Properties

Label 560.2.bj.d.433.1
Level $560$
Weight $2$
Character 560.433
Analytic conductor $4.472$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(97,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bj (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.1
Character \(\chi\) \(=\) 560.433
Dual form 560.2.bj.d.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.16993 + 2.16993i) q^{3} +(-0.272751 + 2.21937i) q^{5} +(-2.07939 - 1.63589i) q^{7} -6.41716i q^{9} -2.56986 q^{11} +(-1.35447 + 1.35447i) q^{13} +(-4.22402 - 5.40772i) q^{15} +(-2.10000 - 2.10000i) q^{17} +4.43874 q^{19} +(8.06189 - 0.962346i) q^{21} +(5.78997 + 5.78997i) q^{23} +(-4.85121 - 1.21067i) q^{25} +(7.41498 + 7.41498i) q^{27} -4.28527i q^{29} -9.70587i q^{31} +(5.57640 - 5.57640i) q^{33} +(4.19781 - 4.16874i) q^{35} +(0.183701 - 0.183701i) q^{37} -5.87819i q^{39} +3.81823i q^{41} +(-5.86065 - 5.86065i) q^{43} +(14.2421 + 1.75029i) q^{45} +(-1.83004 - 1.83004i) q^{47} +(1.64770 + 6.80331i) q^{49} +9.11369 q^{51} +(-2.38616 - 2.38616i) q^{53} +(0.700932 - 5.70346i) q^{55} +(-9.63174 + 9.63174i) q^{57} -6.34515 q^{59} -8.62046i q^{61} +(-10.4978 + 13.3438i) q^{63} +(-2.63663 - 3.37550i) q^{65} +(-6.68908 + 6.68908i) q^{67} -25.1276 q^{69} +6.04557 q^{71} +(-1.88962 + 1.88962i) q^{73} +(13.1538 - 7.89970i) q^{75} +(5.34372 + 4.20401i) q^{77} -12.2456i q^{79} -12.9285 q^{81} +(-2.08951 + 2.08951i) q^{83} +(5.23346 - 4.08790i) q^{85} +(9.29871 + 9.29871i) q^{87} -10.1525 q^{89} +(5.03222 - 0.600696i) q^{91} +(21.0610 + 21.0610i) q^{93} +(-1.21067 + 9.85121i) q^{95} +(-7.15926 - 7.15926i) q^{97} +16.4912i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 8 q^{15} + 16 q^{21} + 32 q^{23} + 8 q^{25} - 12 q^{35} - 8 q^{37} - 16 q^{43} + 24 q^{51} - 16 q^{53} - 20 q^{63} - 48 q^{65} + 32 q^{67} + 32 q^{71} - 40 q^{77} - 72 q^{81}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.16993 + 2.16993i −1.25281 + 1.25281i −0.298351 + 0.954456i \(0.596437\pi\)
−0.954456 + 0.298351i \(0.903563\pi\)
\(4\) 0 0
\(5\) −0.272751 + 2.21937i −0.121978 + 0.992533i
\(6\) 0 0
\(7\) −2.07939 1.63589i −0.785934 0.618310i
\(8\) 0 0
\(9\) 6.41716i 2.13905i
\(10\) 0 0
\(11\) −2.56986 −0.774841 −0.387420 0.921903i \(-0.626634\pi\)
−0.387420 + 0.921903i \(0.626634\pi\)
\(12\) 0 0
\(13\) −1.35447 + 1.35447i −0.375661 + 0.375661i −0.869534 0.493873i \(-0.835581\pi\)
0.493873 + 0.869534i \(0.335581\pi\)
\(14\) 0 0
\(15\) −4.22402 5.40772i −1.09064 1.39627i
\(16\) 0 0
\(17\) −2.10000 2.10000i −0.509325 0.509325i 0.404994 0.914319i \(-0.367274\pi\)
−0.914319 + 0.404994i \(0.867274\pi\)
\(18\) 0 0
\(19\) 4.43874 1.01832 0.509159 0.860673i \(-0.329957\pi\)
0.509159 + 0.860673i \(0.329957\pi\)
\(20\) 0 0
\(21\) 8.06189 0.962346i 1.75925 0.210001i
\(22\) 0 0
\(23\) 5.78997 + 5.78997i 1.20729 + 1.20729i 0.971901 + 0.235391i \(0.0756370\pi\)
0.235391 + 0.971901i \(0.424363\pi\)
\(24\) 0 0
\(25\) −4.85121 1.21067i −0.970243 0.242135i
\(26\) 0 0
\(27\) 7.41498 + 7.41498i 1.42701 + 1.42701i
\(28\) 0 0
\(29\) 4.28527i 0.795754i −0.917439 0.397877i \(-0.869747\pi\)
0.917439 0.397877i \(-0.130253\pi\)
\(30\) 0 0
\(31\) 9.70587i 1.74323i −0.490194 0.871613i \(-0.663074\pi\)
0.490194 0.871613i \(-0.336926\pi\)
\(32\) 0 0
\(33\) 5.57640 5.57640i 0.970726 0.970726i
\(34\) 0 0
\(35\) 4.19781 4.16874i 0.709560 0.704645i
\(36\) 0 0
\(37\) 0.183701 0.183701i 0.0302002 0.0302002i −0.691845 0.722046i \(-0.743202\pi\)
0.722046 + 0.691845i \(0.243202\pi\)
\(38\) 0 0
\(39\) 5.87819i 0.941263i
\(40\) 0 0
\(41\) 3.81823i 0.596307i 0.954518 + 0.298153i \(0.0963707\pi\)
−0.954518 + 0.298153i \(0.903629\pi\)
\(42\) 0 0
\(43\) −5.86065 5.86065i −0.893741 0.893741i 0.101132 0.994873i \(-0.467754\pi\)
−0.994873 + 0.101132i \(0.967754\pi\)
\(44\) 0 0
\(45\) 14.2421 + 1.75029i 2.12308 + 0.260918i
\(46\) 0 0
\(47\) −1.83004 1.83004i −0.266939 0.266939i 0.560926 0.827866i \(-0.310445\pi\)
−0.827866 + 0.560926i \(0.810445\pi\)
\(48\) 0 0
\(49\) 1.64770 + 6.80331i 0.235386 + 0.971902i
\(50\) 0 0
\(51\) 9.11369 1.27617
\(52\) 0 0
\(53\) −2.38616 2.38616i −0.327764 0.327764i 0.523972 0.851736i \(-0.324450\pi\)
−0.851736 + 0.523972i \(0.824450\pi\)
\(54\) 0 0
\(55\) 0.700932 5.70346i 0.0945136 0.769055i
\(56\) 0 0
\(57\) −9.63174 + 9.63174i −1.27576 + 1.27576i
\(58\) 0 0
\(59\) −6.34515 −0.826068 −0.413034 0.910716i \(-0.635531\pi\)
−0.413034 + 0.910716i \(0.635531\pi\)
\(60\) 0 0
\(61\) 8.62046i 1.10374i −0.833931 0.551868i \(-0.813915\pi\)
0.833931 0.551868i \(-0.186085\pi\)
\(62\) 0 0
\(63\) −10.4978 + 13.3438i −1.32260 + 1.68116i
\(64\) 0 0
\(65\) −2.63663 3.37550i −0.327034 0.418679i
\(66\) 0 0
\(67\) −6.68908 + 6.68908i −0.817201 + 0.817201i −0.985702 0.168501i \(-0.946108\pi\)
0.168501 + 0.985702i \(0.446108\pi\)
\(68\) 0 0
\(69\) −25.1276 −3.02501
\(70\) 0 0
\(71\) 6.04557 0.717477 0.358739 0.933438i \(-0.383207\pi\)
0.358739 + 0.933438i \(0.383207\pi\)
\(72\) 0 0
\(73\) −1.88962 + 1.88962i −0.221164 + 0.221164i −0.808988 0.587825i \(-0.799985\pi\)
0.587825 + 0.808988i \(0.299985\pi\)
\(74\) 0 0
\(75\) 13.1538 7.89970i 1.51888 0.912179i
\(76\) 0 0
\(77\) 5.34372 + 4.20401i 0.608974 + 0.479092i
\(78\) 0 0
\(79\) 12.2456i 1.37774i −0.724887 0.688868i \(-0.758108\pi\)
0.724887 0.688868i \(-0.241892\pi\)
\(80\) 0 0
\(81\) −12.9285 −1.43650
\(82\) 0 0
\(83\) −2.08951 + 2.08951i −0.229354 + 0.229354i −0.812423 0.583069i \(-0.801852\pi\)
0.583069 + 0.812423i \(0.301852\pi\)
\(84\) 0 0
\(85\) 5.23346 4.08790i 0.567648 0.443395i
\(86\) 0 0
\(87\) 9.29871 + 9.29871i 0.996927 + 0.996927i
\(88\) 0 0
\(89\) −10.1525 −1.07616 −0.538081 0.842893i \(-0.680850\pi\)
−0.538081 + 0.842893i \(0.680850\pi\)
\(90\) 0 0
\(91\) 5.03222 0.600696i 0.527520 0.0629700i
\(92\) 0 0
\(93\) 21.0610 + 21.0610i 2.18393 + 2.18393i
\(94\) 0 0
\(95\) −1.21067 + 9.85121i −0.124212 + 1.01071i
\(96\) 0 0
\(97\) −7.15926 7.15926i −0.726913 0.726913i 0.243091 0.970004i \(-0.421839\pi\)
−0.970004 + 0.243091i \(0.921839\pi\)
\(98\) 0 0
\(99\) 16.4912i 1.65743i
\(100\) 0 0
\(101\) 1.12506i 0.111947i 0.998432 + 0.0559737i \(0.0178263\pi\)
−0.998432 + 0.0559737i \(0.982174\pi\)
\(102\) 0 0
\(103\) −1.56743 + 1.56743i −0.154443 + 0.154443i −0.780099 0.625656i \(-0.784831\pi\)
0.625656 + 0.780099i \(0.284831\pi\)
\(104\) 0 0
\(105\) −0.0630885 + 18.1548i −0.00615681 + 1.77173i
\(106\) 0 0
\(107\) 0.145240 0.145240i 0.0140409 0.0140409i −0.700051 0.714092i \(-0.746840\pi\)
0.714092 + 0.700051i \(0.246840\pi\)
\(108\) 0 0
\(109\) 6.51130i 0.623669i 0.950136 + 0.311835i \(0.100943\pi\)
−0.950136 + 0.311835i \(0.899057\pi\)
\(110\) 0 0
\(111\) 0.797233i 0.0756700i
\(112\) 0 0
\(113\) −7.49203 7.49203i −0.704791 0.704791i 0.260644 0.965435i \(-0.416065\pi\)
−0.965435 + 0.260644i \(0.916065\pi\)
\(114\) 0 0
\(115\) −14.4293 + 11.2709i −1.34554 + 1.05101i
\(116\) 0 0
\(117\) 8.69183 + 8.69183i 0.803560 + 0.803560i
\(118\) 0 0
\(119\) 0.931334 + 7.80209i 0.0853753 + 0.715217i
\(120\) 0 0
\(121\) −4.39584 −0.399622
\(122\) 0 0
\(123\) −8.28527 8.28527i −0.747057 0.747057i
\(124\) 0 0
\(125\) 4.01011 10.4364i 0.358675 0.933463i
\(126\) 0 0
\(127\) −6.78578 + 6.78578i −0.602141 + 0.602141i −0.940880 0.338740i \(-0.889999\pi\)
0.338740 + 0.940880i \(0.389999\pi\)
\(128\) 0 0
\(129\) 25.4344 2.23937
\(130\) 0 0
\(131\) 8.37853i 0.732036i −0.930608 0.366018i \(-0.880721\pi\)
0.930608 0.366018i \(-0.119279\pi\)
\(132\) 0 0
\(133\) −9.22986 7.26131i −0.800330 0.629636i
\(134\) 0 0
\(135\) −18.4790 + 14.4342i −1.59042 + 1.24229i
\(136\) 0 0
\(137\) 7.56986 7.56986i 0.646736 0.646736i −0.305466 0.952203i \(-0.598812\pi\)
0.952203 + 0.305466i \(0.0988124\pi\)
\(138\) 0 0
\(139\) −11.2432 −0.953636 −0.476818 0.879002i \(-0.658210\pi\)
−0.476818 + 0.879002i \(0.658210\pi\)
\(140\) 0 0
\(141\) 7.94212 0.668847
\(142\) 0 0
\(143\) 3.48078 3.48078i 0.291078 0.291078i
\(144\) 0 0
\(145\) 9.51060 + 1.16881i 0.789812 + 0.0970646i
\(146\) 0 0
\(147\) −18.3381 11.1873i −1.51250 0.922713i
\(148\) 0 0
\(149\) 18.0067i 1.47516i 0.675258 + 0.737581i \(0.264032\pi\)
−0.675258 + 0.737581i \(0.735968\pi\)
\(150\) 0 0
\(151\) −12.1231 −0.986563 −0.493282 0.869870i \(-0.664203\pi\)
−0.493282 + 0.869870i \(0.664203\pi\)
\(152\) 0 0
\(153\) −13.4760 + 13.4760i −1.08947 + 1.08947i
\(154\) 0 0
\(155\) 21.5409 + 2.64729i 1.73021 + 0.212635i
\(156\) 0 0
\(157\) −11.6764 11.6764i −0.931876 0.931876i 0.0659475 0.997823i \(-0.478993\pi\)
−0.997823 + 0.0659475i \(0.978993\pi\)
\(158\) 0 0
\(159\) 10.3556 0.821249
\(160\) 0 0
\(161\) −2.56781 21.5114i −0.202371 1.69533i
\(162\) 0 0
\(163\) −10.5217 10.5217i −0.824123 0.824123i 0.162574 0.986696i \(-0.448020\pi\)
−0.986696 + 0.162574i \(0.948020\pi\)
\(164\) 0 0
\(165\) 10.8551 + 13.8971i 0.845070 + 1.08188i
\(166\) 0 0
\(167\) 9.06283 + 9.06283i 0.701303 + 0.701303i 0.964690 0.263387i \(-0.0848398\pi\)
−0.263387 + 0.964690i \(0.584840\pi\)
\(168\) 0 0
\(169\) 9.33084i 0.717757i
\(170\) 0 0
\(171\) 28.4841i 2.17823i
\(172\) 0 0
\(173\) 9.99321 9.99321i 0.759770 0.759770i −0.216511 0.976280i \(-0.569468\pi\)
0.976280 + 0.216511i \(0.0694676\pi\)
\(174\) 0 0
\(175\) 8.10702 + 10.4535i 0.612833 + 0.790213i
\(176\) 0 0
\(177\) 13.7685 13.7685i 1.03490 1.03490i
\(178\) 0 0
\(179\) 14.8694i 1.11139i 0.831386 + 0.555695i \(0.187548\pi\)
−0.831386 + 0.555695i \(0.812452\pi\)
\(180\) 0 0
\(181\) 14.2095i 1.05618i 0.849188 + 0.528090i \(0.177092\pi\)
−0.849188 + 0.528090i \(0.822908\pi\)
\(182\) 0 0
\(183\) 18.7058 + 18.7058i 1.38277 + 1.38277i
\(184\) 0 0
\(185\) 0.357595 + 0.457804i 0.0262909 + 0.0336584i
\(186\) 0 0
\(187\) 5.39670 + 5.39670i 0.394646 + 0.394646i
\(188\) 0 0
\(189\) −3.28849 27.5488i −0.239202 2.00388i
\(190\) 0 0
\(191\) 1.04143 0.0753549 0.0376775 0.999290i \(-0.488004\pi\)
0.0376775 + 0.999290i \(0.488004\pi\)
\(192\) 0 0
\(193\) 0.0690260 + 0.0690260i 0.00496860 + 0.00496860i 0.709587 0.704618i \(-0.248882\pi\)
−0.704618 + 0.709587i \(0.748882\pi\)
\(194\) 0 0
\(195\) 13.0459 + 1.60328i 0.934234 + 0.114813i
\(196\) 0 0
\(197\) 12.7945 12.7945i 0.911571 0.911571i −0.0848244 0.996396i \(-0.527033\pi\)
0.996396 + 0.0848244i \(0.0270329\pi\)
\(198\) 0 0
\(199\) 4.09793 0.290494 0.145247 0.989395i \(-0.453602\pi\)
0.145247 + 0.989395i \(0.453602\pi\)
\(200\) 0 0
\(201\) 29.0296i 2.04759i
\(202\) 0 0
\(203\) −7.01025 + 8.91073i −0.492023 + 0.625411i
\(204\) 0 0
\(205\) −8.47406 1.04143i −0.591854 0.0727364i
\(206\) 0 0
\(207\) 37.1551 37.1551i 2.58246 2.58246i
\(208\) 0 0
\(209\) −11.4069 −0.789033
\(210\) 0 0
\(211\) −28.7179 −1.97702 −0.988510 0.151154i \(-0.951701\pi\)
−0.988510 + 0.151154i \(0.951701\pi\)
\(212\) 0 0
\(213\) −13.1184 + 13.1184i −0.898861 + 0.898861i
\(214\) 0 0
\(215\) 14.6055 11.4085i 0.996084 0.778050i
\(216\) 0 0
\(217\) −15.8778 + 20.1823i −1.07785 + 1.37006i
\(218\) 0 0
\(219\) 8.20069i 0.554151i
\(220\) 0 0
\(221\) 5.68876 0.382668
\(222\) 0 0
\(223\) 3.69411 3.69411i 0.247376 0.247376i −0.572517 0.819893i \(-0.694033\pi\)
0.819893 + 0.572517i \(0.194033\pi\)
\(224\) 0 0
\(225\) −7.76908 + 31.1310i −0.517939 + 2.07540i
\(226\) 0 0
\(227\) −7.85781 7.85781i −0.521541 0.521541i 0.396495 0.918037i \(-0.370226\pi\)
−0.918037 + 0.396495i \(0.870226\pi\)
\(228\) 0 0
\(229\) 9.48513 0.626795 0.313397 0.949622i \(-0.398533\pi\)
0.313397 + 0.949622i \(0.398533\pi\)
\(230\) 0 0
\(231\) −20.7179 + 2.47309i −1.36314 + 0.162717i
\(232\) 0 0
\(233\) −13.6024 13.6024i −0.891126 0.891126i 0.103503 0.994629i \(-0.466995\pi\)
−0.994629 + 0.103503i \(0.966995\pi\)
\(234\) 0 0
\(235\) 4.56069 3.56240i 0.297507 0.232385i
\(236\) 0 0
\(237\) 26.5720 + 26.5720i 1.72604 + 1.72604i
\(238\) 0 0
\(239\) 18.7581i 1.21336i −0.794946 0.606680i \(-0.792501\pi\)
0.794946 0.606680i \(-0.207499\pi\)
\(240\) 0 0
\(241\) 2.78395i 0.179330i −0.995972 0.0896649i \(-0.971420\pi\)
0.995972 0.0896649i \(-0.0285796\pi\)
\(242\) 0 0
\(243\) 5.80885 5.80885i 0.372638 0.372638i
\(244\) 0 0
\(245\) −15.5485 + 1.80124i −0.993357 + 0.115077i
\(246\) 0 0
\(247\) −6.01213 + 6.01213i −0.382543 + 0.382543i
\(248\) 0 0
\(249\) 9.06817i 0.574672i
\(250\) 0 0
\(251\) 28.3562i 1.78983i 0.446241 + 0.894913i \(0.352763\pi\)
−0.446241 + 0.894913i \(0.647237\pi\)
\(252\) 0 0
\(253\) −14.8794 14.8794i −0.935458 0.935458i
\(254\) 0 0
\(255\) −2.48577 + 20.2267i −0.155665 + 1.26664i
\(256\) 0 0
\(257\) 17.9740 + 17.9740i 1.12119 + 1.12119i 0.991563 + 0.129626i \(0.0413778\pi\)
0.129626 + 0.991563i \(0.458622\pi\)
\(258\) 0 0
\(259\) −0.682499 + 0.0814698i −0.0424084 + 0.00506229i
\(260\) 0 0
\(261\) −27.4992 −1.70216
\(262\) 0 0
\(263\) −0.986652 0.986652i −0.0608396 0.0608396i 0.676032 0.736872i \(-0.263698\pi\)
−0.736872 + 0.676032i \(0.763698\pi\)
\(264\) 0 0
\(265\) 5.94659 4.64494i 0.365296 0.285336i
\(266\) 0 0
\(267\) 22.0301 22.0301i 1.34822 1.34822i
\(268\) 0 0
\(269\) 2.65510 0.161884 0.0809422 0.996719i \(-0.474207\pi\)
0.0809422 + 0.996719i \(0.474207\pi\)
\(270\) 0 0
\(271\) 0.573473i 0.0348360i 0.999848 + 0.0174180i \(0.00554460\pi\)
−0.999848 + 0.0174180i \(0.994455\pi\)
\(272\) 0 0
\(273\) −9.61609 + 12.2230i −0.581992 + 0.739771i
\(274\) 0 0
\(275\) 12.4669 + 3.11125i 0.751783 + 0.187616i
\(276\) 0 0
\(277\) 6.98543 6.98543i 0.419714 0.419714i −0.465391 0.885105i \(-0.654086\pi\)
0.885105 + 0.465391i \(0.154086\pi\)
\(278\) 0 0
\(279\) −62.2841 −3.72885
\(280\) 0 0
\(281\) 23.2936 1.38958 0.694789 0.719213i \(-0.255498\pi\)
0.694789 + 0.719213i \(0.255498\pi\)
\(282\) 0 0
\(283\) 9.27105 9.27105i 0.551107 0.551107i −0.375653 0.926760i \(-0.622582\pi\)
0.926760 + 0.375653i \(0.122582\pi\)
\(284\) 0 0
\(285\) −18.7493 24.0035i −1.11061 1.42184i
\(286\) 0 0
\(287\) 6.24621 7.93957i 0.368702 0.468658i
\(288\) 0 0
\(289\) 8.17999i 0.481176i
\(290\) 0 0
\(291\) 31.0701 1.82136
\(292\) 0 0
\(293\) 11.3951 11.3951i 0.665707 0.665707i −0.291012 0.956719i \(-0.593992\pi\)
0.956719 + 0.291012i \(0.0939920\pi\)
\(294\) 0 0
\(295\) 1.73065 14.0822i 0.100762 0.819899i
\(296\) 0 0
\(297\) −19.0554 19.0554i −1.10571 1.10571i
\(298\) 0 0
\(299\) −15.6846 −0.907066
\(300\) 0 0
\(301\) 2.59915 + 21.7740i 0.149813 + 1.25503i
\(302\) 0 0
\(303\) −2.44129 2.44129i −0.140249 0.140249i
\(304\) 0 0
\(305\) 19.1320 + 2.35124i 1.09549 + 0.134632i
\(306\) 0 0
\(307\) 12.7022 + 12.7022i 0.724953 + 0.724953i 0.969610 0.244657i \(-0.0786753\pi\)
−0.244657 + 0.969610i \(0.578675\pi\)
\(308\) 0 0
\(309\) 6.80241i 0.386976i
\(310\) 0 0
\(311\) 12.2723i 0.695896i 0.937514 + 0.347948i \(0.113121\pi\)
−0.937514 + 0.347948i \(0.886879\pi\)
\(312\) 0 0
\(313\) −11.9640 + 11.9640i −0.676246 + 0.676246i −0.959149 0.282903i \(-0.908703\pi\)
0.282903 + 0.959149i \(0.408703\pi\)
\(314\) 0 0
\(315\) −26.7515 26.9380i −1.50727 1.51779i
\(316\) 0 0
\(317\) −18.9944 + 18.9944i −1.06683 + 1.06683i −0.0692338 + 0.997600i \(0.522055\pi\)
−0.997600 + 0.0692338i \(0.977945\pi\)
\(318\) 0 0
\(319\) 11.0125i 0.616583i
\(320\) 0 0
\(321\) 0.630320i 0.0351811i
\(322\) 0 0
\(323\) −9.32136 9.32136i −0.518654 0.518654i
\(324\) 0 0
\(325\) 8.21062 4.93099i 0.455443 0.273522i
\(326\) 0 0
\(327\) −14.1290 14.1290i −0.781337 0.781337i
\(328\) 0 0
\(329\) 0.811611 + 6.79913i 0.0447455 + 0.374848i
\(330\) 0 0
\(331\) 23.8309 1.30986 0.654931 0.755689i \(-0.272698\pi\)
0.654931 + 0.755689i \(0.272698\pi\)
\(332\) 0 0
\(333\) −1.17884 1.17884i −0.0645998 0.0645998i
\(334\) 0 0
\(335\) −13.0211 16.6700i −0.711418 0.910779i
\(336\) 0 0
\(337\) 8.26895 8.26895i 0.450439 0.450439i −0.445061 0.895500i \(-0.646818\pi\)
0.895500 + 0.445061i \(0.146818\pi\)
\(338\) 0 0
\(339\) 32.5143 1.76593
\(340\) 0 0
\(341\) 24.9427i 1.35072i
\(342\) 0 0
\(343\) 7.70330 16.8422i 0.415939 0.909392i
\(344\) 0 0
\(345\) 6.85359 55.7675i 0.368985 3.00242i
\(346\) 0 0
\(347\) −12.0104 + 12.0104i −0.644754 + 0.644754i −0.951720 0.306966i \(-0.900686\pi\)
0.306966 + 0.951720i \(0.400686\pi\)
\(348\) 0 0
\(349\) −13.0227 −0.697092 −0.348546 0.937292i \(-0.613324\pi\)
−0.348546 + 0.937292i \(0.613324\pi\)
\(350\) 0 0
\(351\) −20.0867 −1.07215
\(352\) 0 0
\(353\) −9.48642 + 9.48642i −0.504911 + 0.504911i −0.912960 0.408049i \(-0.866209\pi\)
0.408049 + 0.912960i \(0.366209\pi\)
\(354\) 0 0
\(355\) −1.64894 + 13.4174i −0.0875165 + 0.712120i
\(356\) 0 0
\(357\) −18.9509 14.9090i −1.00299 0.789070i
\(358\) 0 0
\(359\) 9.36637i 0.494338i −0.968972 0.247169i \(-0.920500\pi\)
0.968972 0.247169i \(-0.0795003\pi\)
\(360\) 0 0
\(361\) 0.702427 0.0369698
\(362\) 0 0
\(363\) 9.53865 9.53865i 0.500649 0.500649i
\(364\) 0 0
\(365\) −3.67838 4.70918i −0.192535 0.246490i
\(366\) 0 0
\(367\) 1.22951 + 1.22951i 0.0641798 + 0.0641798i 0.738468 0.674288i \(-0.235549\pi\)
−0.674288 + 0.738468i \(0.735549\pi\)
\(368\) 0 0
\(369\) 24.5022 1.27553
\(370\) 0 0
\(371\) 1.05824 + 8.86524i 0.0549412 + 0.460260i
\(372\) 0 0
\(373\) −6.68837 6.68837i −0.346311 0.346311i 0.512423 0.858733i \(-0.328748\pi\)
−0.858733 + 0.512423i \(0.828748\pi\)
\(374\) 0 0
\(375\) 13.9446 + 31.3479i 0.720098 + 1.61880i
\(376\) 0 0
\(377\) 5.80425 + 5.80425i 0.298934 + 0.298934i
\(378\) 0 0
\(379\) 0.0350675i 0.00180130i 1.00000 0.000900649i \(0.000286685\pi\)
−1.00000 0.000900649i \(0.999713\pi\)
\(380\) 0 0
\(381\) 29.4493i 1.50873i
\(382\) 0 0
\(383\) 20.5450 20.5450i 1.04980 1.04980i 0.0511048 0.998693i \(-0.483726\pi\)
0.998693 0.0511048i \(-0.0162743\pi\)
\(384\) 0 0
\(385\) −10.7878 + 10.7131i −0.549796 + 0.545988i
\(386\) 0 0
\(387\) −37.6087 + 37.6087i −1.91176 + 1.91176i
\(388\) 0 0
\(389\) 11.6510i 0.590730i 0.955385 + 0.295365i \(0.0954412\pi\)
−0.955385 + 0.295365i \(0.904559\pi\)
\(390\) 0 0
\(391\) 24.3179i 1.22981i
\(392\) 0 0
\(393\) 18.1808 + 18.1808i 0.917100 + 0.917100i
\(394\) 0 0
\(395\) 27.1775 + 3.34000i 1.36745 + 0.168054i
\(396\) 0 0
\(397\) −4.22472 4.22472i −0.212033 0.212033i 0.593098 0.805131i \(-0.297905\pi\)
−0.805131 + 0.593098i \(0.797905\pi\)
\(398\) 0 0
\(399\) 35.7846 4.27160i 1.79147 0.213848i
\(400\) 0 0
\(401\) −4.26395 −0.212932 −0.106466 0.994316i \(-0.533953\pi\)
−0.106466 + 0.994316i \(0.533953\pi\)
\(402\) 0 0
\(403\) 13.1463 + 13.1463i 0.654863 + 0.654863i
\(404\) 0 0
\(405\) 3.52625 28.6930i 0.175221 1.42577i
\(406\) 0 0
\(407\) −0.472084 + 0.472084i −0.0234003 + 0.0234003i
\(408\) 0 0
\(409\) 25.3610 1.25402 0.627011 0.779010i \(-0.284278\pi\)
0.627011 + 0.779010i \(0.284278\pi\)
\(410\) 0 0
\(411\) 32.8521i 1.62047i
\(412\) 0 0
\(413\) 13.1940 + 10.3800i 0.649235 + 0.510766i
\(414\) 0 0
\(415\) −4.06748 5.20732i −0.199665 0.255617i
\(416\) 0 0
\(417\) 24.3969 24.3969i 1.19472 1.19472i
\(418\) 0 0
\(419\) −0.597961 −0.0292123 −0.0146061 0.999893i \(-0.504649\pi\)
−0.0146061 + 0.999893i \(0.504649\pi\)
\(420\) 0 0
\(421\) −9.94725 −0.484799 −0.242400 0.970176i \(-0.577935\pi\)
−0.242400 + 0.970176i \(0.577935\pi\)
\(422\) 0 0
\(423\) −11.7437 + 11.7437i −0.570998 + 0.570998i
\(424\) 0 0
\(425\) 7.64514 + 12.7300i 0.370844 + 0.617494i
\(426\) 0 0
\(427\) −14.1022 + 17.9253i −0.682451 + 0.867464i
\(428\) 0 0
\(429\) 15.1061i 0.729329i
\(430\) 0 0
\(431\) 3.29543 0.158735 0.0793677 0.996845i \(-0.474710\pi\)
0.0793677 + 0.996845i \(0.474710\pi\)
\(432\) 0 0
\(433\) 14.8212 14.8212i 0.712260 0.712260i −0.254747 0.967008i \(-0.581992\pi\)
0.967008 + 0.254747i \(0.0819923\pi\)
\(434\) 0 0
\(435\) −23.1735 + 18.1011i −1.11109 + 0.867879i
\(436\) 0 0
\(437\) 25.7002 + 25.7002i 1.22941 + 1.22941i
\(438\) 0 0
\(439\) −3.93710 −0.187907 −0.0939537 0.995577i \(-0.529951\pi\)
−0.0939537 + 0.995577i \(0.529951\pi\)
\(440\) 0 0
\(441\) 43.6580 10.5735i 2.07895 0.503502i
\(442\) 0 0
\(443\) −23.0246 23.0246i −1.09393 1.09393i −0.995105 0.0988281i \(-0.968491\pi\)
−0.0988281 0.995105i \(-0.531509\pi\)
\(444\) 0 0
\(445\) 2.76910 22.5321i 0.131268 1.06813i
\(446\) 0 0
\(447\) −39.0731 39.0731i −1.84810 1.84810i
\(448\) 0 0
\(449\) 9.44923i 0.445937i −0.974826 0.222968i \(-0.928425\pi\)
0.974826 0.222968i \(-0.0715747\pi\)
\(450\) 0 0
\(451\) 9.81229i 0.462043i
\(452\) 0 0
\(453\) 26.3062 26.3062i 1.23597 1.23597i
\(454\) 0 0
\(455\) −0.0393798 + 11.3322i −0.00184615 + 0.531262i
\(456\) 0 0
\(457\) −17.8997 + 17.8997i −0.837313 + 0.837313i −0.988505 0.151191i \(-0.951689\pi\)
0.151191 + 0.988505i \(0.451689\pi\)
\(458\) 0 0
\(459\) 31.1429i 1.45363i
\(460\) 0 0
\(461\) 8.91063i 0.415009i 0.978234 + 0.207505i \(0.0665342\pi\)
−0.978234 + 0.207505i \(0.933466\pi\)
\(462\) 0 0
\(463\) −1.48151 1.48151i −0.0688518 0.0688518i 0.671842 0.740694i \(-0.265503\pi\)
−0.740694 + 0.671842i \(0.765503\pi\)
\(464\) 0 0
\(465\) −52.4867 + 40.9978i −2.43401 + 1.90123i
\(466\) 0 0
\(467\) −0.836995 0.836995i −0.0387315 0.0387315i 0.687476 0.726207i \(-0.258719\pi\)
−0.726207 + 0.687476i \(0.758719\pi\)
\(468\) 0 0
\(469\) 24.8518 2.96656i 1.14755 0.136983i
\(470\) 0 0
\(471\) 50.6737 2.33492
\(472\) 0 0
\(473\) 15.0610 + 15.0610i 0.692507 + 0.692507i
\(474\) 0 0
\(475\) −21.5333 5.37386i −0.988015 0.246570i
\(476\) 0 0
\(477\) −15.3123 + 15.3123i −0.701104 + 0.701104i
\(478\) 0 0
\(479\) 23.6142 1.07896 0.539479 0.841999i \(-0.318621\pi\)
0.539479 + 0.841999i \(0.318621\pi\)
\(480\) 0 0
\(481\) 0.497632i 0.0226901i
\(482\) 0 0
\(483\) 52.2500 + 41.1061i 2.37746 + 1.87039i
\(484\) 0 0
\(485\) 17.8417 13.9364i 0.810152 0.632817i
\(486\) 0 0
\(487\) −22.7931 + 22.7931i −1.03285 + 1.03285i −0.0334131 + 0.999442i \(0.510638\pi\)
−0.999442 + 0.0334131i \(0.989362\pi\)
\(488\) 0 0
\(489\) 45.6626 2.06493
\(490\) 0 0
\(491\) −5.02524 −0.226786 −0.113393 0.993550i \(-0.536172\pi\)
−0.113393 + 0.993550i \(0.536172\pi\)
\(492\) 0 0
\(493\) −8.99907 + 8.99907i −0.405298 + 0.405298i
\(494\) 0 0
\(495\) −36.6000 4.49799i −1.64505 0.202170i
\(496\) 0 0
\(497\) −12.5711 9.88992i −0.563890 0.443623i
\(498\) 0 0
\(499\) 10.9254i 0.489089i 0.969638 + 0.244544i \(0.0786384\pi\)
−0.969638 + 0.244544i \(0.921362\pi\)
\(500\) 0 0
\(501\) −39.3313 −1.75719
\(502\) 0 0
\(503\) −13.4112 + 13.4112i −0.597974 + 0.597974i −0.939773 0.341799i \(-0.888964\pi\)
0.341799 + 0.939773i \(0.388964\pi\)
\(504\) 0 0
\(505\) −2.49692 0.306861i −0.111111 0.0136551i
\(506\) 0 0
\(507\) −20.2472 20.2472i −0.899211 0.899211i
\(508\) 0 0
\(509\) −40.1376 −1.77907 −0.889533 0.456871i \(-0.848970\pi\)
−0.889533 + 0.456871i \(0.848970\pi\)
\(510\) 0 0
\(511\) 7.02049 0.838034i 0.310568 0.0370724i
\(512\) 0 0
\(513\) 32.9132 + 32.9132i 1.45315 + 1.45315i
\(514\) 0 0
\(515\) −3.05119 3.90622i −0.134451 0.172129i
\(516\) 0 0
\(517\) 4.70295 + 4.70295i 0.206835 + 0.206835i
\(518\) 0 0
\(519\) 43.3691i 1.90369i
\(520\) 0 0
\(521\) 19.2753i 0.844467i 0.906487 + 0.422234i \(0.138754\pi\)
−0.906487 + 0.422234i \(0.861246\pi\)
\(522\) 0 0
\(523\) −10.6573 + 10.6573i −0.466013 + 0.466013i −0.900620 0.434607i \(-0.856887\pi\)
0.434607 + 0.900620i \(0.356887\pi\)
\(524\) 0 0
\(525\) −40.2750 5.09176i −1.75775 0.222223i
\(526\) 0 0
\(527\) −20.3823 + 20.3823i −0.887869 + 0.887869i
\(528\) 0 0
\(529\) 44.0474i 1.91511i
\(530\) 0 0
\(531\) 40.7178i 1.76700i
\(532\) 0 0
\(533\) −5.17166 5.17166i −0.224009 0.224009i
\(534\) 0 0
\(535\) 0.282727 + 0.361956i 0.0122234 + 0.0156487i
\(536\) 0 0
\(537\) −32.2655 32.2655i −1.39236 1.39236i
\(538\) 0 0
\(539\) −4.23435 17.4835i −0.182386 0.753069i
\(540\) 0 0
\(541\) 12.8503 0.552479 0.276240 0.961089i \(-0.410912\pi\)
0.276240 + 0.961089i \(0.410912\pi\)
\(542\) 0 0
\(543\) −30.8335 30.8335i −1.32319 1.32319i
\(544\) 0 0
\(545\) −14.4510 1.77597i −0.619012 0.0760740i
\(546\) 0 0
\(547\) 26.5300 26.5300i 1.13434 1.13434i 0.144895 0.989447i \(-0.453716\pi\)
0.989447 0.144895i \(-0.0462844\pi\)
\(548\) 0 0
\(549\) −55.3188 −2.36095
\(550\) 0 0
\(551\) 19.0212i 0.810330i
\(552\) 0 0
\(553\) −20.0325 + 25.4633i −0.851868 + 1.08281i
\(554\) 0 0
\(555\) −1.76936 0.217446i −0.0751050 0.00923009i
\(556\) 0 0
\(557\) −25.9969 + 25.9969i −1.10152 + 1.10152i −0.107298 + 0.994227i \(0.534220\pi\)
−0.994227 + 0.107298i \(0.965780\pi\)
\(558\) 0 0
\(559\) 15.8761 0.671488
\(560\) 0 0
\(561\) −23.4209 −0.988830
\(562\) 0 0
\(563\) 1.11717 1.11717i 0.0470833 0.0470833i −0.683173 0.730256i \(-0.739401\pi\)
0.730256 + 0.683173i \(0.239401\pi\)
\(564\) 0 0
\(565\) 18.6711 14.5841i 0.785497 0.613559i
\(566\) 0 0
\(567\) 26.8833 + 21.1496i 1.12899 + 0.888199i
\(568\) 0 0
\(569\) 22.9125i 0.960543i 0.877120 + 0.480271i \(0.159462\pi\)
−0.877120 + 0.480271i \(0.840538\pi\)
\(570\) 0 0
\(571\) −33.1839 −1.38870 −0.694351 0.719636i \(-0.744308\pi\)
−0.694351 + 0.719636i \(0.744308\pi\)
\(572\) 0 0
\(573\) −2.25982 + 2.25982i −0.0944052 + 0.0944052i
\(574\) 0 0
\(575\) −21.0786 35.0981i −0.879039 1.46369i
\(576\) 0 0
\(577\) −29.4941 29.4941i −1.22786 1.22786i −0.964773 0.263084i \(-0.915260\pi\)
−0.263084 0.964773i \(-0.584740\pi\)
\(578\) 0 0
\(579\) −0.299563 −0.0124494
\(580\) 0 0
\(581\) 7.76312 0.926682i 0.322069 0.0384452i
\(582\) 0 0
\(583\) 6.13207 + 6.13207i 0.253965 + 0.253965i
\(584\) 0 0
\(585\) −21.6611 + 16.9197i −0.895576 + 0.699543i
\(586\) 0 0
\(587\) 14.6733 + 14.6733i 0.605634 + 0.605634i 0.941802 0.336168i \(-0.109131\pi\)
−0.336168 + 0.941802i \(0.609131\pi\)
\(588\) 0 0
\(589\) 43.0819i 1.77516i
\(590\) 0 0
\(591\) 55.5263i 2.28405i
\(592\) 0 0
\(593\) −21.3914 + 21.3914i −0.878439 + 0.878439i −0.993373 0.114934i \(-0.963334\pi\)
0.114934 + 0.993373i \(0.463334\pi\)
\(594\) 0 0
\(595\) −17.5698 0.0610555i −0.720290 0.00250303i
\(596\) 0 0
\(597\) −8.89220 + 8.89220i −0.363933 + 0.363933i
\(598\) 0 0
\(599\) 13.4975i 0.551494i 0.961230 + 0.275747i \(0.0889252\pi\)
−0.961230 + 0.275747i \(0.911075\pi\)
\(600\) 0 0
\(601\) 36.3870i 1.48426i 0.670258 + 0.742128i \(0.266183\pi\)
−0.670258 + 0.742128i \(0.733817\pi\)
\(602\) 0 0
\(603\) 42.9249 + 42.9249i 1.74804 + 1.74804i
\(604\) 0 0
\(605\) 1.19897 9.75600i 0.0487451 0.396638i
\(606\) 0 0
\(607\) 29.3687 + 29.3687i 1.19204 + 1.19204i 0.976494 + 0.215545i \(0.0691529\pi\)
0.215545 + 0.976494i \(0.430847\pi\)
\(608\) 0 0
\(609\) −4.12391 34.5473i −0.167109 1.39993i
\(610\) 0 0
\(611\) 4.95747 0.200558
\(612\) 0 0
\(613\) −20.4722 20.4722i −0.826863 0.826863i 0.160218 0.987082i \(-0.448780\pi\)
−0.987082 + 0.160218i \(0.948780\pi\)
\(614\) 0 0
\(615\) 20.6479 16.1283i 0.832604 0.650354i
\(616\) 0 0
\(617\) −5.88024 + 5.88024i −0.236729 + 0.236729i −0.815494 0.578765i \(-0.803535\pi\)
0.578765 + 0.815494i \(0.303535\pi\)
\(618\) 0 0
\(619\) −22.3760 −0.899368 −0.449684 0.893188i \(-0.648463\pi\)
−0.449684 + 0.893188i \(0.648463\pi\)
\(620\) 0 0
\(621\) 85.8650i 3.44564i
\(622\) 0 0
\(623\) 21.1109 + 16.6084i 0.845792 + 0.665401i
\(624\) 0 0
\(625\) 22.0685 + 11.7465i 0.882742 + 0.469859i
\(626\) 0 0
\(627\) 24.7522 24.7522i 0.988507 0.988507i
\(628\) 0 0
\(629\) −0.771543 −0.0307634
\(630\) 0 0
\(631\) 42.0404 1.67360 0.836802 0.547506i \(-0.184423\pi\)
0.836802 + 0.547506i \(0.184423\pi\)
\(632\) 0 0
\(633\) 62.3157 62.3157i 2.47683 2.47683i
\(634\) 0 0
\(635\) −13.2093 16.9110i −0.524196 0.671092i
\(636\) 0 0
\(637\) −11.4466 6.98311i −0.453531 0.276681i
\(638\) 0 0
\(639\) 38.7954i 1.53472i
\(640\) 0 0
\(641\) −1.69064 −0.0667764 −0.0333882 0.999442i \(-0.510630\pi\)
−0.0333882 + 0.999442i \(0.510630\pi\)
\(642\) 0 0
\(643\) −0.492457 + 0.492457i −0.0194206 + 0.0194206i −0.716750 0.697330i \(-0.754371\pi\)
0.697330 + 0.716750i \(0.254371\pi\)
\(644\) 0 0
\(645\) −6.93726 + 56.4483i −0.273154 + 2.22265i
\(646\) 0 0
\(647\) −6.32851 6.32851i −0.248799 0.248799i 0.571678 0.820478i \(-0.306293\pi\)
−0.820478 + 0.571678i \(0.806293\pi\)
\(648\) 0 0
\(649\) 16.3061 0.640071
\(650\) 0 0
\(651\) −9.34040 78.2476i −0.366079 3.06677i
\(652\) 0 0
\(653\) 24.3667 + 24.3667i 0.953543 + 0.953543i 0.998968 0.0454247i \(-0.0144641\pi\)
−0.0454247 + 0.998968i \(0.514464\pi\)
\(654\) 0 0
\(655\) 18.5951 + 2.28526i 0.726569 + 0.0892923i
\(656\) 0 0
\(657\) 12.1260 + 12.1260i 0.473081 + 0.473081i
\(658\) 0 0
\(659\) 10.7004i 0.416829i 0.978041 + 0.208414i \(0.0668303\pi\)
−0.978041 + 0.208414i \(0.933170\pi\)
\(660\) 0 0
\(661\) 34.1408i 1.32792i −0.747766 0.663962i \(-0.768874\pi\)
0.747766 0.663962i \(-0.231126\pi\)
\(662\) 0 0
\(663\) −12.3442 + 12.3442i −0.479409 + 0.479409i
\(664\) 0 0
\(665\) 18.6330 18.5040i 0.722557 0.717552i
\(666\) 0 0
\(667\) 24.8116 24.8116i 0.960707 0.960707i
\(668\) 0 0
\(669\) 16.0319i 0.619829i
\(670\) 0 0
\(671\) 22.1533i 0.855220i
\(672\) 0 0
\(673\) −11.2267 11.2267i −0.432758 0.432758i 0.456808 0.889566i \(-0.348993\pi\)
−0.889566 + 0.456808i \(0.848993\pi\)
\(674\) 0 0
\(675\) −26.9946 44.9488i −1.03902 1.73008i
\(676\) 0 0
\(677\) −2.84843 2.84843i −0.109474 0.109474i 0.650248 0.759722i \(-0.274665\pi\)
−0.759722 + 0.650248i \(0.774665\pi\)
\(678\) 0 0
\(679\) 3.17508 + 26.5987i 0.121848 + 1.02076i
\(680\) 0 0
\(681\) 34.1017 1.30678
\(682\) 0 0
\(683\) −22.5165 22.5165i −0.861571 0.861571i 0.129950 0.991521i \(-0.458518\pi\)
−0.991521 + 0.129950i \(0.958518\pi\)
\(684\) 0 0
\(685\) 14.7356 + 18.8650i 0.563019 + 0.720795i
\(686\) 0 0
\(687\) −20.5820 + 20.5820i −0.785253 + 0.785253i
\(688\) 0 0
\(689\) 6.46394 0.246256
\(690\) 0 0
\(691\) 7.28794i 0.277246i −0.990345 0.138623i \(-0.955732\pi\)
0.990345 0.138623i \(-0.0442677\pi\)
\(692\) 0 0
\(693\) 26.9778 34.2915i 1.02480 1.30263i
\(694\) 0 0
\(695\) 3.06660 24.9528i 0.116323 0.946515i
\(696\) 0 0
\(697\) 8.01828 8.01828i 0.303714 0.303714i
\(698\) 0 0
\(699\) 59.0326 2.23282
\(700\) 0 0
\(701\) 8.29057 0.313130 0.156565 0.987668i \(-0.449958\pi\)
0.156565 + 0.987668i \(0.449958\pi\)
\(702\) 0 0
\(703\) 0.815399 0.815399i 0.0307534 0.0307534i
\(704\) 0 0
\(705\) −2.16622 + 17.6265i −0.0815847 + 0.663853i
\(706\) 0 0
\(707\) 1.84048 2.33943i 0.0692182 0.0879833i
\(708\) 0 0
\(709\) 15.8960i 0.596987i −0.954412 0.298493i \(-0.903516\pi\)
0.954412 0.298493i \(-0.0964841\pi\)
\(710\) 0 0
\(711\) −78.5819 −2.94705
\(712\) 0 0
\(713\) 56.1967 56.1967i 2.10458 2.10458i
\(714\) 0 0
\(715\) 6.77576 + 8.67454i 0.253399 + 0.324409i
\(716\) 0 0
\(717\) 40.7036 + 40.7036i 1.52011 + 1.52011i
\(718\) 0 0
\(719\) −41.3180 −1.54090 −0.770450 0.637500i \(-0.779969\pi\)
−0.770450 + 0.637500i \(0.779969\pi\)
\(720\) 0 0
\(721\) 5.82344 0.695143i 0.216876 0.0258885i
\(722\) 0 0
\(723\) 6.04096 + 6.04096i 0.224666 + 0.224666i
\(724\) 0 0
\(725\) −5.18806 + 20.7887i −0.192680 + 0.772075i
\(726\) 0 0
\(727\) −2.27196 2.27196i −0.0842625 0.0842625i 0.663719 0.747982i \(-0.268977\pi\)
−0.747982 + 0.663719i \(0.768977\pi\)
\(728\) 0 0
\(729\) 13.5758i 0.502809i
\(730\) 0 0
\(731\) 24.6147i 0.910409i
\(732\) 0 0
\(733\) −4.64097 + 4.64097i −0.171418 + 0.171418i −0.787602 0.616184i \(-0.788678\pi\)
0.616184 + 0.787602i \(0.288678\pi\)
\(734\) 0 0
\(735\) 29.8305 37.6476i 1.10032 1.38865i
\(736\) 0 0
\(737\) 17.1900 17.1900i 0.633201 0.633201i
\(738\) 0 0
\(739\) 2.48628i 0.0914592i 0.998954 + 0.0457296i \(0.0145613\pi\)
−0.998954 + 0.0457296i \(0.985439\pi\)
\(740\) 0 0
\(741\) 26.0917i 0.958504i
\(742\) 0 0
\(743\) −11.7230 11.7230i −0.430075 0.430075i 0.458579 0.888654i \(-0.348359\pi\)
−0.888654 + 0.458579i \(0.848359\pi\)
\(744\) 0 0
\(745\) −39.9634 4.91134i −1.46415 0.179938i
\(746\) 0 0
\(747\) 13.4087 + 13.4087i 0.490600 + 0.490600i
\(748\) 0 0
\(749\) −0.539608 + 0.0644129i −0.0197168 + 0.00235359i
\(750\) 0 0
\(751\) 18.4627 0.673714 0.336857 0.941556i \(-0.390636\pi\)
0.336857 + 0.941556i \(0.390636\pi\)
\(752\) 0 0
\(753\) −61.5308 61.5308i −2.24231 2.24231i
\(754\) 0 0
\(755\) 3.30659 26.9056i 0.120339 0.979196i
\(756\) 0 0
\(757\) −2.72346 + 2.72346i −0.0989857 + 0.0989857i −0.754865 0.655880i \(-0.772298\pi\)
0.655880 + 0.754865i \(0.272298\pi\)
\(758\) 0 0
\(759\) 64.5743 2.34390
\(760\) 0 0
\(761\) 13.4733i 0.488406i −0.969724 0.244203i \(-0.921474\pi\)
0.969724 0.244203i \(-0.0785263\pi\)
\(762\) 0 0
\(763\) 10.6518 13.5395i 0.385621 0.490163i
\(764\) 0 0
\(765\) −26.2327 33.5839i −0.948446 1.21423i
\(766\) 0 0
\(767\) 8.59429 8.59429i 0.310322 0.310322i
\(768\) 0 0
\(769\) −13.2864 −0.479121 −0.239561 0.970881i \(-0.577003\pi\)
−0.239561 + 0.970881i \(0.577003\pi\)
\(770\) 0 0
\(771\) −78.0046 −2.80927
\(772\) 0 0
\(773\) −0.232304 + 0.232304i −0.00835541 + 0.00835541i −0.711272 0.702917i \(-0.751881\pi\)
0.702917 + 0.711272i \(0.251881\pi\)
\(774\) 0 0
\(775\) −11.7506 + 47.0853i −0.422095 + 1.69135i
\(776\) 0 0
\(777\) 1.30419 1.65776i 0.0467875 0.0594717i
\(778\) 0 0
\(779\) 16.9481i 0.607229i
\(780\) 0 0
\(781\) −15.5362 −0.555931
\(782\) 0 0
\(783\) 31.7752 31.7752i 1.13555 1.13555i
\(784\) 0 0
\(785\) 29.0989 22.7294i 1.03859 0.811249i
\(786\) 0 0
\(787\) −32.0984 32.0984i −1.14419 1.14419i −0.987676 0.156509i \(-0.949976\pi\)
−0.156509 0.987676i \(-0.550024\pi\)
\(788\) 0 0
\(789\) 4.28192 0.152441
\(790\) 0 0
\(791\) 3.32266 + 27.8350i 0.118140 + 0.989699i
\(792\) 0 0
\(793\) 11.6761 + 11.6761i 0.414631 + 0.414631i
\(794\) 0 0
\(795\) −2.82449 + 22.9828i −0.100174 + 0.815117i
\(796\) 0 0
\(797\) −31.3730 31.3730i −1.11129 1.11129i −0.992976 0.118313i \(-0.962251\pi\)
−0.118313 0.992976i \(-0.537749\pi\)
\(798\) 0 0
\(799\) 7.68619i 0.271918i
\(800\) 0 0
\(801\) 65.1501i 2.30197i
\(802\) 0 0
\(803\) 4.85606 4.85606i 0.171367 0.171367i
\(804\) 0 0
\(805\) 48.4420 + 0.168338i 1.70736 + 0.00593312i
\(806\) 0 0
\(807\) −5.76138 + 5.76138i −0.202810 + 0.202810i
\(808\) 0 0
\(809\) 43.8681i 1.54232i −0.636642 0.771160i \(-0.719677\pi\)
0.636642 0.771160i \(-0.280323\pi\)
\(810\) 0 0
\(811\) 20.3680i 0.715217i −0.933872 0.357609i \(-0.883592\pi\)
0.933872 0.357609i \(-0.116408\pi\)
\(812\) 0 0
\(813\) −1.24439 1.24439i −0.0436428 0.0436428i
\(814\) 0 0
\(815\) 26.2213 20.4817i 0.918494 0.717444i
\(816\) 0 0
\(817\) −26.0139 26.0139i −0.910112 0.910112i
\(818\) 0 0
\(819\) −3.85476 32.2926i −0.134696 1.12839i
\(820\) 0 0
\(821\) 2.15818 0.0753209 0.0376604 0.999291i \(-0.488009\pi\)
0.0376604 + 0.999291i \(0.488009\pi\)
\(822\) 0 0
\(823\) −24.0905 24.0905i −0.839741 0.839741i 0.149083 0.988825i \(-0.452368\pi\)
−0.988825 + 0.149083i \(0.952368\pi\)
\(824\) 0 0
\(825\) −33.8035 + 20.3011i −1.17689 + 0.706794i
\(826\) 0 0
\(827\) 24.0992 24.0992i 0.838011 0.838011i −0.150586 0.988597i \(-0.548116\pi\)
0.988597 + 0.150586i \(0.0481161\pi\)
\(828\) 0 0
\(829\) −26.8499 −0.932536 −0.466268 0.884643i \(-0.654402\pi\)
−0.466268 + 0.884643i \(0.654402\pi\)
\(830\) 0 0
\(831\) 30.3157i 1.05164i
\(832\) 0 0
\(833\) 10.8268 17.7471i 0.375126 0.614902i
\(834\) 0 0
\(835\) −22.5857 + 17.6419i −0.781610 + 0.610522i
\(836\) 0 0
\(837\) 71.9689 71.9689i 2.48761 2.48761i
\(838\) 0 0
\(839\) 16.1545 0.557717 0.278858 0.960332i \(-0.410044\pi\)
0.278858 + 0.960332i \(0.410044\pi\)
\(840\) 0 0
\(841\) 10.6365 0.366775
\(842\) 0 0
\(843\) −50.5454 + 50.5454i −1.74087 + 1.74087i
\(844\) 0 0
\(845\) −20.7086 2.54500i −0.712397 0.0875506i
\(846\) 0 0
\(847\) 9.14066 + 7.19113i 0.314077 + 0.247090i
\(848\) 0 0
\(849\) 40.2350i 1.38086i
\(850\) 0 0
\(851\) 2.12724 0.0729208
\(852\) 0 0
\(853\) 2.00773 2.00773i 0.0687435 0.0687435i −0.671899 0.740643i \(-0.734521\pi\)
0.740643 + 0.671899i \(0.234521\pi\)
\(854\) 0 0
\(855\) 63.2168 + 7.76908i 2.16197 + 0.265697i
\(856\) 0 0
\(857\) 23.9532 + 23.9532i 0.818225 + 0.818225i 0.985851 0.167626i \(-0.0536101\pi\)
−0.167626 + 0.985851i \(0.553610\pi\)
\(858\) 0 0
\(859\) 28.0499 0.957049 0.478525 0.878074i \(-0.341172\pi\)
0.478525 + 0.878074i \(0.341172\pi\)
\(860\) 0 0
\(861\) 3.67445 + 30.7821i 0.125225 + 1.04905i
\(862\) 0 0
\(863\) −0.191578 0.191578i −0.00652139 0.00652139i 0.703839 0.710360i \(-0.251468\pi\)
−0.710360 + 0.703839i \(0.751468\pi\)
\(864\) 0 0
\(865\) 19.4530 + 24.9043i 0.661421 + 0.846772i
\(866\) 0 0
\(867\) 17.7500 + 17.7500i 0.602821 + 0.602821i
\(868\) 0 0
\(869\) 31.4694i 1.06753i
\(870\) 0 0
\(871\) 18.1203i 0.613982i
\(872\) 0 0
\(873\) −45.9421 + 45.9421i −1.55490 + 1.55490i
\(874\) 0 0
\(875\) −25.4115 + 15.1413i −0.859064 + 0.511868i
\(876\) 0 0
\(877\) 41.2975 41.2975i 1.39452 1.39452i 0.579653 0.814863i \(-0.303188\pi\)
0.814863 0.579653i \(-0.196812\pi\)
\(878\) 0 0
\(879\) 49.4529i 1.66801i
\(880\) 0 0
\(881\) 24.7259i 0.833037i −0.909127 0.416519i \(-0.863250\pi\)
0.909127 0.416519i \(-0.136750\pi\)
\(882\) 0 0
\(883\) −12.2632 12.2632i −0.412688 0.412688i 0.469986 0.882674i \(-0.344259\pi\)
−0.882674 + 0.469986i \(0.844259\pi\)
\(884\) 0 0
\(885\) 26.8020 + 34.3128i 0.900940 + 1.15341i
\(886\) 0 0
\(887\) −14.0519 14.0519i −0.471816 0.471816i 0.430686 0.902502i \(-0.358272\pi\)
−0.902502 + 0.430686i \(0.858272\pi\)
\(888\) 0 0
\(889\) 25.2111 3.00944i 0.845553 0.100933i
\(890\) 0 0
\(891\) 33.2243 1.11305
\(892\) 0 0
\(893\) −8.12309 8.12309i −0.271829 0.271829i
\(894\) 0 0
\(895\) −33.0007 4.05564i −1.10309 0.135565i
\(896\) 0 0
\(897\) 34.0345 34.0345i 1.13638 1.13638i
\(898\) 0 0
\(899\) −41.5923 −1.38718
\(900\) 0 0
\(901\) 10.0219i 0.333876i
\(902\) 0 0
\(903\) −52.8879 41.6079i −1.76000 1.38463i
\(904\) 0 0
\(905\) −31.5360 3.87565i −1.04829 0.128831i
\(906\) 0 0
\(907\) 30.9592 30.9592i 1.02798 1.02798i 0.0283860 0.999597i \(-0.490963\pi\)
0.999597 0.0283860i \(-0.00903674\pi\)
\(908\) 0 0
\(909\) 7.21967 0.239461
\(910\) 0 0
\(911\) −22.1629 −0.734289 −0.367145 0.930164i \(-0.619665\pi\)
−0.367145 + 0.930164i \(0.619665\pi\)
\(912\) 0 0
\(913\) 5.36974 5.36974i 0.177712 0.177712i
\(914\) 0 0
\(915\) −46.6170 + 36.4130i −1.54111 + 1.20378i
\(916\) 0 0
\(917\) −13.7064 + 17.4222i −0.452625 + 0.575332i
\(918\) 0 0
\(919\) 5.60542i 0.184906i 0.995717 + 0.0924529i \(0.0294708\pi\)
−0.995717 + 0.0924529i \(0.970529\pi\)
\(920\) 0 0
\(921\) −55.1257 −1.81645
\(922\) 0 0
\(923\) −8.18853 + 8.18853i −0.269529 + 0.269529i
\(924\) 0 0
\(925\) −1.11357 + 0.668769i −0.0366140 + 0.0219890i
\(926\) 0 0
\(927\) 10.0584 + 10.0584i 0.330363 + 0.330363i
\(928\) 0 0
\(929\) −29.8751 −0.980170 −0.490085 0.871675i \(-0.663034\pi\)
−0.490085 + 0.871675i \(0.663034\pi\)
\(930\) 0 0
\(931\) 7.31371 + 30.1982i 0.239697 + 0.989705i
\(932\) 0 0
\(933\) −26.6299 26.6299i −0.871824 0.871824i
\(934\) 0 0
\(935\) −13.4492 + 10.5053i −0.439837 + 0.343561i
\(936\) 0 0
\(937\) −34.6529 34.6529i −1.13206 1.13206i −0.989834 0.142226i \(-0.954574\pi\)
−0.142226 0.989834i \(-0.545426\pi\)
\(938\) 0 0
\(939\) 51.9220i 1.69441i
\(940\) 0 0
\(941\) 21.6170i 0.704693i −0.935870 0.352346i \(-0.885384\pi\)
0.935870 0.352346i \(-0.114616\pi\)
\(942\) 0 0
\(943\) −22.1074 + 22.1074i −0.719916 + 0.719916i
\(944\) 0 0
\(945\) 62.0378 + 0.215583i 2.01809 + 0.00701293i
\(946\) 0 0
\(947\) −7.95185 + 7.95185i −0.258400 + 0.258400i −0.824403 0.566003i \(-0.808489\pi\)
0.566003 + 0.824403i \(0.308489\pi\)
\(948\) 0 0
\(949\) 5.11887i 0.166165i
\(950\) 0 0
\(951\) 82.4331i 2.67308i
\(952\) 0 0
\(953\) −12.7397 12.7397i −0.412678 0.412678i 0.469992 0.882671i \(-0.344257\pi\)
−0.882671 + 0.469992i \(0.844257\pi\)
\(954\) 0 0
\(955\) −0.284050 + 2.31131i −0.00919165 + 0.0747923i
\(956\) 0 0
\(957\) −23.8964 23.8964i −0.772459 0.772459i
\(958\) 0 0
\(959\) −28.1241 + 3.35717i −0.908176 + 0.108409i
\(960\) 0 0
\(961\) −63.2040 −2.03884
\(962\) 0 0
\(963\) −0.932029 0.932029i −0.0300342 0.0300342i
\(964\) 0 0
\(965\) −0.172021 + 0.134367i −0.00553756 + 0.00432544i
\(966\) 0 0
\(967\) −11.8492 + 11.8492i −0.381045 + 0.381045i −0.871478 0.490434i \(-0.836838\pi\)
0.490434 + 0.871478i \(0.336838\pi\)
\(968\) 0 0
\(969\) 40.4533 1.29955
\(970\) 0 0
\(971\) 48.5371i 1.55763i −0.627255 0.778814i \(-0.715821\pi\)
0.627255 0.778814i \(-0.284179\pi\)
\(972\) 0 0
\(973\) 23.3790 + 18.3927i 0.749495 + 0.589642i
\(974\) 0 0
\(975\) −7.11656 + 28.5163i −0.227912 + 0.913254i
\(976\) 0 0
\(977\) −18.9303 + 18.9303i −0.605635 + 0.605635i −0.941802 0.336167i \(-0.890869\pi\)
0.336167 + 0.941802i \(0.390869\pi\)
\(978\) 0 0
\(979\) 26.0904 0.833854
\(980\) 0 0
\(981\) 41.7840 1.33406
\(982\) 0 0
\(983\) −7.97683 + 7.97683i −0.254421 + 0.254421i −0.822781 0.568359i \(-0.807578\pi\)
0.568359 + 0.822781i \(0.307578\pi\)
\(984\) 0 0
\(985\) 24.9061 + 31.8855i 0.793573 + 1.01596i
\(986\) 0 0
\(987\) −16.5147 12.9925i −0.525670 0.413555i
\(988\) 0 0
\(989\) 67.8660i 2.15801i
\(990\) 0 0
\(991\) 49.6706 1.57784 0.788920 0.614496i \(-0.210641\pi\)
0.788920 + 0.614496i \(0.210641\pi\)
\(992\) 0 0
\(993\) −51.7112 + 51.7112i −1.64100 + 1.64100i
\(994\) 0 0
\(995\) −1.11771 + 9.09482i −0.0354339 + 0.288325i
\(996\) 0 0
\(997\) 12.4002 + 12.4002i 0.392718 + 0.392718i 0.875655 0.482937i \(-0.160430\pi\)
−0.482937 + 0.875655i \(0.660430\pi\)
\(998\) 0 0
\(999\) 2.72427 0.0861922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bj.d.433.1 24
4.3 odd 2 280.2.x.a.153.12 yes 24
5.2 odd 4 inner 560.2.bj.d.97.12 24
7.6 odd 2 inner 560.2.bj.d.433.12 24
20.3 even 4 1400.2.x.b.657.12 24
20.7 even 4 280.2.x.a.97.1 24
20.19 odd 2 1400.2.x.b.993.1 24
28.27 even 2 280.2.x.a.153.1 yes 24
35.27 even 4 inner 560.2.bj.d.97.1 24
140.27 odd 4 280.2.x.a.97.12 yes 24
140.83 odd 4 1400.2.x.b.657.1 24
140.139 even 2 1400.2.x.b.993.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.x.a.97.1 24 20.7 even 4
280.2.x.a.97.12 yes 24 140.27 odd 4
280.2.x.a.153.1 yes 24 28.27 even 2
280.2.x.a.153.12 yes 24 4.3 odd 2
560.2.bj.d.97.1 24 35.27 even 4 inner
560.2.bj.d.97.12 24 5.2 odd 4 inner
560.2.bj.d.433.1 24 1.1 even 1 trivial
560.2.bj.d.433.12 24 7.6 odd 2 inner
1400.2.x.b.657.1 24 140.83 odd 4
1400.2.x.b.657.12 24 20.3 even 4
1400.2.x.b.993.1 24 20.19 odd 2
1400.2.x.b.993.12 24 140.139 even 2