Properties

Label 560.2.bw.e.289.2
Level $560$
Weight $2$
Character 560.289
Analytic conductor $4.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(289,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.2
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 560.289
Dual form 560.2.bw.e.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{3} +(2.13746 - 0.656712i) q^{5} +(-1.13746 - 2.38876i) q^{7} +(-2.63746 - 4.56821i) q^{11} -2.62685i q^{13} +(2.63746 - 2.83616i) q^{15} +(0.362541 - 0.209313i) q^{17} +(-1.63746 + 2.83616i) q^{19} +(-3.77492 - 2.59808i) q^{21} +(6.77492 + 3.91150i) q^{23} +(4.13746 - 2.80739i) q^{25} +5.19615i q^{27} -4.27492 q^{29} +(1.63746 + 2.83616i) q^{31} +(-7.91238 - 4.56821i) q^{33} +(-4.00000 - 4.35890i) q^{35} +(8.63746 + 4.98684i) q^{37} +(-2.27492 - 3.94027i) q^{39} -3.72508 q^{41} -2.15068i q^{43} +(5.63746 + 3.25479i) q^{47} +(-4.41238 + 5.43424i) q^{49} +(0.362541 - 0.627940i) q^{51} +(4.91238 - 2.83616i) q^{53} +(-8.63746 - 8.03231i) q^{55} +5.67232i q^{57} +(1.63746 + 2.83616i) q^{59} +(6.77492 - 11.7345i) q^{61} +(-1.72508 - 5.61478i) q^{65} +(-3.04983 + 1.76082i) q^{67} +13.5498 q^{69} +4.54983 q^{71} +(-5.63746 + 3.25479i) q^{73} +(3.77492 - 7.79423i) q^{75} +(-7.91238 + 11.4964i) q^{77} +(-3.63746 + 6.30026i) q^{79} +(4.50000 + 7.79423i) q^{81} -7.40437i q^{83} +(0.637459 - 0.685484i) q^{85} +(-6.41238 + 3.70219i) q^{87} +(-3.50000 + 6.06218i) q^{89} +(-6.27492 + 2.98793i) q^{91} +(4.91238 + 2.83616i) q^{93} +(-1.63746 + 7.13752i) q^{95} -6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + q^{5} + 3 q^{7} - 3 q^{11} + 3 q^{15} + 9 q^{17} + q^{19} + 12 q^{23} + 9 q^{25} - 2 q^{29} - q^{31} - 9 q^{33} - 16 q^{35} + 27 q^{37} + 6 q^{39} - 30 q^{41} + 15 q^{47} + 5 q^{49} + 9 q^{51}+ \cdots + q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 0.866025i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) 2.13746 0.656712i 0.955901 0.293691i
\(6\) 0 0
\(7\) −1.13746 2.38876i −0.429919 0.902867i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.63746 4.56821i −0.795224 1.37737i −0.922697 0.385526i \(-0.874020\pi\)
0.127473 0.991842i \(-0.459313\pi\)
\(12\) 0 0
\(13\) 2.62685i 0.728557i −0.931290 0.364278i \(-0.881316\pi\)
0.931290 0.364278i \(-0.118684\pi\)
\(14\) 0 0
\(15\) 2.63746 2.83616i 0.680989 0.732294i
\(16\) 0 0
\(17\) 0.362541 0.209313i 0.0879292 0.0507659i −0.455391 0.890292i \(-0.650500\pi\)
0.543320 + 0.839526i \(0.317167\pi\)
\(18\) 0 0
\(19\) −1.63746 + 2.83616i −0.375659 + 0.650660i −0.990425 0.138049i \(-0.955917\pi\)
0.614767 + 0.788709i \(0.289250\pi\)
\(20\) 0 0
\(21\) −3.77492 2.59808i −0.823754 0.566947i
\(22\) 0 0
\(23\) 6.77492 + 3.91150i 1.41267 + 0.815604i 0.995639 0.0932891i \(-0.0297381\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 4.13746 2.80739i 0.827492 0.561478i
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −4.27492 −0.793832 −0.396916 0.917855i \(-0.629920\pi\)
−0.396916 + 0.917855i \(0.629920\pi\)
\(30\) 0 0
\(31\) 1.63746 + 2.83616i 0.294096 + 0.509390i 0.974774 0.223193i \(-0.0716480\pi\)
−0.680678 + 0.732583i \(0.738315\pi\)
\(32\) 0 0
\(33\) −7.91238 4.56821i −1.37737 0.795224i
\(34\) 0 0
\(35\) −4.00000 4.35890i −0.676123 0.736788i
\(36\) 0 0
\(37\) 8.63746 + 4.98684i 1.41999 + 0.819831i 0.996297 0.0859750i \(-0.0274005\pi\)
0.423692 + 0.905806i \(0.360734\pi\)
\(38\) 0 0
\(39\) −2.27492 3.94027i −0.364278 0.630949i
\(40\) 0 0
\(41\) −3.72508 −0.581760 −0.290880 0.956760i \(-0.593948\pi\)
−0.290880 + 0.956760i \(0.593948\pi\)
\(42\) 0 0
\(43\) 2.15068i 0.327975i −0.986462 0.163988i \(-0.947564\pi\)
0.986462 0.163988i \(-0.0524357\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.63746 + 3.25479i 0.822308 + 0.474760i 0.851212 0.524823i \(-0.175868\pi\)
−0.0289038 + 0.999582i \(0.509202\pi\)
\(48\) 0 0
\(49\) −4.41238 + 5.43424i −0.630339 + 0.776320i
\(50\) 0 0
\(51\) 0.362541 0.627940i 0.0507659 0.0879292i
\(52\) 0 0
\(53\) 4.91238 2.83616i 0.674767 0.389577i −0.123114 0.992393i \(-0.539288\pi\)
0.797880 + 0.602816i \(0.205955\pi\)
\(54\) 0 0
\(55\) −8.63746 8.03231i −1.16467 1.08308i
\(56\) 0 0
\(57\) 5.67232i 0.751318i
\(58\) 0 0
\(59\) 1.63746 + 2.83616i 0.213179 + 0.369237i 0.952708 0.303888i \(-0.0982849\pi\)
−0.739529 + 0.673125i \(0.764952\pi\)
\(60\) 0 0
\(61\) 6.77492 11.7345i 0.867439 1.50245i 0.00283468 0.999996i \(-0.499098\pi\)
0.864605 0.502453i \(-0.167569\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.72508 5.61478i −0.213970 0.696428i
\(66\) 0 0
\(67\) −3.04983 + 1.76082i −0.372597 + 0.215119i −0.674592 0.738191i \(-0.735681\pi\)
0.301996 + 0.953309i \(0.402347\pi\)
\(68\) 0 0
\(69\) 13.5498 1.63121
\(70\) 0 0
\(71\) 4.54983 0.539966 0.269983 0.962865i \(-0.412982\pi\)
0.269983 + 0.962865i \(0.412982\pi\)
\(72\) 0 0
\(73\) −5.63746 + 3.25479i −0.659815 + 0.380944i −0.792206 0.610253i \(-0.791068\pi\)
0.132392 + 0.991197i \(0.457734\pi\)
\(74\) 0 0
\(75\) 3.77492 7.79423i 0.435890 0.900000i
\(76\) 0 0
\(77\) −7.91238 + 11.4964i −0.901699 + 1.31014i
\(78\) 0 0
\(79\) −3.63746 + 6.30026i −0.409246 + 0.708835i −0.994805 0.101795i \(-0.967542\pi\)
0.585559 + 0.810630i \(0.300875\pi\)
\(80\) 0 0
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) 7.40437i 0.812736i −0.913710 0.406368i \(-0.866795\pi\)
0.913710 0.406368i \(-0.133205\pi\)
\(84\) 0 0
\(85\) 0.637459 0.685484i 0.0691421 0.0743512i
\(86\) 0 0
\(87\) −6.41238 + 3.70219i −0.687479 + 0.396916i
\(88\) 0 0
\(89\) −3.50000 + 6.06218i −0.370999 + 0.642590i −0.989720 0.143022i \(-0.954318\pi\)
0.618720 + 0.785611i \(0.287651\pi\)
\(90\) 0 0
\(91\) −6.27492 + 2.98793i −0.657790 + 0.313220i
\(92\) 0 0
\(93\) 4.91238 + 2.83616i 0.509390 + 0.294096i
\(94\) 0 0
\(95\) −1.63746 + 7.13752i −0.168000 + 0.732294i
\(96\) 0 0
\(97\) 6.92820i 0.703452i −0.936103 0.351726i \(-0.885595\pi\)
0.936103 0.351726i \(-0.114405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.77492 + 11.7345i 0.674129 + 1.16763i 0.976723 + 0.214507i \(0.0688144\pi\)
−0.302593 + 0.953120i \(0.597852\pi\)
\(102\) 0 0
\(103\) −9.77492 5.64355i −0.963151 0.556076i −0.0660098 0.997819i \(-0.521027\pi\)
−0.897141 + 0.441743i \(0.854360\pi\)
\(104\) 0 0
\(105\) −9.77492 3.07425i −0.953934 0.300016i
\(106\) 0 0
\(107\) 3.04983 + 1.76082i 0.294839 + 0.170225i 0.640122 0.768273i \(-0.278884\pi\)
−0.345283 + 0.938499i \(0.612217\pi\)
\(108\) 0 0
\(109\) −5.77492 10.0025i −0.553137 0.958061i −0.998046 0.0624852i \(-0.980097\pi\)
0.444909 0.895576i \(-0.353236\pi\)
\(110\) 0 0
\(111\) 17.2749 1.63966
\(112\) 0 0
\(113\) 4.30136i 0.404637i −0.979320 0.202319i \(-0.935152\pi\)
0.979320 0.202319i \(-0.0648477\pi\)
\(114\) 0 0
\(115\) 17.0498 + 3.91150i 1.58991 + 0.364749i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.912376 0.627940i −0.0836374 0.0575632i
\(120\) 0 0
\(121\) −8.41238 + 14.5707i −0.764761 + 1.32461i
\(122\) 0 0
\(123\) −5.58762 + 3.22602i −0.503819 + 0.290880i
\(124\) 0 0
\(125\) 7.00000 8.71780i 0.626099 0.779744i
\(126\) 0 0
\(127\) 15.6460i 1.38836i 0.719802 + 0.694179i \(0.244232\pi\)
−0.719802 + 0.694179i \(0.755768\pi\)
\(128\) 0 0
\(129\) −1.86254 3.22602i −0.163988 0.284035i
\(130\) 0 0
\(131\) −5.36254 + 9.28819i −0.468527 + 0.811513i −0.999353 0.0359678i \(-0.988549\pi\)
0.530826 + 0.847481i \(0.321882\pi\)
\(132\) 0 0
\(133\) 8.63746 + 0.685484i 0.748963 + 0.0594390i
\(134\) 0 0
\(135\) 3.41238 + 11.1066i 0.293691 + 0.955901i
\(136\) 0 0
\(137\) −18.4622 + 10.6592i −1.57733 + 0.910674i −0.582103 + 0.813115i \(0.697770\pi\)
−0.995230 + 0.0975588i \(0.968897\pi\)
\(138\) 0 0
\(139\) 13.0997 1.11110 0.555550 0.831483i \(-0.312508\pi\)
0.555550 + 0.831483i \(0.312508\pi\)
\(140\) 0 0
\(141\) 11.2749 0.949519
\(142\) 0 0
\(143\) −12.0000 + 6.92820i −1.00349 + 0.579365i
\(144\) 0 0
\(145\) −9.13746 + 2.80739i −0.758825 + 0.233141i
\(146\) 0 0
\(147\) −1.91238 + 11.9726i −0.157730 + 0.987482i
\(148\) 0 0
\(149\) −3.77492 + 6.53835i −0.309253 + 0.535642i −0.978199 0.207669i \(-0.933412\pi\)
0.668946 + 0.743311i \(0.266746\pi\)
\(150\) 0 0
\(151\) −6.36254 11.0202i −0.517776 0.896815i −0.999787 0.0206494i \(-0.993427\pi\)
0.482011 0.876165i \(-0.339907\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.36254 + 4.98684i 0.430730 + 0.400553i
\(156\) 0 0
\(157\) −1.91238 + 1.10411i −0.152624 + 0.0881176i −0.574367 0.818598i \(-0.694752\pi\)
0.421743 + 0.906715i \(0.361418\pi\)
\(158\) 0 0
\(159\) 4.91238 8.50848i 0.389577 0.674767i
\(160\) 0 0
\(161\) 1.63746 20.6328i 0.129050 1.62610i
\(162\) 0 0
\(163\) −4.91238 2.83616i −0.384767 0.222145i 0.295123 0.955459i \(-0.404639\pi\)
−0.679890 + 0.733314i \(0.737973\pi\)
\(164\) 0 0
\(165\) −19.9124 4.56821i −1.55018 0.355635i
\(166\) 0 0
\(167\) 0.476171i 0.0368472i 0.999830 + 0.0184236i \(0.00586474\pi\)
−0.999830 + 0.0184236i \(0.994135\pi\)
\(168\) 0 0
\(169\) 6.09967 0.469205
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 17.7371 + 10.2405i 1.34853 + 0.778573i 0.988041 0.154190i \(-0.0492769\pi\)
0.360488 + 0.932764i \(0.382610\pi\)
\(174\) 0 0
\(175\) −11.4124 6.69012i −0.862695 0.505725i
\(176\) 0 0
\(177\) 4.91238 + 2.83616i 0.369237 + 0.213179i
\(178\) 0 0
\(179\) 3.63746 + 6.30026i 0.271876 + 0.470904i 0.969342 0.245714i \(-0.0790225\pi\)
−0.697466 + 0.716618i \(0.745689\pi\)
\(180\) 0 0
\(181\) −24.2749 −1.80434 −0.902170 0.431380i \(-0.858027\pi\)
−0.902170 + 0.431380i \(0.858027\pi\)
\(182\) 0 0
\(183\) 23.4690i 1.73488i
\(184\) 0 0
\(185\) 21.7371 + 4.98684i 1.59815 + 0.366640i
\(186\) 0 0
\(187\) −1.91238 1.10411i −0.139847 0.0807406i
\(188\) 0 0
\(189\) 12.4124 5.91041i 0.902867 0.429919i
\(190\) 0 0
\(191\) 0.0876242 0.151770i 0.00634026 0.0109817i −0.862838 0.505481i \(-0.831315\pi\)
0.869178 + 0.494499i \(0.164648\pi\)
\(192\) 0 0
\(193\) −18.4622 + 10.6592i −1.32894 + 0.767263i −0.985136 0.171778i \(-0.945049\pi\)
−0.343803 + 0.939042i \(0.611715\pi\)
\(194\) 0 0
\(195\) −7.45017 6.92820i −0.533517 0.496139i
\(196\) 0 0
\(197\) 8.60271i 0.612918i 0.951884 + 0.306459i \(0.0991442\pi\)
−0.951884 + 0.306459i \(0.900856\pi\)
\(198\) 0 0
\(199\) −8.63746 14.9605i −0.612293 1.06052i −0.990853 0.134946i \(-0.956914\pi\)
0.378560 0.925577i \(-0.376419\pi\)
\(200\) 0 0
\(201\) −3.04983 + 5.28247i −0.215119 + 0.372597i
\(202\) 0 0
\(203\) 4.86254 + 10.2118i 0.341284 + 0.716725i
\(204\) 0 0
\(205\) −7.96221 + 2.44631i −0.556105 + 0.170857i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 17.2749 1.19493
\(210\) 0 0
\(211\) −25.6495 −1.76578 −0.882892 0.469576i \(-0.844407\pi\)
−0.882892 + 0.469576i \(0.844407\pi\)
\(212\) 0 0
\(213\) 6.82475 3.94027i 0.467624 0.269983i
\(214\) 0 0
\(215\) −1.41238 4.59698i −0.0963232 0.313512i
\(216\) 0 0
\(217\) 4.91238 7.13752i 0.333474 0.484526i
\(218\) 0 0
\(219\) −5.63746 + 9.76436i −0.380944 + 0.659815i
\(220\) 0 0
\(221\) −0.549834 0.952341i −0.0369859 0.0640614i
\(222\) 0 0
\(223\) 8.71780i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9124 9.76436i 1.12251 0.648084i 0.180472 0.983580i \(-0.442237\pi\)
0.942041 + 0.335496i \(0.108904\pi\)
\(228\) 0 0
\(229\) 1.63746 2.83616i 0.108206 0.187419i −0.806837 0.590774i \(-0.798823\pi\)
0.915044 + 0.403355i \(0.132156\pi\)
\(230\) 0 0
\(231\) −1.91238 + 24.0969i −0.125825 + 1.58546i
\(232\) 0 0
\(233\) 12.3625 + 7.13752i 0.809897 + 0.467594i 0.846920 0.531720i \(-0.178454\pi\)
−0.0370231 + 0.999314i \(0.511788\pi\)
\(234\) 0 0
\(235\) 14.1873 + 3.25479i 0.925477 + 0.212319i
\(236\) 0 0
\(237\) 12.6005i 0.818492i
\(238\) 0 0
\(239\) 0.549834 0.0355658 0.0177829 0.999842i \(-0.494339\pi\)
0.0177829 + 0.999842i \(0.494339\pi\)
\(240\) 0 0
\(241\) −4.91238 8.50848i −0.316434 0.548080i 0.663307 0.748347i \(-0.269152\pi\)
−0.979741 + 0.200267i \(0.935819\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.86254 + 14.5131i −0.374544 + 0.927209i
\(246\) 0 0
\(247\) 7.45017 + 4.30136i 0.474043 + 0.273689i
\(248\) 0 0
\(249\) −6.41238 11.1066i −0.406368 0.703850i
\(250\) 0 0
\(251\) 20.5498 1.29709 0.648547 0.761175i \(-0.275377\pi\)
0.648547 + 0.761175i \(0.275377\pi\)
\(252\) 0 0
\(253\) 41.2657i 2.59435i
\(254\) 0 0
\(255\) 0.362541 1.58028i 0.0227032 0.0989611i
\(256\) 0 0
\(257\) 10.0876 + 5.82409i 0.629249 + 0.363297i 0.780461 0.625204i \(-0.214984\pi\)
−0.151212 + 0.988501i \(0.548318\pi\)
\(258\) 0 0
\(259\) 2.08762 26.3052i 0.129719 1.63452i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.675248 0.389855i 0.0416376 0.0240395i −0.479037 0.877795i \(-0.659014\pi\)
0.520674 + 0.853755i \(0.325681\pi\)
\(264\) 0 0
\(265\) 8.63746 9.28819i 0.530595 0.570569i
\(266\) 0 0
\(267\) 12.1244i 0.741999i
\(268\) 0 0
\(269\) −7.22508 12.5142i −0.440521 0.763005i 0.557207 0.830374i \(-0.311873\pi\)
−0.997728 + 0.0673687i \(0.978540\pi\)
\(270\) 0 0
\(271\) 4.91238 8.50848i 0.298406 0.516854i −0.677366 0.735646i \(-0.736879\pi\)
0.975771 + 0.218793i \(0.0702119\pi\)
\(272\) 0 0
\(273\) −6.82475 + 9.91613i −0.413053 + 0.600152i
\(274\) 0 0
\(275\) −23.7371 11.4964i −1.43140 0.693260i
\(276\) 0 0
\(277\) 12.3625 7.13752i 0.742793 0.428852i −0.0802909 0.996771i \(-0.525585\pi\)
0.823084 + 0.567920i \(0.192252\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 9.46221 5.46301i 0.562470 0.324742i −0.191666 0.981460i \(-0.561389\pi\)
0.754136 + 0.656718i \(0.228056\pi\)
\(284\) 0 0
\(285\) 3.72508 + 12.1244i 0.220655 + 0.718185i
\(286\) 0 0
\(287\) 4.23713 + 8.89834i 0.250110 + 0.525252i
\(288\) 0 0
\(289\) −8.41238 + 14.5707i −0.494846 + 0.857098i
\(290\) 0 0
\(291\) −6.00000 10.3923i −0.351726 0.609208i
\(292\) 0 0
\(293\) 6.92820i 0.404750i −0.979308 0.202375i \(-0.935134\pi\)
0.979308 0.202375i \(-0.0648660\pi\)
\(294\) 0 0
\(295\) 5.36254 + 4.98684i 0.312219 + 0.290345i
\(296\) 0 0
\(297\) 23.7371 13.7046i 1.37737 0.795224i
\(298\) 0 0
\(299\) 10.2749 17.7967i 0.594214 1.02921i
\(300\) 0 0
\(301\) −5.13746 + 2.44631i −0.296118 + 0.141003i
\(302\) 0 0
\(303\) 20.3248 + 11.7345i 1.16763 + 0.674129i
\(304\) 0 0
\(305\) 6.77492 29.5312i 0.387931 1.69095i
\(306\) 0 0
\(307\) 26.5145i 1.51326i −0.653843 0.756631i \(-0.726844\pi\)
0.653843 0.756631i \(-0.273156\pi\)
\(308\) 0 0
\(309\) −19.5498 −1.11215
\(310\) 0 0
\(311\) −4.91238 8.50848i −0.278555 0.482472i 0.692471 0.721446i \(-0.256522\pi\)
−0.971026 + 0.238974i \(0.923189\pi\)
\(312\) 0 0
\(313\) −29.0120 16.7501i −1.63986 0.946772i −0.980881 0.194609i \(-0.937656\pi\)
−0.658977 0.752163i \(-0.729010\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.1873 12.8098i −1.24616 0.719472i −0.275821 0.961209i \(-0.588950\pi\)
−0.970342 + 0.241737i \(0.922283\pi\)
\(318\) 0 0
\(319\) 11.2749 + 19.5287i 0.631274 + 1.09340i
\(320\) 0 0
\(321\) 6.09967 0.340450
\(322\) 0 0
\(323\) 1.37097i 0.0762827i
\(324\) 0 0
\(325\) −7.37459 10.8685i −0.409068 0.602875i
\(326\) 0 0
\(327\) −17.3248 10.0025i −0.958061 0.553137i
\(328\) 0 0
\(329\) 1.36254 17.1687i 0.0751193 0.946543i
\(330\) 0 0
\(331\) 8.91238 15.4367i 0.489868 0.848477i −0.510064 0.860137i \(-0.670378\pi\)
0.999932 + 0.0116596i \(0.00371146\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.36254 + 5.76655i −0.292987 + 0.315060i
\(336\) 0 0
\(337\) 4.30136i 0.234310i −0.993114 0.117155i \(-0.962623\pi\)
0.993114 0.117155i \(-0.0373774\pi\)
\(338\) 0 0
\(339\) −3.72508 6.45203i −0.202319 0.350426i
\(340\) 0 0
\(341\) 8.63746 14.9605i 0.467745 0.810157i
\(342\) 0 0
\(343\) 18.0000 + 4.35890i 0.971909 + 0.235358i
\(344\) 0 0
\(345\) 28.9622 8.89834i 1.55927 0.479070i
\(346\) 0 0
\(347\) −10.5000 + 6.06218i −0.563670 + 0.325435i −0.754617 0.656165i \(-0.772177\pi\)
0.190947 + 0.981600i \(0.438844\pi\)
\(348\) 0 0
\(349\) 3.72508 0.199399 0.0996996 0.995018i \(-0.468212\pi\)
0.0996996 + 0.995018i \(0.468212\pi\)
\(350\) 0 0
\(351\) 13.6495 0.728557
\(352\) 0 0
\(353\) −7.08762 + 4.09204i −0.377236 + 0.217797i −0.676615 0.736337i \(-0.736554\pi\)
0.299379 + 0.954134i \(0.403221\pi\)
\(354\) 0 0
\(355\) 9.72508 2.98793i 0.516154 0.158583i
\(356\) 0 0
\(357\) −1.91238 0.151770i −0.101214 0.00803249i
\(358\) 0 0
\(359\) −18.1873 + 31.5013i −0.959889 + 1.66258i −0.237127 + 0.971479i \(0.576206\pi\)
−0.722762 + 0.691097i \(0.757128\pi\)
\(360\) 0 0
\(361\) 4.13746 + 7.16629i 0.217761 + 0.377173i
\(362\) 0 0
\(363\) 29.1413i 1.52952i
\(364\) 0 0
\(365\) −9.91238 + 10.6592i −0.518837 + 0.557926i
\(366\) 0 0
\(367\) 5.22508 3.01670i 0.272747 0.157471i −0.357388 0.933956i \(-0.616333\pi\)
0.630135 + 0.776485i \(0.282999\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.3625 8.50848i −0.641831 0.441739i
\(372\) 0 0
\(373\) 8.63746 + 4.98684i 0.447231 + 0.258209i 0.706660 0.707553i \(-0.250201\pi\)
−0.259429 + 0.965762i \(0.583534\pi\)
\(374\) 0 0
\(375\) 2.95017 19.1389i 0.152346 0.988327i
\(376\) 0 0
\(377\) 11.2296i 0.578352i
\(378\) 0 0
\(379\) −21.6495 −1.11206 −0.556030 0.831162i \(-0.687676\pi\)
−0.556030 + 0.831162i \(0.687676\pi\)
\(380\) 0 0
\(381\) 13.5498 + 23.4690i 0.694179 + 1.20235i
\(382\) 0 0
\(383\) 5.32475 + 3.07425i 0.272082 + 0.157087i 0.629833 0.776730i \(-0.283123\pi\)
−0.357751 + 0.933817i \(0.616456\pi\)
\(384\) 0 0
\(385\) −9.36254 + 29.7693i −0.477159 + 1.51718i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.1873 + 28.0372i 0.820728 + 1.42154i 0.905141 + 0.425112i \(0.139765\pi\)
−0.0844123 + 0.996431i \(0.526901\pi\)
\(390\) 0 0
\(391\) 3.27492 0.165620
\(392\) 0 0
\(393\) 18.5764i 0.937055i
\(394\) 0 0
\(395\) −3.63746 + 15.8553i −0.183020 + 0.797767i
\(396\) 0 0
\(397\) −9.36254 5.40547i −0.469892 0.271293i 0.246302 0.969193i \(-0.420784\pi\)
−0.716195 + 0.697901i \(0.754118\pi\)
\(398\) 0 0
\(399\) 13.5498 6.45203i 0.678340 0.323006i
\(400\) 0 0
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 0 0
\(403\) 7.45017 4.30136i 0.371119 0.214266i
\(404\) 0 0
\(405\) 14.7371 + 13.7046i 0.732294 + 0.680989i
\(406\) 0 0
\(407\) 52.6103i 2.60780i
\(408\) 0 0
\(409\) −10.0498 17.4068i −0.496932 0.860712i 0.503061 0.864251i \(-0.332207\pi\)
−0.999994 + 0.00353862i \(0.998874\pi\)
\(410\) 0 0
\(411\) −18.4622 + 31.9775i −0.910674 + 1.57733i
\(412\) 0 0
\(413\) 4.91238 7.13752i 0.241722 0.351214i
\(414\) 0 0
\(415\) −4.86254 15.8265i −0.238693 0.776894i
\(416\) 0 0
\(417\) 19.6495 11.3446i 0.962240 0.555550i
\(418\) 0 0
\(419\) −13.0997 −0.639961 −0.319980 0.947424i \(-0.603676\pi\)
−0.319980 + 0.947424i \(0.603676\pi\)
\(420\) 0 0
\(421\) −4.27492 −0.208347 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.912376 1.88382i 0.0442567 0.0913787i
\(426\) 0 0
\(427\) −35.7371 2.83616i −1.72944 0.137251i
\(428\) 0 0
\(429\) −12.0000 + 20.7846i −0.579365 + 1.00349i
\(430\) 0 0
\(431\) −9.18729 15.9129i −0.442536 0.766495i 0.555341 0.831623i \(-0.312588\pi\)
−0.997877 + 0.0651276i \(0.979255\pi\)
\(432\) 0 0
\(433\) 18.1578i 0.872606i 0.899800 + 0.436303i \(0.143712\pi\)
−0.899800 + 0.436303i \(0.856288\pi\)
\(434\) 0 0
\(435\) −11.2749 + 12.1244i −0.540591 + 0.581318i
\(436\) 0 0
\(437\) −22.1873 + 12.8098i −1.06136 + 0.612778i
\(438\) 0 0
\(439\) −11.9124 + 20.6328i −0.568547 + 0.984752i 0.428163 + 0.903701i \(0.359161\pi\)
−0.996710 + 0.0810504i \(0.974173\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10.5000 + 6.06218i 0.498870 + 0.288023i 0.728247 0.685315i \(-0.240335\pi\)
−0.229377 + 0.973338i \(0.573669\pi\)
\(444\) 0 0
\(445\) −3.50000 + 15.2561i −0.165916 + 0.723211i
\(446\) 0 0
\(447\) 13.0767i 0.618507i
\(448\) 0 0
\(449\) 3.17525 0.149849 0.0749246 0.997189i \(-0.476128\pi\)
0.0749246 + 0.997189i \(0.476128\pi\)
\(450\) 0 0
\(451\) 9.82475 + 17.0170i 0.462629 + 0.801298i
\(452\) 0 0
\(453\) −19.0876 11.0202i −0.896815 0.517776i
\(454\) 0 0
\(455\) −11.4502 + 10.5074i −0.536792 + 0.492594i
\(456\) 0 0
\(457\) 1.18729 + 0.685484i 0.0555392 + 0.0320656i 0.527512 0.849547i \(-0.323125\pi\)
−0.471973 + 0.881613i \(0.656458\pi\)
\(458\) 0 0
\(459\) 1.08762 + 1.88382i 0.0507659 + 0.0879292i
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 2.15068i 0.0999505i 0.998750 + 0.0499752i \(0.0159142\pi\)
−0.998750 + 0.0499752i \(0.984086\pi\)
\(464\) 0 0
\(465\) 12.3625 + 2.83616i 0.573299 + 0.131524i
\(466\) 0 0
\(467\) 13.5997 + 7.85177i 0.629318 + 0.363337i 0.780488 0.625171i \(-0.214971\pi\)
−0.151170 + 0.988508i \(0.548304\pi\)
\(468\) 0 0
\(469\) 7.67525 + 5.28247i 0.354410 + 0.243922i
\(470\) 0 0
\(471\) −1.91238 + 3.31233i −0.0881176 + 0.152624i
\(472\) 0 0
\(473\) −9.82475 + 5.67232i −0.451743 + 0.260814i
\(474\) 0 0
\(475\) 1.18729 + 16.3315i 0.0544767 + 0.749340i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.91238 8.50848i −0.224452 0.388763i 0.731703 0.681624i \(-0.238726\pi\)
−0.956155 + 0.292861i \(0.905393\pi\)
\(480\) 0 0
\(481\) 13.0997 22.6893i 0.597293 1.03454i
\(482\) 0 0
\(483\) −15.4124 32.3673i −0.701287 1.47277i
\(484\) 0 0
\(485\) −4.54983 14.8087i −0.206597 0.672431i
\(486\) 0 0
\(487\) −2.53779 + 1.46519i −0.114998 + 0.0663943i −0.556396 0.830917i \(-0.687816\pi\)
0.441398 + 0.897312i \(0.354483\pi\)
\(488\) 0 0
\(489\) −9.82475 −0.444291
\(490\) 0 0
\(491\) 28.5498 1.28844 0.644218 0.764842i \(-0.277183\pi\)
0.644218 + 0.764842i \(0.277183\pi\)
\(492\) 0 0
\(493\) −1.54983 + 0.894797i −0.0698010 + 0.0402996i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.17525 10.8685i −0.232142 0.487518i
\(498\) 0 0
\(499\) −0.812707 + 1.40765i −0.0363818 + 0.0630151i −0.883643 0.468161i \(-0.844917\pi\)
0.847261 + 0.531177i \(0.178250\pi\)
\(500\) 0 0
\(501\) 0.412376 + 0.714256i 0.0184236 + 0.0319106i
\(502\) 0 0
\(503\) 31.7682i 1.41647i 0.705975 + 0.708236i \(0.250509\pi\)
−0.705975 + 0.708236i \(0.749491\pi\)
\(504\) 0 0
\(505\) 22.1873 + 20.6328i 0.987322 + 0.918149i
\(506\) 0 0
\(507\) 9.14950 5.28247i 0.406344 0.234603i
\(508\) 0 0
\(509\) −7.22508 + 12.5142i −0.320246 + 0.554683i −0.980539 0.196326i \(-0.937099\pi\)
0.660293 + 0.751008i \(0.270432\pi\)
\(510\) 0 0
\(511\) 14.1873 + 9.76436i 0.627609 + 0.431950i
\(512\) 0 0
\(513\) −14.7371 8.50848i −0.650660 0.375659i
\(514\) 0 0
\(515\) −24.5997 5.64355i −1.08399 0.248685i
\(516\) 0 0
\(517\) 34.3375i 1.51016i
\(518\) 0 0
\(519\) 35.4743 1.55715
\(520\) 0 0
\(521\) −4.91238 8.50848i −0.215215 0.372763i 0.738124 0.674665i \(-0.235712\pi\)
−0.953339 + 0.301902i \(0.902379\pi\)
\(522\) 0 0
\(523\) −6.36254 3.67341i −0.278215 0.160627i 0.354400 0.935094i \(-0.384685\pi\)
−0.632615 + 0.774467i \(0.718018\pi\)
\(524\) 0 0
\(525\) −22.9124 0.151770i −0.999978 0.00662376i
\(526\) 0 0
\(527\) 1.18729 + 0.685484i 0.0517193 + 0.0298602i
\(528\) 0 0
\(529\) 19.0997 + 33.0816i 0.830420 + 1.43833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.78523i 0.423845i
\(534\) 0 0
\(535\) 7.67525 + 1.76082i 0.331830 + 0.0761270i
\(536\) 0 0
\(537\) 10.9124 + 6.30026i 0.470904 + 0.271876i
\(538\) 0 0
\(539\) 36.4622 + 5.82409i 1.57054 + 0.250861i
\(540\) 0 0
\(541\) 8.77492 15.1986i 0.377263 0.653439i −0.613400 0.789773i \(-0.710199\pi\)
0.990663 + 0.136334i \(0.0435319\pi\)
\(542\) 0 0
\(543\) −36.4124 + 21.0227i −1.56260 + 0.902170i
\(544\) 0 0
\(545\) −18.9124 17.5874i −0.810117 0.753360i
\(546\) 0 0
\(547\) 20.5386i 0.878168i 0.898446 + 0.439084i \(0.144697\pi\)
−0.898446 + 0.439084i \(0.855303\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.00000 12.1244i 0.298210 0.516515i
\(552\) 0 0
\(553\) 19.1873 + 1.52274i 0.815927 + 0.0647534i
\(554\) 0 0
\(555\) 36.9244 11.3446i 1.56735 0.481553i
\(556\) 0 0
\(557\) 8.63746 4.98684i 0.365981 0.211299i −0.305720 0.952121i \(-0.598897\pi\)
0.671701 + 0.740822i \(0.265564\pi\)
\(558\) 0 0
\(559\) −5.64950 −0.238949
\(560\) 0 0
\(561\) −3.82475 −0.161481
\(562\) 0 0
\(563\) −19.5997 + 11.3159i −0.826028 + 0.476907i −0.852491 0.522743i \(-0.824909\pi\)
0.0264630 + 0.999650i \(0.491576\pi\)
\(564\) 0 0
\(565\) −2.82475 9.19397i −0.118838 0.386793i
\(566\) 0 0
\(567\) 13.5000 19.6150i 0.566947 0.823754i
\(568\) 0 0
\(569\) 4.18729 7.25260i 0.175540 0.304045i −0.764808 0.644259i \(-0.777166\pi\)
0.940348 + 0.340214i \(0.110499\pi\)
\(570\) 0 0
\(571\) 3.63746 + 6.30026i 0.152223 + 0.263658i 0.932044 0.362344i \(-0.118024\pi\)
−0.779821 + 0.626002i \(0.784690\pi\)
\(572\) 0 0
\(573\) 0.303539i 0.0126805i
\(574\) 0 0
\(575\) 39.0120 2.83616i 1.62691 0.118276i
\(576\) 0 0
\(577\) −3.36254 + 1.94136i −0.139984 + 0.0808200i −0.568357 0.822782i \(-0.692421\pi\)
0.428372 + 0.903602i \(0.359087\pi\)
\(578\) 0 0
\(579\) −18.4622 + 31.9775i −0.767263 + 1.32894i
\(580\) 0 0
\(581\) −17.6873 + 8.42217i −0.733793 + 0.349410i
\(582\) 0 0
\(583\) −25.9124 14.9605i −1.07318 0.619601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8997i 0.862623i −0.902203 0.431311i \(-0.858051\pi\)
0.902203 0.431311i \(-0.141949\pi\)
\(588\) 0 0
\(589\) −10.7251 −0.441919
\(590\) 0 0
\(591\) 7.45017 + 12.9041i 0.306459 + 0.530802i
\(592\) 0 0
\(593\) 28.9124 + 16.6926i 1.18729 + 0.685482i 0.957689 0.287804i \(-0.0929250\pi\)
0.229600 + 0.973285i \(0.426258\pi\)
\(594\) 0 0
\(595\) −2.36254 0.743028i −0.0968548 0.0304612i
\(596\) 0 0
\(597\) −25.9124 14.9605i −1.06052 0.612293i
\(598\) 0 0
\(599\) −2.63746 4.56821i −0.107764 0.186652i 0.807100 0.590414i \(-0.201036\pi\)
−0.914864 + 0.403762i \(0.867702\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.41238 + 36.6687i −0.342012 + 1.49079i
\(606\) 0 0
\(607\) 9.87459 + 5.70109i 0.400797 + 0.231400i 0.686828 0.726820i \(-0.259003\pi\)
−0.286031 + 0.958220i \(0.592336\pi\)
\(608\) 0 0
\(609\) 16.1375 + 11.1066i 0.653923 + 0.450061i
\(610\) 0 0
\(611\) 8.54983 14.8087i 0.345889 0.599098i
\(612\) 0 0
\(613\) 24.5619 14.1808i 0.992045 0.572757i 0.0861600 0.996281i \(-0.472540\pi\)
0.905885 + 0.423524i \(0.139207\pi\)
\(614\) 0 0
\(615\) −9.82475 + 10.5649i −0.396172 + 0.426019i
\(616\) 0 0
\(617\) 31.2920i 1.25977i −0.776689 0.629884i \(-0.783102\pi\)
0.776689 0.629884i \(-0.216898\pi\)
\(618\) 0 0
\(619\) 4.46221 + 7.72877i 0.179351 + 0.310646i 0.941659 0.336570i \(-0.109267\pi\)
−0.762307 + 0.647215i \(0.775933\pi\)
\(620\) 0 0
\(621\) −20.3248 + 35.2035i −0.815604 + 1.41267i
\(622\) 0 0
\(623\) 18.4622 + 1.46519i 0.739673 + 0.0587017i
\(624\) 0 0
\(625\) 9.23713 23.2309i 0.369485 0.929237i
\(626\) 0 0
\(627\) 25.9124 14.9605i 1.03484 0.597466i
\(628\) 0 0
\(629\) 4.17525 0.166478
\(630\) 0 0
\(631\) −33.0997 −1.31768 −0.658839 0.752284i \(-0.728952\pi\)
−0.658839 + 0.752284i \(0.728952\pi\)
\(632\) 0 0
\(633\) −38.4743 + 22.2131i −1.52921 + 0.882892i
\(634\) 0 0
\(635\) 10.2749 + 33.4427i 0.407748 + 1.32713i
\(636\) 0 0
\(637\) 14.2749 + 11.5906i 0.565593 + 0.459238i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.04983 + 1.81837i 0.0414660 + 0.0718212i 0.886014 0.463659i \(-0.153464\pi\)
−0.844548 + 0.535481i \(0.820131\pi\)
\(642\) 0 0
\(643\) 31.4071i 1.23857i −0.785164 0.619287i \(-0.787422\pi\)
0.785164 0.619287i \(-0.212578\pi\)
\(644\) 0 0
\(645\) −6.09967 5.67232i −0.240174 0.223348i
\(646\) 0 0
\(647\) −23.3248 + 13.4666i −0.916991 + 0.529425i −0.882674 0.469986i \(-0.844259\pi\)
−0.0343169 + 0.999411i \(0.510926\pi\)
\(648\) 0 0
\(649\) 8.63746 14.9605i 0.339050 0.587252i
\(650\) 0 0
\(651\) 1.18729 14.9605i 0.0465337 0.586349i
\(652\) 0 0
\(653\) 24.5619 + 14.1808i 0.961181 + 0.554938i 0.896536 0.442970i \(-0.146075\pi\)
0.0646444 + 0.997908i \(0.479409\pi\)
\(654\) 0 0
\(655\) −5.36254 + 23.3748i −0.209532 + 0.913328i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.5498 −1.57960 −0.789799 0.613366i \(-0.789815\pi\)
−0.789799 + 0.613366i \(0.789815\pi\)
\(660\) 0 0
\(661\) 0.225083 + 0.389855i 0.00875471 + 0.0151636i 0.870370 0.492399i \(-0.163880\pi\)
−0.861615 + 0.507563i \(0.830547\pi\)
\(662\) 0 0
\(663\) −1.64950 0.952341i −0.0640614 0.0369859i
\(664\) 0 0
\(665\) 18.9124 4.20713i 0.733390 0.163145i
\(666\) 0 0
\(667\) −28.9622 16.7213i −1.12142 0.647453i
\(668\) 0 0
\(669\) −7.54983 13.0767i −0.291893 0.505574i
\(670\) 0 0
\(671\) −71.4743 −2.75923
\(672\) 0 0
\(673\) 31.2920i 1.20622i 0.797659 + 0.603109i \(0.206072\pi\)
−0.797659 + 0.603109i \(0.793928\pi\)
\(674\) 0 0
\(675\) 14.5876 + 21.4989i 0.561478 + 0.827492i
\(676\) 0 0
\(677\) −40.1873 23.2021i −1.54452 0.891731i −0.998545 0.0539317i \(-0.982825\pi\)
−0.545979 0.837799i \(-0.683842\pi\)
\(678\) 0 0
\(679\) −16.5498 + 7.88054i −0.635124 + 0.302428i
\(680\) 0 0
\(681\) 16.9124 29.2931i 0.648084 1.12251i
\(682\) 0 0
\(683\) 16.5997 9.58382i 0.635169 0.366715i −0.147582 0.989050i \(-0.547149\pi\)
0.782751 + 0.622335i \(0.213816\pi\)
\(684\) 0 0
\(685\) −32.4622 + 34.9079i −1.24032 + 1.33376i
\(686\) 0 0
\(687\) 5.67232i 0.216413i
\(688\) 0 0
\(689\) −7.45017 12.9041i −0.283829 0.491606i
\(690\) 0 0
\(691\) 15.1873 26.3052i 0.577752 1.00070i −0.417985 0.908454i \(-0.637263\pi\)
0.995737 0.0922416i \(-0.0294032\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.0000 8.60271i 1.06210 0.326319i
\(696\) 0 0
\(697\) −1.35050 + 0.779710i −0.0511537 + 0.0295336i
\(698\) 0 0
\(699\) 24.7251 0.935189
\(700\) 0 0
\(701\) 8.82475 0.333306 0.166653 0.986016i \(-0.446704\pi\)
0.166653 + 0.986016i \(0.446704\pi\)
\(702\) 0 0
\(703\) −28.2870 + 16.3315i −1.06686 + 0.615954i
\(704\) 0 0
\(705\) 24.0997 7.40437i 0.907646 0.278865i
\(706\) 0 0
\(707\) 20.3248 29.5312i 0.764391 1.11063i
\(708\) 0 0
\(709\) −5.22508 + 9.05011i −0.196232 + 0.339884i −0.947304 0.320337i \(-0.896204\pi\)
0.751072 + 0.660221i \(0.229537\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.6197i 0.959465i
\(714\) 0 0
\(715\) −21.0997 + 22.6893i −0.789083 + 0.848531i
\(716\) 0 0
\(717\) 0.824752 0.476171i 0.0308009 0.0177829i
\(718\) 0 0
\(719\) 15.1873 26.3052i 0.566390 0.981017i −0.430528 0.902577i \(-0.641673\pi\)
0.996919 0.0784400i \(-0.0249939\pi\)
\(720\) 0 0
\(721\) −2.36254 + 29.7693i −0.0879856 + 1.10867i
\(722\) 0 0
\(723\) −14.7371 8.50848i −0.548080 0.316434i
\(724\) 0 0
\(725\) −17.6873 + 12.0014i −0.656890 + 0.445719i
\(726\) 0 0
\(727\) 3.10302i 0.115085i −0.998343 0.0575423i \(-0.981674\pi\)
0.998343 0.0575423i \(-0.0183264\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −0.450166 0.779710i −0.0166500 0.0288386i
\(732\) 0 0
\(733\) 32.6375 + 18.8432i 1.20549 + 0.695991i 0.961771 0.273854i \(-0.0882986\pi\)
0.243721 + 0.969845i \(0.421632\pi\)
\(734\) 0 0
\(735\) 3.77492 + 26.8468i 0.139240 + 0.990259i
\(736\) 0 0
\(737\) 16.0876 + 9.28819i 0.592595 + 0.342135i
\(738\) 0 0
\(739\) 10.4622 + 18.1211i 0.384859 + 0.666595i 0.991750 0.128190i \(-0.0409169\pi\)
−0.606891 + 0.794785i \(0.707584\pi\)
\(740\) 0 0
\(741\) 14.9003 0.547377
\(742\) 0 0
\(743\) 6.45203i 0.236702i −0.992972 0.118351i \(-0.962239\pi\)
0.992972 0.118351i \(-0.0377608\pi\)
\(744\) 0 0
\(745\) −3.77492 + 16.4545i −0.138302 + 0.602846i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.737127 9.28819i 0.0269341 0.339383i
\(750\) 0 0
\(751\) −7.36254 + 12.7523i −0.268663 + 0.465338i −0.968517 0.248948i \(-0.919915\pi\)
0.699854 + 0.714286i \(0.253248\pi\)
\(752\) 0 0
\(753\) 30.8248 17.7967i 1.12332 0.648547i
\(754\) 0 0
\(755\) −20.8368 19.3770i −0.758329 0.705200i
\(756\) 0 0
\(757\) 35.5934i 1.29366i 0.762633 + 0.646831i \(0.223906\pi\)
−0.762633 + 0.646831i \(0.776094\pi\)
\(758\) 0 0
\(759\) −35.7371 61.8985i −1.29718 2.24677i
\(760\) 0 0
\(761\) −11.4622 + 19.8531i −0.415505 + 0.719675i −0.995481 0.0949578i \(-0.969728\pi\)
0.579977 + 0.814633i \(0.303062\pi\)
\(762\) 0 0
\(763\) −17.3248 + 25.1723i −0.627198 + 0.911298i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.45017 4.30136i 0.269010 0.155313i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 20.1752 0.726594
\(772\) 0 0
\(773\) 34.9124 20.1567i 1.25571 0.724985i 0.283473 0.958980i \(-0.408513\pi\)
0.972238 + 0.233995i \(0.0751800\pi\)
\(774\) 0 0
\(775\) 14.7371 + 7.13752i 0.529373 + 0.256387i
\(776\) 0 0
\(777\) −19.6495 41.2657i −0.704922 1.48040i
\(778\) 0 0
\(779\) 6.09967 10.5649i 0.218543 0.378528i
\(780\) 0 0
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) 0 0
\(783\) 22.2131i 0.793832i
\(784\) 0 0
\(785\) −3.36254 + 3.61587i −0.120014 + 0.129056i
\(786\) 0 0
\(787\) 1.50000 0.866025i 0.0534692 0.0308705i −0.473027 0.881048i \(-0.656839\pi\)
0.526496 + 0.850177i \(0.323505\pi\)
\(788\) 0 0
\(789\) 0.675248 1.16956i 0.0240395 0.0416376i
\(790\) 0 0
\(791\) −10.2749 + 4.89261i −0.365334 + 0.173961i
\(792\) 0 0
\(793\) −30.8248 17.7967i −1.09462 0.631979i
\(794\) 0 0
\(795\) 4.91238 21.4125i 0.174224 0.759425i
\(796\) 0 0
\(797\) 46.8229i 1.65855i −0.558839 0.829276i \(-0.688753\pi\)
0.558839 0.829276i \(-0.311247\pi\)
\(798\) 0 0
\(799\) 2.72508 0.0964065
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 29.7371 + 17.1687i 1.04940 + 0.605872i
\(804\) 0 0
\(805\) −10.0498 45.1772i −0.354210 1.59229i
\(806\) 0 0
\(807\) −21.6752 12.5142i −0.763005 0.440521i
\(808\) 0 0
\(809\) −8.59967 14.8951i −0.302348 0.523683i 0.674319 0.738440i \(-0.264437\pi\)
−0.976667 + 0.214757i \(0.931104\pi\)
\(810\) 0 0
\(811\) −7.45017 −0.261611 −0.130805 0.991408i \(-0.541756\pi\)
−0.130805 + 0.991408i \(0.541756\pi\)
\(812\) 0 0
\(813\) 17.0170i 0.596811i
\(814\) 0 0
\(815\) −12.3625 2.83616i −0.433041 0.0993464i
\(816\) 0 0
\(817\) 6.09967 + 3.52165i 0.213400 + 0.123207i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.1873 17.6449i 0.355539 0.615812i −0.631671 0.775237i \(-0.717631\pi\)
0.987210 + 0.159425i \(0.0509640\pi\)
\(822\) 0 0
\(823\) 39.9743 23.0791i 1.39341 0.804488i 0.399723 0.916636i \(-0.369106\pi\)
0.993692 + 0.112147i \(0.0357729\pi\)
\(824\) 0 0
\(825\) −45.5619 + 3.31233i −1.58626 + 0.115321i
\(826\) 0 0
\(827\) 15.0547i 0.523505i 0.965135 + 0.261752i \(0.0843004\pi\)
−0.965135 + 0.261752i \(0.915700\pi\)
\(828\) 0 0
\(829\) −25.4622 44.1018i −0.884339 1.53172i −0.846469 0.532438i \(-0.821276\pi\)
−0.0378699 0.999283i \(-0.512057\pi\)
\(830\) 0 0
\(831\) 12.3625 21.4125i 0.428852 0.742793i
\(832\) 0 0
\(833\) −0.462210 + 2.89371i −0.0160146 + 0.100261i
\(834\) 0 0
\(835\) 0.312707 + 1.01779i 0.0108217 + 0.0352222i
\(836\) 0 0
\(837\) −14.7371 + 8.50848i −0.509390 + 0.294096i
\(838\) 0 0
\(839\) 41.0997 1.41892 0.709459 0.704747i \(-0.248939\pi\)
0.709459 + 0.704747i \(0.248939\pi\)
\(840\) 0 0
\(841\) −10.7251 −0.369830
\(842\) 0 0
\(843\) 9.00000 5.19615i 0.309976 0.178965i
\(844\) 0 0
\(845\) 13.0378 4.00573i 0.448514 0.137801i
\(846\) 0 0
\(847\) 44.3746 + 3.52165i 1.52473 + 0.121005i
\(848\) 0 0
\(849\) 9.46221 16.3890i 0.324742 0.562470i
\(850\) 0 0
\(851\) 39.0120 + 67.5708i 1.33732 + 2.31630i
\(852\) 0 0
\(853\) 13.1342i 0.449708i −0.974392 0.224854i \(-0.927810\pi\)
0.974392 0.224854i \(-0.0721905\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.6375 18.8432i 1.11487 0.643673i 0.174787 0.984606i \(-0.444076\pi\)
0.940087 + 0.340933i \(0.110743\pi\)
\(858\) 0 0
\(859\) 1.18729 2.05645i 0.0405099 0.0701652i −0.845060 0.534672i \(-0.820435\pi\)
0.885569 + 0.464507i \(0.153768\pi\)
\(860\) 0 0
\(861\) 14.0619 + 9.67805i 0.479228 + 0.329827i
\(862\) 0 0
\(863\) 14.2251 + 8.21286i 0.484227 + 0.279569i 0.722177 0.691709i \(-0.243142\pi\)
−0.237949 + 0.971278i \(0.576475\pi\)
\(864\) 0 0
\(865\) 44.6375 + 10.2405i 1.51772 + 0.348189i
\(866\) 0 0
\(867\) 29.1413i 0.989691i
\(868\) 0 0
\(869\) 38.3746 1.30177
\(870\) 0 0
\(871\) 4.62541 + 8.01145i 0.156726 + 0.271458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.7870 6.80521i −0.973177 0.230058i
\(876\) 0 0
\(877\) 19.8127 + 11.4389i 0.669028 + 0.386263i 0.795708 0.605680i \(-0.207099\pi\)
−0.126681 + 0.991944i \(0.540432\pi\)
\(878\) 0 0
\(879\) −6.00000 10.3923i −0.202375 0.350524i
\(880\) 0 0
\(881\) −43.0241 −1.44952 −0.724759 0.689002i \(-0.758049\pi\)
−0.724759 + 0.689002i \(0.758049\pi\)
\(882\) 0 0
\(883\) 55.5407i 1.86909i 0.355840 + 0.934547i \(0.384195\pi\)
−0.355840 + 0.934547i \(0.615805\pi\)
\(884\) 0 0
\(885\) 12.3625 + 2.83616i 0.415562 + 0.0953365i
\(886\) 0 0
\(887\) −33.9743 19.6150i −1.14074 0.658609i −0.194129 0.980976i \(-0.562188\pi\)
−0.946615 + 0.322367i \(0.895521\pi\)
\(888\) 0 0
\(889\) 37.3746 17.7967i 1.25350 0.596881i
\(890\) 0 0
\(891\) 23.7371 41.1139i 0.795224 1.37737i
\(892\) 0 0
\(893\) −18.4622 + 10.6592i −0.617814 + 0.356695i
\(894\) 0 0
\(895\) 11.9124 + 11.0778i 0.398187 + 0.370290i
\(896\) 0 0
\(897\) 35.5934i 1.18843i
\(898\) 0 0
\(899\) −7.00000 12.1244i −0.233463 0.404370i
\(900\) 0 0
\(901\) 1.18729 2.05645i 0.0395545 0.0685103i
\(902\) 0 0
\(903\) −5.58762 + 8.11863i −0.185944 + 0.270171i
\(904\) 0 0
\(905\) −51.8866 + 15.9416i −1.72477 + 0.529918i
\(906\) 0 0
\(907\) 36.2492 20.9285i 1.20363 0.694918i 0.242273 0.970208i \(-0.422107\pi\)
0.961361 + 0.275290i \(0.0887738\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.0997 0.831589 0.415795 0.909459i \(-0.363504\pi\)
0.415795 + 0.909459i \(0.363504\pi\)
\(912\) 0 0
\(913\) −33.8248 + 19.5287i −1.11944 + 0.646307i
\(914\) 0 0
\(915\) −15.4124 50.1640i −0.509517 1.65837i
\(916\) 0 0
\(917\) 28.2870 + 2.24490i 0.934118 + 0.0741332i
\(918\) 0 0
\(919\) 23.4622 40.6377i 0.773947 1.34052i −0.161438 0.986883i \(-0.551613\pi\)
0.935384 0.353632i \(-0.115054\pi\)
\(920\) 0 0
\(921\) −22.9622 39.7717i −0.756631 1.31052i
\(922\) 0 0
\(923\) 11.9517i 0.393396i
\(924\) 0 0
\(925\) 49.7371 3.61587i 1.63535 0.118889i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −24.0498 + 41.6555i −0.789049 + 1.36667i 0.137500 + 0.990502i \(0.456093\pi\)
−0.926550 + 0.376172i \(0.877240\pi\)
\(930\) 0 0
\(931\) −8.18729 21.4125i −0.268328 0.701768i
\(932\) 0 0
\(933\) −14.7371 8.50848i −0.482472 0.278555i
\(934\) 0 0
\(935\) −4.81271 1.10411i −0.157392 0.0361083i
\(936\) 0 0
\(937\) 24.3638i 0.795931i 0.917400 + 0.397965i \(0.130284\pi\)
−0.917400 + 0.397965i \(0.869716\pi\)
\(938\) 0 0
\(939\) −58.0241 −1.89354
\(940\) 0 0
\(941\) 1.63746 + 2.83616i 0.0533796 + 0.0924562i 0.891481 0.453059i \(-0.149667\pi\)
−0.838101 + 0.545515i \(0.816334\pi\)
\(942\) 0 0
\(943\) −25.2371 14.5707i −0.821834 0.474486i
\(944\) 0 0
\(945\) 22.6495 20.7846i 0.736788 0.676123i
\(946\) 0 0
\(947\) −9.14950 5.28247i −0.297319 0.171657i 0.343919 0.938999i \(-0.388245\pi\)
−0.641238 + 0.767342i \(0.721579\pi\)
\(948\) 0 0
\(949\) 8.54983 + 14.8087i 0.277539 + 0.480712i
\(950\) 0 0
\(951\) −44.3746 −1.43894
\(952\) 0 0
\(953\) 22.6893i 0.734978i −0.930028 0.367489i \(-0.880218\pi\)
0.930028 0.367489i \(-0.119782\pi\)
\(954\) 0 0
\(955\) 0.0876242 0.381945i 0.00283545 0.0123594i
\(956\) 0 0
\(957\) 33.8248 + 19.5287i 1.09340 + 0.631274i
\(958\) 0 0
\(959\) 46.4622 + 31.9775i 1.50034 + 1.03261i
\(960\) 0 0
\(961\) 10.1375 17.5586i 0.327015 0.566406i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −32.4622 + 34.9079i −1.04500 + 1.12372i
\(966\) 0 0
\(967\) 2.15068i 0.0691611i 0.999402 + 0.0345806i \(0.0110095\pi\)
−0.999402 + 0.0345806i \(0.988990\pi\)
\(968\) 0 0
\(969\) 1.18729 + 2.05645i 0.0381413 + 0.0660628i
\(970\) 0 0
\(971\) −18.4622 + 31.9775i −0.592481 + 1.02621i 0.401417 + 0.915896i \(0.368518\pi\)
−0.993897 + 0.110311i \(0.964815\pi\)
\(972\) 0 0
\(973\) −14.9003 31.2920i −0.477683 1.00318i
\(974\) 0 0
\(975\) −20.4743 9.91613i −0.655701 0.317570i
\(976\) 0 0
\(977\) −25.9124 + 14.9605i −0.829010 + 0.478629i −0.853514 0.521070i \(-0.825533\pi\)
0.0245034 + 0.999700i \(0.492200\pi\)
\(978\) 0 0
\(979\) 36.9244 1.18011
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.7749 22.9641i 1.26862 0.732440i 0.293895 0.955838i \(-0.405048\pi\)
0.974727 + 0.223398i \(0.0717149\pi\)
\(984\) 0 0
\(985\) 5.64950 + 18.3879i 0.180008 + 0.585888i
\(986\) 0 0
\(987\) −12.8248 26.9331i −0.408216 0.857290i
\(988\) 0 0
\(989\) 8.41238 14.5707i 0.267498 0.463320i
\(990\) 0 0
\(991\) 16.7371 + 28.9896i 0.531672 + 0.920884i 0.999316 + 0.0369667i \(0.0117696\pi\)
−0.467644 + 0.883917i \(0.654897\pi\)
\(992\) 0 0
\(993\) 30.8734i 0.979737i
\(994\) 0 0
\(995\) −28.2870 26.3052i −0.896757 0.833930i
\(996\) 0 0
\(997\) 0.362541 0.209313i 0.0114818 0.00662902i −0.494248 0.869321i \(-0.664557\pi\)
0.505730 + 0.862692i \(0.331223\pi\)
\(998\) 0 0
\(999\) −25.9124 + 44.8816i −0.819831 + 1.41999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bw.e.289.2 4
4.3 odd 2 140.2.q.a.9.2 4
5.4 even 2 560.2.bw.a.289.1 4
7.4 even 3 560.2.bw.a.529.2 4
12.11 even 2 1260.2.bm.a.289.1 4
20.3 even 4 700.2.i.f.401.2 8
20.7 even 4 700.2.i.f.401.3 8
20.19 odd 2 140.2.q.b.9.1 yes 4
28.3 even 6 980.2.q.b.949.1 4
28.11 odd 6 140.2.q.b.109.2 yes 4
28.19 even 6 980.2.e.c.589.4 4
28.23 odd 6 980.2.e.f.589.1 4
28.27 even 2 980.2.q.g.569.1 4
35.4 even 6 inner 560.2.bw.e.529.2 4
60.59 even 2 1260.2.bm.b.289.2 4
84.11 even 6 1260.2.bm.b.109.1 4
140.19 even 6 980.2.e.c.589.2 4
140.23 even 12 4900.2.a.be.1.3 4
140.39 odd 6 140.2.q.a.109.2 yes 4
140.47 odd 12 4900.2.a.bf.1.3 4
140.59 even 6 980.2.q.g.949.1 4
140.67 even 12 700.2.i.f.501.3 8
140.79 odd 6 980.2.e.f.589.3 4
140.103 odd 12 4900.2.a.bf.1.1 4
140.107 even 12 4900.2.a.be.1.1 4
140.123 even 12 700.2.i.f.501.2 8
140.139 even 2 980.2.q.b.569.2 4
420.179 even 6 1260.2.bm.a.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.q.a.9.2 4 4.3 odd 2
140.2.q.a.109.2 yes 4 140.39 odd 6
140.2.q.b.9.1 yes 4 20.19 odd 2
140.2.q.b.109.2 yes 4 28.11 odd 6
560.2.bw.a.289.1 4 5.4 even 2
560.2.bw.a.529.2 4 7.4 even 3
560.2.bw.e.289.2 4 1.1 even 1 trivial
560.2.bw.e.529.2 4 35.4 even 6 inner
700.2.i.f.401.2 8 20.3 even 4
700.2.i.f.401.3 8 20.7 even 4
700.2.i.f.501.2 8 140.123 even 12
700.2.i.f.501.3 8 140.67 even 12
980.2.e.c.589.2 4 140.19 even 6
980.2.e.c.589.4 4 28.19 even 6
980.2.e.f.589.1 4 28.23 odd 6
980.2.e.f.589.3 4 140.79 odd 6
980.2.q.b.569.2 4 140.139 even 2
980.2.q.b.949.1 4 28.3 even 6
980.2.q.g.569.1 4 28.27 even 2
980.2.q.g.949.1 4 140.59 even 6
1260.2.bm.a.109.1 4 420.179 even 6
1260.2.bm.a.289.1 4 12.11 even 2
1260.2.bm.b.109.1 4 84.11 even 6
1260.2.bm.b.289.2 4 60.59 even 2
4900.2.a.be.1.1 4 140.107 even 12
4900.2.a.be.1.3 4 140.23 even 12
4900.2.a.bf.1.1 4 140.103 odd 12
4900.2.a.bf.1.3 4 140.47 odd 12