Properties

Label 552.2.f.d.277.19
Level $552$
Weight $2$
Character 552.277
Analytic conductor $4.408$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [552,2,Mod(277,552)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(552, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("552.277");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} - 2 x^{17} + x^{16} - 4 x^{15} + 16 x^{14} - 24 x^{13} + 32 x^{12} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 277.19
Root \(-1.34141 + 0.447910i\) of defining polynomial
Character \(\chi\) \(=\) 552.277
Dual form 552.2.f.d.277.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34141 - 0.447910i) q^{2} +1.00000i q^{3} +(1.59875 - 1.20166i) q^{4} -1.69969i q^{5} +(0.447910 + 1.34141i) q^{6} +2.41449 q^{7} +(1.60635 - 2.32801i) q^{8} -1.00000 q^{9} +(-0.761306 - 2.27997i) q^{10} +0.133083i q^{11} +(1.20166 + 1.59875i) q^{12} -0.529878i q^{13} +(3.23881 - 1.08147i) q^{14} +1.69969 q^{15} +(1.11203 - 3.84232i) q^{16} -3.72410 q^{17} +(-1.34141 + 0.447910i) q^{18} +1.26626i q^{19} +(-2.04245 - 2.71738i) q^{20} +2.41449i q^{21} +(0.0596093 + 0.178519i) q^{22} +1.00000 q^{23} +(2.32801 + 1.60635i) q^{24} +2.11106 q^{25} +(-0.237337 - 0.710782i) q^{26} -1.00000i q^{27} +(3.86017 - 2.90139i) q^{28} +2.58119i q^{29} +(2.27997 - 0.761306i) q^{30} +4.37283 q^{31} +(-0.229326 - 5.65220i) q^{32} -0.133083 q^{33} +(-4.99554 + 1.66806i) q^{34} -4.10387i q^{35} +(-1.59875 + 1.20166i) q^{36} +3.36341i q^{37} +(0.567169 + 1.69857i) q^{38} +0.529878 q^{39} +(-3.95689 - 2.73029i) q^{40} -5.68297 q^{41} +(1.08147 + 3.23881i) q^{42} +2.62040i q^{43} +(0.159921 + 0.212767i) q^{44} +1.69969i q^{45} +(1.34141 - 0.447910i) q^{46} -0.552068 q^{47} +(3.84232 + 1.11203i) q^{48} -1.17025 q^{49} +(2.83180 - 0.945566i) q^{50} -3.72410i q^{51} +(-0.636732 - 0.847144i) q^{52} +10.6278i q^{53} +(-0.447910 - 1.34141i) q^{54} +0.226200 q^{55} +(3.87851 - 5.62096i) q^{56} -1.26626 q^{57} +(1.15614 + 3.46243i) q^{58} -3.59762i q^{59} +(2.71738 - 2.04245i) q^{60} +6.75147i q^{61} +(5.86575 - 1.95863i) q^{62} -2.41449 q^{63} +(-2.83930 - 7.47920i) q^{64} -0.900626 q^{65} +(-0.178519 + 0.0596093i) q^{66} +0.405445i q^{67} +(-5.95392 + 4.47510i) q^{68} +1.00000i q^{69} +(-1.83816 - 5.50497i) q^{70} -5.62993 q^{71} +(-1.60635 + 2.32801i) q^{72} -8.66291 q^{73} +(1.50651 + 4.51171i) q^{74} +2.11106i q^{75} +(1.52161 + 2.02444i) q^{76} +0.321328i q^{77} +(0.710782 - 0.237337i) q^{78} -2.77706 q^{79} +(-6.53073 - 1.89010i) q^{80} +1.00000 q^{81} +(-7.62318 + 2.54546i) q^{82} +1.80097i q^{83} +(2.90139 + 3.86017i) q^{84} +6.32980i q^{85} +(1.17370 + 3.51502i) q^{86} -2.58119 q^{87} +(0.309820 + 0.213778i) q^{88} -14.1306 q^{89} +(0.761306 + 2.27997i) q^{90} -1.27938i q^{91} +(1.59875 - 1.20166i) q^{92} +4.37283i q^{93} +(-0.740549 + 0.247277i) q^{94} +2.15224 q^{95} +(5.65220 - 0.229326i) q^{96} +5.11325 q^{97} +(-1.56978 + 0.524166i) q^{98} -0.133083i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{6} - 8 q^{7} - 2 q^{8} - 20 q^{9} - 12 q^{10} + 2 q^{14} + 4 q^{15} + 4 q^{16} + 32 q^{17} + 2 q^{18} + 20 q^{20} + 14 q^{22} + 20 q^{23} + 10 q^{24} - 28 q^{25} + 18 q^{28} - 22 q^{32}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34141 0.447910i 0.948519 0.316720i
\(3\) 1.00000i 0.577350i
\(4\) 1.59875 1.20166i 0.799377 0.600830i
\(5\) 1.69969i 0.760123i −0.924961 0.380062i \(-0.875903\pi\)
0.924961 0.380062i \(-0.124097\pi\)
\(6\) 0.447910 + 1.34141i 0.182858 + 0.547628i
\(7\) 2.41449 0.912591 0.456295 0.889828i \(-0.349176\pi\)
0.456295 + 0.889828i \(0.349176\pi\)
\(8\) 1.60635 2.32801i 0.567930 0.823077i
\(9\) −1.00000 −0.333333
\(10\) −0.761306 2.27997i −0.240746 0.720991i
\(11\) 0.133083i 0.0401261i 0.999799 + 0.0200631i \(0.00638670\pi\)
−0.999799 + 0.0200631i \(0.993613\pi\)
\(12\) 1.20166 + 1.59875i 0.346889 + 0.461521i
\(13\) 0.529878i 0.146962i −0.997297 0.0734808i \(-0.976589\pi\)
0.997297 0.0734808i \(-0.0234108\pi\)
\(14\) 3.23881 1.08147i 0.865610 0.289036i
\(15\) 1.69969 0.438857
\(16\) 1.11203 3.84232i 0.278007 0.960579i
\(17\) −3.72410 −0.903226 −0.451613 0.892214i \(-0.649151\pi\)
−0.451613 + 0.892214i \(0.649151\pi\)
\(18\) −1.34141 + 0.447910i −0.316173 + 0.105573i
\(19\) 1.26626i 0.290500i 0.989395 + 0.145250i \(0.0463986\pi\)
−0.989395 + 0.145250i \(0.953601\pi\)
\(20\) −2.04245 2.71738i −0.456705 0.607625i
\(21\) 2.41449i 0.526884i
\(22\) 0.0596093 + 0.178519i 0.0127087 + 0.0380604i
\(23\) 1.00000 0.208514
\(24\) 2.32801 + 1.60635i 0.475204 + 0.327894i
\(25\) 2.11106 0.422213
\(26\) −0.237337 0.710782i −0.0465457 0.139396i
\(27\) 1.00000i 0.192450i
\(28\) 3.86017 2.90139i 0.729504 0.548312i
\(29\) 2.58119i 0.479314i 0.970858 + 0.239657i \(0.0770350\pi\)
−0.970858 + 0.239657i \(0.922965\pi\)
\(30\) 2.27997 0.761306i 0.416265 0.138995i
\(31\) 4.37283 0.785383 0.392691 0.919670i \(-0.371544\pi\)
0.392691 + 0.919670i \(0.371544\pi\)
\(32\) −0.229326 5.65220i −0.0405395 0.999178i
\(33\) −0.133083 −0.0231668
\(34\) −4.99554 + 1.66806i −0.856728 + 0.286070i
\(35\) 4.10387i 0.693681i
\(36\) −1.59875 + 1.20166i −0.266459 + 0.200277i
\(37\) 3.36341i 0.552942i 0.961022 + 0.276471i \(0.0891650\pi\)
−0.961022 + 0.276471i \(0.910835\pi\)
\(38\) 0.567169 + 1.69857i 0.0920070 + 0.275544i
\(39\) 0.529878 0.0848483
\(40\) −3.95689 2.73029i −0.625640 0.431696i
\(41\) −5.68297 −0.887530 −0.443765 0.896143i \(-0.646358\pi\)
−0.443765 + 0.896143i \(0.646358\pi\)
\(42\) 1.08147 + 3.23881i 0.166875 + 0.499760i
\(43\) 2.62040i 0.399607i 0.979836 + 0.199803i \(0.0640303\pi\)
−0.979836 + 0.199803i \(0.935970\pi\)
\(44\) 0.159921 + 0.212767i 0.0241090 + 0.0320759i
\(45\) 1.69969i 0.253374i
\(46\) 1.34141 0.447910i 0.197780 0.0660407i
\(47\) −0.552068 −0.0805274 −0.0402637 0.999189i \(-0.512820\pi\)
−0.0402637 + 0.999189i \(0.512820\pi\)
\(48\) 3.84232 + 1.11203i 0.554591 + 0.160507i
\(49\) −1.17025 −0.167178
\(50\) 2.83180 0.945566i 0.400477 0.133723i
\(51\) 3.72410i 0.521478i
\(52\) −0.636732 0.847144i −0.0882989 0.117478i
\(53\) 10.6278i 1.45984i 0.683531 + 0.729922i \(0.260444\pi\)
−0.683531 + 0.729922i \(0.739556\pi\)
\(54\) −0.447910 1.34141i −0.0609528 0.182543i
\(55\) 0.226200 0.0305008
\(56\) 3.87851 5.62096i 0.518287 0.751132i
\(57\) −1.26626 −0.167720
\(58\) 1.15614 + 3.46243i 0.151808 + 0.454639i
\(59\) 3.59762i 0.468370i −0.972192 0.234185i \(-0.924758\pi\)
0.972192 0.234185i \(-0.0752422\pi\)
\(60\) 2.71738 2.04245i 0.350812 0.263679i
\(61\) 6.75147i 0.864437i 0.901769 + 0.432218i \(0.142269\pi\)
−0.901769 + 0.432218i \(0.857731\pi\)
\(62\) 5.86575 1.95863i 0.744950 0.248746i
\(63\) −2.41449 −0.304197
\(64\) −2.83930 7.47920i −0.354912 0.934900i
\(65\) −0.900626 −0.111709
\(66\) −0.178519 + 0.0596093i −0.0219742 + 0.00733740i
\(67\) 0.405445i 0.0495329i 0.999693 + 0.0247665i \(0.00788422\pi\)
−0.999693 + 0.0247665i \(0.992116\pi\)
\(68\) −5.95392 + 4.47510i −0.722018 + 0.542685i
\(69\) 1.00000i 0.120386i
\(70\) −1.83816 5.50497i −0.219703 0.657970i
\(71\) −5.62993 −0.668149 −0.334075 0.942547i \(-0.608424\pi\)
−0.334075 + 0.942547i \(0.608424\pi\)
\(72\) −1.60635 + 2.32801i −0.189310 + 0.274359i
\(73\) −8.66291 −1.01392 −0.506959 0.861970i \(-0.669230\pi\)
−0.506959 + 0.861970i \(0.669230\pi\)
\(74\) 1.50651 + 4.51171i 0.175128 + 0.524476i
\(75\) 2.11106i 0.243765i
\(76\) 1.52161 + 2.02444i 0.174541 + 0.232219i
\(77\) 0.321328i 0.0366187i
\(78\) 0.710782 0.237337i 0.0804803 0.0268732i
\(79\) −2.77706 −0.312444 −0.156222 0.987722i \(-0.549931\pi\)
−0.156222 + 0.987722i \(0.549931\pi\)
\(80\) −6.53073 1.89010i −0.730158 0.211320i
\(81\) 1.00000 0.111111
\(82\) −7.62318 + 2.54546i −0.841839 + 0.281099i
\(83\) 1.80097i 0.197682i 0.995103 + 0.0988412i \(0.0315136\pi\)
−0.995103 + 0.0988412i \(0.968486\pi\)
\(84\) 2.90139 + 3.86017i 0.316568 + 0.421179i
\(85\) 6.32980i 0.686563i
\(86\) 1.17370 + 3.51502i 0.126563 + 0.379035i
\(87\) −2.58119 −0.276732
\(88\) 0.309820 + 0.213778i 0.0330269 + 0.0227888i
\(89\) −14.1306 −1.49784 −0.748921 0.662659i \(-0.769428\pi\)
−0.748921 + 0.662659i \(0.769428\pi\)
\(90\) 0.761306 + 2.27997i 0.0802487 + 0.240330i
\(91\) 1.27938i 0.134116i
\(92\) 1.59875 1.20166i 0.166682 0.125282i
\(93\) 4.37283i 0.453441i
\(94\) −0.740549 + 0.247277i −0.0763818 + 0.0255046i
\(95\) 2.15224 0.220815
\(96\) 5.65220 0.229326i 0.576876 0.0234055i
\(97\) 5.11325 0.519172 0.259586 0.965720i \(-0.416414\pi\)
0.259586 + 0.965720i \(0.416414\pi\)
\(98\) −1.56978 + 0.524166i −0.158572 + 0.0529487i
\(99\) 0.133083i 0.0133754i
\(100\) 3.37507 2.53678i 0.337507 0.253678i
\(101\) 3.26595i 0.324974i 0.986711 + 0.162487i \(0.0519515\pi\)
−0.986711 + 0.162487i \(0.948048\pi\)
\(102\) −1.66806 4.99554i −0.165162 0.494632i
\(103\) −12.0290 −1.18525 −0.592624 0.805479i \(-0.701908\pi\)
−0.592624 + 0.805479i \(0.701908\pi\)
\(104\) −1.23356 0.851167i −0.120961 0.0834638i
\(105\) 4.10387 0.400497
\(106\) 4.76030 + 14.2563i 0.462362 + 1.38469i
\(107\) 18.5502i 1.79332i −0.442724 0.896658i \(-0.645988\pi\)
0.442724 0.896658i \(-0.354012\pi\)
\(108\) −1.20166 1.59875i −0.115630 0.153840i
\(109\) 6.35506i 0.608704i 0.952560 + 0.304352i \(0.0984400\pi\)
−0.952560 + 0.304352i \(0.901560\pi\)
\(110\) 0.303427 0.101317i 0.0289306 0.00966021i
\(111\) −3.36341 −0.319241
\(112\) 2.68498 9.27723i 0.253707 0.876615i
\(113\) −3.48804 −0.328127 −0.164063 0.986450i \(-0.552460\pi\)
−0.164063 + 0.986450i \(0.552460\pi\)
\(114\) −1.69857 + 0.567169i −0.159086 + 0.0531203i
\(115\) 1.69969i 0.158497i
\(116\) 3.10171 + 4.12668i 0.287986 + 0.383153i
\(117\) 0.529878i 0.0489872i
\(118\) −1.61141 4.82588i −0.148342 0.444258i
\(119\) −8.99179 −0.824276
\(120\) 2.73029 3.95689i 0.249240 0.361213i
\(121\) 10.9823 0.998390
\(122\) 3.02405 + 9.05647i 0.273784 + 0.819935i
\(123\) 5.68297i 0.512416i
\(124\) 6.99107 5.25465i 0.627817 0.471881i
\(125\) 12.0866i 1.08106i
\(126\) −3.23881 + 1.08147i −0.288537 + 0.0963452i
\(127\) 9.10511 0.807948 0.403974 0.914770i \(-0.367629\pi\)
0.403974 + 0.914770i \(0.367629\pi\)
\(128\) −7.15866 8.76091i −0.632742 0.774363i
\(129\) −2.62040 −0.230713
\(130\) −1.20811 + 0.403399i −0.105958 + 0.0353804i
\(131\) 0.553501i 0.0483596i 0.999708 + 0.0241798i \(0.00769742\pi\)
−0.999708 + 0.0241798i \(0.992303\pi\)
\(132\) −0.212767 + 0.159921i −0.0185190 + 0.0139193i
\(133\) 3.05736i 0.265107i
\(134\) 0.181603 + 0.543867i 0.0156881 + 0.0469829i
\(135\) −1.69969 −0.146286
\(136\) −5.98220 + 8.66975i −0.512969 + 0.743425i
\(137\) −12.3118 −1.05187 −0.525933 0.850526i \(-0.676284\pi\)
−0.525933 + 0.850526i \(0.676284\pi\)
\(138\) 0.447910 + 1.34141i 0.0381286 + 0.114188i
\(139\) 6.84557i 0.580633i −0.956931 0.290317i \(-0.906239\pi\)
0.956931 0.290317i \(-0.0937607\pi\)
\(140\) −4.93146 6.56108i −0.416784 0.554513i
\(141\) 0.552068i 0.0464925i
\(142\) −7.55203 + 2.52170i −0.633752 + 0.211616i
\(143\) 0.0705179 0.00589700
\(144\) −1.11203 + 3.84232i −0.0926690 + 0.320193i
\(145\) 4.38721 0.364338
\(146\) −11.6205 + 3.88020i −0.961720 + 0.321128i
\(147\) 1.17025i 0.0965205i
\(148\) 4.04168 + 5.37727i 0.332224 + 0.442009i
\(149\) 8.52131i 0.698093i 0.937105 + 0.349046i \(0.113494\pi\)
−0.937105 + 0.349046i \(0.886506\pi\)
\(150\) 0.945566 + 2.83180i 0.0772051 + 0.231215i
\(151\) 3.58823 0.292006 0.146003 0.989284i \(-0.453359\pi\)
0.146003 + 0.989284i \(0.453359\pi\)
\(152\) 2.94787 + 2.03405i 0.239104 + 0.164983i
\(153\) 3.72410 0.301075
\(154\) 0.143926 + 0.431032i 0.0115979 + 0.0347336i
\(155\) 7.43243i 0.596987i
\(156\) 0.847144 0.636732i 0.0678258 0.0509794i
\(157\) 5.46190i 0.435907i 0.975959 + 0.217953i \(0.0699381\pi\)
−0.975959 + 0.217953i \(0.930062\pi\)
\(158\) −3.72517 + 1.24387i −0.296359 + 0.0989572i
\(159\) −10.6278 −0.842841
\(160\) −9.60698 + 0.389782i −0.759498 + 0.0308150i
\(161\) 2.41449 0.190288
\(162\) 1.34141 0.447910i 0.105391 0.0351911i
\(163\) 20.4988i 1.60559i 0.596253 + 0.802797i \(0.296656\pi\)
−0.596253 + 0.802797i \(0.703344\pi\)
\(164\) −9.08566 + 6.82899i −0.709471 + 0.533255i
\(165\) 0.226200i 0.0176096i
\(166\) 0.806673 + 2.41584i 0.0626100 + 0.187506i
\(167\) 22.8294 1.76659 0.883295 0.468817i \(-0.155320\pi\)
0.883295 + 0.468817i \(0.155320\pi\)
\(168\) 5.62096 + 3.87851i 0.433667 + 0.299233i
\(169\) 12.7192 0.978402
\(170\) 2.83518 + 8.49085i 0.217448 + 0.651218i
\(171\) 1.26626i 0.0968332i
\(172\) 3.14882 + 4.18937i 0.240096 + 0.319436i
\(173\) 23.7819i 1.80810i −0.427423 0.904052i \(-0.640578\pi\)
0.427423 0.904052i \(-0.359422\pi\)
\(174\) −3.46243 + 1.15614i −0.262486 + 0.0876466i
\(175\) 5.09714 0.385307
\(176\) 0.511348 + 0.147992i 0.0385443 + 0.0111553i
\(177\) 3.59762 0.270414
\(178\) −18.9549 + 6.32924i −1.42073 + 0.474396i
\(179\) 5.89695i 0.440758i 0.975414 + 0.220379i \(0.0707295\pi\)
−0.975414 + 0.220379i \(0.929271\pi\)
\(180\) 2.04245 + 2.71738i 0.152235 + 0.202542i
\(181\) 20.1013i 1.49412i 0.664757 + 0.747060i \(0.268535\pi\)
−0.664757 + 0.747060i \(0.731465\pi\)
\(182\) −0.573048 1.71618i −0.0424771 0.127211i
\(183\) −6.75147 −0.499083
\(184\) 1.60635 2.32801i 0.118421 0.171623i
\(185\) 5.71675 0.420304
\(186\) 1.95863 + 5.86575i 0.143614 + 0.430097i
\(187\) 0.495615i 0.0362430i
\(188\) −0.882621 + 0.663398i −0.0643718 + 0.0483833i
\(189\) 2.41449i 0.175628i
\(190\) 2.88704 0.964010i 0.209448 0.0699366i
\(191\) 24.9549 1.80568 0.902838 0.429981i \(-0.141480\pi\)
0.902838 + 0.429981i \(0.141480\pi\)
\(192\) 7.47920 2.83930i 0.539765 0.204909i
\(193\) 25.4125 1.82923 0.914617 0.404322i \(-0.132493\pi\)
0.914617 + 0.404322i \(0.132493\pi\)
\(194\) 6.85896 2.29028i 0.492445 0.164432i
\(195\) 0.900626i 0.0644952i
\(196\) −1.87094 + 1.40624i −0.133639 + 0.100446i
\(197\) 16.1816i 1.15289i −0.817137 0.576444i \(-0.804440\pi\)
0.817137 0.576444i \(-0.195560\pi\)
\(198\) −0.0596093 0.178519i −0.00423625 0.0126868i
\(199\) −3.13607 −0.222310 −0.111155 0.993803i \(-0.535455\pi\)
−0.111155 + 0.993803i \(0.535455\pi\)
\(200\) 3.39110 4.91459i 0.239787 0.347514i
\(201\) −0.405445 −0.0285979
\(202\) 1.46285 + 4.38097i 0.102926 + 0.308244i
\(203\) 6.23224i 0.437418i
\(204\) −4.47510 5.95392i −0.313320 0.416858i
\(205\) 9.65926i 0.674632i
\(206\) −16.1358 + 5.38789i −1.12423 + 0.375392i
\(207\) −1.00000 −0.0695048
\(208\) −2.03596 0.589239i −0.141168 0.0408564i
\(209\) −0.168518 −0.0116566
\(210\) 5.50497 1.83816i 0.379879 0.126845i
\(211\) 15.2931i 1.05282i −0.850231 0.526410i \(-0.823538\pi\)
0.850231 0.526410i \(-0.176462\pi\)
\(212\) 12.7710 + 16.9913i 0.877117 + 1.16697i
\(213\) 5.62993i 0.385756i
\(214\) −8.30882 24.8834i −0.567979 1.70099i
\(215\) 4.45385 0.303750
\(216\) −2.32801 1.60635i −0.158401 0.109298i
\(217\) 10.5581 0.716733
\(218\) 2.84649 + 8.52473i 0.192789 + 0.577368i
\(219\) 8.66291i 0.585385i
\(220\) 0.361638 0.271815i 0.0243816 0.0183258i
\(221\) 1.97332i 0.132740i
\(222\) −4.51171 + 1.50651i −0.302806 + 0.101110i
\(223\) 0.888570 0.0595030 0.0297515 0.999557i \(-0.490528\pi\)
0.0297515 + 0.999557i \(0.490528\pi\)
\(224\) −0.553705 13.6472i −0.0369959 0.911840i
\(225\) −2.11106 −0.140738
\(226\) −4.67888 + 1.56232i −0.311234 + 0.103924i
\(227\) 11.0383i 0.732636i 0.930490 + 0.366318i \(0.119382\pi\)
−0.930490 + 0.366318i \(0.880618\pi\)
\(228\) −2.02444 + 1.52161i −0.134071 + 0.100771i
\(229\) 13.7109i 0.906040i −0.891500 0.453020i \(-0.850347\pi\)
0.891500 0.453020i \(-0.149653\pi\)
\(230\) −0.761306 2.27997i −0.0501990 0.150337i
\(231\) −0.321328 −0.0211418
\(232\) 6.00904 + 4.14628i 0.394513 + 0.272217i
\(233\) −22.0260 −1.44297 −0.721487 0.692428i \(-0.756541\pi\)
−0.721487 + 0.692428i \(0.756541\pi\)
\(234\) 0.237337 + 0.710782i 0.0155152 + 0.0464653i
\(235\) 0.938343i 0.0612108i
\(236\) −4.32311 5.75171i −0.281411 0.374404i
\(237\) 2.77706i 0.180390i
\(238\) −12.0617 + 4.02751i −0.781841 + 0.261065i
\(239\) 14.9020 0.963931 0.481966 0.876190i \(-0.339923\pi\)
0.481966 + 0.876190i \(0.339923\pi\)
\(240\) 1.89010 6.53073i 0.122005 0.421557i
\(241\) −14.6875 −0.946104 −0.473052 0.881035i \(-0.656848\pi\)
−0.473052 + 0.881035i \(0.656848\pi\)
\(242\) 14.7317 4.91907i 0.946992 0.316210i
\(243\) 1.00000i 0.0641500i
\(244\) 8.11296 + 10.7939i 0.519379 + 0.691011i
\(245\) 1.98906i 0.127076i
\(246\) −2.54546 7.62318i −0.162292 0.486036i
\(247\) 0.670962 0.0426923
\(248\) 7.02428 10.1800i 0.446042 0.646430i
\(249\) −1.80097 −0.114132
\(250\) −5.41370 16.2130i −0.342392 1.02540i
\(251\) 16.1350i 1.01843i −0.860638 0.509217i \(-0.829935\pi\)
0.860638 0.509217i \(-0.170065\pi\)
\(252\) −3.86017 + 2.90139i −0.243168 + 0.182771i
\(253\) 0.133083i 0.00836687i
\(254\) 12.2137 4.07827i 0.766354 0.255893i
\(255\) −6.32980 −0.396388
\(256\) −13.5268 8.54553i −0.845424 0.534096i
\(257\) −10.1862 −0.635399 −0.317700 0.948191i \(-0.602910\pi\)
−0.317700 + 0.948191i \(0.602910\pi\)
\(258\) −3.51502 + 1.17370i −0.218836 + 0.0730714i
\(259\) 8.12092i 0.504610i
\(260\) −1.43988 + 1.08225i −0.0892975 + 0.0671180i
\(261\) 2.58119i 0.159771i
\(262\) 0.247919 + 0.742471i 0.0153165 + 0.0458700i
\(263\) −3.10560 −0.191499 −0.0957496 0.995405i \(-0.530525\pi\)
−0.0957496 + 0.995405i \(0.530525\pi\)
\(264\) −0.213778 + 0.309820i −0.0131571 + 0.0190681i
\(265\) 18.0640 1.10966
\(266\) 1.36942 + 4.10118i 0.0839647 + 0.251459i
\(267\) 14.1306i 0.864779i
\(268\) 0.487206 + 0.648206i 0.0297609 + 0.0395955i
\(269\) 3.56163i 0.217156i −0.994088 0.108578i \(-0.965370\pi\)
0.994088 0.108578i \(-0.0346297\pi\)
\(270\) −2.27997 + 0.761306i −0.138755 + 0.0463316i
\(271\) 19.2112 1.16700 0.583498 0.812115i \(-0.301684\pi\)
0.583498 + 0.812115i \(0.301684\pi\)
\(272\) −4.14130 + 14.3092i −0.251103 + 0.867620i
\(273\) 1.27938 0.0774318
\(274\) −16.5151 + 5.51456i −0.997715 + 0.333147i
\(275\) 0.280947i 0.0169418i
\(276\) 1.20166 + 1.59875i 0.0723314 + 0.0962337i
\(277\) 4.58461i 0.275463i −0.990470 0.137731i \(-0.956019\pi\)
0.990470 0.137731i \(-0.0439811\pi\)
\(278\) −3.06620 9.18270i −0.183898 0.550742i
\(279\) −4.37283 −0.261794
\(280\) −9.55387 6.59225i −0.570953 0.393962i
\(281\) −8.02427 −0.478688 −0.239344 0.970935i \(-0.576932\pi\)
−0.239344 + 0.970935i \(0.576932\pi\)
\(282\) −0.247277 0.740549i −0.0147251 0.0440991i
\(283\) 24.9437i 1.48275i −0.671090 0.741375i \(-0.734174\pi\)
0.671090 0.741375i \(-0.265826\pi\)
\(284\) −9.00087 + 6.76525i −0.534103 + 0.401444i
\(285\) 2.15224i 0.127488i
\(286\) 0.0945933 0.0315856i 0.00559342 0.00186770i
\(287\) −13.7215 −0.809952
\(288\) 0.229326 + 5.65220i 0.0135132 + 0.333059i
\(289\) −3.13109 −0.184182
\(290\) 5.88504 1.96507i 0.345581 0.115393i
\(291\) 5.11325i 0.299744i
\(292\) −13.8499 + 10.4099i −0.810502 + 0.609192i
\(293\) 0.0719030i 0.00420062i 0.999998 + 0.00210031i \(0.000668550\pi\)
−0.999998 + 0.00210031i \(0.999331\pi\)
\(294\) −0.524166 1.56978i −0.0305700 0.0915515i
\(295\) −6.11483 −0.356019
\(296\) 7.83007 + 5.40281i 0.455114 + 0.314032i
\(297\) 0.133083 0.00772228
\(298\) 3.81678 + 11.4306i 0.221100 + 0.662154i
\(299\) 0.529878i 0.0306436i
\(300\) 2.53678 + 3.37507i 0.146461 + 0.194860i
\(301\) 6.32691i 0.364677i
\(302\) 4.81328 1.60720i 0.276973 0.0924841i
\(303\) −3.26595 −0.187624
\(304\) 4.86536 + 1.40811i 0.279048 + 0.0807609i
\(305\) 11.4754 0.657078
\(306\) 4.99554 1.66806i 0.285576 0.0953566i
\(307\) 1.58805i 0.0906350i −0.998973 0.0453175i \(-0.985570\pi\)
0.998973 0.0453175i \(-0.0144299\pi\)
\(308\) 0.386127 + 0.513724i 0.0220016 + 0.0292722i
\(309\) 12.0290i 0.684304i
\(310\) −3.32906 9.96993i −0.189078 0.566254i
\(311\) 19.9240 1.12979 0.564893 0.825164i \(-0.308917\pi\)
0.564893 + 0.825164i \(0.308917\pi\)
\(312\) 0.851167 1.23356i 0.0481879 0.0698367i
\(313\) −27.8661 −1.57509 −0.787543 0.616260i \(-0.788647\pi\)
−0.787543 + 0.616260i \(0.788647\pi\)
\(314\) 2.44644 + 7.32664i 0.138060 + 0.413466i
\(315\) 4.10387i 0.231227i
\(316\) −4.43984 + 3.33708i −0.249760 + 0.187726i
\(317\) 20.1696i 1.13284i −0.824118 0.566418i \(-0.808329\pi\)
0.824118 0.566418i \(-0.191671\pi\)
\(318\) −14.2563 + 4.76030i −0.799451 + 0.266945i
\(319\) −0.343513 −0.0192330
\(320\) −12.7123 + 4.82591i −0.710639 + 0.269777i
\(321\) 18.5502 1.03537
\(322\) 3.23881 1.08147i 0.180492 0.0602681i
\(323\) 4.71567i 0.262387i
\(324\) 1.59875 1.20166i 0.0888197 0.0667589i
\(325\) 1.11861i 0.0620491i
\(326\) 9.18163 + 27.4973i 0.508524 + 1.52294i
\(327\) −6.35506 −0.351436
\(328\) −9.12882 + 13.2300i −0.504055 + 0.730506i
\(329\) −1.33296 −0.0734886
\(330\) 0.101317 + 0.303427i 0.00557732 + 0.0167031i
\(331\) 31.0193i 1.70498i −0.522747 0.852488i \(-0.675093\pi\)
0.522747 0.852488i \(-0.324907\pi\)
\(332\) 2.16416 + 2.87931i 0.118774 + 0.158023i
\(333\) 3.36341i 0.184314i
\(334\) 30.6235 10.2255i 1.67565 0.559514i
\(335\) 0.689129 0.0376511
\(336\) 9.27723 + 2.68498i 0.506114 + 0.146478i
\(337\) 2.10280 0.114547 0.0572734 0.998359i \(-0.481759\pi\)
0.0572734 + 0.998359i \(0.481759\pi\)
\(338\) 17.0617 5.69707i 0.928033 0.309880i
\(339\) 3.48804i 0.189444i
\(340\) 7.60627 + 10.1198i 0.412508 + 0.548823i
\(341\) 0.581950i 0.0315144i
\(342\) −0.567169 1.69857i −0.0306690 0.0918481i
\(343\) −19.7270 −1.06516
\(344\) 6.10032 + 4.20927i 0.328907 + 0.226948i
\(345\) 1.69969 0.0915081
\(346\) −10.6521 31.9012i −0.572663 1.71502i
\(347\) 27.5984i 1.48156i 0.671748 + 0.740780i \(0.265544\pi\)
−0.671748 + 0.740780i \(0.734456\pi\)
\(348\) −4.12668 + 3.10171i −0.221213 + 0.166269i
\(349\) 31.2355i 1.67200i −0.548729 0.836000i \(-0.684888\pi\)
0.548729 0.836000i \(-0.315112\pi\)
\(350\) 6.83735 2.28306i 0.365471 0.122035i
\(351\) −0.529878 −0.0282828
\(352\) 0.752214 0.0305194i 0.0400931 0.00162669i
\(353\) −0.185500 −0.00987319 −0.00493660 0.999988i \(-0.501571\pi\)
−0.00493660 + 0.999988i \(0.501571\pi\)
\(354\) 4.82588 1.61141i 0.256493 0.0856454i
\(355\) 9.56911i 0.507876i
\(356\) −22.5914 + 16.9802i −1.19734 + 0.899948i
\(357\) 8.99179i 0.475896i
\(358\) 2.64130 + 7.91021i 0.139597 + 0.418068i
\(359\) 15.2061 0.802547 0.401274 0.915958i \(-0.368568\pi\)
0.401274 + 0.915958i \(0.368568\pi\)
\(360\) 3.95689 + 2.73029i 0.208547 + 0.143899i
\(361\) 17.3966 0.915610
\(362\) 9.00358 + 26.9641i 0.473218 + 1.41720i
\(363\) 10.9823i 0.576421i
\(364\) −1.53738 2.04542i −0.0805808 0.107209i
\(365\) 14.7242i 0.770702i
\(366\) −9.05647 + 3.02405i −0.473390 + 0.158069i
\(367\) 17.8962 0.934175 0.467088 0.884211i \(-0.345303\pi\)
0.467088 + 0.884211i \(0.345303\pi\)
\(368\) 1.11203 3.84232i 0.0579685 0.200295i
\(369\) 5.68297 0.295843
\(370\) 7.66850 2.56059i 0.398666 0.133119i
\(371\) 25.6607i 1.33224i
\(372\) 5.25465 + 6.99107i 0.272441 + 0.362470i
\(373\) 13.1514i 0.680953i −0.940253 0.340476i \(-0.889412\pi\)
0.940253 0.340476i \(-0.110588\pi\)
\(374\) −0.221991 0.664822i −0.0114789 0.0343772i
\(375\) 12.0866 0.624148
\(376\) −0.886813 + 1.28522i −0.0457339 + 0.0662803i
\(377\) 1.36771 0.0704408
\(378\) −1.08147 3.23881i −0.0556249 0.166587i
\(379\) 3.51471i 0.180539i 0.995917 + 0.0902693i \(0.0287728\pi\)
−0.995917 + 0.0902693i \(0.971227\pi\)
\(380\) 3.44091 2.58626i 0.176515 0.132672i
\(381\) 9.10511i 0.466469i
\(382\) 33.4748 11.1776i 1.71272 0.571894i
\(383\) −4.19234 −0.214218 −0.107109 0.994247i \(-0.534159\pi\)
−0.107109 + 0.994247i \(0.534159\pi\)
\(384\) 8.76091 7.15866i 0.447078 0.365314i
\(385\) 0.546157 0.0278347
\(386\) 34.0886 11.3825i 1.73506 0.579355i
\(387\) 2.62040i 0.133202i
\(388\) 8.17483 6.14439i 0.415014 0.311934i
\(389\) 3.05078i 0.154681i 0.997005 + 0.0773404i \(0.0246428\pi\)
−0.997005 + 0.0773404i \(0.975357\pi\)
\(390\) −0.403399 1.20811i −0.0204269 0.0611749i
\(391\) −3.72410 −0.188336
\(392\) −1.87983 + 2.72436i −0.0949456 + 0.137601i
\(393\) −0.553501 −0.0279204
\(394\) −7.24788 21.7061i −0.365143 1.09354i
\(395\) 4.72014i 0.237496i
\(396\) −0.159921 0.212767i −0.00803632 0.0106920i
\(397\) 12.9942i 0.652162i −0.945342 0.326081i \(-0.894272\pi\)
0.945342 0.326081i \(-0.105728\pi\)
\(398\) −4.20675 + 1.40468i −0.210866 + 0.0704101i
\(399\) −3.05736 −0.153060
\(400\) 2.34756 8.11138i 0.117378 0.405569i
\(401\) 17.5289 0.875350 0.437675 0.899133i \(-0.355802\pi\)
0.437675 + 0.899133i \(0.355802\pi\)
\(402\) −0.543867 + 0.181603i −0.0271256 + 0.00905751i
\(403\) 2.31706i 0.115421i
\(404\) 3.92455 + 5.22144i 0.195254 + 0.259776i
\(405\) 1.69969i 0.0844581i
\(406\) 2.79148 + 8.35998i 0.138539 + 0.414899i
\(407\) −0.447614 −0.0221874
\(408\) −8.66975 5.98220i −0.429217 0.296163i
\(409\) 12.5394 0.620033 0.310016 0.950731i \(-0.399665\pi\)
0.310016 + 0.950731i \(0.399665\pi\)
\(410\) 4.32648 + 12.9570i 0.213669 + 0.639902i
\(411\) 12.3118i 0.607295i
\(412\) −19.2314 + 14.4547i −0.947461 + 0.712133i
\(413\) 8.68641i 0.427430i
\(414\) −1.34141 + 0.447910i −0.0659266 + 0.0220136i
\(415\) 3.06109 0.150263
\(416\) −2.99498 + 0.121515i −0.146841 + 0.00595775i
\(417\) 6.84557 0.335229
\(418\) −0.226051 + 0.0754807i −0.0110565 + 0.00369188i
\(419\) 29.9688i 1.46407i 0.681265 + 0.732037i \(0.261430\pi\)
−0.681265 + 0.732037i \(0.738570\pi\)
\(420\) 6.56108 4.93146i 0.320148 0.240631i
\(421\) 36.3642i 1.77228i −0.463415 0.886141i \(-0.653376\pi\)
0.463415 0.886141i \(-0.346624\pi\)
\(422\) −6.84993 20.5143i −0.333449 0.998620i
\(423\) 0.552068 0.0268425
\(424\) 24.7417 + 17.0720i 1.20156 + 0.829088i
\(425\) −7.86181 −0.381354
\(426\) −2.52170 7.55203i −0.122177 0.365897i
\(427\) 16.3013i 0.788877i
\(428\) −22.2910 29.6572i −1.07748 1.43354i
\(429\) 0.0705179i 0.00340463i
\(430\) 5.97444 1.99492i 0.288113 0.0962038i
\(431\) −1.24232 −0.0598405 −0.0299203 0.999552i \(-0.509525\pi\)
−0.0299203 + 0.999552i \(0.509525\pi\)
\(432\) −3.84232 1.11203i −0.184864 0.0535025i
\(433\) −29.4685 −1.41616 −0.708082 0.706130i \(-0.750439\pi\)
−0.708082 + 0.706130i \(0.750439\pi\)
\(434\) 14.1628 4.72909i 0.679835 0.227004i
\(435\) 4.38721i 0.210351i
\(436\) 7.63662 + 10.1602i 0.365728 + 0.486584i
\(437\) 1.26626i 0.0605733i
\(438\) −3.88020 11.6205i −0.185403 0.555249i
\(439\) −32.0586 −1.53007 −0.765037 0.643987i \(-0.777279\pi\)
−0.765037 + 0.643987i \(0.777279\pi\)
\(440\) 0.363356 0.526597i 0.0173223 0.0251045i
\(441\) 1.17025 0.0557261
\(442\) 0.883867 + 2.64702i 0.0420413 + 0.125906i
\(443\) 31.8663i 1.51401i 0.653407 + 0.757007i \(0.273339\pi\)
−0.653407 + 0.757007i \(0.726661\pi\)
\(444\) −5.37727 + 4.04168i −0.255194 + 0.191810i
\(445\) 24.0176i 1.13854i
\(446\) 1.19194 0.397999i 0.0564398 0.0188458i
\(447\) −8.52131 −0.403044
\(448\) −6.85545 18.0584i −0.323889 0.853181i
\(449\) 27.1974 1.28352 0.641762 0.766904i \(-0.278204\pi\)
0.641762 + 0.766904i \(0.278204\pi\)
\(450\) −2.83180 + 0.945566i −0.133492 + 0.0445744i
\(451\) 0.756308i 0.0356131i
\(452\) −5.57651 + 4.19143i −0.262297 + 0.197148i
\(453\) 3.58823i 0.168590i
\(454\) 4.94415 + 14.8068i 0.232040 + 0.694919i
\(455\) −2.17455 −0.101945
\(456\) −2.03405 + 2.94787i −0.0952531 + 0.138046i
\(457\) −12.7673 −0.597231 −0.298616 0.954373i \(-0.596525\pi\)
−0.298616 + 0.954373i \(0.596525\pi\)
\(458\) −6.14123 18.3919i −0.286961 0.859396i
\(459\) 3.72410i 0.173826i
\(460\) −2.04245 2.71738i −0.0952295 0.126699i
\(461\) 26.7601i 1.24634i 0.782086 + 0.623171i \(0.214156\pi\)
−0.782086 + 0.623171i \(0.785844\pi\)
\(462\) −0.431032 + 0.143926i −0.0200534 + 0.00669604i
\(463\) −37.9494 −1.76366 −0.881828 0.471570i \(-0.843687\pi\)
−0.881828 + 0.471570i \(0.843687\pi\)
\(464\) 9.91773 + 2.87035i 0.460419 + 0.133253i
\(465\) 7.43243 0.344671
\(466\) −29.5459 + 9.86567i −1.36869 + 0.457019i
\(467\) 1.64359i 0.0760564i 0.999277 + 0.0380282i \(0.0121077\pi\)
−0.999277 + 0.0380282i \(0.987892\pi\)
\(468\) 0.636732 + 0.847144i 0.0294330 + 0.0391592i
\(469\) 0.978941i 0.0452033i
\(470\) 0.420293 + 1.25870i 0.0193867 + 0.0580596i
\(471\) −5.46190 −0.251671
\(472\) −8.37531 5.77903i −0.385505 0.266001i
\(473\) −0.348731 −0.0160347
\(474\) −1.24387 3.72517i −0.0571330 0.171103i
\(475\) 2.67315i 0.122653i
\(476\) −14.3757 + 10.8051i −0.658907 + 0.495250i
\(477\) 10.6278i 0.486614i
\(478\) 19.9897 6.67476i 0.914307 0.305296i
\(479\) 4.62787 0.211453 0.105726 0.994395i \(-0.466283\pi\)
0.105726 + 0.994395i \(0.466283\pi\)
\(480\) −0.389782 9.60698i −0.0177910 0.438497i
\(481\) 1.78220 0.0812612
\(482\) −19.7019 + 6.57866i −0.897397 + 0.299650i
\(483\) 2.41449i 0.109863i
\(484\) 17.5580 13.1970i 0.798090 0.599862i
\(485\) 8.69093i 0.394635i
\(486\) 0.447910 + 1.34141i 0.0203176 + 0.0608475i
\(487\) 14.7409 0.667972 0.333986 0.942578i \(-0.391606\pi\)
0.333986 + 0.942578i \(0.391606\pi\)
\(488\) 15.7175 + 10.8452i 0.711498 + 0.490939i
\(489\) −20.4988 −0.926990
\(490\) 0.890918 + 2.66814i 0.0402476 + 0.120534i
\(491\) 1.66845i 0.0752961i 0.999291 + 0.0376480i \(0.0119866\pi\)
−0.999291 + 0.0376480i \(0.988013\pi\)
\(492\) −6.82899 9.08566i −0.307875 0.409613i
\(493\) 9.61259i 0.432929i
\(494\) 0.900034 0.300530i 0.0404944 0.0135215i
\(495\) −0.226200 −0.0101669
\(496\) 4.86271 16.8018i 0.218342 0.754422i
\(497\) −13.5934 −0.609747
\(498\) −2.41584 + 0.806673i −0.108256 + 0.0361479i
\(499\) 0.891210i 0.0398960i 0.999801 + 0.0199480i \(0.00635007\pi\)
−0.999801 + 0.0199480i \(0.993650\pi\)
\(500\) −14.5240 19.3235i −0.649531 0.864172i
\(501\) 22.8294i 1.01994i
\(502\) −7.22703 21.6437i −0.322558 0.966004i
\(503\) 15.8912 0.708555 0.354277 0.935140i \(-0.384727\pi\)
0.354277 + 0.935140i \(0.384727\pi\)
\(504\) −3.87851 + 5.62096i −0.172762 + 0.250377i
\(505\) 5.55108 0.247020
\(506\) 0.0596093 + 0.178519i 0.00264996 + 0.00793614i
\(507\) 12.7192i 0.564881i
\(508\) 14.5568 10.9412i 0.645855 0.485439i
\(509\) 14.3527i 0.636172i 0.948062 + 0.318086i \(0.103040\pi\)
−0.948062 + 0.318086i \(0.896960\pi\)
\(510\) −8.49085 + 2.83518i −0.375981 + 0.125544i
\(511\) −20.9165 −0.925291
\(512\) −21.9726 5.40427i −0.971060 0.238837i
\(513\) 1.26626 0.0559067
\(514\) −13.6639 + 4.56251i −0.602689 + 0.201244i
\(515\) 20.4455i 0.900935i
\(516\) −4.18937 + 3.14882i −0.184427 + 0.138619i
\(517\) 0.0734711i 0.00323125i
\(518\) 3.63744 + 10.8935i 0.159820 + 0.478632i
\(519\) 23.7819 1.04391
\(520\) −1.44672 + 2.09667i −0.0634428 + 0.0919451i
\(521\) −23.8534 −1.04503 −0.522517 0.852629i \(-0.675007\pi\)
−0.522517 + 0.852629i \(0.675007\pi\)
\(522\) −1.15614 3.46243i −0.0506028 0.151546i
\(523\) 38.6389i 1.68956i 0.535114 + 0.844780i \(0.320269\pi\)
−0.535114 + 0.844780i \(0.679731\pi\)
\(524\) 0.665120 + 0.884912i 0.0290559 + 0.0386576i
\(525\) 5.09714i 0.222457i
\(526\) −4.16587 + 1.39103i −0.181641 + 0.0606516i
\(527\) −16.2848 −0.709378
\(528\) −0.147992 + 0.511348i −0.00644054 + 0.0222536i
\(529\) 1.00000 0.0434783
\(530\) 24.2312 8.09103i 1.05253 0.351452i
\(531\) 3.59762i 0.156123i
\(532\) 3.67391 + 4.88797i 0.159284 + 0.211921i
\(533\) 3.01128i 0.130433i
\(534\) −6.32924 18.9549i −0.273893 0.820260i
\(535\) −31.5295 −1.36314
\(536\) 0.943881 + 0.651285i 0.0407694 + 0.0281312i
\(537\) −5.89695 −0.254472
\(538\) −1.59529 4.77759i −0.0687777 0.205977i
\(539\) 0.155741i 0.00670822i
\(540\) −2.71738 + 2.04245i −0.116937 + 0.0878928i
\(541\) 22.2151i 0.955101i −0.878604 0.477551i \(-0.841525\pi\)
0.878604 0.477551i \(-0.158475\pi\)
\(542\) 25.7700 8.60487i 1.10692 0.369611i
\(543\) −20.1013 −0.862631
\(544\) 0.854032 + 21.0494i 0.0366163 + 0.902484i
\(545\) 10.8016 0.462690
\(546\) 1.71618 0.573048i 0.0734455 0.0245242i
\(547\) 20.8590i 0.891867i 0.895066 + 0.445934i \(0.147128\pi\)
−0.895066 + 0.445934i \(0.852872\pi\)
\(548\) −19.6835 + 14.7946i −0.840838 + 0.631993i
\(549\) 6.75147i 0.288146i
\(550\) 0.125839 + 0.376865i 0.00536579 + 0.0160696i
\(551\) −3.26845 −0.139241
\(552\) 2.32801 + 1.60635i 0.0990868 + 0.0683707i
\(553\) −6.70518 −0.285133
\(554\) −2.05349 6.14984i −0.0872445 0.261282i
\(555\) 5.71675i 0.242663i
\(556\) −8.22604 10.9444i −0.348862 0.464145i
\(557\) 7.01465i 0.297220i 0.988896 + 0.148610i \(0.0474799\pi\)
−0.988896 + 0.148610i \(0.952520\pi\)
\(558\) −5.86575 + 1.95863i −0.248317 + 0.0829154i
\(559\) 1.38849 0.0587268
\(560\) −15.7684 4.56362i −0.666336 0.192848i
\(561\) 0.495615 0.0209249
\(562\) −10.7638 + 3.59415i −0.454045 + 0.151610i
\(563\) 24.0352i 1.01296i 0.862251 + 0.506481i \(0.169054\pi\)
−0.862251 + 0.506481i \(0.830946\pi\)
\(564\) −0.663398 0.882621i −0.0279341 0.0371651i
\(565\) 5.92857i 0.249417i
\(566\) −11.1725 33.4597i −0.469617 1.40642i
\(567\) 2.41449 0.101399
\(568\) −9.04362 + 13.1065i −0.379462 + 0.549938i
\(569\) 22.4691 0.941955 0.470977 0.882145i \(-0.343901\pi\)
0.470977 + 0.882145i \(0.343901\pi\)
\(570\) 0.964010 + 2.88704i 0.0403779 + 0.120925i
\(571\) 21.3224i 0.892313i −0.894955 0.446156i \(-0.852793\pi\)
0.894955 0.446156i \(-0.147207\pi\)
\(572\) 0.112741 0.0847385i 0.00471393 0.00354309i
\(573\) 24.9549i 1.04251i
\(574\) −18.4061 + 6.14597i −0.768255 + 0.256528i
\(575\) 2.11106 0.0880375
\(576\) 2.83930 + 7.47920i 0.118304 + 0.311633i
\(577\) −5.43764 −0.226372 −0.113186 0.993574i \(-0.536106\pi\)
−0.113186 + 0.993574i \(0.536106\pi\)
\(578\) −4.20008 + 1.40245i −0.174700 + 0.0583341i
\(579\) 25.4125i 1.05611i
\(580\) 7.01407 5.27193i 0.291243 0.218905i
\(581\) 4.34843i 0.180403i
\(582\) 2.29028 + 6.85896i 0.0949350 + 0.284313i
\(583\) −1.41439 −0.0585779
\(584\) −13.9156 + 20.1674i −0.575833 + 0.834532i
\(585\) 0.900626 0.0372363
\(586\) 0.0322061 + 0.0964513i 0.00133042 + 0.00398437i
\(587\) 28.5498i 1.17838i −0.807995 0.589189i \(-0.799447\pi\)
0.807995 0.589189i \(-0.200553\pi\)
\(588\) −1.40624 1.87094i −0.0579924 0.0771563i
\(589\) 5.53713i 0.228153i
\(590\) −8.20248 + 2.73889i −0.337691 + 0.112758i
\(591\) 16.1816 0.665620
\(592\) 12.9233 + 3.74021i 0.531144 + 0.153722i
\(593\) −45.1524 −1.85419 −0.927094 0.374829i \(-0.877702\pi\)
−0.927094 + 0.374829i \(0.877702\pi\)
\(594\) 0.178519 0.0596093i 0.00732473 0.00244580i
\(595\) 15.2832i 0.626551i
\(596\) 10.2397 + 13.6235i 0.419435 + 0.558039i
\(597\) 3.13607i 0.128351i
\(598\) −0.237337 0.710782i −0.00970544 0.0290661i
\(599\) −14.8561 −0.607006 −0.303503 0.952831i \(-0.598156\pi\)
−0.303503 + 0.952831i \(0.598156\pi\)
\(600\) 4.91459 + 3.39110i 0.200637 + 0.138441i
\(601\) −26.7822 −1.09247 −0.546234 0.837633i \(-0.683939\pi\)
−0.546234 + 0.837633i \(0.683939\pi\)
\(602\) 2.83389 + 8.48698i 0.115501 + 0.345903i
\(603\) 0.405445i 0.0165110i
\(604\) 5.73670 4.31183i 0.233423 0.175446i
\(605\) 18.6665i 0.758899i
\(606\) −4.38097 + 1.46285i −0.177965 + 0.0594241i
\(607\) −18.6146 −0.755545 −0.377772 0.925898i \(-0.623310\pi\)
−0.377772 + 0.925898i \(0.623310\pi\)
\(608\) 7.15715 0.290386i 0.290261 0.0117767i
\(609\) −6.23224 −0.252543
\(610\) 15.3932 5.13993i 0.623251 0.208110i
\(611\) 0.292529i 0.0118344i
\(612\) 5.95392 4.47510i 0.240673 0.180895i
\(613\) 24.6603i 0.996022i 0.867171 + 0.498011i \(0.165936\pi\)
−0.867171 + 0.498011i \(0.834064\pi\)
\(614\) −0.711304 2.13023i −0.0287059 0.0859690i
\(615\) −9.65926 −0.389499
\(616\) 0.748056 + 0.516164i 0.0301400 + 0.0207969i
\(617\) 18.9235 0.761831 0.380916 0.924610i \(-0.375609\pi\)
0.380916 + 0.924610i \(0.375609\pi\)
\(618\) −5.38789 16.1358i −0.216733 0.649075i
\(619\) 42.8755i 1.72331i −0.507494 0.861655i \(-0.669428\pi\)
0.507494 0.861655i \(-0.330572\pi\)
\(620\) −8.93126 11.8826i −0.358688 0.477218i
\(621\) 1.00000i 0.0401286i
\(622\) 26.7262 8.92415i 1.07162 0.357826i
\(623\) −34.1182 −1.36692
\(624\) 0.589239 2.03596i 0.0235884 0.0815035i
\(625\) −9.98809 −0.399523
\(626\) −37.3798 + 12.4815i −1.49400 + 0.498861i
\(627\) 0.168518i 0.00672995i
\(628\) 6.56334 + 8.73223i 0.261906 + 0.348454i
\(629\) 12.5257i 0.499432i
\(630\) 1.83816 + 5.50497i 0.0732342 + 0.219323i
\(631\) 14.1106 0.561734 0.280867 0.959747i \(-0.409378\pi\)
0.280867 + 0.959747i \(0.409378\pi\)
\(632\) −4.46093 + 6.46504i −0.177446 + 0.257165i
\(633\) 15.2931 0.607846
\(634\) −9.03414 27.0556i −0.358791 1.07452i
\(635\) 15.4758i 0.614140i
\(636\) −16.9913 + 12.7710i −0.673748 + 0.506404i
\(637\) 0.620089i 0.0245688i
\(638\) −0.460791 + 0.153863i −0.0182429 + 0.00609148i
\(639\) 5.62993 0.222716
\(640\) −14.8908 + 12.1675i −0.588611 + 0.480962i
\(641\) −13.1583 −0.519722 −0.259861 0.965646i \(-0.583677\pi\)
−0.259861 + 0.965646i \(0.583677\pi\)
\(642\) 24.8834 8.30882i 0.982070 0.327923i
\(643\) 34.9534i 1.37843i 0.724559 + 0.689213i \(0.242043\pi\)
−0.724559 + 0.689213i \(0.757957\pi\)
\(644\) 3.86017 2.90139i 0.152112 0.114331i
\(645\) 4.45385i 0.175370i
\(646\) −2.11219 6.32564i −0.0831031 0.248879i
\(647\) 10.8981 0.428448 0.214224 0.976785i \(-0.431278\pi\)
0.214224 + 0.976785i \(0.431278\pi\)
\(648\) 1.60635 2.32801i 0.0631033 0.0914530i
\(649\) 0.478783 0.0187939
\(650\) −0.501034 1.50051i −0.0196522 0.0588547i
\(651\) 10.5581i 0.413806i
\(652\) 24.6326 + 32.7726i 0.964689 + 1.28347i
\(653\) 1.77561i 0.0694851i 0.999396 + 0.0347425i \(0.0110611\pi\)
−0.999396 + 0.0347425i \(0.988939\pi\)
\(654\) −8.52473 + 2.84649i −0.333343 + 0.111307i
\(655\) 0.940779 0.0367593
\(656\) −6.31962 + 21.8358i −0.246740 + 0.852543i
\(657\) 8.66291 0.337972
\(658\) −1.78805 + 0.597047i −0.0697053 + 0.0232753i
\(659\) 26.4553i 1.03055i −0.857024 0.515277i \(-0.827689\pi\)
0.857024 0.515277i \(-0.172311\pi\)
\(660\) 0.271815 + 0.361638i 0.0105804 + 0.0140767i
\(661\) 23.9878i 0.933019i −0.884516 0.466509i \(-0.845511\pi\)
0.884516 0.466509i \(-0.154489\pi\)
\(662\) −13.8939 41.6096i −0.540000 1.61720i
\(663\) −1.97332 −0.0766372
\(664\) 4.19269 + 2.89299i 0.162708 + 0.112270i
\(665\) 5.19656 0.201514
\(666\) −1.50651 4.51171i −0.0583759 0.174825i
\(667\) 2.58119i 0.0999439i
\(668\) 36.4986 27.4331i 1.41217 1.06142i
\(669\) 0.888570i 0.0343541i
\(670\) 0.924404 0.308668i 0.0357128 0.0119249i
\(671\) −0.898507 −0.0346865
\(672\) 13.6472 0.553705i 0.526451 0.0213596i
\(673\) −1.72805 −0.0666113 −0.0333057 0.999445i \(-0.510603\pi\)
−0.0333057 + 0.999445i \(0.510603\pi\)
\(674\) 2.82071 0.941864i 0.108650 0.0362792i
\(675\) 2.11106i 0.0812549i
\(676\) 20.3349 15.2842i 0.782112 0.587853i
\(677\) 40.3052i 1.54905i −0.632541 0.774526i \(-0.717988\pi\)
0.632541 0.774526i \(-0.282012\pi\)
\(678\) −1.56232 4.67888i −0.0600007 0.179691i
\(679\) 12.3459 0.473792
\(680\) 14.7359 + 10.1679i 0.565095 + 0.389920i
\(681\) −11.0383 −0.422988
\(682\) 0.260661 + 0.780633i 0.00998122 + 0.0298920i
\(683\) 0.553046i 0.0211617i 0.999944 + 0.0105809i \(0.00336806\pi\)
−0.999944 + 0.0105809i \(0.996632\pi\)
\(684\) −1.52161 2.02444i −0.0581803 0.0774062i
\(685\) 20.9262i 0.799548i
\(686\) −26.4619 + 8.83590i −1.01032 + 0.337356i
\(687\) 13.7109 0.523103
\(688\) 10.0684 + 2.91395i 0.383854 + 0.111093i
\(689\) 5.63144 0.214541
\(690\) 2.27997 0.761306i 0.0867972 0.0289824i
\(691\) 12.5766i 0.478435i 0.970966 + 0.239218i \(0.0768910\pi\)
−0.970966 + 0.239218i \(0.923109\pi\)
\(692\) −28.5777 38.0214i −1.08636 1.44536i
\(693\) 0.321328i 0.0122062i
\(694\) 12.3616 + 37.0207i 0.469240 + 1.40529i
\(695\) −11.6353 −0.441353
\(696\) −4.14628 + 6.00904i −0.157164 + 0.227772i
\(697\) 21.1639 0.801641
\(698\) −13.9907 41.8996i −0.529556 1.58592i
\(699\) 22.0260i 0.833101i
\(700\) 8.14907 6.12503i 0.308006 0.231504i
\(701\) 19.5742i 0.739306i 0.929170 + 0.369653i \(0.120523\pi\)
−0.929170 + 0.369653i \(0.879477\pi\)
\(702\) −0.710782 + 0.237337i −0.0268268 + 0.00895772i
\(703\) −4.25895 −0.160629
\(704\) 0.995356 0.377863i 0.0375139 0.0142412i
\(705\) −0.938343 −0.0353401
\(706\) −0.248832 + 0.0830874i −0.00936491 + 0.00312704i
\(707\) 7.88558i 0.296568i
\(708\) 5.75171 4.32311i 0.216162 0.162473i
\(709\) 34.9383i 1.31213i −0.754703 0.656067i \(-0.772219\pi\)
0.754703 0.656067i \(-0.227781\pi\)
\(710\) 4.28610 + 12.8361i 0.160854 + 0.481730i
\(711\) 2.77706 0.104148
\(712\) −22.6987 + 32.8963i −0.850669 + 1.23284i
\(713\) 4.37283 0.163764
\(714\) −4.02751 12.0617i −0.150726 0.451396i
\(715\) 0.119858i 0.00448245i
\(716\) 7.08612 + 9.42776i 0.264821 + 0.352332i
\(717\) 14.9020i 0.556526i
\(718\) 20.3976 6.81096i 0.761231 0.254183i
\(719\) 4.63883 0.172999 0.0864995 0.996252i \(-0.472432\pi\)
0.0864995 + 0.996252i \(0.472432\pi\)
\(720\) 6.53073 + 1.89010i 0.243386 + 0.0704399i
\(721\) −29.0438 −1.08165
\(722\) 23.3359 7.79210i 0.868474 0.289992i
\(723\) 14.6875i 0.546233i
\(724\) 24.1550 + 32.1371i 0.897712 + 1.19437i
\(725\) 5.44905i 0.202373i
\(726\) 4.91907 + 14.7317i 0.182564 + 0.546746i
\(727\) 3.32762 0.123415 0.0617074 0.998094i \(-0.480345\pi\)
0.0617074 + 0.998094i \(0.480345\pi\)
\(728\) −2.97842 2.05513i −0.110388 0.0761683i
\(729\) −1.00000 −0.0370370
\(730\) 6.59513 + 19.7512i 0.244097 + 0.731025i
\(731\) 9.75861i 0.360935i
\(732\) −10.7939 + 8.11296i −0.398955 + 0.299864i
\(733\) 34.6735i 1.28069i 0.768086 + 0.640347i \(0.221209\pi\)
−0.768086 + 0.640347i \(0.778791\pi\)
\(734\) 24.0061 8.01589i 0.886083 0.295872i
\(735\) −1.98906 −0.0733675
\(736\) −0.229326 5.65220i −0.00845307 0.208343i
\(737\) −0.0539579 −0.00198757
\(738\) 7.62318 2.54546i 0.280613 0.0936995i
\(739\) 33.5915i 1.23568i 0.786303 + 0.617841i \(0.211992\pi\)
−0.786303 + 0.617841i \(0.788008\pi\)
\(740\) 9.13968 6.86959i 0.335981 0.252531i
\(741\) 0.670962i 0.0246484i
\(742\) 11.4937 + 34.4215i 0.421947 + 1.26365i
\(743\) 40.8340 1.49806 0.749028 0.662539i \(-0.230521\pi\)
0.749028 + 0.662539i \(0.230521\pi\)
\(744\) 10.1800 + 7.02428i 0.373217 + 0.257522i
\(745\) 14.4836 0.530636
\(746\) −5.89063 17.6414i −0.215671 0.645896i
\(747\) 1.80097i 0.0658942i
\(748\) −0.595561 0.792367i −0.0217759 0.0289718i
\(749\) 44.7893i 1.63656i
\(750\) 16.2130 5.41370i 0.592017 0.197680i
\(751\) −34.4766 −1.25807 −0.629034 0.777378i \(-0.716549\pi\)
−0.629034 + 0.777378i \(0.716549\pi\)
\(752\) −0.613916 + 2.12122i −0.0223872 + 0.0773530i
\(753\) 16.1350 0.587993
\(754\) 1.83466 0.612612i 0.0668144 0.0223100i
\(755\) 6.09887i 0.221961i
\(756\) −2.90139 3.86017i −0.105523 0.140393i
\(757\) 13.3236i 0.484256i 0.970244 + 0.242128i \(0.0778454\pi\)
−0.970244 + 0.242128i \(0.922155\pi\)
\(758\) 1.57427 + 4.71466i 0.0571802 + 0.171244i
\(759\) −0.133083 −0.00483062
\(760\) 3.45725 5.01045i 0.125408 0.181748i
\(761\) 0.677685 0.0245661 0.0122830 0.999925i \(-0.496090\pi\)
0.0122830 + 0.999925i \(0.496090\pi\)
\(762\) 4.07827 + 12.2137i 0.147740 + 0.442455i
\(763\) 15.3442i 0.555498i
\(764\) 39.8968 29.9873i 1.44342 1.08490i
\(765\) 6.32980i 0.228854i
\(766\) −5.62363 + 1.87779i −0.203190 + 0.0678472i
\(767\) −1.90630 −0.0688324
\(768\) 8.54553 13.5268i 0.308360 0.488106i
\(769\) 30.7832 1.11007 0.555036 0.831827i \(-0.312705\pi\)
0.555036 + 0.831827i \(0.312705\pi\)
\(770\) 0.732620 0.244629i 0.0264018 0.00881582i
\(771\) 10.1862i 0.366848i
\(772\) 40.6284 30.5372i 1.46225 1.09906i
\(773\) 43.3139i 1.55789i 0.627090 + 0.778947i \(0.284246\pi\)
−0.627090 + 0.778947i \(0.715754\pi\)
\(774\) −1.17370 3.51502i −0.0421878 0.126345i
\(775\) 9.23131 0.331599
\(776\) 8.21366 11.9037i 0.294853 0.427319i
\(777\) −8.12092 −0.291336
\(778\) 1.36647 + 4.09235i 0.0489905 + 0.146718i
\(779\) 7.19610i 0.257827i
\(780\) −1.08225 1.43988i −0.0387506 0.0515560i
\(781\) 0.749249i 0.0268102i
\(782\) −4.99554 + 1.66806i −0.178640 + 0.0596497i
\(783\) 2.58119 0.0922441
\(784\) −1.30135 + 4.49647i −0.0464768 + 0.160588i
\(785\) 9.28352 0.331343
\(786\) −0.742471 + 0.247919i −0.0264831 + 0.00884296i
\(787\) 27.0873i 0.965558i 0.875742 + 0.482779i \(0.160373\pi\)
−0.875742 + 0.482779i \(0.839627\pi\)
\(788\) −19.4447 25.8703i −0.692690 0.921592i
\(789\) 3.10560i 0.110562i
\(790\) 2.11419 + 6.33163i 0.0752196 + 0.225269i
\(791\) −8.42182 −0.299445
\(792\) −0.309820 0.213778i −0.0110090 0.00759627i
\(793\) 3.57745 0.127039
\(794\) −5.82024 17.4306i −0.206553 0.618588i
\(795\) 18.0640i 0.640663i
\(796\) −5.01381 + 3.76849i −0.177710 + 0.133571i
\(797\) 5.59625i 0.198229i −0.995076 0.0991146i \(-0.968399\pi\)
0.995076 0.0991146i \(-0.0316010\pi\)
\(798\) −4.10118 + 1.36942i −0.145180 + 0.0484771i
\(799\) 2.05596 0.0727345
\(800\) −0.484122 11.9322i −0.0171163 0.421866i
\(801\) 14.1306 0.499281
\(802\) 23.5134 7.85135i 0.830286 0.277241i
\(803\) 1.15289i 0.0406846i
\(804\) −0.648206 + 0.487206i −0.0228605 + 0.0171824i
\(805\) 4.10387i 0.144643i
\(806\) −1.03783 3.10813i −0.0365562 0.109479i
\(807\) 3.56163 0.125375
\(808\) 7.60317 + 5.24624i 0.267478 + 0.184562i
\(809\) 10.0599 0.353687 0.176843 0.984239i \(-0.443411\pi\)
0.176843 + 0.984239i \(0.443411\pi\)
\(810\) −0.761306 2.27997i −0.0267496 0.0801101i
\(811\) 7.70304i 0.270490i −0.990812 0.135245i \(-0.956818\pi\)
0.990812 0.135245i \(-0.0431822\pi\)
\(812\) 7.48904 + 9.96382i 0.262814 + 0.349662i
\(813\) 19.2112i 0.673765i
\(814\) −0.600434 + 0.200491i −0.0210452 + 0.00702720i
\(815\) 34.8416 1.22045
\(816\) −14.3092 4.14130i −0.500921 0.144975i
\(817\) −3.31810 −0.116086
\(818\) 16.8204 5.61651i 0.588113 0.196377i
\(819\) 1.27938i 0.0447053i
\(820\) 11.6071 + 15.4428i 0.405339 + 0.539285i
\(821\) 17.0007i 0.593329i 0.954982 + 0.296665i \(0.0958744\pi\)
−0.954982 + 0.296665i \(0.904126\pi\)
\(822\) −5.51456 16.5151i −0.192343 0.576031i
\(823\) −29.4307 −1.02589 −0.512944 0.858422i \(-0.671445\pi\)
−0.512944 + 0.858422i \(0.671445\pi\)
\(824\) −19.3227 + 28.0036i −0.673138 + 0.975551i
\(825\) −0.280947 −0.00978133
\(826\) −3.89073 11.6520i −0.135376 0.405426i
\(827\) 56.1603i 1.95289i −0.215775 0.976443i \(-0.569228\pi\)
0.215775 0.976443i \(-0.430772\pi\)
\(828\) −1.59875 + 1.20166i −0.0555605 + 0.0417606i
\(829\) 14.1827i 0.492587i 0.969195 + 0.246293i \(0.0792127\pi\)
−0.969195 + 0.246293i \(0.920787\pi\)
\(830\) 4.10617 1.37109i 0.142527 0.0475913i
\(831\) 4.58461 0.159038
\(832\) −3.96306 + 1.50448i −0.137394 + 0.0521584i
\(833\) 4.35812 0.151000
\(834\) 9.18270 3.06620i 0.317971 0.106174i
\(835\) 38.8028i 1.34283i
\(836\) −0.269418 + 0.202501i −0.00931803 + 0.00700364i
\(837\) 4.37283i 0.151147i
\(838\) 13.4233 + 40.2005i 0.463701 + 1.38870i
\(839\) −15.3497 −0.529929 −0.264965 0.964258i \(-0.585360\pi\)
−0.264965 + 0.964258i \(0.585360\pi\)
\(840\) 6.59225 9.55387i 0.227454 0.329640i
\(841\) 22.3375 0.770258
\(842\) −16.2879 48.7792i −0.561317 1.68104i
\(843\) 8.02427i 0.276371i
\(844\) −18.3771 24.4499i −0.632566 0.841600i
\(845\) 21.6187i 0.743706i
\(846\) 0.740549 0.247277i 0.0254606 0.00850155i
\(847\) 26.5166 0.911121
\(848\) 40.8354 + 11.8184i 1.40230 + 0.405847i
\(849\) 24.9437 0.856067
\(850\) −10.5459 + 3.52138i −0.361721 + 0.120782i
\(851\) 3.36341i 0.115296i
\(852\) −6.76525 9.00087i −0.231774 0.308365i
\(853\) 3.59227i 0.122997i −0.998107 0.0614986i \(-0.980412\pi\)
0.998107 0.0614986i \(-0.0195880\pi\)
\(854\) 7.30152 + 21.8667i 0.249853 + 0.748265i
\(855\) −2.15224 −0.0736051
\(856\) −43.1851 29.7981i −1.47604 1.01848i
\(857\) −34.1843 −1.16771 −0.583856 0.811857i \(-0.698457\pi\)
−0.583856 + 0.811857i \(0.698457\pi\)
\(858\) 0.0315856 + 0.0945933i 0.00107832 + 0.00322936i
\(859\) 33.6746i 1.14896i −0.818518 0.574481i \(-0.805204\pi\)
0.818518 0.574481i \(-0.194796\pi\)
\(860\) 7.12062 5.35202i 0.242811 0.182502i
\(861\) 13.7215i 0.467626i
\(862\) −1.66646 + 0.556448i −0.0567599 + 0.0189527i
\(863\) 23.0372 0.784195 0.392098 0.919924i \(-0.371750\pi\)
0.392098 + 0.919924i \(0.371750\pi\)
\(864\) −5.65220 + 0.229326i −0.192292 + 0.00780183i
\(865\) −40.4218 −1.37438
\(866\) −39.5293 + 13.1992i −1.34326 + 0.448527i
\(867\) 3.13109i 0.106338i
\(868\) 16.8799 12.6873i 0.572940 0.430634i
\(869\) 0.369580i 0.0125372i
\(870\) 1.96507 + 5.88504i 0.0666222 + 0.199522i
\(871\) 0.214836 0.00727944
\(872\) 14.7947 + 10.2084i 0.501011 + 0.345701i
\(873\) −5.11325 −0.173057
\(874\) 0.567169 + 1.69857i 0.0191848 + 0.0574550i
\(875\) 29.1829i 0.986562i
\(876\) −10.4099 13.8499i −0.351717 0.467944i
\(877\) 20.7873i 0.701937i −0.936387 0.350968i \(-0.885852\pi\)
0.936387 0.350968i \(-0.114148\pi\)
\(878\) −43.0037 + 14.3594i −1.45130 + 0.484605i
\(879\) −0.0719030 −0.00242523
\(880\) 0.251541 0.869132i 0.00847944 0.0292984i
\(881\) 1.38162 0.0465481 0.0232741 0.999729i \(-0.492591\pi\)
0.0232741 + 0.999729i \(0.492591\pi\)
\(882\) 1.56978 0.524166i 0.0528573 0.0176496i
\(883\) 31.7819i 1.06955i −0.844996 0.534773i \(-0.820397\pi\)
0.844996 0.534773i \(-0.179603\pi\)
\(884\) 2.37125 + 3.15485i 0.0797539 + 0.106109i
\(885\) 6.11483i 0.205548i
\(886\) 14.2732 + 42.7457i 0.479518 + 1.43607i
\(887\) 0.644205 0.0216303 0.0108151 0.999942i \(-0.496557\pi\)
0.0108151 + 0.999942i \(0.496557\pi\)
\(888\) −5.40281 + 7.83007i −0.181306 + 0.262760i
\(889\) 21.9842 0.737326
\(890\) 10.7577 + 32.2174i 0.360600 + 1.07993i
\(891\) 0.133083i 0.00445846i
\(892\) 1.42060 1.06776i 0.0475654 0.0357512i
\(893\) 0.699061i 0.0233932i
\(894\) −11.4306 + 3.81678i −0.382295 + 0.127652i
\(895\) 10.0230 0.335031
\(896\) −17.2845 21.1531i −0.577435 0.706676i
\(897\) 0.529878 0.0176921
\(898\) 36.4828 12.1820i 1.21745 0.406517i
\(899\) 11.2871i 0.376445i
\(900\) −3.37507 + 2.53678i −0.112502 + 0.0845594i
\(901\) 39.5790i 1.31857i
\(902\) −0.338758 1.01452i −0.0112794 0.0337797i
\(903\) −6.32691 −0.210547
\(904\) −5.60300 + 8.12019i −0.186353 + 0.270074i
\(905\) 34.1660 1.13572
\(906\) 1.60720 + 4.81328i 0.0533957 + 0.159911i
\(907\) 14.6256i 0.485634i −0.970072 0.242817i \(-0.921928\pi\)
0.970072 0.242817i \(-0.0780715\pi\)
\(908\) 13.2642 + 17.6475i 0.440190 + 0.585652i
\(909\) 3.26595i 0.108325i
\(910\) −2.91696 + 0.974002i −0.0966963 + 0.0322879i
\(911\) 1.85594 0.0614901 0.0307451 0.999527i \(-0.490212\pi\)
0.0307451 + 0.999527i \(0.490212\pi\)
\(912\) −1.40811 + 4.86536i −0.0466273 + 0.161108i
\(913\) −0.239679 −0.00793223
\(914\) −17.1262 + 5.71862i −0.566485 + 0.189155i
\(915\) 11.4754i 0.379364i
\(916\) −16.4758 21.9203i −0.544376 0.724268i
\(917\) 1.33642i 0.0441325i
\(918\) 1.66806 + 4.99554i 0.0550542 + 0.164877i
\(919\) 52.6826 1.73784 0.868920 0.494953i \(-0.164815\pi\)
0.868920 + 0.494953i \(0.164815\pi\)
\(920\) −3.95689 2.73029i −0.130455 0.0900149i
\(921\) 1.58805 0.0523281
\(922\) 11.9861 + 35.8962i 0.394741 + 1.18218i
\(923\) 2.98317i 0.0981923i
\(924\) −0.513724 + 0.386127i −0.0169003 + 0.0127026i
\(925\) 7.10038i 0.233459i
\(926\) −50.9056 + 16.9979i −1.67286 + 0.558585i
\(927\) 12.0290 0.395083
\(928\) 14.5894 0.591933i 0.478920 0.0194312i
\(929\) 16.8664 0.553367 0.276684 0.960961i \(-0.410765\pi\)
0.276684 + 0.960961i \(0.410765\pi\)
\(930\) 9.96993 3.32906i 0.326927 0.109164i
\(931\) 1.48184i 0.0485652i
\(932\) −35.2142 + 26.4678i −1.15348 + 0.866982i
\(933\) 19.9240i 0.652282i
\(934\) 0.736181 + 2.20473i 0.0240886 + 0.0721409i
\(935\) −0.842391 −0.0275491
\(936\) 1.23356 + 0.851167i 0.0403202 + 0.0278213i
\(937\) 23.7329 0.775319 0.387659 0.921803i \(-0.373284\pi\)
0.387659 + 0.921803i \(0.373284\pi\)
\(938\) 0.438477 + 1.31316i 0.0143168 + 0.0428762i
\(939\) 27.8661i 0.909376i
\(940\) 1.12757 + 1.50018i 0.0367773 + 0.0489305i
\(941\) 25.9620i 0.846336i 0.906051 + 0.423168i \(0.139082\pi\)
−0.906051 + 0.423168i \(0.860918\pi\)
\(942\) −7.32664 + 2.44644i −0.238715 + 0.0797092i
\(943\) −5.68297 −0.185063
\(944\) −13.8232 4.00065i −0.449907 0.130210i
\(945\) −4.10387 −0.133499
\(946\) −0.467791 + 0.156200i −0.0152092 + 0.00507850i
\(947\) 24.7835i 0.805355i 0.915342 + 0.402678i \(0.131920\pi\)
−0.915342 + 0.402678i \(0.868080\pi\)
\(948\) −3.33708 4.43984i −0.108383 0.144199i
\(949\) 4.59028i 0.149007i
\(950\) 1.19733 + 3.58579i 0.0388465 + 0.116338i
\(951\) 20.1696 0.654043
\(952\) −14.4439 + 20.9330i −0.468131 + 0.678443i
\(953\) −2.03249 −0.0658388 −0.0329194 0.999458i \(-0.510480\pi\)
−0.0329194 + 0.999458i \(0.510480\pi\)
\(954\) −4.76030 14.2563i −0.154121 0.461563i
\(955\) 42.4156i 1.37254i
\(956\) 23.8247 17.9071i 0.770544 0.579159i
\(957\) 0.343513i 0.0111042i
\(958\) 6.20786 2.07287i 0.200567 0.0669713i
\(959\) −29.7266 −0.959923
\(960\) −4.82591 12.7123i −0.155756 0.410288i
\(961\) −11.8784 −0.383174
\(962\) 2.39066 0.798263i 0.0770778 0.0257370i
\(963\) 18.5502i 0.597772i
\(964\) −23.4817 + 17.6493i −0.756293 + 0.568447i
\(965\) 43.1933i 1.39044i
\(966\) 1.08147 + 3.23881i 0.0347958 + 0.104207i
\(967\) 32.6911 1.05127 0.525637 0.850709i \(-0.323827\pi\)
0.525637 + 0.850709i \(0.323827\pi\)
\(968\) 17.6414 25.5669i 0.567015 0.821752i
\(969\) 4.71567 0.151489
\(970\) −3.89275 11.6581i −0.124989 0.374319i
\(971\) 16.0877i 0.516280i 0.966107 + 0.258140i \(0.0831096\pi\)
−0.966107 + 0.258140i \(0.916890\pi\)
\(972\) 1.20166 + 1.59875i 0.0385432 + 0.0512801i
\(973\) 16.5285i 0.529881i
\(974\) 19.7735 6.60258i 0.633585 0.211560i
\(975\) 1.11861 0.0358240
\(976\) 25.9413 + 7.50782i 0.830360 + 0.240320i
\(977\) −0.00261102 −8.35340e−5 −4.17670e−5 1.00000i \(-0.500013\pi\)
−4.17670e−5 1.00000i \(0.500013\pi\)
\(978\) −27.4973 + 9.18163i −0.879268 + 0.293596i
\(979\) 1.88055i 0.0601026i
\(980\) 2.39017 + 3.18001i 0.0763511 + 0.101582i
\(981\) 6.35506i 0.202901i
\(982\) 0.747314 + 2.23807i 0.0238478 + 0.0714197i
\(983\) −34.4657 −1.09929 −0.549643 0.835400i \(-0.685236\pi\)
−0.549643 + 0.835400i \(0.685236\pi\)
\(984\) −13.2300 9.12882i −0.421758 0.291016i
\(985\) −27.5036 −0.876337
\(986\) −4.30557 12.8944i −0.137117 0.410642i
\(987\) 1.33296i 0.0424287i
\(988\) 1.07270 0.806268i 0.0341272 0.0256508i
\(989\) 2.62040i 0.0833238i
\(990\) −0.303427 + 0.101317i −0.00964353 + 0.00322007i
\(991\) −12.9440 −0.411178 −0.205589 0.978638i \(-0.565911\pi\)
−0.205589 + 0.978638i \(0.565911\pi\)
\(992\) −1.00280 24.7161i −0.0318390 0.784737i
\(993\) 31.0193 0.984368
\(994\) −18.2343 + 6.08861i −0.578356 + 0.193119i
\(995\) 5.33034i 0.168983i
\(996\) −2.87931 + 2.16416i −0.0912345 + 0.0685739i
\(997\) 20.4976i 0.649167i −0.945857 0.324583i \(-0.894776\pi\)
0.945857 0.324583i \(-0.105224\pi\)
\(998\) 0.399181 + 1.19548i 0.0126359 + 0.0378421i
\(999\) 3.36341 0.106414
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.f.d.277.19 20
4.3 odd 2 2208.2.f.d.1105.4 20
8.3 odd 2 2208.2.f.d.1105.17 20
8.5 even 2 inner 552.2.f.d.277.20 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.f.d.277.19 20 1.1 even 1 trivial
552.2.f.d.277.20 yes 20 8.5 even 2 inner
2208.2.f.d.1105.4 20 4.3 odd 2
2208.2.f.d.1105.17 20 8.3 odd 2