Properties

Label 560.2.bj.d.433.7
Level $560$
Weight $2$
Character 560.433
Analytic conductor $4.472$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(97,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bj (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.7
Character \(\chi\) \(=\) 560.433
Dual form 560.2.bj.d.97.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0703127 - 0.0703127i) q^{3} +(-2.16104 + 0.574360i) q^{5} +(2.58523 - 0.562657i) q^{7} +2.99011i q^{9} -0.777018 q^{11} +(-3.93876 + 3.93876i) q^{13} +(-0.111564 + 0.192334i) q^{15} +(0.982018 + 0.982018i) q^{17} +1.14872 q^{19} +(0.142213 - 0.221337i) q^{21} +(1.46167 + 1.46167i) q^{23} +(4.34022 - 2.48243i) q^{25} +(0.421181 + 0.421181i) q^{27} +4.69033i q^{29} +6.45186i q^{31} +(-0.0546342 + 0.0546342i) q^{33} +(-5.26363 + 2.70078i) q^{35} +(-1.30390 + 1.30390i) q^{37} +0.553890i q^{39} +9.81800i q^{41} +(7.13800 + 7.13800i) q^{43} +(-1.71740 - 6.46176i) q^{45} +(-7.34914 - 7.34914i) q^{47} +(6.36683 - 2.90920i) q^{49} +0.138097 q^{51} +(-2.08092 - 2.08092i) q^{53} +(1.67917 - 0.446288i) q^{55} +(0.0807696 - 0.0807696i) q^{57} -8.29508 q^{59} -5.88837i q^{61} +(1.68241 + 7.73013i) q^{63} +(6.24956 - 10.7741i) q^{65} +(6.30957 - 6.30957i) q^{67} +0.205548 q^{69} -12.3373 q^{71} +(7.23861 - 7.23861i) q^{73} +(0.130626 - 0.479719i) q^{75} +(-2.00877 + 0.437195i) q^{77} -2.83831i q^{79} -8.91111 q^{81} +(10.4188 - 10.4188i) q^{83} +(-2.68621 - 1.55815i) q^{85} +(0.329790 + 0.329790i) q^{87} +3.41911 q^{89} +(-7.96643 + 12.3988i) q^{91} +(0.453647 + 0.453647i) q^{93} +(-2.48243 + 0.659779i) q^{95} +(8.50258 + 8.50258i) q^{97} -2.32337i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 8 q^{15} + 16 q^{21} + 32 q^{23} + 8 q^{25} - 12 q^{35} - 8 q^{37} - 16 q^{43} + 24 q^{51} - 16 q^{53} - 20 q^{63} - 48 q^{65} + 32 q^{67} + 32 q^{71} - 40 q^{77} - 72 q^{81}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0703127 0.0703127i 0.0405951 0.0405951i −0.686518 0.727113i \(-0.740862\pi\)
0.727113 + 0.686518i \(0.240862\pi\)
\(4\) 0 0
\(5\) −2.16104 + 0.574360i −0.966448 + 0.256862i
\(6\) 0 0
\(7\) 2.58523 0.562657i 0.977125 0.212664i
\(8\) 0 0
\(9\) 2.99011i 0.996704i
\(10\) 0 0
\(11\) −0.777018 −0.234280 −0.117140 0.993115i \(-0.537373\pi\)
−0.117140 + 0.993115i \(0.537373\pi\)
\(12\) 0 0
\(13\) −3.93876 + 3.93876i −1.09241 + 1.09241i −0.0971446 + 0.995270i \(0.530971\pi\)
−0.995270 + 0.0971446i \(0.969029\pi\)
\(14\) 0 0
\(15\) −0.111564 + 0.192334i −0.0288057 + 0.0496603i
\(16\) 0 0
\(17\) 0.982018 + 0.982018i 0.238174 + 0.238174i 0.816094 0.577920i \(-0.196135\pi\)
−0.577920 + 0.816094i \(0.696135\pi\)
\(18\) 0 0
\(19\) 1.14872 0.263534 0.131767 0.991281i \(-0.457935\pi\)
0.131767 + 0.991281i \(0.457935\pi\)
\(20\) 0 0
\(21\) 0.142213 0.221337i 0.0310333 0.0482996i
\(22\) 0 0
\(23\) 1.46167 + 1.46167i 0.304780 + 0.304780i 0.842881 0.538101i \(-0.180858\pi\)
−0.538101 + 0.842881i \(0.680858\pi\)
\(24\) 0 0
\(25\) 4.34022 2.48243i 0.868044 0.496487i
\(26\) 0 0
\(27\) 0.421181 + 0.421181i 0.0810563 + 0.0810563i
\(28\) 0 0
\(29\) 4.69033i 0.870973i 0.900195 + 0.435486i \(0.143424\pi\)
−0.900195 + 0.435486i \(0.856576\pi\)
\(30\) 0 0
\(31\) 6.45186i 1.15879i 0.815048 + 0.579394i \(0.196711\pi\)
−0.815048 + 0.579394i \(0.803289\pi\)
\(32\) 0 0
\(33\) −0.0546342 + 0.0546342i −0.00951060 + 0.00951060i
\(34\) 0 0
\(35\) −5.26363 + 2.70078i −0.889716 + 0.456515i
\(36\) 0 0
\(37\) −1.30390 + 1.30390i −0.214359 + 0.214359i −0.806116 0.591757i \(-0.798435\pi\)
0.591757 + 0.806116i \(0.298435\pi\)
\(38\) 0 0
\(39\) 0.553890i 0.0886933i
\(40\) 0 0
\(41\) 9.81800i 1.53331i 0.642057 + 0.766657i \(0.278081\pi\)
−0.642057 + 0.766657i \(0.721919\pi\)
\(42\) 0 0
\(43\) 7.13800 + 7.13800i 1.08853 + 1.08853i 0.995680 + 0.0928552i \(0.0295994\pi\)
0.0928552 + 0.995680i \(0.470401\pi\)
\(44\) 0 0
\(45\) −1.71740 6.46176i −0.256015 0.963263i
\(46\) 0 0
\(47\) −7.34914 7.34914i −1.07198 1.07198i −0.997200 0.0747825i \(-0.976174\pi\)
−0.0747825 0.997200i \(-0.523826\pi\)
\(48\) 0 0
\(49\) 6.36683 2.90920i 0.909548 0.415600i
\(50\) 0 0
\(51\) 0.138097 0.0193374
\(52\) 0 0
\(53\) −2.08092 2.08092i −0.285836 0.285836i 0.549595 0.835431i \(-0.314782\pi\)
−0.835431 + 0.549595i \(0.814782\pi\)
\(54\) 0 0
\(55\) 1.67917 0.446288i 0.226419 0.0601774i
\(56\) 0 0
\(57\) 0.0807696 0.0807696i 0.0106982 0.0106982i
\(58\) 0 0
\(59\) −8.29508 −1.07993 −0.539964 0.841688i \(-0.681562\pi\)
−0.539964 + 0.841688i \(0.681562\pi\)
\(60\) 0 0
\(61\) 5.88837i 0.753929i −0.926228 0.376965i \(-0.876968\pi\)
0.926228 0.376965i \(-0.123032\pi\)
\(62\) 0 0
\(63\) 1.68241 + 7.73013i 0.211963 + 0.973905i
\(64\) 0 0
\(65\) 6.24956 10.7741i 0.775163 1.33636i
\(66\) 0 0
\(67\) 6.30957 6.30957i 0.770837 0.770837i −0.207416 0.978253i \(-0.566505\pi\)
0.978253 + 0.207416i \(0.0665053\pi\)
\(68\) 0 0
\(69\) 0.205548 0.0247451
\(70\) 0 0
\(71\) −12.3373 −1.46417 −0.732084 0.681214i \(-0.761452\pi\)
−0.732084 + 0.681214i \(0.761452\pi\)
\(72\) 0 0
\(73\) 7.23861 7.23861i 0.847216 0.847216i −0.142569 0.989785i \(-0.545536\pi\)
0.989785 + 0.142569i \(0.0455364\pi\)
\(74\) 0 0
\(75\) 0.130626 0.479719i 0.0150834 0.0553932i
\(76\) 0 0
\(77\) −2.00877 + 0.437195i −0.228921 + 0.0498229i
\(78\) 0 0
\(79\) 2.83831i 0.319335i −0.987171 0.159668i \(-0.948958\pi\)
0.987171 0.159668i \(-0.0510423\pi\)
\(80\) 0 0
\(81\) −8.91111 −0.990123
\(82\) 0 0
\(83\) 10.4188 10.4188i 1.14361 1.14361i 0.155823 0.987785i \(-0.450197\pi\)
0.987785 0.155823i \(-0.0498029\pi\)
\(84\) 0 0
\(85\) −2.68621 1.55815i −0.291361 0.169005i
\(86\) 0 0
\(87\) 0.329790 + 0.329790i 0.0353572 + 0.0353572i
\(88\) 0 0
\(89\) 3.41911 0.362425 0.181213 0.983444i \(-0.441998\pi\)
0.181213 + 0.983444i \(0.441998\pi\)
\(90\) 0 0
\(91\) −7.96643 + 12.3988i −0.835108 + 1.29974i
\(92\) 0 0
\(93\) 0.453647 + 0.453647i 0.0470411 + 0.0470411i
\(94\) 0 0
\(95\) −2.48243 + 0.659779i −0.254692 + 0.0676919i
\(96\) 0 0
\(97\) 8.50258 + 8.50258i 0.863306 + 0.863306i 0.991721 0.128414i \(-0.0409888\pi\)
−0.128414 + 0.991721i \(0.540989\pi\)
\(98\) 0 0
\(99\) 2.32337i 0.233507i
\(100\) 0 0
\(101\) 4.88126i 0.485703i −0.970063 0.242852i \(-0.921917\pi\)
0.970063 0.242852i \(-0.0780828\pi\)
\(102\) 0 0
\(103\) 10.0443 10.0443i 0.989697 0.989697i −0.0102503 0.999947i \(-0.503263\pi\)
0.999947 + 0.0102503i \(0.00326282\pi\)
\(104\) 0 0
\(105\) −0.180201 + 0.559999i −0.0175858 + 0.0546503i
\(106\) 0 0
\(107\) −5.67065 + 5.67065i −0.548203 + 0.548203i −0.925921 0.377718i \(-0.876709\pi\)
0.377718 + 0.925921i \(0.376709\pi\)
\(108\) 0 0
\(109\) 11.9012i 1.13993i 0.821669 + 0.569965i \(0.193043\pi\)
−0.821669 + 0.569965i \(0.806957\pi\)
\(110\) 0 0
\(111\) 0.183361i 0.0174039i
\(112\) 0 0
\(113\) −1.36519 1.36519i −0.128427 0.128427i 0.639972 0.768398i \(-0.278946\pi\)
−0.768398 + 0.639972i \(0.778946\pi\)
\(114\) 0 0
\(115\) −3.99827 2.31921i −0.372840 0.216268i
\(116\) 0 0
\(117\) −11.7773 11.7773i −1.08881 1.08881i
\(118\) 0 0
\(119\) 3.09128 + 1.98620i 0.283377 + 0.182075i
\(120\) 0 0
\(121\) −10.3962 −0.945113
\(122\) 0 0
\(123\) 0.690330 + 0.690330i 0.0622450 + 0.0622450i
\(124\) 0 0
\(125\) −7.95360 + 7.85750i −0.711391 + 0.702796i
\(126\) 0 0
\(127\) 9.49331 9.49331i 0.842395 0.842395i −0.146775 0.989170i \(-0.546889\pi\)
0.989170 + 0.146775i \(0.0468894\pi\)
\(128\) 0 0
\(129\) 1.00378 0.0883783
\(130\) 0 0
\(131\) 19.4938i 1.70318i −0.524206 0.851592i \(-0.675638\pi\)
0.524206 0.851592i \(-0.324362\pi\)
\(132\) 0 0
\(133\) 2.96971 0.646335i 0.257506 0.0560444i
\(134\) 0 0
\(135\) −1.15210 0.668281i −0.0991570 0.0575165i
\(136\) 0 0
\(137\) 5.77702 5.77702i 0.493564 0.493564i −0.415863 0.909427i \(-0.636521\pi\)
0.909427 + 0.415863i \(0.136521\pi\)
\(138\) 0 0
\(139\) 15.2115 1.29023 0.645113 0.764087i \(-0.276810\pi\)
0.645113 + 0.764087i \(0.276810\pi\)
\(140\) 0 0
\(141\) −1.03348 −0.0870344
\(142\) 0 0
\(143\) 3.06048 3.06048i 0.255931 0.255931i
\(144\) 0 0
\(145\) −2.69394 10.1360i −0.223719 0.841750i
\(146\) 0 0
\(147\) 0.243116 0.652223i 0.0200519 0.0537944i
\(148\) 0 0
\(149\) 16.5328i 1.35442i 0.735789 + 0.677211i \(0.236812\pi\)
−0.735789 + 0.677211i \(0.763188\pi\)
\(150\) 0 0
\(151\) −12.4421 −1.01252 −0.506262 0.862380i \(-0.668973\pi\)
−0.506262 + 0.862380i \(0.668973\pi\)
\(152\) 0 0
\(153\) −2.93634 + 2.93634i −0.237389 + 0.237389i
\(154\) 0 0
\(155\) −3.70569 13.9427i −0.297648 1.11991i
\(156\) 0 0
\(157\) −6.24218 6.24218i −0.498180 0.498180i 0.412691 0.910871i \(-0.364589\pi\)
−0.910871 + 0.412691i \(0.864589\pi\)
\(158\) 0 0
\(159\) −0.292630 −0.0232070
\(160\) 0 0
\(161\) 4.60118 + 2.95634i 0.362624 + 0.232992i
\(162\) 0 0
\(163\) −9.47383 9.47383i −0.742048 0.742048i 0.230924 0.972972i \(-0.425825\pi\)
−0.972972 + 0.230924i \(0.925825\pi\)
\(164\) 0 0
\(165\) 0.0866873 0.149447i 0.00674859 0.0116344i
\(166\) 0 0
\(167\) 0.725303 + 0.725303i 0.0561257 + 0.0561257i 0.734613 0.678487i \(-0.237364\pi\)
−0.678487 + 0.734613i \(0.737364\pi\)
\(168\) 0 0
\(169\) 18.0276i 1.38674i
\(170\) 0 0
\(171\) 3.43480i 0.262666i
\(172\) 0 0
\(173\) 3.12344 3.12344i 0.237471 0.237471i −0.578331 0.815802i \(-0.696296\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(174\) 0 0
\(175\) 9.82371 8.85972i 0.742603 0.669732i
\(176\) 0 0
\(177\) −0.583250 + 0.583250i −0.0438397 + 0.0438397i
\(178\) 0 0
\(179\) 9.18800i 0.686743i 0.939200 + 0.343372i \(0.111569\pi\)
−0.939200 + 0.343372i \(0.888431\pi\)
\(180\) 0 0
\(181\) 9.51164i 0.706995i 0.935435 + 0.353497i \(0.115008\pi\)
−0.935435 + 0.353497i \(0.884992\pi\)
\(182\) 0 0
\(183\) −0.414028 0.414028i −0.0306058 0.0306058i
\(184\) 0 0
\(185\) 2.06887 3.56669i 0.152107 0.262228i
\(186\) 0 0
\(187\) −0.763045 0.763045i −0.0557994 0.0557994i
\(188\) 0 0
\(189\) 1.32583 + 0.851870i 0.0964400 + 0.0619644i
\(190\) 0 0
\(191\) 21.2171 1.53522 0.767609 0.640918i \(-0.221446\pi\)
0.767609 + 0.640918i \(0.221446\pi\)
\(192\) 0 0
\(193\) 5.15371 + 5.15371i 0.370972 + 0.370972i 0.867831 0.496859i \(-0.165513\pi\)
−0.496859 + 0.867831i \(0.665513\pi\)
\(194\) 0 0
\(195\) −0.318132 1.19698i −0.0227819 0.0857175i
\(196\) 0 0
\(197\) 3.83269 3.83269i 0.273068 0.273068i −0.557266 0.830334i \(-0.688150\pi\)
0.830334 + 0.557266i \(0.188150\pi\)
\(198\) 0 0
\(199\) 13.4648 0.954496 0.477248 0.878769i \(-0.341634\pi\)
0.477248 + 0.878769i \(0.341634\pi\)
\(200\) 0 0
\(201\) 0.887286i 0.0625844i
\(202\) 0 0
\(203\) 2.63905 + 12.1256i 0.185225 + 0.851049i
\(204\) 0 0
\(205\) −5.63907 21.2171i −0.393850 1.48187i
\(206\) 0 0
\(207\) −4.37057 + 4.37057i −0.303775 + 0.303775i
\(208\) 0 0
\(209\) −0.892576 −0.0617408
\(210\) 0 0
\(211\) −8.11050 −0.558350 −0.279175 0.960240i \(-0.590061\pi\)
−0.279175 + 0.960240i \(0.590061\pi\)
\(212\) 0 0
\(213\) −0.867469 + 0.867469i −0.0594380 + 0.0594380i
\(214\) 0 0
\(215\) −19.5253 11.3257i −1.33162 0.772410i
\(216\) 0 0
\(217\) 3.63018 + 16.6795i 0.246433 + 1.13228i
\(218\) 0 0
\(219\) 1.01793i 0.0687855i
\(220\) 0 0
\(221\) −7.73586 −0.520370
\(222\) 0 0
\(223\) −18.5407 + 18.5407i −1.24157 + 1.24157i −0.282226 + 0.959348i \(0.591073\pi\)
−0.959348 + 0.282226i \(0.908927\pi\)
\(224\) 0 0
\(225\) 7.42276 + 12.9777i 0.494850 + 0.865183i
\(226\) 0 0
\(227\) −4.84230 4.84230i −0.321395 0.321395i 0.527907 0.849302i \(-0.322977\pi\)
−0.849302 + 0.527907i \(0.822977\pi\)
\(228\) 0 0
\(229\) −4.14288 −0.273769 −0.136884 0.990587i \(-0.543709\pi\)
−0.136884 + 0.990587i \(0.543709\pi\)
\(230\) 0 0
\(231\) −0.110502 + 0.171982i −0.00727048 + 0.0113156i
\(232\) 0 0
\(233\) 17.7734 + 17.7734i 1.16437 + 1.16437i 0.983508 + 0.180864i \(0.0578895\pi\)
0.180864 + 0.983508i \(0.442110\pi\)
\(234\) 0 0
\(235\) 20.1029 + 11.6608i 1.31137 + 0.760664i
\(236\) 0 0
\(237\) −0.199570 0.199570i −0.0129634 0.0129634i
\(238\) 0 0
\(239\) 24.8714i 1.60880i 0.594090 + 0.804399i \(0.297512\pi\)
−0.594090 + 0.804399i \(0.702488\pi\)
\(240\) 0 0
\(241\) 5.11385i 0.329412i 0.986343 + 0.164706i \(0.0526676\pi\)
−0.986343 + 0.164706i \(0.947332\pi\)
\(242\) 0 0
\(243\) −1.89011 + 1.89011i −0.121250 + 0.121250i
\(244\) 0 0
\(245\) −12.0881 + 9.94376i −0.772279 + 0.635283i
\(246\) 0 0
\(247\) −4.52453 + 4.52453i −0.287889 + 0.287889i
\(248\) 0 0
\(249\) 1.46514i 0.0928497i
\(250\) 0 0
\(251\) 21.4745i 1.35546i 0.735311 + 0.677729i \(0.237036\pi\)
−0.735311 + 0.677729i \(0.762964\pi\)
\(252\) 0 0
\(253\) −1.13575 1.13575i −0.0714037 0.0714037i
\(254\) 0 0
\(255\) −0.298433 + 0.0793172i −0.0186886 + 0.00496703i
\(256\) 0 0
\(257\) −2.08456 2.08456i −0.130031 0.130031i 0.639096 0.769127i \(-0.279309\pi\)
−0.769127 + 0.639096i \(0.779309\pi\)
\(258\) 0 0
\(259\) −2.63723 + 4.10452i −0.163869 + 0.255043i
\(260\) 0 0
\(261\) −14.0246 −0.868102
\(262\) 0 0
\(263\) −6.37087 6.37087i −0.392845 0.392845i 0.482855 0.875700i \(-0.339600\pi\)
−0.875700 + 0.482855i \(0.839600\pi\)
\(264\) 0 0
\(265\) 5.69214 + 3.30176i 0.349666 + 0.202825i
\(266\) 0 0
\(267\) 0.240407 0.240407i 0.0147127 0.0147127i
\(268\) 0 0
\(269\) 9.57242 0.583641 0.291820 0.956473i \(-0.405739\pi\)
0.291820 + 0.956473i \(0.405739\pi\)
\(270\) 0 0
\(271\) 12.1076i 0.735486i 0.929927 + 0.367743i \(0.119869\pi\)
−0.929927 + 0.367743i \(0.880131\pi\)
\(272\) 0 0
\(273\) 0.311650 + 1.43193i 0.0188619 + 0.0866645i
\(274\) 0 0
\(275\) −3.37243 + 1.92890i −0.203365 + 0.116317i
\(276\) 0 0
\(277\) 16.2663 16.2663i 0.977345 0.977345i −0.0224036 0.999749i \(-0.507132\pi\)
0.999749 + 0.0224036i \(0.00713189\pi\)
\(278\) 0 0
\(279\) −19.2918 −1.15497
\(280\) 0 0
\(281\) −0.910882 −0.0543387 −0.0271693 0.999631i \(-0.508649\pi\)
−0.0271693 + 0.999631i \(0.508649\pi\)
\(282\) 0 0
\(283\) −12.5625 + 12.5625i −0.746766 + 0.746766i −0.973870 0.227105i \(-0.927074\pi\)
0.227105 + 0.973870i \(0.427074\pi\)
\(284\) 0 0
\(285\) −0.128156 + 0.220938i −0.00759130 + 0.0130872i
\(286\) 0 0
\(287\) 5.52417 + 25.3818i 0.326081 + 1.49824i
\(288\) 0 0
\(289\) 15.0713i 0.886546i
\(290\) 0 0
\(291\) 1.19568 0.0700920
\(292\) 0 0
\(293\) 6.48178 6.48178i 0.378670 0.378670i −0.491952 0.870622i \(-0.663717\pi\)
0.870622 + 0.491952i \(0.163717\pi\)
\(294\) 0 0
\(295\) 17.9260 4.76436i 1.04369 0.277392i
\(296\) 0 0
\(297\) −0.327265 0.327265i −0.0189899 0.0189899i
\(298\) 0 0
\(299\) −11.5144 −0.665892
\(300\) 0 0
\(301\) 22.4696 + 14.4371i 1.29513 + 0.832142i
\(302\) 0 0
\(303\) −0.343215 0.343215i −0.0197172 0.0197172i
\(304\) 0 0
\(305\) 3.38205 + 12.7250i 0.193655 + 0.728633i
\(306\) 0 0
\(307\) 8.48970 + 8.48970i 0.484533 + 0.484533i 0.906576 0.422043i \(-0.138687\pi\)
−0.422043 + 0.906576i \(0.638687\pi\)
\(308\) 0 0
\(309\) 1.41249i 0.0803537i
\(310\) 0 0
\(311\) 25.9749i 1.47290i −0.676490 0.736452i \(-0.736500\pi\)
0.676490 0.736452i \(-0.263500\pi\)
\(312\) 0 0
\(313\) 12.3142 12.3142i 0.696037 0.696037i −0.267516 0.963553i \(-0.586203\pi\)
0.963553 + 0.267516i \(0.0862029\pi\)
\(314\) 0 0
\(315\) −8.07563 15.7388i −0.455010 0.886783i
\(316\) 0 0
\(317\) 14.4909 14.4909i 0.813888 0.813888i −0.171327 0.985214i \(-0.554805\pi\)
0.985214 + 0.171327i \(0.0548053\pi\)
\(318\) 0 0
\(319\) 3.64447i 0.204051i
\(320\) 0 0
\(321\) 0.797438i 0.0445086i
\(322\) 0 0
\(323\) 1.12806 + 1.12806i 0.0627671 + 0.0627671i
\(324\) 0 0
\(325\) −7.31737 + 26.8728i −0.405895 + 1.49063i
\(326\) 0 0
\(327\) 0.836807 + 0.836807i 0.0462755 + 0.0462755i
\(328\) 0 0
\(329\) −23.1343 14.8642i −1.27543 0.819489i
\(330\) 0 0
\(331\) 27.4165 1.50695 0.753474 0.657477i \(-0.228376\pi\)
0.753474 + 0.657477i \(0.228376\pi\)
\(332\) 0 0
\(333\) −3.89880 3.89880i −0.213653 0.213653i
\(334\) 0 0
\(335\) −10.0113 + 17.2592i −0.546976 + 0.942972i
\(336\) 0 0
\(337\) −11.1698 + 11.1698i −0.608460 + 0.608460i −0.942543 0.334084i \(-0.891573\pi\)
0.334084 + 0.942543i \(0.391573\pi\)
\(338\) 0 0
\(339\) −0.191981 −0.0104270
\(340\) 0 0
\(341\) 5.01321i 0.271480i
\(342\) 0 0
\(343\) 14.8229 11.1033i 0.800359 0.599521i
\(344\) 0 0
\(345\) −0.444199 + 0.118059i −0.0239149 + 0.00635607i
\(346\) 0 0
\(347\) 11.4376 11.4376i 0.614004 0.614004i −0.329983 0.943987i \(-0.607043\pi\)
0.943987 + 0.329983i \(0.107043\pi\)
\(348\) 0 0
\(349\) 17.1401 0.917487 0.458744 0.888569i \(-0.348300\pi\)
0.458744 + 0.888569i \(0.348300\pi\)
\(350\) 0 0
\(351\) −3.31786 −0.177094
\(352\) 0 0
\(353\) −11.1570 + 11.1570i −0.593826 + 0.593826i −0.938663 0.344837i \(-0.887934\pi\)
0.344837 + 0.938663i \(0.387934\pi\)
\(354\) 0 0
\(355\) 26.6614 7.08605i 1.41504 0.376088i
\(356\) 0 0
\(357\) 0.357012 0.0777011i 0.0188951 0.00411238i
\(358\) 0 0
\(359\) 20.9982i 1.10824i −0.832437 0.554120i \(-0.813055\pi\)
0.832437 0.554120i \(-0.186945\pi\)
\(360\) 0 0
\(361\) −17.6804 −0.930550
\(362\) 0 0
\(363\) −0.730988 + 0.730988i −0.0383669 + 0.0383669i
\(364\) 0 0
\(365\) −11.4854 + 19.8005i −0.601173 + 1.03641i
\(366\) 0 0
\(367\) −2.32101 2.32101i −0.121156 0.121156i 0.643929 0.765085i \(-0.277303\pi\)
−0.765085 + 0.643929i \(0.777303\pi\)
\(368\) 0 0
\(369\) −29.3569 −1.52826
\(370\) 0 0
\(371\) −6.55049 4.20880i −0.340084 0.218510i
\(372\) 0 0
\(373\) 25.8674 + 25.8674i 1.33937 + 1.33937i 0.896674 + 0.442691i \(0.145976\pi\)
0.442691 + 0.896674i \(0.354024\pi\)
\(374\) 0 0
\(375\) −0.00675707 + 1.11172i −0.000348933 + 0.0574090i
\(376\) 0 0
\(377\) −18.4741 18.4741i −0.951463 0.951463i
\(378\) 0 0
\(379\) 13.1682i 0.676406i 0.941073 + 0.338203i \(0.109819\pi\)
−0.941073 + 0.338203i \(0.890181\pi\)
\(380\) 0 0
\(381\) 1.33500i 0.0683942i
\(382\) 0 0
\(383\) −13.7289 + 13.7289i −0.701514 + 0.701514i −0.964736 0.263221i \(-0.915215\pi\)
0.263221 + 0.964736i \(0.415215\pi\)
\(384\) 0 0
\(385\) 4.08993 2.09855i 0.208442 0.106952i
\(386\) 0 0
\(387\) −21.3434 + 21.3434i −1.08495 + 1.08495i
\(388\) 0 0
\(389\) 13.4553i 0.682209i 0.940025 + 0.341104i \(0.110801\pi\)
−0.940025 + 0.341104i \(0.889199\pi\)
\(390\) 0 0
\(391\) 2.87078i 0.145181i
\(392\) 0 0
\(393\) −1.37066 1.37066i −0.0691408 0.0691408i
\(394\) 0 0
\(395\) 1.63021 + 6.13372i 0.0820250 + 0.308621i
\(396\) 0 0
\(397\) 9.78221 + 9.78221i 0.490955 + 0.490955i 0.908607 0.417652i \(-0.137147\pi\)
−0.417652 + 0.908607i \(0.637147\pi\)
\(398\) 0 0
\(399\) 0.163362 0.254254i 0.00817835 0.0127286i
\(400\) 0 0
\(401\) −10.6960 −0.534134 −0.267067 0.963678i \(-0.586055\pi\)
−0.267067 + 0.963678i \(0.586055\pi\)
\(402\) 0 0
\(403\) −25.4123 25.4123i −1.26588 1.26588i
\(404\) 0 0
\(405\) 19.2573 5.11818i 0.956903 0.254325i
\(406\) 0 0
\(407\) 1.01315 1.01315i 0.0502201 0.0502201i
\(408\) 0 0
\(409\) −30.2026 −1.49342 −0.746712 0.665148i \(-0.768369\pi\)
−0.746712 + 0.665148i \(0.768369\pi\)
\(410\) 0 0
\(411\) 0.812396i 0.0400725i
\(412\) 0 0
\(413\) −21.4447 + 4.66729i −1.05522 + 0.229662i
\(414\) 0 0
\(415\) −16.5313 + 28.4995i −0.811489 + 1.39899i
\(416\) 0 0
\(417\) 1.06957 1.06957i 0.0523768 0.0523768i
\(418\) 0 0
\(419\) 29.8749 1.45948 0.729742 0.683722i \(-0.239640\pi\)
0.729742 + 0.683722i \(0.239640\pi\)
\(420\) 0 0
\(421\) 35.1836 1.71474 0.857372 0.514697i \(-0.172096\pi\)
0.857372 + 0.514697i \(0.172096\pi\)
\(422\) 0 0
\(423\) 21.9748 21.9748i 1.06845 1.06845i
\(424\) 0 0
\(425\) 6.69997 + 1.82438i 0.324996 + 0.0884954i
\(426\) 0 0
\(427\) −3.31314 15.2228i −0.160334 0.736683i
\(428\) 0 0
\(429\) 0.430382i 0.0207790i
\(430\) 0 0
\(431\) 20.9552 1.00937 0.504687 0.863302i \(-0.331608\pi\)
0.504687 + 0.863302i \(0.331608\pi\)
\(432\) 0 0
\(433\) 12.5824 12.5824i 0.604670 0.604670i −0.336878 0.941548i \(-0.609371\pi\)
0.941548 + 0.336878i \(0.109371\pi\)
\(434\) 0 0
\(435\) −0.902109 0.523272i −0.0432528 0.0250890i
\(436\) 0 0
\(437\) 1.67905 + 1.67905i 0.0803200 + 0.0803200i
\(438\) 0 0
\(439\) 7.23208 0.345168 0.172584 0.984995i \(-0.444788\pi\)
0.172584 + 0.984995i \(0.444788\pi\)
\(440\) 0 0
\(441\) 8.69882 + 19.0375i 0.414230 + 0.906550i
\(442\) 0 0
\(443\) −3.46509 3.46509i −0.164632 0.164632i 0.619983 0.784615i \(-0.287139\pi\)
−0.784615 + 0.619983i \(0.787139\pi\)
\(444\) 0 0
\(445\) −7.38885 + 1.96380i −0.350265 + 0.0930931i
\(446\) 0 0
\(447\) 1.16247 + 1.16247i 0.0549829 + 0.0549829i
\(448\) 0 0
\(449\) 6.08724i 0.287274i 0.989630 + 0.143637i \(0.0458798\pi\)
−0.989630 + 0.143637i \(0.954120\pi\)
\(450\) 0 0
\(451\) 7.62876i 0.359224i
\(452\) 0 0
\(453\) −0.874838 + 0.874838i −0.0411035 + 0.0411035i
\(454\) 0 0
\(455\) 10.0944 31.3699i 0.473235 1.47064i
\(456\) 0 0
\(457\) −19.2746 + 19.2746i −0.901630 + 0.901630i −0.995577 0.0939472i \(-0.970052\pi\)
0.0939472 + 0.995577i \(0.470052\pi\)
\(458\) 0 0
\(459\) 0.827214i 0.0386111i
\(460\) 0 0
\(461\) 30.3964i 1.41570i −0.706363 0.707850i \(-0.749665\pi\)
0.706363 0.707850i \(-0.250335\pi\)
\(462\) 0 0
\(463\) −12.0768 12.0768i −0.561259 0.561259i 0.368406 0.929665i \(-0.379904\pi\)
−0.929665 + 0.368406i \(0.879904\pi\)
\(464\) 0 0
\(465\) −1.24091 0.719795i −0.0575458 0.0333797i
\(466\) 0 0
\(467\) −4.89096 4.89096i −0.226327 0.226327i 0.584830 0.811156i \(-0.301161\pi\)
−0.811156 + 0.584830i \(0.801161\pi\)
\(468\) 0 0
\(469\) 12.7616 19.8618i 0.589275 0.917134i
\(470\) 0 0
\(471\) −0.877809 −0.0404473
\(472\) 0 0
\(473\) −5.54635 5.54635i −0.255022 0.255022i
\(474\) 0 0
\(475\) 4.98570 2.85162i 0.228760 0.130841i
\(476\) 0 0
\(477\) 6.22217 6.22217i 0.284894 0.284894i
\(478\) 0 0
\(479\) 22.8349 1.04335 0.521676 0.853144i \(-0.325307\pi\)
0.521676 + 0.853144i \(0.325307\pi\)
\(480\) 0 0
\(481\) 10.2715i 0.468339i
\(482\) 0 0
\(483\) 0.531390 0.115653i 0.0241791 0.00526241i
\(484\) 0 0
\(485\) −23.2580 13.4909i −1.05609 0.612591i
\(486\) 0 0
\(487\) 11.1182 11.1182i 0.503812 0.503812i −0.408808 0.912620i \(-0.634056\pi\)
0.912620 + 0.408808i \(0.134056\pi\)
\(488\) 0 0
\(489\) −1.33226 −0.0602470
\(490\) 0 0
\(491\) −4.45336 −0.200977 −0.100489 0.994938i \(-0.532041\pi\)
−0.100489 + 0.994938i \(0.532041\pi\)
\(492\) 0 0
\(493\) −4.60599 + 4.60599i −0.207443 + 0.207443i
\(494\) 0 0
\(495\) 1.33445 + 5.02091i 0.0599791 + 0.225673i
\(496\) 0 0
\(497\) −31.8948 + 6.94167i −1.43068 + 0.311376i
\(498\) 0 0
\(499\) 27.6446i 1.23754i −0.785572 0.618770i \(-0.787631\pi\)
0.785572 0.618770i \(-0.212369\pi\)
\(500\) 0 0
\(501\) 0.101996 0.00455685
\(502\) 0 0
\(503\) −16.9763 + 16.9763i −0.756936 + 0.756936i −0.975764 0.218828i \(-0.929777\pi\)
0.218828 + 0.975764i \(0.429777\pi\)
\(504\) 0 0
\(505\) 2.80360 + 10.5486i 0.124759 + 0.469407i
\(506\) 0 0
\(507\) −1.26757 1.26757i −0.0562948 0.0562948i
\(508\) 0 0
\(509\) 32.3762 1.43505 0.717525 0.696533i \(-0.245275\pi\)
0.717525 + 0.696533i \(0.245275\pi\)
\(510\) 0 0
\(511\) 14.6406 22.7863i 0.647663 1.00801i
\(512\) 0 0
\(513\) 0.483819 + 0.483819i 0.0213611 + 0.0213611i
\(514\) 0 0
\(515\) −15.9372 + 27.4753i −0.702276 + 1.21071i
\(516\) 0 0
\(517\) 5.71041 + 5.71041i 0.251144 + 0.251144i
\(518\) 0 0
\(519\) 0.439236i 0.0192803i
\(520\) 0 0
\(521\) 4.38603i 0.192156i −0.995374 0.0960778i \(-0.969370\pi\)
0.995374 0.0960778i \(-0.0306297\pi\)
\(522\) 0 0
\(523\) 4.73788 4.73788i 0.207173 0.207173i −0.595892 0.803065i \(-0.703201\pi\)
0.803065 + 0.595892i \(0.203201\pi\)
\(524\) 0 0
\(525\) 0.0677810 1.31368i 0.00295820 0.0573338i
\(526\) 0 0
\(527\) −6.33583 + 6.33583i −0.275993 + 0.275993i
\(528\) 0 0
\(529\) 18.7270i 0.814218i
\(530\) 0 0
\(531\) 24.8032i 1.07637i
\(532\) 0 0
\(533\) −38.6707 38.6707i −1.67502 1.67502i
\(534\) 0 0
\(535\) 8.99753 15.5115i 0.388997 0.670622i
\(536\) 0 0
\(537\) 0.646033 + 0.646033i 0.0278784 + 0.0278784i
\(538\) 0 0
\(539\) −4.94714 + 2.26050i −0.213089 + 0.0973665i
\(540\) 0 0
\(541\) 7.48796 0.321933 0.160966 0.986960i \(-0.448539\pi\)
0.160966 + 0.986960i \(0.448539\pi\)
\(542\) 0 0
\(543\) 0.668790 + 0.668790i 0.0287005 + 0.0287005i
\(544\) 0 0
\(545\) −6.83558 25.7191i −0.292804 1.10168i
\(546\) 0 0
\(547\) −1.12562 + 1.12562i −0.0481278 + 0.0481278i −0.730761 0.682633i \(-0.760835\pi\)
0.682633 + 0.730761i \(0.260835\pi\)
\(548\) 0 0
\(549\) 17.6069 0.751444
\(550\) 0 0
\(551\) 5.38788i 0.229531i
\(552\) 0 0
\(553\) −1.59700 7.33770i −0.0679113 0.312031i
\(554\) 0 0
\(555\) −0.105315 0.396252i −0.00447039 0.0168199i
\(556\) 0 0
\(557\) 20.9130 20.9130i 0.886113 0.886113i −0.108034 0.994147i \(-0.534456\pi\)
0.994147 + 0.108034i \(0.0344557\pi\)
\(558\) 0 0
\(559\) −56.2297 −2.37826
\(560\) 0 0
\(561\) −0.107304 −0.00453036
\(562\) 0 0
\(563\) −5.94306 + 5.94306i −0.250470 + 0.250470i −0.821163 0.570693i \(-0.806675\pi\)
0.570693 + 0.821163i \(0.306675\pi\)
\(564\) 0 0
\(565\) 3.73436 + 2.16613i 0.157106 + 0.0911299i
\(566\) 0 0
\(567\) −23.0373 + 5.01390i −0.967474 + 0.210564i
\(568\) 0 0
\(569\) 6.64150i 0.278426i 0.990262 + 0.139213i \(0.0444573\pi\)
−0.990262 + 0.139213i \(0.955543\pi\)
\(570\) 0 0
\(571\) −33.4643 −1.40044 −0.700218 0.713929i \(-0.746914\pi\)
−0.700218 + 0.713929i \(0.746914\pi\)
\(572\) 0 0
\(573\) 1.49183 1.49183i 0.0623223 0.0623223i
\(574\) 0 0
\(575\) 9.97249 + 2.71548i 0.415882 + 0.113243i
\(576\) 0 0
\(577\) 7.86048 + 7.86048i 0.327236 + 0.327236i 0.851535 0.524299i \(-0.175672\pi\)
−0.524299 + 0.851535i \(0.675672\pi\)
\(578\) 0 0
\(579\) 0.724743 0.0301193
\(580\) 0 0
\(581\) 21.0727 32.7971i 0.874244 1.36065i
\(582\) 0 0
\(583\) 1.61691 + 1.61691i 0.0669655 + 0.0669655i
\(584\) 0 0
\(585\) 32.2157 + 18.6869i 1.33196 + 0.772608i
\(586\) 0 0
\(587\) 7.65881 + 7.65881i 0.316113 + 0.316113i 0.847272 0.531159i \(-0.178243\pi\)
−0.531159 + 0.847272i \(0.678243\pi\)
\(588\) 0 0
\(589\) 7.41137i 0.305380i
\(590\) 0 0
\(591\) 0.538974i 0.0221704i
\(592\) 0 0
\(593\) −8.24682 + 8.24682i −0.338656 + 0.338656i −0.855861 0.517205i \(-0.826972\pi\)
0.517205 + 0.855861i \(0.326972\pi\)
\(594\) 0 0
\(595\) −7.82119 2.51676i −0.320637 0.103177i
\(596\) 0 0
\(597\) 0.946748 0.946748i 0.0387478 0.0387478i
\(598\) 0 0
\(599\) 1.72554i 0.0705038i 0.999378 + 0.0352519i \(0.0112233\pi\)
−0.999378 + 0.0352519i \(0.988777\pi\)
\(600\) 0 0
\(601\) 39.3868i 1.60662i −0.595561 0.803310i \(-0.703070\pi\)
0.595561 0.803310i \(-0.296930\pi\)
\(602\) 0 0
\(603\) 18.8663 + 18.8663i 0.768296 + 0.768296i
\(604\) 0 0
\(605\) 22.4667 5.97119i 0.913403 0.242763i
\(606\) 0 0
\(607\) 13.0555 + 13.0555i 0.529905 + 0.529905i 0.920544 0.390639i \(-0.127746\pi\)
−0.390639 + 0.920544i \(0.627746\pi\)
\(608\) 0 0
\(609\) 1.03814 + 0.667024i 0.0420676 + 0.0270292i
\(610\) 0 0
\(611\) 57.8930 2.34210
\(612\) 0 0
\(613\) −19.5565 19.5565i −0.789878 0.789878i 0.191596 0.981474i \(-0.438634\pi\)
−0.981474 + 0.191596i \(0.938634\pi\)
\(614\) 0 0
\(615\) −1.88833 1.09534i −0.0761449 0.0441682i
\(616\) 0 0
\(617\) −4.82431 + 4.82431i −0.194219 + 0.194219i −0.797517 0.603297i \(-0.793853\pi\)
0.603297 + 0.797517i \(0.293853\pi\)
\(618\) 0 0
\(619\) −35.5806 −1.43011 −0.715053 0.699070i \(-0.753598\pi\)
−0.715053 + 0.699070i \(0.753598\pi\)
\(620\) 0 0
\(621\) 1.23126i 0.0494087i
\(622\) 0 0
\(623\) 8.83919 1.92379i 0.354135 0.0770749i
\(624\) 0 0
\(625\) 12.6750 21.5486i 0.507002 0.861945i
\(626\) 0 0
\(627\) −0.0627594 + 0.0627594i −0.00250637 + 0.00250637i
\(628\) 0 0
\(629\) −2.56090 −0.102110
\(630\) 0 0
\(631\) −28.6285 −1.13968 −0.569841 0.821755i \(-0.692995\pi\)
−0.569841 + 0.821755i \(0.692995\pi\)
\(632\) 0 0
\(633\) −0.570271 + 0.570271i −0.0226663 + 0.0226663i
\(634\) 0 0
\(635\) −15.0629 + 25.9680i −0.597752 + 1.03051i
\(636\) 0 0
\(637\) −13.6188 + 36.5360i −0.539596 + 1.44761i
\(638\) 0 0
\(639\) 36.8899i 1.45934i
\(640\) 0 0
\(641\) −20.9369 −0.826956 −0.413478 0.910514i \(-0.635686\pi\)
−0.413478 + 0.910514i \(0.635686\pi\)
\(642\) 0 0
\(643\) 13.5706 13.5706i 0.535174 0.535174i −0.386934 0.922108i \(-0.626466\pi\)
0.922108 + 0.386934i \(0.126466\pi\)
\(644\) 0 0
\(645\) −2.16922 + 0.576534i −0.0854130 + 0.0227010i
\(646\) 0 0
\(647\) 12.1526 + 12.1526i 0.477768 + 0.477768i 0.904417 0.426649i \(-0.140306\pi\)
−0.426649 + 0.904417i \(0.640306\pi\)
\(648\) 0 0
\(649\) 6.44543 0.253005
\(650\) 0 0
\(651\) 1.42803 + 0.917535i 0.0559690 + 0.0359610i
\(652\) 0 0
\(653\) −16.3014 16.3014i −0.637921 0.637921i 0.312121 0.950042i \(-0.398961\pi\)
−0.950042 + 0.312121i \(0.898961\pi\)
\(654\) 0 0
\(655\) 11.1965 + 42.1270i 0.437482 + 1.64604i
\(656\) 0 0
\(657\) 21.6443 + 21.6443i 0.844423 + 0.844423i
\(658\) 0 0
\(659\) 24.5415i 0.956001i −0.878360 0.478000i \(-0.841362\pi\)
0.878360 0.478000i \(-0.158638\pi\)
\(660\) 0 0
\(661\) 22.1516i 0.861596i 0.902448 + 0.430798i \(0.141768\pi\)
−0.902448 + 0.430798i \(0.858232\pi\)
\(662\) 0 0
\(663\) −0.543929 + 0.543929i −0.0211245 + 0.0211245i
\(664\) 0 0
\(665\) −6.04644 + 3.10244i −0.234471 + 0.120307i
\(666\) 0 0
\(667\) −6.85573 + 6.85573i −0.265455 + 0.265455i
\(668\) 0 0
\(669\) 2.60729i 0.100804i
\(670\) 0 0
\(671\) 4.57537i 0.176630i
\(672\) 0 0
\(673\) −9.43387 9.43387i −0.363649 0.363649i 0.501505 0.865154i \(-0.332780\pi\)
−0.865154 + 0.501505i \(0.832780\pi\)
\(674\) 0 0
\(675\) 2.87357 + 0.782465i 0.110604 + 0.0301171i
\(676\) 0 0
\(677\) 10.4956 + 10.4956i 0.403378 + 0.403378i 0.879422 0.476044i \(-0.157930\pi\)
−0.476044 + 0.879422i \(0.657930\pi\)
\(678\) 0 0
\(679\) 26.7652 + 17.1971i 1.02715 + 0.659964i
\(680\) 0 0
\(681\) −0.680951 −0.0260941
\(682\) 0 0
\(683\) −7.11456 7.11456i −0.272231 0.272231i 0.557767 0.829998i \(-0.311658\pi\)
−0.829998 + 0.557767i \(0.811658\pi\)
\(684\) 0 0
\(685\) −9.16630 + 15.8025i −0.350226 + 0.603782i
\(686\) 0 0
\(687\) −0.291297 + 0.291297i −0.0111137 + 0.0111137i
\(688\) 0 0
\(689\) 16.3924 0.624502
\(690\) 0 0
\(691\) 6.29829i 0.239598i 0.992798 + 0.119799i \(0.0382251\pi\)
−0.992798 + 0.119799i \(0.961775\pi\)
\(692\) 0 0
\(693\) −1.30726 6.00645i −0.0496587 0.228166i
\(694\) 0 0
\(695\) −32.8728 + 8.73690i −1.24694 + 0.331410i
\(696\) 0 0
\(697\) −9.64145 + 9.64145i −0.365196 + 0.365196i
\(698\) 0 0
\(699\) 2.49939 0.0945356
\(700\) 0 0
\(701\) 30.1579 1.13905 0.569523 0.821975i \(-0.307128\pi\)
0.569523 + 0.821975i \(0.307128\pi\)
\(702\) 0 0
\(703\) −1.49781 + 1.49781i −0.0564911 + 0.0564911i
\(704\) 0 0
\(705\) 2.23339 0.593587i 0.0841142 0.0223558i
\(706\) 0 0
\(707\) −2.74648 12.6192i −0.103292 0.474593i
\(708\) 0 0
\(709\) 1.75232i 0.0658099i 0.999458 + 0.0329049i \(0.0104759\pi\)
−0.999458 + 0.0329049i \(0.989524\pi\)
\(710\) 0 0
\(711\) 8.48688 0.318283
\(712\) 0 0
\(713\) −9.43050 + 9.43050i −0.353175 + 0.353175i
\(714\) 0 0
\(715\) −4.85602 + 8.37166i −0.181605 + 0.313082i
\(716\) 0 0
\(717\) 1.74878 + 1.74878i 0.0653093 + 0.0653093i
\(718\) 0 0
\(719\) −22.1398 −0.825675 −0.412837 0.910805i \(-0.635462\pi\)
−0.412837 + 0.910805i \(0.635462\pi\)
\(720\) 0 0
\(721\) 20.3154 31.6184i 0.756585 1.17753i
\(722\) 0 0
\(723\) 0.359569 + 0.359569i 0.0133725 + 0.0133725i
\(724\) 0 0
\(725\) 11.6434 + 20.3571i 0.432426 + 0.756043i
\(726\) 0 0
\(727\) −36.3804 36.3804i −1.34927 1.34927i −0.886450 0.462825i \(-0.846836\pi\)
−0.462825 0.886450i \(-0.653164\pi\)
\(728\) 0 0
\(729\) 26.4675i 0.980279i
\(730\) 0 0
\(731\) 14.0193i 0.518522i
\(732\) 0 0
\(733\) −26.3741 + 26.3741i −0.974149 + 0.974149i −0.999674 0.0255249i \(-0.991874\pi\)
0.0255249 + 0.999674i \(0.491874\pi\)
\(734\) 0 0
\(735\) −0.150773 + 1.54912i −0.00556136 + 0.0571401i
\(736\) 0 0
\(737\) −4.90265 + 4.90265i −0.180591 + 0.180591i
\(738\) 0 0
\(739\) 6.48932i 0.238714i −0.992851 0.119357i \(-0.961917\pi\)
0.992851 0.119357i \(-0.0380832\pi\)
\(740\) 0 0
\(741\) 0.636264i 0.0233737i
\(742\) 0 0
\(743\) −7.68617 7.68617i −0.281978 0.281978i 0.551919 0.833897i \(-0.313896\pi\)
−0.833897 + 0.551919i \(0.813896\pi\)
\(744\) 0 0
\(745\) −9.49580 35.7282i −0.347899 1.30898i
\(746\) 0 0
\(747\) 31.1533 + 31.1533i 1.13984 + 1.13984i
\(748\) 0 0
\(749\) −11.4693 + 17.8506i −0.419079 + 0.652246i
\(750\) 0 0
\(751\) 2.05149 0.0748599 0.0374300 0.999299i \(-0.488083\pi\)
0.0374300 + 0.999299i \(0.488083\pi\)
\(752\) 0 0
\(753\) 1.50993 + 1.50993i 0.0550249 + 0.0550249i
\(754\) 0 0
\(755\) 26.8879 7.14625i 0.978552 0.260079i
\(756\) 0 0
\(757\) −4.22246 + 4.22246i −0.153468 + 0.153468i −0.779665 0.626197i \(-0.784611\pi\)
0.626197 + 0.779665i \(0.284611\pi\)
\(758\) 0 0
\(759\) −0.159715 −0.00579728
\(760\) 0 0
\(761\) 46.0616i 1.66973i 0.550453 + 0.834866i \(0.314455\pi\)
−0.550453 + 0.834866i \(0.685545\pi\)
\(762\) 0 0
\(763\) 6.69631 + 30.7674i 0.242423 + 1.11385i
\(764\) 0 0
\(765\) 4.65905 8.03208i 0.168448 0.290401i
\(766\) 0 0
\(767\) 32.6723 32.6723i 1.17973 1.17973i
\(768\) 0 0
\(769\) −44.8809 −1.61845 −0.809223 0.587501i \(-0.800112\pi\)
−0.809223 + 0.587501i \(0.800112\pi\)
\(770\) 0 0
\(771\) −0.293143 −0.0105573
\(772\) 0 0
\(773\) −4.22724 + 4.22724i −0.152043 + 0.152043i −0.779030 0.626987i \(-0.784288\pi\)
0.626987 + 0.779030i \(0.284288\pi\)
\(774\) 0 0
\(775\) 16.0163 + 28.0025i 0.575323 + 1.00588i
\(776\) 0 0
\(777\) 0.103169 + 0.474031i 0.00370118 + 0.0170058i
\(778\) 0 0
\(779\) 11.2781i 0.404081i
\(780\) 0 0
\(781\) 9.58630 0.343025
\(782\) 0 0
\(783\) −1.97548 + 1.97548i −0.0705978 + 0.0705978i
\(784\) 0 0
\(785\) 17.0749 + 9.90436i 0.609428 + 0.353502i
\(786\) 0 0
\(787\) −2.71942 2.71942i −0.0969367 0.0969367i 0.656975 0.753912i \(-0.271836\pi\)
−0.753912 + 0.656975i \(0.771836\pi\)
\(788\) 0 0
\(789\) −0.895906 −0.0318951
\(790\) 0 0
\(791\) −4.29748 2.76121i −0.152801 0.0981772i
\(792\) 0 0
\(793\) 23.1929 + 23.1929i 0.823603 + 0.823603i
\(794\) 0 0
\(795\) 0.632386 0.168075i 0.0224284 0.00596100i
\(796\) 0 0
\(797\) −28.8991 28.8991i −1.02366 1.02366i −0.999713 0.0239445i \(-0.992377\pi\)
−0.0239445 0.999713i \(-0.507623\pi\)
\(798\) 0 0
\(799\) 14.4340i 0.510637i
\(800\) 0 0
\(801\) 10.2235i 0.361231i
\(802\) 0 0
\(803\) −5.62453 + 5.62453i −0.198485 + 0.198485i
\(804\) 0 0
\(805\) −11.6414 3.74605i −0.410304 0.132031i
\(806\) 0 0
\(807\) 0.673063 0.673063i 0.0236929 0.0236929i
\(808\) 0 0
\(809\) 32.7627i 1.15187i 0.817494 + 0.575937i \(0.195363\pi\)
−0.817494 + 0.575937i \(0.804637\pi\)
\(810\) 0 0
\(811\) 24.6348i 0.865045i −0.901623 0.432523i \(-0.857624\pi\)
0.901623 0.432523i \(-0.142376\pi\)
\(812\) 0 0
\(813\) 0.851321 + 0.851321i 0.0298571 + 0.0298571i
\(814\) 0 0
\(815\) 25.9148 + 15.0320i 0.907755 + 0.526547i
\(816\) 0 0
\(817\) 8.19956 + 8.19956i 0.286866 + 0.286866i
\(818\) 0 0
\(819\) −37.0737 23.8205i −1.29546 0.832356i
\(820\) 0 0
\(821\) 36.5320 1.27498 0.637488 0.770460i \(-0.279974\pi\)
0.637488 + 0.770460i \(0.279974\pi\)
\(822\) 0 0
\(823\) 14.6526 + 14.6526i 0.510758 + 0.510758i 0.914759 0.404001i \(-0.132381\pi\)
−0.404001 + 0.914759i \(0.632381\pi\)
\(824\) 0 0
\(825\) −0.101499 + 0.372751i −0.00353373 + 0.0129775i
\(826\) 0 0
\(827\) 22.1880 22.1880i 0.771552 0.771552i −0.206826 0.978378i \(-0.566313\pi\)
0.978378 + 0.206826i \(0.0663134\pi\)
\(828\) 0 0
\(829\) −46.4490 −1.61324 −0.806620 0.591070i \(-0.798706\pi\)
−0.806620 + 0.591070i \(0.798706\pi\)
\(830\) 0 0
\(831\) 2.28745i 0.0793508i
\(832\) 0 0
\(833\) 9.10922 + 3.39546i 0.315616 + 0.117646i
\(834\) 0 0
\(835\) −1.98400 1.15083i −0.0686591 0.0398260i
\(836\) 0 0
\(837\) −2.71740 + 2.71740i −0.0939271 + 0.0939271i
\(838\) 0 0
\(839\) 20.5166 0.708312 0.354156 0.935186i \(-0.384768\pi\)
0.354156 + 0.935186i \(0.384768\pi\)
\(840\) 0 0
\(841\) 7.00080 0.241407
\(842\) 0 0
\(843\) −0.0640466 + 0.0640466i −0.00220588 + 0.00220588i
\(844\) 0 0
\(845\) 10.3543 + 38.9585i 0.356200 + 1.34021i
\(846\) 0 0
\(847\) −26.8767 + 5.84952i −0.923494 + 0.200992i
\(848\) 0 0
\(849\) 1.76661i 0.0606300i
\(850\) 0 0
\(851\) −3.81174 −0.130665
\(852\) 0 0
\(853\) −17.5496 + 17.5496i −0.600887 + 0.600887i −0.940548 0.339661i \(-0.889688\pi\)
0.339661 + 0.940548i \(0.389688\pi\)
\(854\) 0 0
\(855\) −1.97281 7.42276i −0.0674688 0.253853i
\(856\) 0 0
\(857\) 11.1708 + 11.1708i 0.381588 + 0.381588i 0.871674 0.490086i \(-0.163035\pi\)
−0.490086 + 0.871674i \(0.663035\pi\)
\(858\) 0 0
\(859\) 42.5442 1.45159 0.725795 0.687911i \(-0.241472\pi\)
0.725795 + 0.687911i \(0.241472\pi\)
\(860\) 0 0
\(861\) 2.17308 + 1.39624i 0.0740585 + 0.0475839i
\(862\) 0 0
\(863\) 6.66647 + 6.66647i 0.226929 + 0.226929i 0.811409 0.584479i \(-0.198701\pi\)
−0.584479 + 0.811409i \(0.698701\pi\)
\(864\) 0 0
\(865\) −4.95592 + 8.54388i −0.168506 + 0.290501i
\(866\) 0 0
\(867\) −1.05970 1.05970i −0.0359894 0.0359894i
\(868\) 0 0
\(869\) 2.20542i 0.0748138i
\(870\) 0 0
\(871\) 49.7038i 1.68415i
\(872\) 0 0
\(873\) −25.4237 + 25.4237i −0.860461 + 0.860461i
\(874\) 0 0
\(875\) −16.1408 + 24.7886i −0.545659 + 0.838007i
\(876\) 0 0
\(877\) −24.1080 + 24.1080i −0.814069 + 0.814069i −0.985241 0.171172i \(-0.945245\pi\)
0.171172 + 0.985241i \(0.445245\pi\)
\(878\) 0 0
\(879\) 0.911503i 0.0307442i
\(880\) 0 0
\(881\) 41.2812i 1.39080i 0.718623 + 0.695399i \(0.244773\pi\)
−0.718623 + 0.695399i \(0.755227\pi\)
\(882\) 0 0
\(883\) 7.58783 + 7.58783i 0.255351 + 0.255351i 0.823160 0.567809i \(-0.192209\pi\)
−0.567809 + 0.823160i \(0.692209\pi\)
\(884\) 0 0
\(885\) 0.925433 1.59542i 0.0311081 0.0536296i
\(886\) 0 0
\(887\) −21.2247 21.2247i −0.712657 0.712657i 0.254433 0.967090i \(-0.418111\pi\)
−0.967090 + 0.254433i \(0.918111\pi\)
\(888\) 0 0
\(889\) 19.2009 29.8839i 0.643978 1.00227i
\(890\) 0 0
\(891\) 6.92409 0.231966
\(892\) 0 0
\(893\) −8.44210 8.44210i −0.282504 0.282504i
\(894\) 0 0
\(895\) −5.27722 19.8557i −0.176398 0.663702i
\(896\) 0 0
\(897\) −0.809606 + 0.809606i −0.0270319 + 0.0270319i
\(898\) 0 0
\(899\) −30.2613 −1.00927
\(900\) 0 0
\(901\) 4.08699i 0.136157i
\(902\) 0 0
\(903\) 2.59501 0.564786i 0.0863567 0.0187949i
\(904\) 0 0
\(905\) −5.46311 20.5551i −0.181600 0.683274i
\(906\) 0 0
\(907\) 2.69307 2.69307i 0.0894219 0.0894219i −0.660981 0.750403i \(-0.729860\pi\)
0.750403 + 0.660981i \(0.229860\pi\)
\(908\) 0 0
\(909\) 14.5955 0.484103
\(910\) 0 0
\(911\) 41.2220 1.36575 0.682874 0.730536i \(-0.260730\pi\)
0.682874 + 0.730536i \(0.260730\pi\)
\(912\) 0 0
\(913\) −8.09556 + 8.09556i −0.267924 + 0.267924i
\(914\) 0 0
\(915\) 1.13253 + 0.656931i 0.0374404 + 0.0217175i
\(916\) 0 0
\(917\) −10.9683 50.3960i −0.362206 1.66422i
\(918\) 0 0
\(919\) 4.87087i 0.160675i 0.996768 + 0.0803376i \(0.0255998\pi\)
−0.996768 + 0.0803376i \(0.974400\pi\)
\(920\) 0 0
\(921\) 1.19387 0.0393393
\(922\) 0 0
\(923\) 48.5936 48.5936i 1.59948 1.59948i
\(924\) 0 0
\(925\) −2.42236 + 8.89605i −0.0796469 + 0.292500i
\(926\) 0 0
\(927\) 30.0337 + 30.0337i 0.986435 + 0.986435i
\(928\) 0 0
\(929\) 21.6087 0.708957 0.354479 0.935064i \(-0.384658\pi\)
0.354479 + 0.935064i \(0.384658\pi\)
\(930\) 0 0
\(931\) 7.31371 3.34185i 0.239697 0.109525i
\(932\) 0 0
\(933\) −1.82637 1.82637i −0.0597926 0.0597926i
\(934\) 0 0
\(935\) 2.08724 + 1.21071i 0.0682599 + 0.0395945i
\(936\) 0 0
\(937\) 5.78051 + 5.78051i 0.188841 + 0.188841i 0.795195 0.606354i \(-0.207369\pi\)
−0.606354 + 0.795195i \(0.707369\pi\)
\(938\) 0 0
\(939\) 1.73168i 0.0565113i
\(940\) 0 0
\(941\) 35.5016i 1.15732i −0.815569 0.578660i \(-0.803576\pi\)
0.815569 0.578660i \(-0.196424\pi\)
\(942\) 0 0
\(943\) −14.3507 + 14.3507i −0.467323 + 0.467323i
\(944\) 0 0
\(945\) −3.35446 1.07942i −0.109121 0.0351137i
\(946\) 0 0
\(947\) −29.6185 + 29.6185i −0.962472 + 0.962472i −0.999321 0.0368489i \(-0.988268\pi\)
0.0368489 + 0.999321i \(0.488268\pi\)
\(948\) 0 0
\(949\) 57.0223i 1.85102i
\(950\) 0 0
\(951\) 2.03778i 0.0660797i
\(952\) 0 0
\(953\) −2.58171 2.58171i −0.0836298 0.0836298i 0.664054 0.747684i \(-0.268834\pi\)
−0.747684 + 0.664054i \(0.768834\pi\)
\(954\) 0 0
\(955\) −45.8512 + 12.1863i −1.48371 + 0.394338i
\(956\) 0 0
\(957\) −0.256253 0.256253i −0.00828347 0.00828347i
\(958\) 0 0
\(959\) 11.6844 18.1854i 0.377310 0.587237i
\(960\) 0 0
\(961\) −10.6264 −0.342788
\(962\) 0 0
\(963\) −16.9559 16.9559i −0.546396 0.546396i
\(964\) 0 0
\(965\) −14.0975 8.17731i −0.453814 0.263237i
\(966\) 0 0
\(967\) 15.8202 15.8202i 0.508744 0.508744i −0.405397 0.914141i \(-0.632867\pi\)
0.914141 + 0.405397i \(0.132867\pi\)
\(968\) 0 0
\(969\) 0.158634 0.00509607
\(970\) 0 0
\(971\) 26.5709i 0.852701i 0.904558 + 0.426351i \(0.140201\pi\)
−0.904558 + 0.426351i \(0.859799\pi\)
\(972\) 0 0
\(973\) 39.3254 8.55889i 1.26071 0.274385i
\(974\) 0 0
\(975\) 1.37499 + 2.40400i 0.0440351 + 0.0769897i
\(976\) 0 0
\(977\) 40.8575 40.8575i 1.30715 1.30715i 0.383683 0.923465i \(-0.374656\pi\)
0.923465 0.383683i \(-0.125344\pi\)
\(978\) 0 0
\(979\) −2.65671 −0.0849089
\(980\) 0 0
\(981\) −35.5860 −1.13617
\(982\) 0 0
\(983\) −4.75434 + 4.75434i −0.151640 + 0.151640i −0.778850 0.627210i \(-0.784197\pi\)
0.627210 + 0.778850i \(0.284197\pi\)
\(984\) 0 0
\(985\) −6.08127 + 10.4840i −0.193765 + 0.334046i
\(986\) 0 0
\(987\) −2.67177 + 0.581493i −0.0850435 + 0.0185091i
\(988\) 0 0
\(989\) 20.8668i 0.663527i
\(990\) 0 0
\(991\) −27.2402 −0.865312 −0.432656 0.901559i \(-0.642424\pi\)
−0.432656 + 0.901559i \(0.642424\pi\)
\(992\) 0 0
\(993\) 1.92773 1.92773i 0.0611747 0.0611747i
\(994\) 0 0
\(995\) −29.0981 + 7.73365i −0.922471 + 0.245173i
\(996\) 0 0
\(997\) 6.58513 + 6.58513i 0.208553 + 0.208553i 0.803652 0.595099i \(-0.202887\pi\)
−0.595099 + 0.803652i \(0.702887\pi\)
\(998\) 0 0
\(999\) −1.09835 −0.0347504
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bj.d.433.7 24
4.3 odd 2 280.2.x.a.153.6 yes 24
5.2 odd 4 inner 560.2.bj.d.97.6 24
7.6 odd 2 inner 560.2.bj.d.433.6 24
20.3 even 4 1400.2.x.b.657.6 24
20.7 even 4 280.2.x.a.97.7 yes 24
20.19 odd 2 1400.2.x.b.993.7 24
28.27 even 2 280.2.x.a.153.7 yes 24
35.27 even 4 inner 560.2.bj.d.97.7 24
140.27 odd 4 280.2.x.a.97.6 24
140.83 odd 4 1400.2.x.b.657.7 24
140.139 even 2 1400.2.x.b.993.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.x.a.97.6 24 140.27 odd 4
280.2.x.a.97.7 yes 24 20.7 even 4
280.2.x.a.153.6 yes 24 4.3 odd 2
280.2.x.a.153.7 yes 24 28.27 even 2
560.2.bj.d.97.6 24 5.2 odd 4 inner
560.2.bj.d.97.7 24 35.27 even 4 inner
560.2.bj.d.433.6 24 7.6 odd 2 inner
560.2.bj.d.433.7 24 1.1 even 1 trivial
1400.2.x.b.657.6 24 20.3 even 4
1400.2.x.b.657.7 24 140.83 odd 4
1400.2.x.b.993.6 24 140.139 even 2
1400.2.x.b.993.7 24 20.19 odd 2