 1.99082e6i 0.264705i 0.991203 + 0.132352i \(0.0422530\pi\)
−0.991203 + 0.132352i \(0.957747\pi\)
\(564\) 1.84374e6 0.244063
\(565\) 0 0
\(566\) 4.76965e6 0.625814
\(567\) − 4.16587e6i − 0.544187i
\(568\) 1.51404e6i 0.196909i
\(569\) −955969. −0.123784 −0.0618918 0.998083i \(-0.519713\pi\)
−0.0618918 + 0.998083i \(0.519713\pi\)
\(570\) 0 0
\(571\) 1.17829e7 1.51239 0.756193 0.654349i \(-0.227057\pi\)
0.756193 + 0.654349i \(0.227057\pi\)
\(572\) 124372.i 0.0158939i
\(573\) − 421352.i − 0.0536116i
\(574\) 1.05855e6 0.134101
\(575\) 0 0
\(576\) −915739. −0.115005
\(577\) 7.62998e6i 0.954078i 0.878882 + 0.477039i \(0.158290\pi\)
−0.878882 + 0.477039i \(0.841710\pi\)
\(578\) − 2.09384e6i − 0.260690i
\(579\) 3.30013e6 0.409104
\(580\) 0 0
\(581\) −2.74705e6 −0.337619
\(582\) 1.16137e6i 0.142122i
\(583\) 59482.0i 0.00724793i
\(584\) 3.18784e6 0.386780
\(585\) 0 0
\(586\) 2.57647e6 0.309943
\(587\) − 5.31020e6i − 0.636086i −0.948076 0.318043i \(-0.896974\pi\)
0.948076 0.318043i \(-0.103026\pi\)
\(588\) 587899.i 0.0701229i
\(589\) −2.99226e6 −0.355395
\(590\) 0 0
\(591\) 2.01223e6 0.236979
\(592\) − 3.93620e6i − 0.461608i
\(593\) 9.44509e6i 1.10298i 0.834180 + 0.551492i \(0.185941\pi\)
−0.834180 + 0.551492i \(0.814059\pi\)
\(594\) 995424. 0.115756
\(595\) 0 0
\(596\) −2.12472e6 −0.245012
\(597\) 2.60649e6i 0.299310i
\(598\) 685601.i 0.0784004i
\(599\) −8.27369e6 −0.942177 −0.471088 0.882086i \(-0.656139\pi\)
−0.471088 + 0.882086i \(0.656139\pi\)
\(600\) 0 0
\(601\) −1.28982e7 −1.45661 −0.728304 0.685254i \(-0.759691\pi\)
−0.728304 + 0.685254i \(0.759691\pi\)
\(602\) 7.51245e6i 0.844871i
\(603\) − 875408.i − 0.0980432i
\(604\) −3.59751e6 −0.401245
\(605\) 0 0
\(606\) 3.01187e6 0.333161
\(607\) 884063.i 0.0973893i 0.998814 + 0.0486947i \(0.0155061\pi\)
−0.998814 + 0.0486947i \(0.984494\pi\)
\(608\) − 832742.i − 0.0913590i
\(609\) 762971. 0.0833614
\(610\) 0 0
\(611\) −1.67938e6 −0.181989
\(612\) − 4.98659e6i − 0.538177i
\(613\) 7.44165e6i 0.799868i 0.916544 + 0.399934i \(0.130967\pi\)
−0.916544 + 0.399934i \(0.869033\pi\)
\(614\) 4.76174e6 0.509735
\(615\) 0 0
\(616\) −712760. −0.0756818
\(617\) − 1.54607e6i − 0.163499i −0.996653 0.0817496i \(-0.973949\pi\)
0.996653 0.0817496i \(-0.0260508\pi\)
\(618\) − 59075.6i − 0.00622210i
\(619\) 337532. 0.0354069 0.0177035 0.999843i \(-0.494365\pi\)
0.0177035 + 0.999843i \(0.494365\pi\)
\(620\) 0 0
\(621\) 5.48729e6 0.570991
\(622\) 5.03753e6i 0.522086i
\(623\) − 1.01878e7i − 1.05162i
\(624\) −72494.1 −0.00745317
\(625\) 0 0
\(626\) −8.94633e6 −0.912450
\(627\) 433753.i 0.0440629i
\(628\) 3.21535e6i 0.325333i
\(629\) 2.14343e7 2.16014
\(630\) 0 0
\(631\) −2.60561e6 −0.260517 −0.130259 0.991480i \(-0.541581\pi\)
−0.130259 + 0.991480i \(0.541581\pi\)
\(632\) 374179.i 0.0372638i
\(633\) 2.50507e6i 0.248491i
\(634\) 9.44499e6 0.933208
\(635\) 0 0
\(636\) −34671.0 −0.00339879
\(637\) − 535491.i − 0.0522882i
\(638\) − 910184.i − 0.0885273i
\(639\) −5.28893e6 −0.512408
\(640\) 0 0
\(641\) 1.37962e7 1.32622 0.663108 0.748523i \(-0.269237\pi\)
0.663108 + 0.748523i \(0.269237\pi\)
\(642\) 770323.i 0.0737624i
\(643\) 4.97213e6i 0.474258i 0.971478 + 0.237129i \(0.0762064\pi\)
−0.971478 + 0.237129i \(0.923794\pi\)
\(644\) −3.92910e6 −0.373318
\(645\) 0 0
\(646\) 4.53463e6 0.427524
\(647\) − 1.75328e7i − 1.64661i −0.567601 0.823304i \(-0.692128\pi\)
0.567601 0.823304i \(-0.307872\pi\)
\(648\) − 2.89673e6i − 0.271001i
\(649\) 3.72387e6 0.347042
\(650\) 0 0
\(651\) −1.49284e6 −0.138058
\(652\) 5.04353e6i 0.464639i
\(653\) − 1.67551e6i − 0.153768i −0.997040 0.0768838i \(-0.975503\pi\)
0.997040 0.0768838i \(-0.0244971\pi\)
\(654\) −870596. −0.0795926
\(655\) 0 0
\(656\) 736062. 0.0667813
\(657\) 1.11360e7i 1.00650i
\(658\) − 9.62432e6i − 0.866573i
\(659\) 4.27468e6 0.383434 0.191717 0.981450i \(-0.438594\pi\)
0.191717 + 0.981450i \(0.438594\pi\)
\(660\) 0 0
\(661\) −1.01563e7 −0.904131 −0.452066 0.891985i \(-0.649313\pi\)
−0.452066 + 0.891985i \(0.649313\pi\)
\(662\) − 1.22401e7i − 1.08552i
\(663\) − 394761.i − 0.0348779i
\(664\) −1.91016e6 −0.168131
\(665\) 0 0
\(666\) 1.37502e7 1.20122
\(667\) − 5.01740e6i − 0.436681i
\(668\) − 7.39113e6i − 0.640870i
\(669\) 1.56625e6 0.135299
\(670\) 0 0
\(671\) −1.53535e6 −0.131644
\(672\) − 415455.i − 0.0354896i
\(673\) 1.09681e7i 0.933454i 0.884402 + 0.466727i \(0.154567\pi\)
−0.884402 + 0.466727i \(0.845433\pi\)
\(674\) 1.63329e7 1.38489
\(675\) 0 0
\(676\) −5.87466e6 −0.494442
\(677\) 8.84010e6i 0.741286i 0.928775 + 0.370643i \(0.120863\pi\)
−0.928775 + 0.370643i \(0.879137\pi\)
\(678\) 1.99928e6i 0.167032i
\(679\) 6.06235e6 0.504622
\(680\) 0 0
\(681\) −2.76619e6 −0.228567
\(682\) 1.78088e6i 0.146613i
\(683\) 5.98047e6i 0.490551i 0.969453 + 0.245275i \(0.0788784\pi\)
−0.969453 + 0.245275i \(0.921122\pi\)
\(684\) 2.90899e6 0.237740
\(685\) 0 0
\(686\) 9.25652e6 0.750996
\(687\) − 4.35507e6i − 0.352049i
\(688\) 5.22377e6i 0.420739i
\(689\) 31580.3 0.00253436
\(690\) 0 0
\(691\) 3.64212e6 0.290175 0.145087 0.989419i \(-0.453654\pi\)
0.145087 + 0.989419i \(0.453654\pi\)
\(692\) 4.55374e6i 0.361496i
\(693\) − 2.48986e6i − 0.196944i
\(694\) 9.00473e6 0.709695
\(695\) 0 0
\(696\) 530531. 0.0415133
\(697\) 4.00817e6i 0.312510i
\(698\) − 4.37365e6i − 0.339786i
\(699\) −648124. −0.0501724
\(700\) 0 0
\(701\) −1.44054e6 −0.110721 −0.0553607 0.998466i \(-0.517631\pi\)
−0.0553607 + 0.998466i \(0.517631\pi\)
\(702\) − 528492.i − 0.0404758i
\(703\) 1.25040e7i 0.954244i
\(704\) −495616. −0.0376889
\(705\) 0 0
\(706\) 6.95515e6 0.525164
\(707\) − 1.57220e7i − 1.18293i
\(708\) 2.17058e6i 0.162739i
\(709\) 2.44669e7 1.82795 0.913975 0.405771i \(-0.132997\pi\)
0.913975 + 0.405771i \(0.132997\pi\)
\(710\) 0 0
\(711\) −1.30711e6 −0.0969700
\(712\) − 7.08404e6i − 0.523698i
\(713\) 9.81712e6i 0.723203i
\(714\) 2.26233e6 0.166078
\(715\) 0 0
\(716\) −9.85936e6 −0.718731
\(717\) − 6.00386e6i − 0.436147i
\(718\) − 7.74545e6i − 0.560707i
\(719\) 2.27569e6 0.164169 0.0820846 0.996625i \(-0.473842\pi\)
0.0820846 + 0.996625i \(0.473842\pi\)
\(720\) 0 0
\(721\) −308375. −0.0220923
\(722\) − 7.25906e6i − 0.518248i
\(723\) − 6.80030e6i − 0.483818i
\(724\) −2.50605e6 −0.177682
\(725\) 0 0
\(726\) 258153. 0.0181776
\(727\) − 1.87924e7i − 1.31870i −0.751835 0.659351i \(-0.770831\pi\)
0.751835 0.659351i \(-0.229169\pi\)
\(728\) 378420.i 0.0264634i
\(729\) 7.91605e6 0.551683
\(730\) 0 0
\(731\) −2.84457e7 −1.96889
\(732\) − 894928.i − 0.0617320i
\(733\) − 355042.i − 0.0244073i −0.999926 0.0122036i \(-0.996115\pi\)
0.999926 0.0122036i \(-0.00388463\pi\)
\(734\) −5.47985e6 −0.375429
\(735\) 0 0
\(736\) −2.73209e6 −0.185909
\(737\) − 473788.i − 0.0321304i
\(738\) 2.57126e6i 0.173782i
\(739\) 1.97063e7 1.32738 0.663689 0.748008i \(-0.268990\pi\)
0.663689 + 0.748008i \(0.268990\pi\)
\(740\) 0 0
\(741\) 230289. 0.0154073
\(742\) 180983.i 0.0120678i
\(743\) 1.74672e7i 1.16078i 0.814338 + 0.580391i \(0.197100\pi\)
−0.814338 + 0.580391i \(0.802900\pi\)
\(744\) −1.03804e6 −0.0687517
\(745\) 0 0
\(746\) −4.09081e6 −0.269130
\(747\) − 6.67269e6i − 0.437521i
\(748\) − 2.69884e6i − 0.176369i
\(749\) 4.02109e6 0.261902
\(750\) 0 0
\(751\) −4.94160e6 −0.319718 −0.159859 0.987140i \(-0.551104\pi\)
−0.159859 + 0.987140i \(0.551104\pi\)
\(752\) − 6.69225e6i − 0.431546i
\(753\) 2.42978e6i 0.156163i
\(754\) −483237. −0.0309550
\(755\) 0 0
\(756\) 3.02873e6 0.192733
\(757\) 2.46846e7i 1.56562i 0.622261 + 0.782810i \(0.286214\pi\)
−0.622261 + 0.782810i \(0.713786\pi\)
\(758\) − 9.22417e6i − 0.583115i
\(759\) 1.42307e6 0.0896650
\(760\) 0 0
\(761\) 2.49595e7 1.56234 0.781169 0.624320i \(-0.214624\pi\)
0.781169 + 0.624320i \(0.214624\pi\)
\(762\) − 5.55657e6i − 0.346672i
\(763\) 4.54452e6i 0.282603i
\(764\) −1.52939e6 −0.0947949
\(765\) 0 0
\(766\) 1.77864e7 1.09526
\(767\) − 1.97708e6i − 0.121349i
\(768\) − 288886.i − 0.0176735i
\(769\) −6.12897e6 −0.373742 −0.186871 0.982384i \(-0.559835\pi\)
−0.186871 + 0.982384i \(0.559835\pi\)
\(770\) 0 0
\(771\) 6.64723e6 0.402722
\(772\) − 1.19785e7i − 0.723370i
\(773\) 1.14936e7i 0.691842i 0.938264 + 0.345921i \(0.112434\pi\)
−0.938264 + 0.345921i \(0.887566\pi\)
\(774\) −1.82480e7 −1.09487
\(775\) 0 0
\(776\) 4.21544e6 0.251298
\(777\) 6.23824e6i 0.370689i
\(778\) 1.21757e7i 0.721179i
\(779\) −2.33822e6 −0.138051
\(780\) 0 0
\(781\) −2.86247e6 −0.167924
\(782\) − 1.48774e7i − 0.869982i
\(783\) 3.86764e6i 0.225446i
\(784\) 2.13391e6 0.123990
\(785\) 0 0
\(786\) 4.64227e6 0.268024
\(787\) 1.34777e7i 0.775673i 0.921728 + 0.387837i \(0.126778\pi\)
−0.921728 + 0.387837i \(0.873222\pi\)
\(788\) − 7.30385e6i − 0.419022i
\(789\) 1.82297e6 0.104253
\(790\) 0 0
\(791\) 1.04363e7 0.593068
\(792\) − 1.73132e6i − 0.0980763i
\(793\) 815150.i 0.0460314i
\(794\) −1.18867e7 −0.669128
\(795\) 0 0
\(796\) 9.46085e6 0.529234
\(797\) 2.33863e7i 1.30411i 0.758171 + 0.652056i \(0.226093\pi\)
−0.758171 + 0.652056i \(0.773907\pi\)
\(798\) 1.31976e6i 0.0733648i
\(799\) 3.64422e7 2.01947
\(800\) 0 0
\(801\) 2.47464e7 1.36280
\(802\) 1.73982e7i 0.955143i
\(803\) 6.02701e6i 0.329847i
\(804\) 276163. 0.0150669
\(805\) 0 0
\(806\) 945507. 0.0512657
\(807\) 8.48082e6i 0.458410i
\(808\) − 1.09322e7i − 0.589089i
\(809\) −3.43344e7 −1.84441 −0.922207 0.386696i \(-0.873616\pi\)
−0.922207 + 0.386696i \(0.873616\pi\)
\(810\) 0 0
\(811\) −3.01851e7 −1.61154 −0.805769 0.592231i \(-0.798247\pi\)
−0.805769 + 0.592231i \(0.798247\pi\)
\(812\) − 2.76937e6i − 0.147398i
\(813\) − 6.01721e6i − 0.319278i
\(814\) 7.44188e6 0.393660
\(815\) 0 0
\(816\) 1.57311e6 0.0827053
\(817\) − 1.65941e7i − 0.869759i
\(818\) − 356767.i − 0.0186424i
\(819\) −1.32192e6 −0.0688646
\(820\) 0 0
\(821\) −1.75961e7 −0.911087 −0.455543 0.890214i \(-0.650555\pi\)
−0.455543 + 0.890214i \(0.650555\pi\)
\(822\) − 1.78585e6i − 0.0921862i
\(823\) 2.02786e7i 1.04361i 0.853065 + 0.521804i \(0.174741\pi\)
−0.853065 + 0.521804i \(0.825259\pi\)
\(824\) −214428. −0.0110018
\(825\) 0 0
\(826\) 1.13304e7 0.577825
\(827\) − 3.28389e7i − 1.66965i −0.550516 0.834824i \(-0.685569\pi\)
0.550516 0.834824i \(-0.314431\pi\)
\(828\) − 9.54393e6i − 0.483784i
\(829\) 2.40343e7 1.21463 0.607317 0.794460i \(-0.292246\pi\)
0.607317 + 0.794460i \(0.292246\pi\)
\(830\) 0 0
\(831\) −2.03962e6 −0.102458
\(832\) 263133.i 0.0131785i
\(833\) 1.16201e7i 0.580224i
\(834\) 2.75086e6 0.136947
\(835\) 0 0
\(836\) 1.57440e6 0.0779112
\(837\) − 7.56748e6i − 0.373369i
\(838\) 1.67427e7i 0.823597i
\(839\) 1.85037e7 0.907515 0.453757 0.891125i \(-0.350083\pi\)
0.453757 + 0.891125i \(0.350083\pi\)
\(840\) 0 0
\(841\) −1.69747e7 −0.827584
\(842\) 7.85553e6i 0.381852i
\(843\) − 5.80175e6i − 0.281184i
\(844\) 9.09271e6 0.439377
\(845\) 0 0
\(846\) 2.33778e7 1.12300
\(847\) − 1.34756e6i − 0.0645416i
\(848\) 125846.i 0.00600967i
\(849\) −5.25621e6 −0.250267
\(850\) 0 0
\(851\) 4.10235e7 1.94182
\(852\) − 1.66849e6i − 0.0787451i
\(853\) − 5.67139e6i − 0.266881i −0.991057 0.133440i \(-0.957398\pi\)
0.991057 0.133440i \(-0.0426025\pi\)
\(854\) −4.67153e6 −0.219187
\(855\) 0 0
\(856\) 2.79606e6 0.130425
\(857\) 69849.7i 0.00324872i 0.999999 + 0.00162436i \(0.000517050\pi\)
−0.999999 + 0.00162436i \(0.999483\pi\)
\(858\) − 137059.i − 0.00635609i
\(859\) −1.24652e7 −0.576391 −0.288195 0.957572i \(-0.593055\pi\)
−0.288195 + 0.957572i \(0.593055\pi\)
\(860\) 0 0
\(861\) −1.16654e6 −0.0536279
\(862\) − 5.30246e6i − 0.243058i
\(863\) − 3.28985e7i − 1.50366i −0.659358 0.751829i \(-0.729172\pi\)
0.659358 0.751829i \(-0.270828\pi\)
\(864\) 2.10602e6 0.0959794
\(865\) 0 0
\(866\) 2.06406e7 0.935252
\(867\) 2.30744e6i 0.104252i
\(868\) 5.41859e6i 0.244111i
\(869\) −707433. −0.0317787
\(870\) 0 0
\(871\) −251544. −0.0112349
\(872\) 3.16002e6i 0.140734i
\(873\) 1.47257e7i 0.653942i
\(874\) 8.67892e6 0.384315
\(875\) 0 0
\(876\) −3.51304e6 −0.154676
\(877\) 3.07510e7i 1.35008i 0.737779 + 0.675042i \(0.235875\pi\)
−0.737779 + 0.675042i \(0.764125\pi\)
\(878\) − 1.57259e7i − 0.688462i
\(879\) −2.83930e6 −0.123948
\(880\) 0 0
\(881\) −1.53544e7 −0.666489 −0.333245 0.942840i \(-0.608143\pi\)
−0.333245 + 0.942840i \(0.608143\pi\)
\(882\) 7.45432e6i 0.322654i
\(883\) 2.65947e7i 1.14787i 0.818900 + 0.573937i \(0.194585\pi\)
−0.818900 + 0.573937i \(0.805415\pi\)
\(884\) −1.43287e6 −0.0616705
\(885\) 0 0
\(886\) −1.22670e7 −0.524993
\(887\) 4.22486e6i 0.180303i 0.995928 + 0.0901517i \(0.0287352\pi\)
−0.995928 + 0.0901517i \(0.971265\pi\)
\(888\) 4.33774e6i 0.184600i
\(889\) −2.90053e7 −1.23090
\(890\) 0 0
\(891\) 5.47663e6 0.231110
\(892\) − 5.68505e6i − 0.239234i
\(893\) 2.12590e7i 0.892101i
\(894\) 2.34147e6 0.0979818
\(895\) 0 0
\(896\) −1.50799e6 −0.0627520
\(897\) − 755541.i − 0.0313528i
\(898\) − 1.87239e7i − 0.774827i
\(899\) −6.91947e6 −0.285544
\(900\) 0 0
\(901\) −685286. −0.0281229
\(902\) 1.39162e6i 0.0569512i
\(903\) − 8.27882e6i − 0.337870i
\(904\) 7.25684e6 0.295343
\(905\) 0 0
\(906\) 3.96451e6 0.160461
\(907\) 1.13522e7i 0.458207i 0.973402 + 0.229104i \(0.0735795\pi\)
−0.973402 + 0.229104i \(0.926421\pi\)
\(908\) 1.00405e7i 0.404148i
\(909\) 3.81892e7 1.53296
\(910\) 0 0
\(911\) −3.28560e7 −1.31165 −0.655826 0.754912i \(-0.727680\pi\)
−0.655826 + 0.754912i \(0.727680\pi\)
\(912\) 917692.i 0.0365351i
\(913\) − 3.61139e6i − 0.143383i
\(914\) −2.74560e7 −1.08711
\(915\) 0 0
\(916\) −1.58077e7 −0.622486
\(917\) − 2.42327e7i − 0.951653i
\(918\) 1.14682e7i 0.449146i
\(919\) 3.87685e7 1.51423 0.757113 0.653284i \(-0.226609\pi\)
0.757113 + 0.653284i \(0.226609\pi\)
\(920\) 0 0
\(921\) −5.24750e6 −0.203847
\(922\) − 1.54151e7i − 0.597200i
\(923\) 1.51975e6i 0.0587175i
\(924\) 785470. 0.0302656
\(925\) 0 0
\(926\) 1.26330e7 0.484148
\(927\) − 749054.i − 0.0286295i
\(928\) − 1.92568e6i − 0.0734030i
\(929\) −3.48798e7 −1.32597 −0.662986 0.748632i \(-0.730711\pi\)
−0.662986 + 0.748632i \(0.730711\pi\)
\(930\) 0 0
\(931\) −6.77870e6 −0.256314
\(932\) 2.35251e6i 0.0887139i
\(933\) − 5.55143e6i − 0.208786i
\(934\) 784436. 0.0294232
\(935\) 0 0
\(936\) −919195. −0.0342940
\(937\) 4.14192e7i 1.54118i 0.637334 + 0.770588i \(0.280037\pi\)
−0.637334 + 0.770588i \(0.719963\pi\)
\(938\) − 1.44157e6i − 0.0534970i
\(939\) 9.85897e6 0.364895
\(940\) 0 0
\(941\) −8.65196e6 −0.318523 −0.159261 0.987236i \(-0.550911\pi\)
−0.159261 + 0.987236i \(0.550911\pi\)
\(942\) − 3.54335e6i − 0.130103i
\(943\) 7.67131e6i 0.280925i
\(944\) 7.87859e6 0.287752
\(945\) 0 0
\(946\) −9.87619e6 −0.358808
\(947\) − 4.83595e7i − 1.75229i −0.482044 0.876147i \(-0.660106\pi\)
0.482044 0.876147i \(-0.339894\pi\)
\(948\) − 412350.i − 0.0149020i
\(949\) 3.19987e6 0.115337
\(950\) 0 0
\(951\) −1.04085e7 −0.373196
\(952\) − 8.21164e6i − 0.293655i
\(953\) − 3.85111e7i − 1.37358i −0.726857 0.686789i \(-0.759020\pi\)
0.726857 0.686789i \(-0.240980\pi\)
\(954\) −439614. −0.0156387
\(955\) 0 0
\(956\) −2.17923e7 −0.771186
\(957\) 1.00303e6i 0.0354027i
\(958\) − 2.05411e7i − 0.723120i
\(959\) −9.32216e6 −0.327318
\(960\) 0 0
\(961\) −1.50904e7 −0.527100
\(962\) − 3.95106e6i − 0.137650i
\(963\) 9.76737e6i 0.339400i
\(964\) −2.46832e7 −0.855478
\(965\) 0 0
\(966\) 4.32992e6 0.149292
\(967\) 4.49114e7i 1.54451i 0.635314 + 0.772254i \(0.280871\pi\)
−0.635314 + 0.772254i \(0.719129\pi\)
\(968\) − 937024.i − 0.0321412i
\(969\) −4.99722e6 −0.170970
\(970\) 0 0
\(971\) −5.38907e7 −1.83428 −0.917140 0.398565i \(-0.869508\pi\)
−0.917140 + 0.398565i \(0.869508\pi\)
\(972\) 1.11885e7i 0.379846i
\(973\) − 1.43595e7i − 0.486248i
\(974\) 9.75472e6 0.329471
\(975\) 0 0
\(976\) −3.24834e6 −0.109153
\(977\) − 5.38133e6i − 0.180365i −0.995925 0.0901827i \(-0.971255\pi\)
0.995925 0.0901827i \(-0.0287451\pi\)
\(978\) − 5.55804e6i − 0.185812i
\(979\) 1.33933e7 0.446611
\(980\) 0 0
\(981\) −1.10388e7 −0.366226
\(982\) 1.63075e7i 0.539645i
\(983\) − 4.23163e7i − 1.39677i −0.715724 0.698384i \(-0.753903\pi\)
0.715724 0.698384i \(-0.246097\pi\)
\(984\) −811149. −0.0267063
\(985\) 0 0
\(986\) 1.04861e7 0.343497
\(987\) 1.06061e7i 0.346548i
\(988\) − 835884.i − 0.0272429i
\(989\) −5.44427e7 −1.76990
\(990\) 0 0
\(991\) −1.67404e7 −0.541480 −0.270740 0.962652i \(-0.587268\pi\)
−0.270740 + 0.962652i \(0.587268\pi\)
\(992\) 3.76781e6i 0.121565i
\(993\) 1.34887e7i 0.434108i
\(994\) −8.70951e6 −0.279594
\(995\) 0 0
\(996\) 2.10502e6 0.0672369
\(997\) 2.98987e7i 0.952608i 0.879281 + 0.476304i \(0.158024\pi\)
−0.879281 + 0.476304i \(0.841976\pi\)
\(998\) − 3.51516e6i − 0.111717i
\(999\) −3.16228e7 −1.00250
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.6.b.h.199.3 4
5.2 odd 4 110.6.a.e.1.1 2
5.3 odd 4 550.6.a.j.1.2 2
5.4 even 2 inner 550.6.b.h.199.2 4
15.2 even 4 990.6.a.s.1.2 2
20.7 even 4 880.6.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.6.a.e.1.1 2 5.2 odd 4
550.6.a.j.1.2 2 5.3 odd 4
550.6.b.h.199.2 4 5.4 even 2 inner
550.6.b.h.199.3 4 1.1 even 1 trivial
880.6.a.f.1.2 2 20.7 even 4
990.6.a.s.1.2 2 15.2 even 4