Properties

Label 560.2.bj.d.433.8
Level $560$
Weight $2$
Character 560.433
Analytic conductor $4.472$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(97,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bj (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.8
Character \(\chi\) \(=\) 560.433
Dual form 560.2.bj.d.97.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.730185 - 0.730185i) q^{3} +(-1.51201 - 1.64737i) q^{5} +(-2.41329 - 1.08445i) q^{7} +1.93366i q^{9} -5.95977 q^{11} +(-0.921623 + 0.921623i) q^{13} +(-2.30693 - 0.0988432i) q^{15} +(2.02728 + 2.02728i) q^{17} -3.29475 q^{19} +(-2.55400 + 0.970294i) q^{21} +(-0.0544054 - 0.0544054i) q^{23} +(-0.427677 + 4.98168i) q^{25} +(3.60248 + 3.60248i) q^{27} -3.78901i q^{29} -4.88150i q^{31} +(-4.35174 + 4.35174i) q^{33} +(1.86240 + 5.61529i) q^{35} +(-3.20809 + 3.20809i) q^{37} +1.34591i q^{39} -10.6672i q^{41} +(1.60483 + 1.60483i) q^{43} +(3.18546 - 2.92370i) q^{45} +(-2.64854 - 2.64854i) q^{47} +(4.64792 + 5.23420i) q^{49} +2.96059 q^{51} +(-9.16786 - 9.16786i) q^{53} +(9.01121 + 9.81797i) q^{55} +(-2.40577 + 2.40577i) q^{57} -13.3231 q^{59} -11.2091i q^{61} +(2.09697 - 4.66648i) q^{63} +(2.91176 + 0.124758i) q^{65} +(6.43325 - 6.43325i) q^{67} -0.0794520 q^{69} +8.51221 q^{71} +(-8.66633 + 8.66633i) q^{73} +(3.32526 + 3.94983i) q^{75} +(14.3826 + 6.46310i) q^{77} +1.76209i q^{79} -0.540019 q^{81} +(2.36897 - 2.36897i) q^{83} +(0.274428 - 6.40496i) q^{85} +(-2.76668 - 2.76668i) q^{87} -9.73989 q^{89} +(3.22360 - 1.22468i) q^{91} +(-3.56440 - 3.56440i) q^{93} +(4.98168 + 5.42768i) q^{95} +(-2.05040 - 2.05040i) q^{97} -11.5242i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{7} - 8 q^{11} + 8 q^{15} + 16 q^{21} + 32 q^{23} + 8 q^{25} - 12 q^{35} - 8 q^{37} - 16 q^{43} + 24 q^{51} - 16 q^{53} - 20 q^{63} - 48 q^{65} + 32 q^{67} + 32 q^{71} - 40 q^{77} - 72 q^{81}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.730185 0.730185i 0.421573 0.421573i −0.464172 0.885745i \(-0.653648\pi\)
0.885745 + 0.464172i \(0.153648\pi\)
\(4\) 0 0
\(5\) −1.51201 1.64737i −0.676190 0.736728i
\(6\) 0 0
\(7\) −2.41329 1.08445i −0.912137 0.409885i
\(8\) 0 0
\(9\) 1.93366i 0.644553i
\(10\) 0 0
\(11\) −5.95977 −1.79694 −0.898470 0.439036i \(-0.855320\pi\)
−0.898470 + 0.439036i \(0.855320\pi\)
\(12\) 0 0
\(13\) −0.921623 + 0.921623i −0.255612 + 0.255612i −0.823267 0.567655i \(-0.807851\pi\)
0.567655 + 0.823267i \(0.307851\pi\)
\(14\) 0 0
\(15\) −2.30693 0.0988432i −0.595647 0.0255212i
\(16\) 0 0
\(17\) 2.02728 + 2.02728i 0.491689 + 0.491689i 0.908838 0.417149i \(-0.136971\pi\)
−0.417149 + 0.908838i \(0.636971\pi\)
\(18\) 0 0
\(19\) −3.29475 −0.755867 −0.377933 0.925833i \(-0.623365\pi\)
−0.377933 + 0.925833i \(0.623365\pi\)
\(20\) 0 0
\(21\) −2.55400 + 0.970294i −0.557328 + 0.211736i
\(22\) 0 0
\(23\) −0.0544054 0.0544054i −0.0113443 0.0113443i 0.701412 0.712756i \(-0.252553\pi\)
−0.712756 + 0.701412i \(0.752553\pi\)
\(24\) 0 0
\(25\) −0.427677 + 4.98168i −0.0855353 + 0.996335i
\(26\) 0 0
\(27\) 3.60248 + 3.60248i 0.693298 + 0.693298i
\(28\) 0 0
\(29\) 3.78901i 0.703602i −0.936075 0.351801i \(-0.885569\pi\)
0.936075 0.351801i \(-0.114431\pi\)
\(30\) 0 0
\(31\) 4.88150i 0.876744i −0.898794 0.438372i \(-0.855555\pi\)
0.898794 0.438372i \(-0.144445\pi\)
\(32\) 0 0
\(33\) −4.35174 + 4.35174i −0.757540 + 0.757540i
\(34\) 0 0
\(35\) 1.86240 + 5.61529i 0.314804 + 0.949157i
\(36\) 0 0
\(37\) −3.20809 + 3.20809i −0.527406 + 0.527406i −0.919798 0.392392i \(-0.871648\pi\)
0.392392 + 0.919798i \(0.371648\pi\)
\(38\) 0 0
\(39\) 1.34591i 0.215518i
\(40\) 0 0
\(41\) 10.6672i 1.66593i −0.553323 0.832967i \(-0.686641\pi\)
0.553323 0.832967i \(-0.313359\pi\)
\(42\) 0 0
\(43\) 1.60483 + 1.60483i 0.244734 + 0.244734i 0.818805 0.574071i \(-0.194637\pi\)
−0.574071 + 0.818805i \(0.694637\pi\)
\(44\) 0 0
\(45\) 3.18546 2.92370i 0.474860 0.435840i
\(46\) 0 0
\(47\) −2.64854 2.64854i −0.386329 0.386329i 0.487047 0.873376i \(-0.338074\pi\)
−0.873376 + 0.487047i \(0.838074\pi\)
\(48\) 0 0
\(49\) 4.64792 + 5.23420i 0.663988 + 0.747743i
\(50\) 0 0
\(51\) 2.96059 0.414565
\(52\) 0 0
\(53\) −9.16786 9.16786i −1.25930 1.25930i −0.951426 0.307876i \(-0.900382\pi\)
−0.307876 0.951426i \(-0.599618\pi\)
\(54\) 0 0
\(55\) 9.01121 + 9.81797i 1.21507 + 1.32385i
\(56\) 0 0
\(57\) −2.40577 + 2.40577i −0.318653 + 0.318653i
\(58\) 0 0
\(59\) −13.3231 −1.73452 −0.867261 0.497854i \(-0.834121\pi\)
−0.867261 + 0.497854i \(0.834121\pi\)
\(60\) 0 0
\(61\) 11.2091i 1.43518i −0.696465 0.717591i \(-0.745245\pi\)
0.696465 0.717591i \(-0.254755\pi\)
\(62\) 0 0
\(63\) 2.09697 4.66648i 0.264193 0.587921i
\(64\) 0 0
\(65\) 2.91176 + 0.124758i 0.361159 + 0.0154743i
\(66\) 0 0
\(67\) 6.43325 6.43325i 0.785947 0.785947i −0.194880 0.980827i \(-0.562432\pi\)
0.980827 + 0.194880i \(0.0624318\pi\)
\(68\) 0 0
\(69\) −0.0794520 −0.00956489
\(70\) 0 0
\(71\) 8.51221 1.01021 0.505107 0.863057i \(-0.331453\pi\)
0.505107 + 0.863057i \(0.331453\pi\)
\(72\) 0 0
\(73\) −8.66633 + 8.66633i −1.01432 + 1.01432i −0.0144206 + 0.999896i \(0.504590\pi\)
−0.999896 + 0.0144206i \(0.995410\pi\)
\(74\) 0 0
\(75\) 3.32526 + 3.94983i 0.383968 + 0.456087i
\(76\) 0 0
\(77\) 14.3826 + 6.46310i 1.63905 + 0.736539i
\(78\) 0 0
\(79\) 1.76209i 0.198250i 0.995075 + 0.0991251i \(0.0316044\pi\)
−0.995075 + 0.0991251i \(0.968396\pi\)
\(80\) 0 0
\(81\) −0.540019 −0.0600021
\(82\) 0 0
\(83\) 2.36897 2.36897i 0.260028 0.260028i −0.565037 0.825065i \(-0.691138\pi\)
0.825065 + 0.565037i \(0.191138\pi\)
\(84\) 0 0
\(85\) 0.274428 6.40496i 0.0297659 0.694716i
\(86\) 0 0
\(87\) −2.76668 2.76668i −0.296619 0.296619i
\(88\) 0 0
\(89\) −9.73989 −1.03243 −0.516213 0.856460i \(-0.672659\pi\)
−0.516213 + 0.856460i \(0.672659\pi\)
\(90\) 0 0
\(91\) 3.22360 1.22468i 0.337925 0.128382i
\(92\) 0 0
\(93\) −3.56440 3.56440i −0.369611 0.369611i
\(94\) 0 0
\(95\) 4.98168 + 5.42768i 0.511109 + 0.556868i
\(96\) 0 0
\(97\) −2.05040 2.05040i −0.208187 0.208187i 0.595310 0.803496i \(-0.297029\pi\)
−0.803496 + 0.595310i \(0.797029\pi\)
\(98\) 0 0
\(99\) 11.5242i 1.15822i
\(100\) 0 0
\(101\) 5.96787i 0.593825i 0.954905 + 0.296912i \(0.0959570\pi\)
−0.954905 + 0.296912i \(0.904043\pi\)
\(102\) 0 0
\(103\) −8.07151 + 8.07151i −0.795309 + 0.795309i −0.982352 0.187043i \(-0.940110\pi\)
0.187043 + 0.982352i \(0.440110\pi\)
\(104\) 0 0
\(105\) 5.46010 + 2.74030i 0.532851 + 0.267426i
\(106\) 0 0
\(107\) −3.43407 + 3.43407i −0.331984 + 0.331984i −0.853339 0.521356i \(-0.825426\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(108\) 0 0
\(109\) 2.47368i 0.236935i 0.992958 + 0.118468i \(0.0377982\pi\)
−0.992958 + 0.118468i \(0.962202\pi\)
\(110\) 0 0
\(111\) 4.68500i 0.444680i
\(112\) 0 0
\(113\) 6.51377 + 6.51377i 0.612764 + 0.612764i 0.943665 0.330901i \(-0.107353\pi\)
−0.330901 + 0.943665i \(0.607353\pi\)
\(114\) 0 0
\(115\) −0.00736471 + 0.171887i −0.000686763 + 0.0160286i
\(116\) 0 0
\(117\) −1.78211 1.78211i −0.164756 0.164756i
\(118\) 0 0
\(119\) −2.69392 7.09092i −0.246952 0.650024i
\(120\) 0 0
\(121\) 24.5189 2.22899
\(122\) 0 0
\(123\) −7.78901 7.78901i −0.702312 0.702312i
\(124\) 0 0
\(125\) 8.85333 6.82778i 0.791866 0.610695i
\(126\) 0 0
\(127\) −4.97529 + 4.97529i −0.441485 + 0.441485i −0.892511 0.451026i \(-0.851058\pi\)
0.451026 + 0.892511i \(0.351058\pi\)
\(128\) 0 0
\(129\) 2.34364 0.206346
\(130\) 0 0
\(131\) 7.19072i 0.628256i −0.949381 0.314128i \(-0.898288\pi\)
0.949381 0.314128i \(-0.101712\pi\)
\(132\) 0 0
\(133\) 7.95117 + 3.57300i 0.689454 + 0.309819i
\(134\) 0 0
\(135\) 0.487659 11.3816i 0.0419710 0.979573i
\(136\) 0 0
\(137\) 10.9598 10.9598i 0.936357 0.936357i −0.0617359 0.998093i \(-0.519664\pi\)
0.998093 + 0.0617359i \(0.0196637\pi\)
\(138\) 0 0
\(139\) 16.0473 1.36112 0.680559 0.732693i \(-0.261737\pi\)
0.680559 + 0.732693i \(0.261737\pi\)
\(140\) 0 0
\(141\) −3.86784 −0.325731
\(142\) 0 0
\(143\) 5.49267 5.49267i 0.459320 0.459320i
\(144\) 0 0
\(145\) −6.24192 + 5.72901i −0.518363 + 0.475768i
\(146\) 0 0
\(147\) 7.21577 + 0.428096i 0.595147 + 0.0353088i
\(148\) 0 0
\(149\) 18.0802i 1.48119i −0.671954 0.740593i \(-0.734545\pi\)
0.671954 0.740593i \(-0.265455\pi\)
\(150\) 0 0
\(151\) 4.72625 0.384617 0.192308 0.981335i \(-0.438403\pi\)
0.192308 + 0.981335i \(0.438403\pi\)
\(152\) 0 0
\(153\) −3.92008 + 3.92008i −0.316920 + 0.316920i
\(154\) 0 0
\(155\) −8.04166 + 7.38086i −0.645921 + 0.592845i
\(156\) 0 0
\(157\) 4.46067 + 4.46067i 0.356000 + 0.356000i 0.862336 0.506336i \(-0.169000\pi\)
−0.506336 + 0.862336i \(0.669000\pi\)
\(158\) 0 0
\(159\) −13.3885 −1.06177
\(160\) 0 0
\(161\) 0.0722957 + 0.190296i 0.00569770 + 0.0149974i
\(162\) 0 0
\(163\) 12.2914 + 12.2914i 0.962735 + 0.962735i 0.999330 0.0365956i \(-0.0116513\pi\)
−0.0365956 + 0.999330i \(0.511651\pi\)
\(164\) 0 0
\(165\) 13.7488 + 0.589083i 1.07034 + 0.0458601i
\(166\) 0 0
\(167\) 13.3128 + 13.3128i 1.03017 + 1.03017i 0.999530 + 0.0306429i \(0.00975545\pi\)
0.0306429 + 0.999530i \(0.490245\pi\)
\(168\) 0 0
\(169\) 11.3012i 0.869325i
\(170\) 0 0
\(171\) 6.37092i 0.487196i
\(172\) 0 0
\(173\) −6.42769 + 6.42769i −0.488688 + 0.488688i −0.907892 0.419204i \(-0.862309\pi\)
0.419204 + 0.907892i \(0.362309\pi\)
\(174\) 0 0
\(175\) 6.43451 11.5584i 0.486403 0.873735i
\(176\) 0 0
\(177\) −9.72834 + 9.72834i −0.731227 + 0.731227i
\(178\) 0 0
\(179\) 1.34949i 0.100866i −0.998727 0.0504328i \(-0.983940\pi\)
0.998727 0.0504328i \(-0.0160601\pi\)
\(180\) 0 0
\(181\) 0.167463i 0.0124474i −0.999981 0.00622371i \(-0.998019\pi\)
0.999981 0.00622371i \(-0.00198108\pi\)
\(182\) 0 0
\(183\) −8.18474 8.18474i −0.605033 0.605033i
\(184\) 0 0
\(185\) 10.1356 + 0.434270i 0.745182 + 0.0319282i
\(186\) 0 0
\(187\) −12.0822 12.0822i −0.883535 0.883535i
\(188\) 0 0
\(189\) −4.78710 12.6006i −0.348210 0.916556i
\(190\) 0 0
\(191\) −16.1288 −1.16704 −0.583521 0.812098i \(-0.698325\pi\)
−0.583521 + 0.812098i \(0.698325\pi\)
\(192\) 0 0
\(193\) 8.46997 + 8.46997i 0.609682 + 0.609682i 0.942863 0.333181i \(-0.108122\pi\)
−0.333181 + 0.942863i \(0.608122\pi\)
\(194\) 0 0
\(195\) 2.21722 2.03503i 0.158778 0.145731i
\(196\) 0 0
\(197\) 2.23062 2.23062i 0.158925 0.158925i −0.623165 0.782090i \(-0.714154\pi\)
0.782090 + 0.623165i \(0.214154\pi\)
\(198\) 0 0
\(199\) −5.47878 −0.388380 −0.194190 0.980964i \(-0.562208\pi\)
−0.194190 + 0.980964i \(0.562208\pi\)
\(200\) 0 0
\(201\) 9.39493i 0.662667i
\(202\) 0 0
\(203\) −4.10901 + 9.14398i −0.288396 + 0.641782i
\(204\) 0 0
\(205\) −17.5728 + 16.1288i −1.22734 + 1.12649i
\(206\) 0 0
\(207\) 0.105201 0.105201i 0.00731201 0.00731201i
\(208\) 0 0
\(209\) 19.6359 1.35825
\(210\) 0 0
\(211\) 7.22125 0.497132 0.248566 0.968615i \(-0.420041\pi\)
0.248566 + 0.968615i \(0.420041\pi\)
\(212\) 0 0
\(213\) 6.21549 6.21549i 0.425878 0.425878i
\(214\) 0 0
\(215\) 0.217241 5.07025i 0.0148157 0.345788i
\(216\) 0 0
\(217\) −5.29377 + 11.7805i −0.359364 + 0.799711i
\(218\) 0 0
\(219\) 12.6560i 0.855216i
\(220\) 0 0
\(221\) −3.73679 −0.251363
\(222\) 0 0
\(223\) −12.2709 + 12.2709i −0.821721 + 0.821721i −0.986355 0.164634i \(-0.947356\pi\)
0.164634 + 0.986355i \(0.447356\pi\)
\(224\) 0 0
\(225\) −9.63287 0.826981i −0.642191 0.0551321i
\(226\) 0 0
\(227\) 13.9412 + 13.9412i 0.925307 + 0.925307i 0.997398 0.0720910i \(-0.0229672\pi\)
−0.0720910 + 0.997398i \(0.522967\pi\)
\(228\) 0 0
\(229\) −24.5615 −1.62307 −0.811535 0.584304i \(-0.801368\pi\)
−0.811535 + 0.584304i \(0.801368\pi\)
\(230\) 0 0
\(231\) 15.2213 5.78273i 1.00149 0.380476i
\(232\) 0 0
\(233\) −14.4981 14.4981i −0.949802 0.949802i 0.0489972 0.998799i \(-0.484397\pi\)
−0.998799 + 0.0489972i \(0.984397\pi\)
\(234\) 0 0
\(235\) −0.358525 + 8.36773i −0.0233876 + 0.545850i
\(236\) 0 0
\(237\) 1.28665 + 1.28665i 0.0835769 + 0.0835769i
\(238\) 0 0
\(239\) 2.70102i 0.174715i 0.996177 + 0.0873573i \(0.0278422\pi\)
−0.996177 + 0.0873573i \(0.972158\pi\)
\(240\) 0 0
\(241\) 6.19167i 0.398840i −0.979914 0.199420i \(-0.936094\pi\)
0.979914 0.199420i \(-0.0639059\pi\)
\(242\) 0 0
\(243\) −11.2018 + 11.2018i −0.718594 + 0.718594i
\(244\) 0 0
\(245\) 1.59500 15.5710i 0.101901 0.994795i
\(246\) 0 0
\(247\) 3.03652 3.03652i 0.193209 0.193209i
\(248\) 0 0
\(249\) 3.45957i 0.219241i
\(250\) 0 0
\(251\) 21.2989i 1.34437i −0.740381 0.672187i \(-0.765355\pi\)
0.740381 0.672187i \(-0.234645\pi\)
\(252\) 0 0
\(253\) 0.324244 + 0.324244i 0.0203850 + 0.0203850i
\(254\) 0 0
\(255\) −4.47642 4.87719i −0.280325 0.305421i
\(256\) 0 0
\(257\) −13.5045 13.5045i −0.842390 0.842390i 0.146779 0.989169i \(-0.453109\pi\)
−0.989169 + 0.146779i \(0.953109\pi\)
\(258\) 0 0
\(259\) 11.2211 4.26301i 0.697243 0.264891i
\(260\) 0 0
\(261\) 7.32666 0.453509
\(262\) 0 0
\(263\) 3.28861 + 3.28861i 0.202784 + 0.202784i 0.801192 0.598408i \(-0.204200\pi\)
−0.598408 + 0.801192i \(0.704200\pi\)
\(264\) 0 0
\(265\) −1.24103 + 28.9647i −0.0762358 + 1.77929i
\(266\) 0 0
\(267\) −7.11192 + 7.11192i −0.435243 + 0.435243i
\(268\) 0 0
\(269\) −27.9298 −1.70291 −0.851454 0.524429i \(-0.824279\pi\)
−0.851454 + 0.524429i \(0.824279\pi\)
\(270\) 0 0
\(271\) 6.55143i 0.397971i 0.980002 + 0.198985i \(0.0637647\pi\)
−0.980002 + 0.198985i \(0.936235\pi\)
\(272\) 0 0
\(273\) 1.45958 3.24807i 0.0883377 0.196582i
\(274\) 0 0
\(275\) 2.54886 29.6897i 0.153702 1.79035i
\(276\) 0 0
\(277\) −10.6137 + 10.6137i −0.637717 + 0.637717i −0.949992 0.312275i \(-0.898909\pi\)
0.312275 + 0.949992i \(0.398909\pi\)
\(278\) 0 0
\(279\) 9.43917 0.565108
\(280\) 0 0
\(281\) −23.3116 −1.39065 −0.695326 0.718695i \(-0.744740\pi\)
−0.695326 + 0.718695i \(0.744740\pi\)
\(282\) 0 0
\(283\) −18.9859 + 18.9859i −1.12860 + 1.12860i −0.138190 + 0.990406i \(0.544128\pi\)
−0.990406 + 0.138190i \(0.955872\pi\)
\(284\) 0 0
\(285\) 7.60075 + 0.325663i 0.450230 + 0.0192906i
\(286\) 0 0
\(287\) −11.5681 + 25.7430i −0.682841 + 1.51956i
\(288\) 0 0
\(289\) 8.78023i 0.516484i
\(290\) 0 0
\(291\) −2.99434 −0.175531
\(292\) 0 0
\(293\) 11.5947 11.5947i 0.677371 0.677371i −0.282033 0.959405i \(-0.591009\pi\)
0.959405 + 0.282033i \(0.0910088\pi\)
\(294\) 0 0
\(295\) 20.1446 + 21.9481i 1.17287 + 1.27787i
\(296\) 0 0
\(297\) −21.4700 21.4700i −1.24582 1.24582i
\(298\) 0 0
\(299\) 0.100282 0.00579949
\(300\) 0 0
\(301\) −2.13255 5.61327i −0.122918 0.323543i
\(302\) 0 0
\(303\) 4.35765 + 4.35765i 0.250340 + 0.250340i
\(304\) 0 0
\(305\) −18.4656 + 16.9483i −1.05734 + 0.970455i
\(306\) 0 0
\(307\) −16.8061 16.8061i −0.959174 0.959174i 0.0400244 0.999199i \(-0.487256\pi\)
−0.999199 + 0.0400244i \(0.987256\pi\)
\(308\) 0 0
\(309\) 11.7874i 0.670561i
\(310\) 0 0
\(311\) 15.1113i 0.856881i −0.903570 0.428440i \(-0.859063\pi\)
0.903570 0.428440i \(-0.140937\pi\)
\(312\) 0 0
\(313\) 13.1100 13.1100i 0.741023 0.741023i −0.231752 0.972775i \(-0.574446\pi\)
0.972775 + 0.231752i \(0.0744458\pi\)
\(314\) 0 0
\(315\) −10.8581 + 3.60126i −0.611782 + 0.202908i
\(316\) 0 0
\(317\) −12.6159 + 12.6159i −0.708578 + 0.708578i −0.966236 0.257658i \(-0.917049\pi\)
0.257658 + 0.966236i \(0.417049\pi\)
\(318\) 0 0
\(319\) 22.5817i 1.26433i
\(320\) 0 0
\(321\) 5.01501i 0.279910i
\(322\) 0 0
\(323\) −6.67939 6.67939i −0.371651 0.371651i
\(324\) 0 0
\(325\) −4.19707 4.98539i −0.232812 0.276539i
\(326\) 0 0
\(327\) 1.80624 + 1.80624i 0.0998855 + 0.0998855i
\(328\) 0 0
\(329\) 3.51946 + 9.26389i 0.194034 + 0.510735i
\(330\) 0 0
\(331\) −16.8901 −0.928364 −0.464182 0.885740i \(-0.653652\pi\)
−0.464182 + 0.885740i \(0.653652\pi\)
\(332\) 0 0
\(333\) −6.20335 6.20335i −0.339942 0.339942i
\(334\) 0 0
\(335\) −20.3251 0.870852i −1.11048 0.0475797i
\(336\) 0 0
\(337\) 20.8552 20.8552i 1.13606 1.13606i 0.146906 0.989150i \(-0.453069\pi\)
0.989150 0.146906i \(-0.0469314\pi\)
\(338\) 0 0
\(339\) 9.51252 0.516649
\(340\) 0 0
\(341\) 29.0927i 1.57546i
\(342\) 0 0
\(343\) −5.54051 17.6721i −0.299159 0.954203i
\(344\) 0 0
\(345\) 0.120132 + 0.130887i 0.00646768 + 0.00704672i
\(346\) 0 0
\(347\) 3.75386 3.75386i 0.201518 0.201518i −0.599132 0.800650i \(-0.704488\pi\)
0.800650 + 0.599132i \(0.204488\pi\)
\(348\) 0 0
\(349\) 1.12253 0.0600874 0.0300437 0.999549i \(-0.490435\pi\)
0.0300437 + 0.999549i \(0.490435\pi\)
\(350\) 0 0
\(351\) −6.64027 −0.354431
\(352\) 0 0
\(353\) 2.71896 2.71896i 0.144716 0.144716i −0.631037 0.775753i \(-0.717370\pi\)
0.775753 + 0.631037i \(0.217370\pi\)
\(354\) 0 0
\(355\) −12.8705 14.0228i −0.683096 0.744252i
\(356\) 0 0
\(357\) −7.14475 3.21062i −0.378140 0.169924i
\(358\) 0 0
\(359\) 5.21128i 0.275041i −0.990499 0.137520i \(-0.956087\pi\)
0.990499 0.137520i \(-0.0439133\pi\)
\(360\) 0 0
\(361\) −8.14465 −0.428666
\(362\) 0 0
\(363\) 17.9033 17.9033i 0.939681 0.939681i
\(364\) 0 0
\(365\) 27.3802 + 1.17314i 1.43315 + 0.0614048i
\(366\) 0 0
\(367\) −0.978681 0.978681i −0.0510867 0.0510867i 0.681102 0.732189i \(-0.261501\pi\)
−0.732189 + 0.681102i \(0.761501\pi\)
\(368\) 0 0
\(369\) 20.6267 1.07378
\(370\) 0 0
\(371\) 12.1826 + 32.0668i 0.632487 + 1.66483i
\(372\) 0 0
\(373\) 18.7892 + 18.7892i 0.972870 + 0.972870i 0.999642 0.0267714i \(-0.00852263\pi\)
−0.0267714 + 0.999642i \(0.508523\pi\)
\(374\) 0 0
\(375\) 1.47903 11.4501i 0.0763765 0.591281i
\(376\) 0 0
\(377\) 3.49204 + 3.49204i 0.179849 + 0.179849i
\(378\) 0 0
\(379\) 0.517830i 0.0265992i 0.999912 + 0.0132996i \(0.00423351\pi\)
−0.999912 + 0.0132996i \(0.995766\pi\)
\(380\) 0 0
\(381\) 7.26576i 0.372236i
\(382\) 0 0
\(383\) 13.1105 13.1105i 0.669917 0.669917i −0.287779 0.957697i \(-0.592917\pi\)
0.957697 + 0.287779i \(0.0929170\pi\)
\(384\) 0 0
\(385\) −11.0995 33.4658i −0.565683 1.70558i
\(386\) 0 0
\(387\) −3.10319 + 3.10319i −0.157744 + 0.157744i
\(388\) 0 0
\(389\) 14.3932i 0.729766i 0.931053 + 0.364883i \(0.118891\pi\)
−0.931053 + 0.364883i \(0.881109\pi\)
\(390\) 0 0
\(391\) 0.220590i 0.0111557i
\(392\) 0 0
\(393\) −5.25056 5.25056i −0.264856 0.264856i
\(394\) 0 0
\(395\) 2.90281 2.66429i 0.146056 0.134055i
\(396\) 0 0
\(397\) 9.94079 + 9.94079i 0.498914 + 0.498914i 0.911100 0.412186i \(-0.135235\pi\)
−0.412186 + 0.911100i \(0.635235\pi\)
\(398\) 0 0
\(399\) 8.41478 3.19687i 0.421266 0.160044i
\(400\) 0 0
\(401\) 16.7962 0.838763 0.419382 0.907810i \(-0.362247\pi\)
0.419382 + 0.907810i \(0.362247\pi\)
\(402\) 0 0
\(403\) 4.49891 + 4.49891i 0.224107 + 0.224107i
\(404\) 0 0
\(405\) 0.816512 + 0.889613i 0.0405728 + 0.0442052i
\(406\) 0 0
\(407\) 19.1195 19.1195i 0.947717 0.947717i
\(408\) 0 0
\(409\) −1.41163 −0.0698008 −0.0349004 0.999391i \(-0.511111\pi\)
−0.0349004 + 0.999391i \(0.511111\pi\)
\(410\) 0 0
\(411\) 16.0053i 0.789484i
\(412\) 0 0
\(413\) 32.1525 + 14.4483i 1.58212 + 0.710955i
\(414\) 0 0
\(415\) −7.48446 0.320681i −0.367398 0.0157416i
\(416\) 0 0
\(417\) 11.7175 11.7175i 0.573810 0.573810i
\(418\) 0 0
\(419\) −5.68831 −0.277892 −0.138946 0.990300i \(-0.544371\pi\)
−0.138946 + 0.990300i \(0.544371\pi\)
\(420\) 0 0
\(421\) −12.1346 −0.591402 −0.295701 0.955280i \(-0.595553\pi\)
−0.295701 + 0.955280i \(0.595553\pi\)
\(422\) 0 0
\(423\) 5.12137 5.12137i 0.249009 0.249009i
\(424\) 0 0
\(425\) −10.9663 + 9.23225i −0.531944 + 0.447830i
\(426\) 0 0
\(427\) −12.1558 + 27.0509i −0.588260 + 1.30908i
\(428\) 0 0
\(429\) 8.02132i 0.387273i
\(430\) 0 0
\(431\) −32.9391 −1.58662 −0.793311 0.608817i \(-0.791644\pi\)
−0.793311 + 0.608817i \(0.791644\pi\)
\(432\) 0 0
\(433\) −0.964365 + 0.964365i −0.0463444 + 0.0463444i −0.729899 0.683555i \(-0.760433\pi\)
0.683555 + 0.729899i \(0.260433\pi\)
\(434\) 0 0
\(435\) −0.374518 + 8.74099i −0.0179568 + 0.419099i
\(436\) 0 0
\(437\) 0.179252 + 0.179252i 0.00857478 + 0.00857478i
\(438\) 0 0
\(439\) 8.75634 0.417917 0.208959 0.977924i \(-0.432993\pi\)
0.208959 + 0.977924i \(0.432993\pi\)
\(440\) 0 0
\(441\) −10.1212 + 8.98749i −0.481960 + 0.427976i
\(442\) 0 0
\(443\) −4.24169 4.24169i −0.201529 0.201529i 0.599126 0.800655i \(-0.295515\pi\)
−0.800655 + 0.599126i \(0.795515\pi\)
\(444\) 0 0
\(445\) 14.7268 + 16.0452i 0.698116 + 0.760617i
\(446\) 0 0
\(447\) −13.2019 13.2019i −0.624428 0.624428i
\(448\) 0 0
\(449\) 2.36447i 0.111586i 0.998442 + 0.0557931i \(0.0177687\pi\)
−0.998442 + 0.0557931i \(0.982231\pi\)
\(450\) 0 0
\(451\) 63.5740i 2.99358i
\(452\) 0 0
\(453\) 3.45104 3.45104i 0.162144 0.162144i
\(454\) 0 0
\(455\) −6.89161 3.45874i −0.323084 0.162148i
\(456\) 0 0
\(457\) 9.06926 9.06926i 0.424242 0.424242i −0.462419 0.886661i \(-0.653018\pi\)
0.886661 + 0.462419i \(0.153018\pi\)
\(458\) 0 0
\(459\) 14.6065i 0.681774i
\(460\) 0 0
\(461\) 32.6249i 1.51949i 0.650219 + 0.759747i \(0.274677\pi\)
−0.650219 + 0.759747i \(0.725323\pi\)
\(462\) 0 0
\(463\) −25.9003 25.9003i −1.20369 1.20369i −0.973036 0.230654i \(-0.925913\pi\)
−0.230654 0.973036i \(-0.574087\pi\)
\(464\) 0 0
\(465\) −0.482503 + 11.2613i −0.0223756 + 0.522230i
\(466\) 0 0
\(467\) 10.7966 + 10.7966i 0.499608 + 0.499608i 0.911316 0.411708i \(-0.135068\pi\)
−0.411708 + 0.911316i \(0.635068\pi\)
\(468\) 0 0
\(469\) −22.5019 + 8.54872i −1.03904 + 0.394743i
\(470\) 0 0
\(471\) 6.51423 0.300160
\(472\) 0 0
\(473\) −9.56440 9.56440i −0.439772 0.439772i
\(474\) 0 0
\(475\) 1.40909 16.4134i 0.0646533 0.753097i
\(476\) 0 0
\(477\) 17.7275 17.7275i 0.811688 0.811688i
\(478\) 0 0
\(479\) 14.8255 0.677395 0.338697 0.940895i \(-0.390014\pi\)
0.338697 + 0.940895i \(0.390014\pi\)
\(480\) 0 0
\(481\) 5.91330i 0.269623i
\(482\) 0 0
\(483\) 0.191740 + 0.0861620i 0.00872449 + 0.00392051i
\(484\) 0 0
\(485\) −0.277557 + 6.47799i −0.0126032 + 0.294150i
\(486\) 0 0
\(487\) 19.4866 19.4866i 0.883024 0.883024i −0.110817 0.993841i \(-0.535347\pi\)
0.993841 + 0.110817i \(0.0353466\pi\)
\(488\) 0 0
\(489\) 17.9500 0.811725
\(490\) 0 0
\(491\) 18.7117 0.844446 0.422223 0.906492i \(-0.361250\pi\)
0.422223 + 0.906492i \(0.361250\pi\)
\(492\) 0 0
\(493\) 7.68141 7.68141i 0.345953 0.345953i
\(494\) 0 0
\(495\) −18.9846 + 17.4246i −0.853295 + 0.783178i
\(496\) 0 0
\(497\) −20.5424 9.23110i −0.921453 0.414071i
\(498\) 0 0
\(499\) 3.85409i 0.172533i −0.996272 0.0862664i \(-0.972506\pi\)
0.996272 0.0862664i \(-0.0274936\pi\)
\(500\) 0 0
\(501\) 19.4416 0.868585
\(502\) 0 0
\(503\) −17.3619 + 17.3619i −0.774129 + 0.774129i −0.978825 0.204697i \(-0.934379\pi\)
0.204697 + 0.978825i \(0.434379\pi\)
\(504\) 0 0
\(505\) 9.83130 9.02345i 0.437487 0.401538i
\(506\) 0 0
\(507\) 8.25198 + 8.25198i 0.366483 + 0.366483i
\(508\) 0 0
\(509\) −6.19089 −0.274406 −0.137203 0.990543i \(-0.543811\pi\)
−0.137203 + 0.990543i \(0.543811\pi\)
\(510\) 0 0
\(511\) 30.3126 11.5161i 1.34095 0.509442i
\(512\) 0 0
\(513\) −11.8693 11.8693i −0.524041 0.524041i
\(514\) 0 0
\(515\) 25.5010 + 1.09262i 1.12371 + 0.0481465i
\(516\) 0 0
\(517\) 15.7847 + 15.7847i 0.694209 + 0.694209i
\(518\) 0 0
\(519\) 9.38681i 0.412035i
\(520\) 0 0
\(521\) 23.4163i 1.02589i −0.858422 0.512943i \(-0.828555\pi\)
0.858422 0.512943i \(-0.171445\pi\)
\(522\) 0 0
\(523\) 4.35649 4.35649i 0.190496 0.190496i −0.605414 0.795910i \(-0.706993\pi\)
0.795910 + 0.605414i \(0.206993\pi\)
\(524\) 0 0
\(525\) −3.74141 13.1382i −0.163288 0.573397i
\(526\) 0 0
\(527\) 9.89620 9.89620i 0.431085 0.431085i
\(528\) 0 0
\(529\) 22.9941i 0.999743i
\(530\) 0 0
\(531\) 25.7624i 1.11799i
\(532\) 0 0
\(533\) 9.83112 + 9.83112i 0.425833 + 0.425833i
\(534\) 0 0
\(535\) 10.8495 + 0.464860i 0.469066 + 0.0200977i
\(536\) 0 0
\(537\) −0.985377 0.985377i −0.0425221 0.0425221i
\(538\) 0 0
\(539\) −27.7005 31.1947i −1.19315 1.34365i
\(540\) 0 0
\(541\) 8.06640 0.346801 0.173401 0.984851i \(-0.444524\pi\)
0.173401 + 0.984851i \(0.444524\pi\)
\(542\) 0 0
\(543\) −0.122279 0.122279i −0.00524749 0.00524749i
\(544\) 0 0
\(545\) 4.07507 3.74022i 0.174557 0.160213i
\(546\) 0 0
\(547\) 19.3200 19.3200i 0.826063 0.826063i −0.160907 0.986970i \(-0.551442\pi\)
0.986970 + 0.160907i \(0.0514419\pi\)
\(548\) 0 0
\(549\) 21.6746 0.925051
\(550\) 0 0
\(551\) 12.4838i 0.531829i
\(552\) 0 0
\(553\) 1.91090 4.25242i 0.0812599 0.180831i
\(554\) 0 0
\(555\) 7.71794 7.08374i 0.327608 0.300688i
\(556\) 0 0
\(557\) 12.4346 12.4346i 0.526872 0.526872i −0.392767 0.919638i \(-0.628482\pi\)
0.919638 + 0.392767i \(0.128482\pi\)
\(558\) 0 0
\(559\) −2.95809 −0.125114
\(560\) 0 0
\(561\) −17.6444 −0.744948
\(562\) 0 0
\(563\) 19.6018 19.6018i 0.826118 0.826118i −0.160859 0.986977i \(-0.551427\pi\)
0.986977 + 0.160859i \(0.0514265\pi\)
\(564\) 0 0
\(565\) 0.881752 20.5795i 0.0370956 0.865785i
\(566\) 0 0
\(567\) 1.30322 + 0.585626i 0.0547302 + 0.0245940i
\(568\) 0 0
\(569\) 17.4875i 0.733115i −0.930395 0.366558i \(-0.880536\pi\)
0.930395 0.366558i \(-0.119464\pi\)
\(570\) 0 0
\(571\) −31.0074 −1.29762 −0.648810 0.760950i \(-0.724733\pi\)
−0.648810 + 0.760950i \(0.724733\pi\)
\(572\) 0 0
\(573\) −11.7770 + 11.7770i −0.491993 + 0.491993i
\(574\) 0 0
\(575\) 0.294298 0.247762i 0.0122731 0.0103324i
\(576\) 0 0
\(577\) 19.6961 + 19.6961i 0.819957 + 0.819957i 0.986101 0.166144i \(-0.0531317\pi\)
−0.166144 + 0.986101i \(0.553132\pi\)
\(578\) 0 0
\(579\) 12.3693 0.514050
\(580\) 0 0
\(581\) −8.28603 + 3.14796i −0.343762 + 0.130599i
\(582\) 0 0
\(583\) 54.6384 + 54.6384i 2.26289 + 2.26289i
\(584\) 0 0
\(585\) −0.241239 + 5.63035i −0.00997400 + 0.232786i
\(586\) 0 0
\(587\) −18.6924 18.6924i −0.771519 0.771519i 0.206853 0.978372i \(-0.433678\pi\)
−0.978372 + 0.206853i \(0.933678\pi\)
\(588\) 0 0
\(589\) 16.0833i 0.662701i
\(590\) 0 0
\(591\) 3.25754i 0.133997i
\(592\) 0 0
\(593\) −24.8700 + 24.8700i −1.02129 + 1.02129i −0.0215185 + 0.999768i \(0.506850\pi\)
−0.999768 + 0.0215185i \(0.993150\pi\)
\(594\) 0 0
\(595\) −7.60816 + 15.1594i −0.311904 + 0.621475i
\(596\) 0 0
\(597\) −4.00052 + 4.00052i −0.163730 + 0.163730i
\(598\) 0 0
\(599\) 32.1708i 1.31446i −0.753688 0.657232i \(-0.771727\pi\)
0.753688 0.657232i \(-0.228273\pi\)
\(600\) 0 0
\(601\) 11.8081i 0.481664i −0.970567 0.240832i \(-0.922580\pi\)
0.970567 0.240832i \(-0.0774204\pi\)
\(602\) 0 0
\(603\) 12.4397 + 12.4397i 0.506585 + 0.506585i
\(604\) 0 0
\(605\) −37.0727 40.3918i −1.50722 1.64216i
\(606\) 0 0
\(607\) −6.50201 6.50201i −0.263908 0.263908i 0.562731 0.826640i \(-0.309751\pi\)
−0.826640 + 0.562731i \(0.809751\pi\)
\(608\) 0 0
\(609\) 3.67646 + 9.67714i 0.148978 + 0.392137i
\(610\) 0 0
\(611\) 4.88190 0.197501
\(612\) 0 0
\(613\) −18.1899 18.1899i −0.734682 0.734682i 0.236861 0.971543i \(-0.423881\pi\)
−0.971543 + 0.236861i \(0.923881\pi\)
\(614\) 0 0
\(615\) −1.05438 + 24.6084i −0.0425166 + 0.992308i
\(616\) 0 0
\(617\) −4.68616 + 4.68616i −0.188658 + 0.188658i −0.795116 0.606458i \(-0.792590\pi\)
0.606458 + 0.795116i \(0.292590\pi\)
\(618\) 0 0
\(619\) 6.78552 0.272733 0.136366 0.990658i \(-0.456458\pi\)
0.136366 + 0.990658i \(0.456458\pi\)
\(620\) 0 0
\(621\) 0.391989i 0.0157300i
\(622\) 0 0
\(623\) 23.5052 + 10.5625i 0.941714 + 0.423176i
\(624\) 0 0
\(625\) −24.6342 4.26109i −0.985367 0.170444i
\(626\) 0 0
\(627\) 14.3379 14.3379i 0.572599 0.572599i
\(628\) 0 0
\(629\) −13.0074 −0.518640
\(630\) 0 0
\(631\) 0.0455199 0.00181212 0.000906059 1.00000i \(-0.499712\pi\)
0.000906059 1.00000i \(0.499712\pi\)
\(632\) 0 0
\(633\) 5.27285 5.27285i 0.209577 0.209577i
\(634\) 0 0
\(635\) 15.7188 + 0.673491i 0.623782 + 0.0267267i
\(636\) 0 0
\(637\) −9.10759 0.540333i −0.360856 0.0214088i
\(638\) 0 0
\(639\) 16.4597i 0.651136i
\(640\) 0 0
\(641\) −14.9331 −0.589823 −0.294912 0.955524i \(-0.595290\pi\)
−0.294912 + 0.955524i \(0.595290\pi\)
\(642\) 0 0
\(643\) 14.2308 14.2308i 0.561208 0.561208i −0.368443 0.929650i \(-0.620109\pi\)
0.929650 + 0.368443i \(0.120109\pi\)
\(644\) 0 0
\(645\) −3.54360 3.86085i −0.139529 0.152021i
\(646\) 0 0
\(647\) −10.4339 10.4339i −0.410201 0.410201i 0.471608 0.881809i \(-0.343674\pi\)
−0.881809 + 0.471608i \(0.843674\pi\)
\(648\) 0 0
\(649\) 79.4027 3.11683
\(650\) 0 0
\(651\) 4.73649 + 12.4674i 0.185638 + 0.488634i
\(652\) 0 0
\(653\) 2.78826 + 2.78826i 0.109113 + 0.109113i 0.759556 0.650442i \(-0.225416\pi\)
−0.650442 + 0.759556i \(0.725416\pi\)
\(654\) 0 0
\(655\) −11.8458 + 10.8724i −0.462854 + 0.424820i
\(656\) 0 0
\(657\) −16.7577 16.7577i −0.653781 0.653781i
\(658\) 0 0
\(659\) 7.73193i 0.301193i −0.988595 0.150597i \(-0.951881\pi\)
0.988595 0.150597i \(-0.0481195\pi\)
\(660\) 0 0
\(661\) 35.3366i 1.37443i 0.726453 + 0.687217i \(0.241168\pi\)
−0.726453 + 0.687217i \(0.758832\pi\)
\(662\) 0 0
\(663\) −2.72855 + 2.72855i −0.105968 + 0.105968i
\(664\) 0 0
\(665\) −6.13615 18.5009i −0.237950 0.717436i
\(666\) 0 0
\(667\) −0.206143 + 0.206143i −0.00798187 + 0.00798187i
\(668\) 0 0
\(669\) 17.9201i 0.692830i
\(670\) 0 0
\(671\) 66.8039i 2.57894i
\(672\) 0 0
\(673\) −3.30292 3.30292i −0.127318 0.127318i 0.640576 0.767895i \(-0.278696\pi\)
−0.767895 + 0.640576i \(0.778696\pi\)
\(674\) 0 0
\(675\) −19.4871 + 16.4057i −0.750059 + 0.631456i
\(676\) 0 0
\(677\) 11.8424 + 11.8424i 0.455138 + 0.455138i 0.897056 0.441917i \(-0.145702\pi\)
−0.441917 + 0.897056i \(0.645702\pi\)
\(678\) 0 0
\(679\) 2.72464 + 7.17177i 0.104562 + 0.275227i
\(680\) 0 0
\(681\) 20.3592 0.780168
\(682\) 0 0
\(683\) −9.37696 9.37696i −0.358799 0.358799i 0.504571 0.863370i \(-0.331651\pi\)
−0.863370 + 0.504571i \(0.831651\pi\)
\(684\) 0 0
\(685\) −34.6261 1.48360i −1.32299 0.0566853i
\(686\) 0 0
\(687\) −17.9344 + 17.9344i −0.684242 + 0.684242i
\(688\) 0 0
\(689\) 16.8986 0.643787
\(690\) 0 0
\(691\) 13.1758i 0.501233i 0.968086 + 0.250616i \(0.0806333\pi\)
−0.968086 + 0.250616i \(0.919367\pi\)
\(692\) 0 0
\(693\) −12.4974 + 27.8111i −0.474739 + 1.05646i
\(694\) 0 0
\(695\) −24.2637 26.4360i −0.920374 1.00277i
\(696\) 0 0
\(697\) 21.6254 21.6254i 0.819121 0.819121i
\(698\) 0 0
\(699\) −21.1726 −0.800821
\(700\) 0 0
\(701\) −19.5277 −0.737550 −0.368775 0.929519i \(-0.620223\pi\)
−0.368775 + 0.929519i \(0.620223\pi\)
\(702\) 0 0
\(703\) 10.5698 10.5698i 0.398649 0.398649i
\(704\) 0 0
\(705\) 5.84820 + 6.37178i 0.220256 + 0.239975i
\(706\) 0 0
\(707\) 6.47188 14.4022i 0.243400 0.541650i
\(708\) 0 0
\(709\) 24.3216i 0.913415i −0.889617 0.456708i \(-0.849029\pi\)
0.889617 0.456708i \(-0.150971\pi\)
\(710\) 0 0
\(711\) −3.40728 −0.127783
\(712\) 0 0
\(713\) −0.265580 + 0.265580i −0.00994605 + 0.00994605i
\(714\) 0 0
\(715\) −17.3534 0.743528i −0.648981 0.0278064i
\(716\) 0 0
\(717\) 1.97225 + 1.97225i 0.0736549 + 0.0736549i
\(718\) 0 0
\(719\) 30.5952 1.14101 0.570505 0.821294i \(-0.306748\pi\)
0.570505 + 0.821294i \(0.306748\pi\)
\(720\) 0 0
\(721\) 28.2321 10.7257i 1.05142 0.399446i
\(722\) 0 0
\(723\) −4.52106 4.52106i −0.168140 0.168140i
\(724\) 0 0
\(725\) 18.8756 + 1.62047i 0.701023 + 0.0601828i
\(726\) 0 0
\(727\) 2.97003 + 2.97003i 0.110152 + 0.110152i 0.760035 0.649882i \(-0.225182\pi\)
−0.649882 + 0.760035i \(0.725182\pi\)
\(728\) 0 0
\(729\) 14.7387i 0.545877i
\(730\) 0 0
\(731\) 6.50688i 0.240666i
\(732\) 0 0
\(733\) 26.7197 26.7197i 0.986914 0.986914i −0.0130016 0.999915i \(-0.504139\pi\)
0.999915 + 0.0130016i \(0.00413865\pi\)
\(734\) 0 0
\(735\) −10.2051 12.5344i −0.376419 0.462337i
\(736\) 0 0
\(737\) −38.3407 + 38.3407i −1.41230 + 1.41230i
\(738\) 0 0
\(739\) 41.5880i 1.52984i 0.644126 + 0.764920i \(0.277221\pi\)
−0.644126 + 0.764920i \(0.722779\pi\)
\(740\) 0 0
\(741\) 4.43444i 0.162903i
\(742\) 0 0
\(743\) −3.50770 3.50770i −0.128685 0.128685i 0.639831 0.768516i \(-0.279004\pi\)
−0.768516 + 0.639831i \(0.779004\pi\)
\(744\) 0 0
\(745\) −29.7848 + 27.3373i −1.09123 + 1.00156i
\(746\) 0 0
\(747\) 4.58077 + 4.58077i 0.167602 + 0.167602i
\(748\) 0 0
\(749\) 12.0115 4.56330i 0.438890 0.166739i
\(750\) 0 0
\(751\) −49.1334 −1.79290 −0.896451 0.443142i \(-0.853864\pi\)
−0.896451 + 0.443142i \(0.853864\pi\)
\(752\) 0 0
\(753\) −15.5521 15.5521i −0.566751 0.566751i
\(754\) 0 0
\(755\) −7.14612 7.78590i −0.260074 0.283358i
\(756\) 0 0
\(757\) −34.8748 + 34.8748i −1.26755 + 1.26755i −0.320194 + 0.947352i \(0.603748\pi\)
−0.947352 + 0.320194i \(0.896252\pi\)
\(758\) 0 0
\(759\) 0.473516 0.0171875
\(760\) 0 0
\(761\) 42.8325i 1.55268i 0.630317 + 0.776338i \(0.282925\pi\)
−0.630317 + 0.776338i \(0.717075\pi\)
\(762\) 0 0
\(763\) 2.68259 5.96970i 0.0971164 0.216118i
\(764\) 0 0
\(765\) 12.3850 + 0.530651i 0.447781 + 0.0191857i
\(766\) 0 0
\(767\) 12.2789 12.2789i 0.443365 0.443365i
\(768\) 0 0
\(769\) −10.4385 −0.376422 −0.188211 0.982129i \(-0.560269\pi\)
−0.188211 + 0.982129i \(0.560269\pi\)
\(770\) 0 0
\(771\) −19.7216 −0.710257
\(772\) 0 0
\(773\) 11.9124 11.9124i 0.428459 0.428459i −0.459644 0.888103i \(-0.652023\pi\)
0.888103 + 0.459644i \(0.152023\pi\)
\(774\) 0 0
\(775\) 24.3181 + 2.08771i 0.873531 + 0.0749926i
\(776\) 0 0
\(777\) 5.08066 11.3062i 0.182268 0.405609i
\(778\) 0 0
\(779\) 35.1456i 1.25922i
\(780\) 0 0
\(781\) −50.7308 −1.81529
\(782\) 0 0
\(783\) 13.6499 13.6499i 0.487806 0.487806i
\(784\) 0 0
\(785\) 0.603829 14.0930i 0.0215516 0.502999i
\(786\) 0 0
\(787\) −29.0925 29.0925i −1.03704 1.03704i −0.999287 0.0377482i \(-0.987982\pi\)
−0.0377482 0.999287i \(-0.512018\pi\)
\(788\) 0 0
\(789\) 4.80258 0.170976
\(790\) 0 0
\(791\) −8.65572 22.7835i −0.307762 0.810088i
\(792\) 0 0
\(793\) 10.3306 + 10.3306i 0.366850 + 0.366850i
\(794\) 0 0
\(795\) 20.2434 + 22.0558i 0.717961 + 0.782239i
\(796\) 0 0
\(797\) −14.9404 14.9404i −0.529215 0.529215i 0.391123 0.920338i \(-0.372087\pi\)
−0.920338 + 0.391123i \(0.872087\pi\)
\(798\) 0 0
\(799\) 10.7387i 0.379907i
\(800\) 0 0
\(801\) 18.8336i 0.665454i
\(802\) 0 0
\(803\) 51.6493 51.6493i 1.82267 1.82267i
\(804\) 0 0
\(805\) 0.204177 0.406826i 0.00719629 0.0143387i
\(806\) 0 0
\(807\) −20.3939 + 20.3939i −0.717899 + 0.717899i
\(808\) 0 0
\(809\) 40.4535i 1.42227i 0.703055 + 0.711135i \(0.251819\pi\)
−0.703055 + 0.711135i \(0.748181\pi\)
\(810\) 0 0
\(811\) 19.8652i 0.697561i −0.937204 0.348781i \(-0.886596\pi\)
0.937204 0.348781i \(-0.113404\pi\)
\(812\) 0 0
\(813\) 4.78375 + 4.78375i 0.167774 + 0.167774i
\(814\) 0 0
\(815\) 1.66385 38.8331i 0.0582821 1.36026i
\(816\) 0 0
\(817\) −5.28750 5.28750i −0.184986 0.184986i
\(818\) 0 0
\(819\) 2.36812 + 6.23335i 0.0827489 + 0.217811i
\(820\) 0 0
\(821\) 42.9378 1.49854 0.749270 0.662265i \(-0.230405\pi\)
0.749270 + 0.662265i \(0.230405\pi\)
\(822\) 0 0
\(823\) −30.9666 30.9666i −1.07943 1.07943i −0.996561 0.0828668i \(-0.973592\pi\)
−0.0828668 0.996561i \(-0.526408\pi\)
\(824\) 0 0
\(825\) −19.8178 23.5401i −0.689967 0.819560i
\(826\) 0 0
\(827\) −37.0504 + 37.0504i −1.28837 + 1.28837i −0.352593 + 0.935777i \(0.614700\pi\)
−0.935777 + 0.352593i \(0.885300\pi\)
\(828\) 0 0
\(829\) −8.08063 −0.280652 −0.140326 0.990105i \(-0.544815\pi\)
−0.140326 + 0.990105i \(0.544815\pi\)
\(830\) 0 0
\(831\) 15.5000i 0.537688i
\(832\) 0 0
\(833\) −1.18857 + 20.0339i −0.0411813 + 0.694132i
\(834\) 0 0
\(835\) 1.80211 42.0601i 0.0623647 1.45555i
\(836\) 0 0
\(837\) 17.5855 17.5855i 0.607845 0.607845i
\(838\) 0 0
\(839\) −43.3847 −1.49781 −0.748903 0.662680i \(-0.769419\pi\)
−0.748903 + 0.662680i \(0.769419\pi\)
\(840\) 0 0
\(841\) 14.6434 0.504944
\(842\) 0 0
\(843\) −17.0218 + 17.0218i −0.586260 + 0.586260i
\(844\) 0 0
\(845\) 18.6173 17.0875i 0.640456 0.587828i
\(846\) 0 0
\(847\) −59.1712 26.5896i −2.03315 0.913630i
\(848\) 0 0
\(849\) 27.7265i 0.951570i
\(850\) 0 0
\(851\) 0.349074 0.0119661
\(852\) 0 0
\(853\) −6.16375 + 6.16375i −0.211043 + 0.211043i −0.804710 0.593668i \(-0.797679\pi\)
0.593668 + 0.804710i \(0.297679\pi\)
\(854\) 0 0
\(855\) −10.4953 + 9.63287i −0.358931 + 0.329437i
\(856\) 0 0
\(857\) 11.6843 + 11.6843i 0.399127 + 0.399127i 0.877925 0.478798i \(-0.158927\pi\)
−0.478798 + 0.877925i \(0.658927\pi\)
\(858\) 0 0
\(859\) −2.90599 −0.0991510 −0.0495755 0.998770i \(-0.515787\pi\)
−0.0495755 + 0.998770i \(0.515787\pi\)
\(860\) 0 0
\(861\) 10.3503 + 27.2440i 0.352737 + 0.928472i
\(862\) 0 0
\(863\) 25.9632 + 25.9632i 0.883796 + 0.883796i 0.993918 0.110122i \(-0.0351242\pi\)
−0.110122 + 0.993918i \(0.535124\pi\)
\(864\) 0 0
\(865\) 20.3075 + 0.870100i 0.690476 + 0.0295843i
\(866\) 0 0
\(867\) −6.41119 6.41119i −0.217736 0.217736i
\(868\) 0 0
\(869\) 10.5016i 0.356244i
\(870\) 0 0
\(871\) 11.8581i 0.401795i
\(872\) 0 0
\(873\) 3.96478 3.96478i 0.134187 0.134187i
\(874\) 0 0
\(875\) −28.7700 + 6.87637i −0.972605 + 0.232464i
\(876\) 0 0
\(877\) −19.3713 + 19.3713i −0.654124 + 0.654124i −0.953983 0.299860i \(-0.903060\pi\)
0.299860 + 0.953983i \(0.403060\pi\)
\(878\) 0 0
\(879\) 16.9326i 0.571122i
\(880\) 0 0
\(881\) 18.7603i 0.632049i −0.948751 0.316025i \(-0.897652\pi\)
0.948751 0.316025i \(-0.102348\pi\)
\(882\) 0 0
\(883\) −1.50802 1.50802i −0.0507488 0.0507488i 0.681277 0.732026i \(-0.261425\pi\)
−0.732026 + 0.681277i \(0.761425\pi\)
\(884\) 0 0
\(885\) 30.7355 + 1.31690i 1.03316 + 0.0442671i
\(886\) 0 0
\(887\) 31.6276 + 31.6276i 1.06195 + 1.06195i 0.997950 + 0.0640012i \(0.0203861\pi\)
0.0640012 + 0.997950i \(0.479614\pi\)
\(888\) 0 0
\(889\) 17.4023 6.61133i 0.583653 0.221737i
\(890\) 0 0
\(891\) 3.21839 0.107820
\(892\) 0 0
\(893\) 8.72625 + 8.72625i 0.292013 + 0.292013i
\(894\) 0 0
\(895\) −2.22311 + 2.04044i −0.0743104 + 0.0682042i
\(896\) 0 0
\(897\) 0.0732248 0.0732248i 0.00244490 0.00244490i
\(898\) 0 0
\(899\) −18.4961 −0.616879
\(900\) 0 0
\(901\) 37.1717i 1.23837i
\(902\) 0 0
\(903\) −5.65588 2.54157i −0.188216 0.0845782i
\(904\) 0 0
\(905\) −0.275874 + 0.253205i −0.00917036 + 0.00841682i
\(906\) 0 0
\(907\) 25.9988 25.9988i 0.863278 0.863278i −0.128440 0.991717i \(-0.540997\pi\)
0.991717 + 0.128440i \(0.0409969\pi\)
\(908\) 0 0
\(909\) −11.5398 −0.382752
\(910\) 0 0
\(911\) 20.0015 0.662679 0.331340 0.943512i \(-0.392499\pi\)
0.331340 + 0.943512i \(0.392499\pi\)
\(912\) 0 0
\(913\) −14.1185 + 14.1185i −0.467254 + 0.467254i
\(914\) 0 0
\(915\) −1.10795 + 25.8587i −0.0366276 + 0.854862i
\(916\) 0 0
\(917\) −7.79801 + 17.3533i −0.257513 + 0.573056i
\(918\) 0 0
\(919\) 51.2652i 1.69108i −0.533910 0.845541i \(-0.679278\pi\)
0.533910 0.845541i \(-0.320722\pi\)
\(920\) 0 0
\(921\) −24.5431 −0.808723
\(922\) 0 0
\(923\) −7.84505 + 7.84505i −0.258223 + 0.258223i
\(924\) 0 0
\(925\) −14.6096 17.3537i −0.480362 0.570585i
\(926\) 0 0
\(927\) −15.6075 15.6075i −0.512619 0.512619i
\(928\) 0 0
\(929\) −31.4773 −1.03274 −0.516368 0.856367i \(-0.672716\pi\)
−0.516368 + 0.856367i \(0.672716\pi\)
\(930\) 0 0
\(931\) −15.3137 17.2454i −0.501887 0.565194i
\(932\) 0 0
\(933\) −11.0340 11.0340i −0.361237 0.361237i
\(934\) 0 0
\(935\) −1.63553 + 38.1721i −0.0534875 + 1.24836i
\(936\) 0 0
\(937\) −24.5073 24.5073i −0.800617 0.800617i 0.182575 0.983192i \(-0.441557\pi\)
−0.983192 + 0.182575i \(0.941557\pi\)
\(938\) 0 0
\(939\) 19.1455i 0.624790i
\(940\) 0 0
\(941\) 24.6191i 0.802559i 0.915956 + 0.401279i \(0.131434\pi\)
−0.915956 + 0.401279i \(0.868566\pi\)
\(942\) 0 0
\(943\) −0.580352 + 0.580352i −0.0188989 + 0.0188989i
\(944\) 0 0
\(945\) −13.5197 + 26.9383i −0.439796 + 0.876302i
\(946\) 0 0
\(947\) −38.8951 + 38.8951i −1.26392 + 1.26392i −0.314743 + 0.949177i \(0.601918\pi\)
−0.949177 + 0.314743i \(0.898082\pi\)
\(948\) 0 0
\(949\) 15.9742i 0.518544i
\(950\) 0 0
\(951\) 18.4238i 0.597434i
\(952\) 0 0
\(953\) 9.24379 + 9.24379i 0.299436 + 0.299436i 0.840793 0.541357i \(-0.182089\pi\)
−0.541357 + 0.840793i \(0.682089\pi\)
\(954\) 0 0
\(955\) 24.3869 + 26.5702i 0.789141 + 0.859792i
\(956\) 0 0
\(957\) 16.4888 + 16.4888i 0.533007 + 0.533007i
\(958\) 0 0
\(959\) −38.3345 + 14.5637i −1.23788 + 0.470287i
\(960\) 0 0
\(961\) 7.17092 0.231320
\(962\) 0 0
\(963\) −6.64032 6.64032i −0.213981 0.213981i
\(964\) 0 0
\(965\) 1.14656 26.7598i 0.0369090 0.861430i
\(966\) 0 0
\(967\) −9.04994 + 9.04994i −0.291027 + 0.291027i −0.837486 0.546459i \(-0.815975\pi\)
0.546459 + 0.837486i \(0.315975\pi\)
\(968\) 0 0
\(969\) −9.75438 −0.313356
\(970\) 0 0
\(971\) 7.64554i 0.245357i 0.992446 + 0.122679i \(0.0391484\pi\)
−0.992446 + 0.122679i \(0.960852\pi\)
\(972\) 0 0
\(973\) −38.7269 17.4026i −1.24153 0.557902i
\(974\) 0 0
\(975\) −6.70489 0.575615i −0.214728 0.0184344i
\(976\) 0 0
\(977\) 1.25434 1.25434i 0.0401300 0.0401300i −0.686757 0.726887i \(-0.740966\pi\)
0.726887 + 0.686757i \(0.240966\pi\)
\(978\) 0 0
\(979\) 58.0475 1.85521
\(980\) 0 0
\(981\) −4.78325 −0.152718
\(982\) 0 0
\(983\) 22.3196 22.3196i 0.711885 0.711885i −0.255045 0.966929i \(-0.582090\pi\)
0.966929 + 0.255045i \(0.0820902\pi\)
\(984\) 0 0
\(985\) −7.04738 0.301954i −0.224548 0.00962104i
\(986\) 0 0
\(987\) 9.33421 + 4.19450i 0.297111 + 0.133512i
\(988\) 0 0
\(989\) 0.174622i 0.00555267i
\(990\) 0 0
\(991\) −9.17736 −0.291528 −0.145764 0.989319i \(-0.546564\pi\)
−0.145764 + 0.989319i \(0.546564\pi\)
\(992\) 0 0
\(993\) −12.3329 + 12.3329i −0.391373 + 0.391373i
\(994\) 0 0
\(995\) 8.28394 + 9.02559i 0.262619 + 0.286131i
\(996\) 0 0
\(997\) 20.3783 + 20.3783i 0.645387 + 0.645387i 0.951875 0.306488i \(-0.0991538\pi\)
−0.306488 + 0.951875i \(0.599154\pi\)
\(998\) 0 0
\(999\) −23.1142 −0.731300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bj.d.433.8 24
4.3 odd 2 280.2.x.a.153.5 yes 24
5.2 odd 4 inner 560.2.bj.d.97.5 24
7.6 odd 2 inner 560.2.bj.d.433.5 24
20.3 even 4 1400.2.x.b.657.5 24
20.7 even 4 280.2.x.a.97.8 yes 24
20.19 odd 2 1400.2.x.b.993.8 24
28.27 even 2 280.2.x.a.153.8 yes 24
35.27 even 4 inner 560.2.bj.d.97.8 24
140.27 odd 4 280.2.x.a.97.5 24
140.83 odd 4 1400.2.x.b.657.8 24
140.139 even 2 1400.2.x.b.993.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.x.a.97.5 24 140.27 odd 4
280.2.x.a.97.8 yes 24 20.7 even 4
280.2.x.a.153.5 yes 24 4.3 odd 2
280.2.x.a.153.8 yes 24 28.27 even 2
560.2.bj.d.97.5 24 5.2 odd 4 inner
560.2.bj.d.97.8 24 35.27 even 4 inner
560.2.bj.d.433.5 24 7.6 odd 2 inner
560.2.bj.d.433.8 24 1.1 even 1 trivial
1400.2.x.b.657.5 24 20.3 even 4
1400.2.x.b.657.8 24 140.83 odd 4
1400.2.x.b.993.5 24 140.139 even 2
1400.2.x.b.993.8 24 20.19 odd 2