Properties

Label 700.2.i.f.501.3
Level $700$
Weight $2$
Character 700.501
Analytic conductor $5.590$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(401,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 501.3
Root \(-1.52274 - 1.63746i\) of defining polynomial
Character \(\chi\) \(=\) 700.501
Dual form 700.2.i.f.401.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +(-2.38876 - 1.13746i) q^{7} +(2.63746 - 4.56821i) q^{11} -2.62685 q^{13} +(0.209313 - 0.362541i) q^{17} +(-1.63746 - 2.83616i) q^{19} +(-3.77492 + 2.59808i) q^{21} +(-3.91150 - 6.77492i) q^{23} +5.19615 q^{27} +4.27492 q^{29} +(-1.63746 + 2.83616i) q^{31} +(-4.56821 - 7.91238i) q^{33} +(-4.98684 - 8.63746i) q^{37} +(-2.27492 + 3.94027i) q^{39} -3.72508 q^{41} +2.15068 q^{43} +(3.25479 + 5.63746i) q^{47} +(4.41238 + 5.43424i) q^{49} +(-0.362541 - 0.627940i) q^{51} +(-2.83616 + 4.91238i) q^{53} -5.67232 q^{57} +(1.63746 - 2.83616i) q^{59} +(6.77492 + 11.7345i) q^{61} +(1.76082 - 3.04983i) q^{67} -13.5498 q^{69} -4.54983 q^{71} +(3.25479 - 5.63746i) q^{73} +(-11.4964 + 7.91238i) q^{77} +(-3.63746 - 6.30026i) q^{79} +(4.50000 - 7.79423i) q^{81} +7.40437 q^{83} +(3.70219 - 6.41238i) q^{87} +(3.50000 + 6.06218i) q^{89} +(6.27492 + 2.98793i) q^{91} +(2.83616 + 4.91238i) q^{93} +6.92820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{11} + 2 q^{19} + 4 q^{29} + 2 q^{31} + 12 q^{39} - 60 q^{41} - 10 q^{49} - 18 q^{51} - 2 q^{59} + 24 q^{61} - 48 q^{69} + 24 q^{71} - 14 q^{79} + 36 q^{81} + 28 q^{89} + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.38876 1.13746i −0.902867 0.429919i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.63746 4.56821i 0.795224 1.37737i −0.127473 0.991842i \(-0.540687\pi\)
0.922697 0.385526i \(-0.125980\pi\)
\(12\) 0 0
\(13\) −2.62685 −0.728557 −0.364278 0.931290i \(-0.618684\pi\)
−0.364278 + 0.931290i \(0.618684\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.209313 0.362541i 0.0507659 0.0879292i −0.839526 0.543320i \(-0.817167\pi\)
0.890292 + 0.455391i \(0.150500\pi\)
\(18\) 0 0
\(19\) −1.63746 2.83616i −0.375659 0.650660i 0.614767 0.788709i \(-0.289250\pi\)
−0.990425 + 0.138049i \(0.955917\pi\)
\(20\) 0 0
\(21\) −3.77492 + 2.59808i −0.823754 + 0.566947i
\(22\) 0 0
\(23\) −3.91150 6.77492i −0.815604 1.41267i −0.908893 0.417029i \(-0.863071\pi\)
0.0932891 0.995639i \(-0.470262\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) 4.27492 0.793832 0.396916 0.917855i \(-0.370080\pi\)
0.396916 + 0.917855i \(0.370080\pi\)
\(30\) 0 0
\(31\) −1.63746 + 2.83616i −0.294096 + 0.509390i −0.974774 0.223193i \(-0.928352\pi\)
0.680678 + 0.732583i \(0.261685\pi\)
\(32\) 0 0
\(33\) −4.56821 7.91238i −0.795224 1.37737i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.98684 8.63746i −0.819831 1.41999i −0.905806 0.423692i \(-0.860734\pi\)
0.0859750 0.996297i \(-0.472599\pi\)
\(38\) 0 0
\(39\) −2.27492 + 3.94027i −0.364278 + 0.630949i
\(40\) 0 0
\(41\) −3.72508 −0.581760 −0.290880 0.956760i \(-0.593948\pi\)
−0.290880 + 0.956760i \(0.593948\pi\)
\(42\) 0 0
\(43\) 2.15068 0.327975 0.163988 0.986462i \(-0.447564\pi\)
0.163988 + 0.986462i \(0.447564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.25479 + 5.63746i 0.474760 + 0.822308i 0.999582 0.0289038i \(-0.00920165\pi\)
−0.524823 + 0.851212i \(0.675868\pi\)
\(48\) 0 0
\(49\) 4.41238 + 5.43424i 0.630339 + 0.776320i
\(50\) 0 0
\(51\) −0.362541 0.627940i −0.0507659 0.0879292i
\(52\) 0 0
\(53\) −2.83616 + 4.91238i −0.389577 + 0.674767i −0.992393 0.123114i \(-0.960712\pi\)
0.602816 + 0.797880i \(0.294045\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.67232 −0.751318
\(58\) 0 0
\(59\) 1.63746 2.83616i 0.213179 0.369237i −0.739529 0.673125i \(-0.764952\pi\)
0.952708 + 0.303888i \(0.0982849\pi\)
\(60\) 0 0
\(61\) 6.77492 + 11.7345i 0.867439 + 1.50245i 0.864605 + 0.502453i \(0.167569\pi\)
0.00283468 + 0.999996i \(0.499098\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.76082 3.04983i 0.215119 0.372597i −0.738191 0.674592i \(-0.764319\pi\)
0.953309 + 0.301996i \(0.0976528\pi\)
\(68\) 0 0
\(69\) −13.5498 −1.63121
\(70\) 0 0
\(71\) −4.54983 −0.539966 −0.269983 0.962865i \(-0.587018\pi\)
−0.269983 + 0.962865i \(0.587018\pi\)
\(72\) 0 0
\(73\) 3.25479 5.63746i 0.380944 0.659815i −0.610253 0.792206i \(-0.708932\pi\)
0.991197 + 0.132392i \(0.0422657\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.4964 + 7.91238i −1.31014 + 0.901699i
\(78\) 0 0
\(79\) −3.63746 6.30026i −0.409246 0.708835i 0.585559 0.810630i \(-0.300875\pi\)
−0.994805 + 0.101795i \(0.967542\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 7.40437 0.812736 0.406368 0.913710i \(-0.366795\pi\)
0.406368 + 0.913710i \(0.366795\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.70219 6.41238i 0.396916 0.687479i
\(88\) 0 0
\(89\) 3.50000 + 6.06218i 0.370999 + 0.642590i 0.989720 0.143022i \(-0.0456819\pi\)
−0.618720 + 0.785611i \(0.712349\pi\)
\(90\) 0 0
\(91\) 6.27492 + 2.98793i 0.657790 + 0.313220i
\(92\) 0 0
\(93\) 2.83616 + 4.91238i 0.294096 + 0.509390i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.92820 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.77492 11.7345i 0.674129 1.16763i −0.302593 0.953120i \(-0.597852\pi\)
0.976723 0.214507i \(-0.0688144\pi\)
\(102\) 0 0
\(103\) 5.64355 + 9.77492i 0.556076 + 0.963151i 0.997819 + 0.0660098i \(0.0210268\pi\)
−0.441743 + 0.897141i \(0.645640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.76082 + 3.04983i 0.170225 + 0.294839i 0.938499 0.345283i \(-0.112217\pi\)
−0.768273 + 0.640122i \(0.778884\pi\)
\(108\) 0 0
\(109\) 5.77492 10.0025i 0.553137 0.958061i −0.444909 0.895576i \(-0.646764\pi\)
0.998046 0.0624852i \(-0.0199026\pi\)
\(110\) 0 0
\(111\) −17.2749 −1.63966
\(112\) 0 0
\(113\) −4.30136 −0.404637 −0.202319 0.979320i \(-0.564848\pi\)
−0.202319 + 0.979320i \(0.564848\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.912376 + 0.627940i −0.0836374 + 0.0575632i
\(120\) 0 0
\(121\) −8.41238 14.5707i −0.764761 1.32461i
\(122\) 0 0
\(123\) −3.22602 + 5.58762i −0.290880 + 0.503819i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.6460 1.38836 0.694179 0.719802i \(-0.255768\pi\)
0.694179 + 0.719802i \(0.255768\pi\)
\(128\) 0 0
\(129\) 1.86254 3.22602i 0.163988 0.284035i
\(130\) 0 0
\(131\) 5.36254 + 9.28819i 0.468527 + 0.811513i 0.999353 0.0359678i \(-0.0114514\pi\)
−0.530826 + 0.847481i \(0.678118\pi\)
\(132\) 0 0
\(133\) 0.685484 + 8.63746i 0.0594390 + 0.748963i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.6592 + 18.4622i −0.910674 + 1.57733i −0.0975588 + 0.995230i \(0.531103\pi\)
−0.813115 + 0.582103i \(0.802230\pi\)
\(138\) 0 0
\(139\) 13.0997 1.11110 0.555550 0.831483i \(-0.312508\pi\)
0.555550 + 0.831483i \(0.312508\pi\)
\(140\) 0 0
\(141\) 11.2749 0.949519
\(142\) 0 0
\(143\) −6.92820 + 12.0000i −0.579365 + 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.9726 1.91238i 0.987482 0.157730i
\(148\) 0 0
\(149\) 3.77492 + 6.53835i 0.309253 + 0.535642i 0.978199 0.207669i \(-0.0665876\pi\)
−0.668946 + 0.743311i \(0.733254\pi\)
\(150\) 0 0
\(151\) 6.36254 11.0202i 0.517776 0.896815i −0.482011 0.876165i \(-0.660093\pi\)
0.999787 0.0206494i \(-0.00657337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.10411 + 1.91238i −0.0881176 + 0.152624i −0.906715 0.421743i \(-0.861418\pi\)
0.818598 + 0.574367i \(0.194752\pi\)
\(158\) 0 0
\(159\) 4.91238 + 8.50848i 0.389577 + 0.674767i
\(160\) 0 0
\(161\) 1.63746 + 20.6328i 0.129050 + 1.62610i
\(162\) 0 0
\(163\) 2.83616 + 4.91238i 0.222145 + 0.384767i 0.955459 0.295123i \(-0.0953607\pi\)
−0.733314 + 0.679890i \(0.762027\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.476171 0.0368472 0.0184236 0.999830i \(-0.494135\pi\)
0.0184236 + 0.999830i \(0.494135\pi\)
\(168\) 0 0
\(169\) −6.09967 −0.469205
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.2405 + 17.7371i 0.778573 + 1.34853i 0.932764 + 0.360488i \(0.117390\pi\)
−0.154190 + 0.988041i \(0.549277\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.83616 4.91238i −0.213179 0.369237i
\(178\) 0 0
\(179\) 3.63746 6.30026i 0.271876 0.470904i −0.697466 0.716618i \(-0.745689\pi\)
0.969342 + 0.245714i \(0.0790225\pi\)
\(180\) 0 0
\(181\) −24.2749 −1.80434 −0.902170 0.431380i \(-0.858027\pi\)
−0.902170 + 0.431380i \(0.858027\pi\)
\(182\) 0 0
\(183\) 23.4690 1.73488
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.10411 1.91238i −0.0807406 0.139847i
\(188\) 0 0
\(189\) −12.4124 5.91041i −0.902867 0.429919i
\(190\) 0 0
\(191\) −0.0876242 0.151770i −0.00634026 0.0109817i 0.862838 0.505481i \(-0.168685\pi\)
−0.869178 + 0.494499i \(0.835352\pi\)
\(192\) 0 0
\(193\) 10.6592 18.4622i 0.767263 1.32894i −0.171778 0.985136i \(-0.554951\pi\)
0.939042 0.343803i \(-0.111715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.60271 −0.612918 −0.306459 0.951884i \(-0.599144\pi\)
−0.306459 + 0.951884i \(0.599144\pi\)
\(198\) 0 0
\(199\) −8.63746 + 14.9605i −0.612293 + 1.06052i 0.378560 + 0.925577i \(0.376419\pi\)
−0.990853 + 0.134946i \(0.956914\pi\)
\(200\) 0 0
\(201\) −3.04983 5.28247i −0.215119 0.372597i
\(202\) 0 0
\(203\) −10.2118 4.86254i −0.716725 0.341284i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −17.2749 −1.19493
\(210\) 0 0
\(211\) 25.6495 1.76578 0.882892 0.469576i \(-0.155593\pi\)
0.882892 + 0.469576i \(0.155593\pi\)
\(212\) 0 0
\(213\) −3.94027 + 6.82475i −0.269983 + 0.467624i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.13752 4.91238i 0.484526 0.333474i
\(218\) 0 0
\(219\) −5.63746 9.76436i −0.380944 0.659815i
\(220\) 0 0
\(221\) −0.549834 + 0.952341i −0.0369859 + 0.0640614i
\(222\) 0 0
\(223\) 8.71780 0.583787 0.291893 0.956451i \(-0.405715\pi\)
0.291893 + 0.956451i \(0.405715\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.76436 + 16.9124i −0.648084 + 1.12251i 0.335496 + 0.942041i \(0.391096\pi\)
−0.983580 + 0.180472i \(0.942237\pi\)
\(228\) 0 0
\(229\) −1.63746 2.83616i −0.108206 0.187419i 0.806837 0.590774i \(-0.201177\pi\)
−0.915044 + 0.403355i \(0.867844\pi\)
\(230\) 0 0
\(231\) 1.91238 + 24.0969i 0.125825 + 1.58546i
\(232\) 0 0
\(233\) 7.13752 + 12.3625i 0.467594 + 0.809897i 0.999314 0.0370231i \(-0.0117875\pi\)
−0.531720 + 0.846920i \(0.678454\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −12.6005 −0.818492
\(238\) 0 0
\(239\) 0.549834 0.0355658 0.0177829 0.999842i \(-0.494339\pi\)
0.0177829 + 0.999842i \(0.494339\pi\)
\(240\) 0 0
\(241\) −4.91238 + 8.50848i −0.316434 + 0.548080i −0.979741 0.200267i \(-0.935819\pi\)
0.663307 + 0.748347i \(0.269152\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.30136 + 7.45017i 0.273689 + 0.474043i
\(248\) 0 0
\(249\) 6.41238 11.1066i 0.406368 0.703850i
\(250\) 0 0
\(251\) −20.5498 −1.29709 −0.648547 0.761175i \(-0.724623\pi\)
−0.648547 + 0.761175i \(0.724623\pi\)
\(252\) 0 0
\(253\) −41.2657 −2.59435
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.82409 10.0876i −0.363297 0.629249i 0.625204 0.780461i \(-0.285016\pi\)
−0.988501 + 0.151212i \(0.951682\pi\)
\(258\) 0 0
\(259\) 2.08762 + 26.3052i 0.129719 + 1.63452i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.389855 0.675248i 0.0240395 0.0416376i −0.853755 0.520674i \(-0.825681\pi\)
0.877795 + 0.479037i \(0.159014\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12.1244 0.741999
\(268\) 0 0
\(269\) 7.22508 12.5142i 0.440521 0.763005i −0.557207 0.830374i \(-0.688127\pi\)
0.997728 + 0.0673687i \(0.0214604\pi\)
\(270\) 0 0
\(271\) −4.91238 8.50848i −0.298406 0.516854i 0.677366 0.735646i \(-0.263121\pi\)
−0.975771 + 0.218793i \(0.929788\pi\)
\(272\) 0 0
\(273\) 9.91613 6.82475i 0.600152 0.413053i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.13752 12.3625i 0.428852 0.742793i −0.567920 0.823084i \(-0.692252\pi\)
0.996771 + 0.0802909i \(0.0255849\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 5.46301 9.46221i 0.324742 0.562470i −0.656718 0.754136i \(-0.728056\pi\)
0.981460 + 0.191666i \(0.0613891\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.89834 + 4.23713i 0.525252 + 0.250110i
\(288\) 0 0
\(289\) 8.41238 + 14.5707i 0.494846 + 0.857098i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 0 0
\(293\) −6.92820 −0.404750 −0.202375 0.979308i \(-0.564866\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 13.7046 23.7371i 0.795224 1.37737i
\(298\) 0 0
\(299\) 10.2749 + 17.7967i 0.594214 + 1.02921i
\(300\) 0 0
\(301\) −5.13746 2.44631i −0.296118 0.141003i
\(302\) 0 0
\(303\) −11.7345 20.3248i −0.674129 1.16763i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −26.5145 −1.51326 −0.756631 0.653843i \(-0.773156\pi\)
−0.756631 + 0.653843i \(0.773156\pi\)
\(308\) 0 0
\(309\) 19.5498 1.11215
\(310\) 0 0
\(311\) 4.91238 8.50848i 0.278555 0.482472i −0.692471 0.721446i \(-0.743478\pi\)
0.971026 + 0.238974i \(0.0768111\pi\)
\(312\) 0 0
\(313\) −16.7501 29.0120i −0.946772 1.63986i −0.752163 0.658977i \(-0.770990\pi\)
−0.194609 0.980881i \(-0.562344\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.8098 + 22.1873i 0.719472 + 1.24616i 0.961209 + 0.275821i \(0.0889496\pi\)
−0.241737 + 0.970342i \(0.577717\pi\)
\(318\) 0 0
\(319\) 11.2749 19.5287i 0.631274 1.09340i
\(320\) 0 0
\(321\) 6.09967 0.340450
\(322\) 0 0
\(323\) −1.37097 −0.0762827
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10.0025 17.3248i −0.553137 0.958061i
\(328\) 0 0
\(329\) −1.36254 17.1687i −0.0751193 0.946543i
\(330\) 0 0
\(331\) −8.91238 15.4367i −0.489868 0.848477i 0.510064 0.860137i \(-0.329622\pi\)
−0.999932 + 0.0116596i \(0.996289\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.30136 0.234310 0.117155 0.993114i \(-0.462623\pi\)
0.117155 + 0.993114i \(0.462623\pi\)
\(338\) 0 0
\(339\) −3.72508 + 6.45203i −0.202319 + 0.350426i
\(340\) 0 0
\(341\) 8.63746 + 14.9605i 0.467745 + 0.810157i
\(342\) 0 0
\(343\) −4.35890 18.0000i −0.235358 0.971909i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.06218 10.5000i 0.325435 0.563670i −0.656165 0.754617i \(-0.727823\pi\)
0.981600 + 0.190947i \(0.0611560\pi\)
\(348\) 0 0
\(349\) −3.72508 −0.199399 −0.0996996 0.995018i \(-0.531788\pi\)
−0.0996996 + 0.995018i \(0.531788\pi\)
\(350\) 0 0
\(351\) −13.6495 −0.728557
\(352\) 0 0
\(353\) 4.09204 7.08762i 0.217797 0.377236i −0.736337 0.676615i \(-0.763446\pi\)
0.954134 + 0.299379i \(0.0967795\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.151770 + 1.91238i 0.00803249 + 0.101214i
\(358\) 0 0
\(359\) −18.1873 31.5013i −0.959889 1.66258i −0.722762 0.691097i \(-0.757128\pi\)
−0.237127 0.971479i \(-0.576206\pi\)
\(360\) 0 0
\(361\) 4.13746 7.16629i 0.217761 0.377173i
\(362\) 0 0
\(363\) −29.1413 −1.52952
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.01670 + 5.22508i −0.157471 + 0.272747i −0.933956 0.357388i \(-0.883667\pi\)
0.776485 + 0.630135i \(0.217001\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.3625 8.50848i 0.641831 0.441739i
\(372\) 0 0
\(373\) 4.98684 + 8.63746i 0.258209 + 0.447231i 0.965762 0.259429i \(-0.0835344\pi\)
−0.707553 + 0.706660i \(0.750201\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.2296 −0.578352
\(378\) 0 0
\(379\) −21.6495 −1.11206 −0.556030 0.831162i \(-0.687676\pi\)
−0.556030 + 0.831162i \(0.687676\pi\)
\(380\) 0 0
\(381\) 13.5498 23.4690i 0.694179 1.20235i
\(382\) 0 0
\(383\) −3.07425 5.32475i −0.157087 0.272082i 0.776730 0.629833i \(-0.216877\pi\)
−0.933817 + 0.357751i \(0.883544\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.1873 + 28.0372i −0.820728 + 1.42154i 0.0844123 + 0.996431i \(0.473099\pi\)
−0.905141 + 0.425112i \(0.860235\pi\)
\(390\) 0 0
\(391\) −3.27492 −0.165620
\(392\) 0 0
\(393\) 18.5764 0.937055
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.40547 + 9.36254i 0.271293 + 0.469892i 0.969193 0.246302i \(-0.0792156\pi\)
−0.697901 + 0.716195i \(0.745882\pi\)
\(398\) 0 0
\(399\) 13.5498 + 6.45203i 0.678340 + 0.323006i
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) 4.30136 7.45017i 0.214266 0.371119i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −52.6103 −2.60780
\(408\) 0 0
\(409\) 10.0498 17.4068i 0.496932 0.860712i −0.503061 0.864251i \(-0.667793\pi\)
0.999994 + 0.00353862i \(0.00112638\pi\)
\(410\) 0 0
\(411\) 18.4622 + 31.9775i 0.910674 + 1.57733i
\(412\) 0 0
\(413\) −7.13752 + 4.91238i −0.351214 + 0.241722i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 11.3446 19.6495i 0.555550 0.962240i
\(418\) 0 0
\(419\) −13.0997 −0.639961 −0.319980 0.947424i \(-0.603676\pi\)
−0.319980 + 0.947424i \(0.603676\pi\)
\(420\) 0 0
\(421\) −4.27492 −0.208347 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.83616 35.7371i −0.137251 1.72944i
\(428\) 0 0
\(429\) 12.0000 + 20.7846i 0.579365 + 1.00349i
\(430\) 0 0
\(431\) 9.18729 15.9129i 0.442536 0.766495i −0.555341 0.831623i \(-0.687412\pi\)
0.997877 + 0.0651276i \(0.0207454\pi\)
\(432\) 0 0
\(433\) 18.1578 0.872606 0.436303 0.899800i \(-0.356288\pi\)
0.436303 + 0.899800i \(0.356288\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.8098 + 22.1873i −0.612778 + 1.06136i
\(438\) 0 0
\(439\) −11.9124 20.6328i −0.568547 0.984752i −0.996710 0.0810504i \(-0.974173\pi\)
0.428163 0.903701i \(-0.359161\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.06218 10.5000i −0.288023 0.498870i 0.685315 0.728247i \(-0.259665\pi\)
−0.973338 + 0.229377i \(0.926331\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.0767 0.618507
\(448\) 0 0
\(449\) −3.17525 −0.149849 −0.0749246 0.997189i \(-0.523872\pi\)
−0.0749246 + 0.997189i \(0.523872\pi\)
\(450\) 0 0
\(451\) −9.82475 + 17.0170i −0.462629 + 0.801298i
\(452\) 0 0
\(453\) −11.0202 19.0876i −0.517776 0.896815i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.685484 1.18729i −0.0320656 0.0555392i 0.849547 0.527512i \(-0.176875\pi\)
−0.881613 + 0.471973i \(0.843542\pi\)
\(458\) 0 0
\(459\) 1.08762 1.88382i 0.0507659 0.0879292i
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −2.15068 −0.0999505 −0.0499752 0.998750i \(-0.515914\pi\)
−0.0499752 + 0.998750i \(0.515914\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.85177 + 13.5997i 0.363337 + 0.629318i 0.988508 0.151170i \(-0.0483041\pi\)
−0.625171 + 0.780488i \(0.714971\pi\)
\(468\) 0 0
\(469\) −7.67525 + 5.28247i −0.354410 + 0.243922i
\(470\) 0 0
\(471\) 1.91238 + 3.31233i 0.0881176 + 0.152624i
\(472\) 0 0
\(473\) 5.67232 9.82475i 0.260814 0.451743i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.91238 + 8.50848i −0.224452 + 0.388763i −0.956155 0.292861i \(-0.905393\pi\)
0.731703 + 0.681624i \(0.238726\pi\)
\(480\) 0 0
\(481\) 13.0997 + 22.6893i 0.597293 + 1.03454i
\(482\) 0 0
\(483\) 32.3673 + 15.4124i 1.47277 + 0.701287i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.46519 2.53779i 0.0663943 0.114998i −0.830917 0.556396i \(-0.812184\pi\)
0.897312 + 0.441398i \(0.145517\pi\)
\(488\) 0 0
\(489\) 9.82475 0.444291
\(490\) 0 0
\(491\) −28.5498 −1.28844 −0.644218 0.764842i \(-0.722817\pi\)
−0.644218 + 0.764842i \(0.722817\pi\)
\(492\) 0 0
\(493\) 0.894797 1.54983i 0.0402996 0.0698010i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.8685 + 5.17525i 0.487518 + 0.232142i
\(498\) 0 0
\(499\) −0.812707 1.40765i −0.0363818 0.0630151i 0.847261 0.531177i \(-0.178250\pi\)
−0.883643 + 0.468161i \(0.844917\pi\)
\(500\) 0 0
\(501\) 0.412376 0.714256i 0.0184236 0.0319106i
\(502\) 0 0
\(503\) −31.7682 −1.41647 −0.708236 0.705975i \(-0.750509\pi\)
−0.708236 + 0.705975i \(0.750509\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5.28247 + 9.14950i −0.234603 + 0.406344i
\(508\) 0 0
\(509\) 7.22508 + 12.5142i 0.320246 + 0.554683i 0.980539 0.196326i \(-0.0629010\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(510\) 0 0
\(511\) −14.1873 + 9.76436i −0.627609 + 0.431950i
\(512\) 0 0
\(513\) −8.50848 14.7371i −0.375659 0.650660i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 34.3375 1.51016
\(518\) 0 0
\(519\) 35.4743 1.55715
\(520\) 0 0
\(521\) −4.91238 + 8.50848i −0.215215 + 0.372763i −0.953339 0.301902i \(-0.902379\pi\)
0.738124 + 0.674665i \(0.235712\pi\)
\(522\) 0 0
\(523\) 3.67341 + 6.36254i 0.160627 + 0.278215i 0.935094 0.354400i \(-0.115315\pi\)
−0.774467 + 0.632615i \(0.781982\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.685484 + 1.18729i 0.0298602 + 0.0517193i
\(528\) 0 0
\(529\) −19.0997 + 33.0816i −0.830420 + 1.43833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.78523 0.423845
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.30026 10.9124i −0.271876 0.470904i
\(538\) 0 0
\(539\) 36.4622 5.82409i 1.57054 0.250861i
\(540\) 0 0
\(541\) 8.77492 + 15.1986i 0.377263 + 0.653439i 0.990663 0.136334i \(-0.0435319\pi\)
−0.613400 + 0.789773i \(0.710199\pi\)
\(542\) 0 0
\(543\) −21.0227 + 36.4124i −0.902170 + 1.56260i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.5386 0.878168 0.439084 0.898446i \(-0.355303\pi\)
0.439084 + 0.898446i \(0.355303\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.00000 12.1244i −0.298210 0.516515i
\(552\) 0 0
\(553\) 1.52274 + 19.1873i 0.0647534 + 0.815927i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.98684 8.63746i 0.211299 0.365981i −0.740822 0.671701i \(-0.765564\pi\)
0.952121 + 0.305720i \(0.0988972\pi\)
\(558\) 0 0
\(559\) −5.64950 −0.238949
\(560\) 0 0
\(561\) −3.82475 −0.161481
\(562\) 0 0
\(563\) −11.3159 + 19.5997i −0.476907 + 0.826028i −0.999650 0.0264630i \(-0.991576\pi\)
0.522743 + 0.852491i \(0.324909\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −19.6150 + 13.5000i −0.823754 + 0.566947i
\(568\) 0 0
\(569\) −4.18729 7.25260i −0.175540 0.304045i 0.764808 0.644259i \(-0.222834\pi\)
−0.940348 + 0.340214i \(0.889501\pi\)
\(570\) 0 0
\(571\) −3.63746 + 6.30026i −0.152223 + 0.263658i −0.932044 0.362344i \(-0.881976\pi\)
0.779821 + 0.626002i \(0.215310\pi\)
\(572\) 0 0
\(573\) −0.303539 −0.0126805
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.94136 + 3.36254i −0.0808200 + 0.139984i −0.903602 0.428372i \(-0.859087\pi\)
0.822782 + 0.568357i \(0.192421\pi\)
\(578\) 0 0
\(579\) −18.4622 31.9775i −0.767263 1.32894i
\(580\) 0 0
\(581\) −17.6873 8.42217i −0.733793 0.349410i
\(582\) 0 0
\(583\) 14.9605 + 25.9124i 0.619601 + 1.07318i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.8997 −0.862623 −0.431311 0.902203i \(-0.641949\pi\)
−0.431311 + 0.902203i \(0.641949\pi\)
\(588\) 0 0
\(589\) 10.7251 0.441919
\(590\) 0 0
\(591\) −7.45017 + 12.9041i −0.306459 + 0.530802i
\(592\) 0 0
\(593\) 16.6926 + 28.9124i 0.685482 + 1.18729i 0.973285 + 0.229600i \(0.0737416\pi\)
−0.287804 + 0.957689i \(0.592925\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.9605 + 25.9124i 0.612293 + 1.06052i
\(598\) 0 0
\(599\) −2.63746 + 4.56821i −0.107764 + 0.186652i −0.914864 0.403762i \(-0.867702\pi\)
0.807100 + 0.590414i \(0.201036\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.70109 + 9.87459i 0.231400 + 0.400797i 0.958220 0.286031i \(-0.0923360\pi\)
−0.726820 + 0.686828i \(0.759003\pi\)
\(608\) 0 0
\(609\) −16.1375 + 11.1066i −0.653923 + 0.450061i
\(610\) 0 0
\(611\) −8.54983 14.8087i −0.345889 0.599098i
\(612\) 0 0
\(613\) −14.1808 + 24.5619i −0.572757 + 0.992045i 0.423524 + 0.905885i \(0.360793\pi\)
−0.996281 + 0.0861600i \(0.972540\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.2920 1.25977 0.629884 0.776689i \(-0.283102\pi\)
0.629884 + 0.776689i \(0.283102\pi\)
\(618\) 0 0
\(619\) 4.46221 7.72877i 0.179351 0.310646i −0.762307 0.647215i \(-0.775933\pi\)
0.941659 + 0.336570i \(0.109267\pi\)
\(620\) 0 0
\(621\) −20.3248 35.2035i −0.815604 1.41267i
\(622\) 0 0
\(623\) −1.46519 18.4622i −0.0587017 0.739673i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −14.9605 + 25.9124i −0.597466 + 1.03484i
\(628\) 0 0
\(629\) −4.17525 −0.166478
\(630\) 0 0
\(631\) 33.0997 1.31768 0.658839 0.752284i \(-0.271048\pi\)
0.658839 + 0.752284i \(0.271048\pi\)
\(632\) 0 0
\(633\) 22.2131 38.4743i 0.882892 1.52921i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −11.5906 14.2749i −0.459238 0.565593i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.04983 1.81837i 0.0414660 0.0718212i −0.844548 0.535481i \(-0.820131\pi\)
0.886014 + 0.463659i \(0.153464\pi\)
\(642\) 0 0
\(643\) 31.4071 1.23857 0.619287 0.785164i \(-0.287422\pi\)
0.619287 + 0.785164i \(0.287422\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.4666 23.3248i 0.529425 0.916991i −0.469986 0.882674i \(-0.655741\pi\)
0.999411 0.0343169i \(-0.0109255\pi\)
\(648\) 0 0
\(649\) −8.63746 14.9605i −0.339050 0.587252i
\(650\) 0 0
\(651\) −1.18729 14.9605i −0.0465337 0.586349i
\(652\) 0 0
\(653\) 14.1808 + 24.5619i 0.554938 + 0.961181i 0.997908 + 0.0646444i \(0.0205913\pi\)
−0.442970 + 0.896536i \(0.646075\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.5498 −1.57960 −0.789799 0.613366i \(-0.789815\pi\)
−0.789799 + 0.613366i \(0.789815\pi\)
\(660\) 0 0
\(661\) 0.225083 0.389855i 0.00875471 0.0151636i −0.861615 0.507563i \(-0.830547\pi\)
0.870370 + 0.492399i \(0.163880\pi\)
\(662\) 0 0
\(663\) 0.952341 + 1.64950i 0.0369859 + 0.0640614i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.7213 28.9622i −0.647453 1.12142i
\(668\) 0 0
\(669\) 7.54983 13.0767i 0.291893 0.505574i
\(670\) 0 0
\(671\) 71.4743 2.75923
\(672\) 0 0
\(673\) 31.2920 1.20622 0.603109 0.797659i \(-0.293928\pi\)
0.603109 + 0.797659i \(0.293928\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.2021 + 40.1873i 0.891731 + 1.54452i 0.837799 + 0.545979i \(0.183842\pi\)
0.0539317 + 0.998545i \(0.482825\pi\)
\(678\) 0 0
\(679\) −16.5498 7.88054i −0.635124 0.302428i
\(680\) 0 0
\(681\) 16.9124 + 29.2931i 0.648084 + 1.12251i
\(682\) 0 0
\(683\) 9.58382 16.5997i 0.366715 0.635169i −0.622335 0.782751i \(-0.713816\pi\)
0.989050 + 0.147582i \(0.0471491\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −5.67232 −0.216413
\(688\) 0 0
\(689\) 7.45017 12.9041i 0.283829 0.491606i
\(690\) 0 0
\(691\) −15.1873 26.3052i −0.577752 1.00070i −0.995737 0.0922416i \(-0.970597\pi\)
0.417985 0.908454i \(-0.362737\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.779710 + 1.35050i −0.0295336 + 0.0511537i
\(698\) 0 0
\(699\) 24.7251 0.935189
\(700\) 0 0
\(701\) 8.82475 0.333306 0.166653 0.986016i \(-0.446704\pi\)
0.166653 + 0.986016i \(0.446704\pi\)
\(702\) 0 0
\(703\) −16.3315 + 28.2870i −0.615954 + 1.06686i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.5312 + 20.3248i −1.11063 + 0.764391i
\(708\) 0 0
\(709\) 5.22508 + 9.05011i 0.196232 + 0.339884i 0.947304 0.320337i \(-0.103796\pi\)
−0.751072 + 0.660221i \(0.770463\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 25.6197 0.959465
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.476171 0.824752i 0.0177829 0.0308009i
\(718\) 0 0
\(719\) 15.1873 + 26.3052i 0.566390 + 0.981017i 0.996919 + 0.0784400i \(0.0249939\pi\)
−0.430528 + 0.902577i \(0.641673\pi\)
\(720\) 0 0
\(721\) −2.36254 29.7693i −0.0879856 1.10867i
\(722\) 0 0
\(723\) 8.50848 + 14.7371i 0.316434 + 0.548080i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.10302 −0.115085 −0.0575423 0.998343i \(-0.518326\pi\)
−0.0575423 + 0.998343i \(0.518326\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0.450166 0.779710i 0.0166500 0.0288386i
\(732\) 0 0
\(733\) 18.8432 + 32.6375i 0.695991 + 1.20549i 0.969845 + 0.243721i \(0.0783681\pi\)
−0.273854 + 0.961771i \(0.588299\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.28819 16.0876i −0.342135 0.592595i
\(738\) 0 0
\(739\) 10.4622 18.1211i 0.384859 0.666595i −0.606891 0.794785i \(-0.707584\pi\)
0.991750 + 0.128190i \(0.0409169\pi\)
\(740\) 0 0
\(741\) 14.9003 0.547377
\(742\) 0 0
\(743\) 6.45203 0.236702 0.118351 0.992972i \(-0.462239\pi\)
0.118351 + 0.992972i \(0.462239\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.737127 9.28819i −0.0269341 0.339383i
\(750\) 0 0
\(751\) 7.36254 + 12.7523i 0.268663 + 0.465338i 0.968517 0.248948i \(-0.0800849\pi\)
−0.699854 + 0.714286i \(0.746752\pi\)
\(752\) 0 0
\(753\) −17.7967 + 30.8248i −0.648547 + 1.12332i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −35.5934 −1.29366 −0.646831 0.762633i \(-0.723906\pi\)
−0.646831 + 0.762633i \(0.723906\pi\)
\(758\) 0 0
\(759\) −35.7371 + 61.8985i −1.29718 + 2.24677i
\(760\) 0 0
\(761\) −11.4622 19.8531i −0.415505 0.719675i 0.579977 0.814633i \(-0.303062\pi\)
−0.995481 + 0.0949578i \(0.969728\pi\)
\(762\) 0 0
\(763\) −25.1723 + 17.3248i −0.911298 + 0.627198i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.30136 + 7.45017i −0.155313 + 0.269010i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −20.1752 −0.726594
\(772\) 0 0
\(773\) −20.1567 + 34.9124i −0.724985 + 1.25571i 0.233995 + 0.972238i \(0.424820\pi\)
−0.958980 + 0.283473i \(0.908513\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 41.2657 + 19.6495i 1.48040 + 0.704922i
\(778\) 0 0
\(779\) 6.09967 + 10.5649i 0.218543 + 0.378528i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 0 0
\(783\) 22.2131 0.793832
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.866025 + 1.50000i −0.0308705 + 0.0534692i −0.881048 0.473027i \(-0.843161\pi\)
0.850177 + 0.526496i \(0.176495\pi\)
\(788\) 0 0
\(789\) −0.675248 1.16956i −0.0240395 0.0416376i
\(790\) 0 0
\(791\) 10.2749 + 4.89261i 0.365334 + 0.173961i
\(792\) 0 0
\(793\) −17.7967 30.8248i −0.631979 1.09462i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.8229 1.65855 0.829276 0.558839i \(-0.188753\pi\)
0.829276 + 0.558839i \(0.188753\pi\)
\(798\) 0 0
\(799\) 2.72508 0.0964065
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.1687 29.7371i −0.605872 1.04940i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.5142 21.6752i −0.440521 0.763005i
\(808\) 0 0
\(809\) 8.59967 14.8951i 0.302348 0.523683i −0.674319 0.738440i \(-0.735563\pi\)
0.976667 + 0.214757i \(0.0688961\pi\)
\(810\) 0 0
\(811\) 7.45017 0.261611 0.130805 0.991408i \(-0.458244\pi\)
0.130805 + 0.991408i \(0.458244\pi\)
\(812\) 0 0
\(813\) −17.0170 −0.596811
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.52165 6.09967i −0.123207 0.213400i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.1873 + 17.6449i 0.355539 + 0.615812i 0.987210 0.159425i \(-0.0509640\pi\)
−0.631671 + 0.775237i \(0.717631\pi\)
\(822\) 0 0
\(823\) 23.0791 39.9743i 0.804488 1.39341i −0.112147 0.993692i \(-0.535773\pi\)
0.916636 0.399723i \(-0.130894\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.0547 0.523505 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(828\) 0 0
\(829\) 25.4622 44.1018i 0.884339 1.53172i 0.0378699 0.999283i \(-0.487943\pi\)
0.846469 0.532438i \(-0.178724\pi\)
\(830\) 0 0
\(831\) −12.3625 21.4125i −0.428852 0.742793i
\(832\) 0 0
\(833\) 2.89371 0.462210i 0.100261 0.0160146i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8.50848 + 14.7371i −0.294096 + 0.509390i
\(838\) 0 0
\(839\) 41.0997 1.41892 0.709459 0.704747i \(-0.248939\pi\)
0.709459 + 0.704747i \(0.248939\pi\)
\(840\) 0 0
\(841\) −10.7251 −0.369830
\(842\) 0 0
\(843\) 5.19615 9.00000i 0.178965 0.309976i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.52165 + 44.3746i 0.121005 + 1.52473i
\(848\) 0 0
\(849\) −9.46221 16.3890i −0.324742 0.562470i
\(850\) 0 0
\(851\) −39.0120 + 67.5708i −1.33732 + 2.31630i
\(852\) 0 0
\(853\) −13.1342 −0.449708 −0.224854 0.974392i \(-0.572190\pi\)
−0.224854 + 0.974392i \(0.572190\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.8432 32.6375i 0.643673 1.11487i −0.340933 0.940087i \(-0.610743\pi\)
0.984606 0.174787i \(-0.0559236\pi\)
\(858\) 0 0
\(859\) 1.18729 + 2.05645i 0.0405099 + 0.0701652i 0.885569 0.464507i \(-0.153768\pi\)
−0.845060 + 0.534672i \(0.820435\pi\)
\(860\) 0 0
\(861\) 14.0619 9.67805i 0.479228 0.329827i
\(862\) 0 0
\(863\) −8.21286 14.2251i −0.279569 0.484227i 0.691709 0.722177i \(-0.256858\pi\)
−0.971278 + 0.237949i \(0.923525\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 29.1413 0.989691
\(868\) 0 0
\(869\) −38.3746 −1.30177
\(870\) 0 0
\(871\) −4.62541 + 8.01145i −0.156726 + 0.271458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.4389 19.8127i −0.386263 0.669028i 0.605680 0.795708i \(-0.292901\pi\)
−0.991944 + 0.126681i \(0.959568\pi\)
\(878\) 0 0
\(879\) −6.00000 + 10.3923i −0.202375 + 0.350524i
\(880\) 0 0
\(881\) −43.0241 −1.44952 −0.724759 0.689002i \(-0.758049\pi\)
−0.724759 + 0.689002i \(0.758049\pi\)
\(882\) 0 0
\(883\) −55.5407 −1.86909 −0.934547 0.355840i \(-0.884195\pi\)
−0.934547 + 0.355840i \(0.884195\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.6150 33.9743i −0.658609 1.14074i −0.980976 0.194129i \(-0.937812\pi\)
0.322367 0.946615i \(-0.395521\pi\)
\(888\) 0 0
\(889\) −37.3746 17.7967i −1.25350 0.596881i
\(890\) 0 0
\(891\) −23.7371 41.1139i −0.795224 1.37737i
\(892\) 0 0
\(893\) 10.6592 18.4622i 0.356695 0.617814i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 35.5934 1.18843
\(898\) 0 0
\(899\) −7.00000 + 12.1244i −0.233463 + 0.404370i
\(900\) 0 0
\(901\) 1.18729 + 2.05645i 0.0395545 + 0.0685103i
\(902\) 0 0
\(903\) −8.11863 + 5.58762i −0.270171 + 0.185944i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20.9285 + 36.2492i −0.694918 + 1.20363i 0.275290 + 0.961361i \(0.411226\pi\)
−0.970208 + 0.242273i \(0.922107\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0997 −0.831589 −0.415795 0.909459i \(-0.636496\pi\)
−0.415795 + 0.909459i \(0.636496\pi\)
\(912\) 0 0
\(913\) 19.5287 33.8248i 0.646307 1.11944i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.24490 28.2870i −0.0741332 0.934118i
\(918\) 0 0
\(919\) 23.4622 + 40.6377i 0.773947 + 1.34052i 0.935384 + 0.353632i \(0.115054\pi\)
−0.161438 + 0.986883i \(0.551613\pi\)
\(920\) 0 0
\(921\) −22.9622 + 39.7717i −0.756631 + 1.31052i
\(922\) 0 0
\(923\) 11.9517 0.393396
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.0498 + 41.6555i 0.789049 + 1.36667i 0.926550 + 0.376172i \(0.122760\pi\)
−0.137500 + 0.990502i \(0.543907\pi\)
\(930\) 0 0
\(931\) 8.18729 21.4125i 0.268328 0.701768i
\(932\) 0 0
\(933\) −8.50848 14.7371i −0.278555 0.482472i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −24.3638 −0.795931 −0.397965 0.917400i \(-0.630284\pi\)
−0.397965 + 0.917400i \(0.630284\pi\)
\(938\) 0 0
\(939\) −58.0241 −1.89354
\(940\) 0 0
\(941\) 1.63746 2.83616i 0.0533796 0.0924562i −0.838101 0.545515i \(-0.816334\pi\)
0.891481 + 0.453059i \(0.149667\pi\)
\(942\) 0 0
\(943\) 14.5707 + 25.2371i 0.474486 + 0.821834i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.28247 9.14950i −0.171657 0.297319i 0.767342 0.641238i \(-0.221579\pi\)
−0.938999 + 0.343919i \(0.888245\pi\)
\(948\) 0 0
\(949\) −8.54983 + 14.8087i −0.277539 + 0.480712i
\(950\) 0 0
\(951\) 44.3746 1.43894
\(952\) 0 0
\(953\) −22.6893 −0.734978 −0.367489 0.930028i \(-0.619782\pi\)
−0.367489 + 0.930028i \(0.619782\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −19.5287 33.8248i −0.631274 1.09340i
\(958\) 0 0
\(959\) 46.4622 31.9775i 1.50034 1.03261i
\(960\) 0 0
\(961\) 10.1375 + 17.5586i 0.327015 + 0.566406i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.15068 0.0691611 0.0345806 0.999402i \(-0.488990\pi\)
0.0345806 + 0.999402i \(0.488990\pi\)
\(968\) 0 0
\(969\) −1.18729 + 2.05645i −0.0381413 + 0.0660628i
\(970\) 0 0
\(971\) 18.4622 + 31.9775i 0.592481 + 1.02621i 0.993897 + 0.110311i \(0.0351846\pi\)
−0.401417 + 0.915896i \(0.631482\pi\)
\(972\) 0 0
\(973\) −31.2920 14.9003i −1.00318 0.477683i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.9605 + 25.9124i −0.478629 + 0.829010i −0.999700 0.0245034i \(-0.992200\pi\)
0.521070 + 0.853514i \(0.325533\pi\)
\(978\) 0 0
\(979\) 36.9244 1.18011
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.9641 39.7749i 0.732440 1.26862i −0.223398 0.974727i \(-0.571715\pi\)
0.955838 0.293895i \(-0.0949518\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −26.9331 12.8248i −0.857290 0.408216i
\(988\) 0 0
\(989\) −8.41238 14.5707i −0.267498 0.463320i
\(990\) 0 0
\(991\) −16.7371 + 28.9896i −0.531672 + 0.920884i 0.467644 + 0.883917i \(0.345103\pi\)
−0.999316 + 0.0369667i \(0.988230\pi\)
\(992\) 0 0
\(993\) −30.8734 −0.979737
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.209313 0.362541i 0.00662902 0.0114818i −0.862692 0.505730i \(-0.831223\pi\)
0.869321 + 0.494248i \(0.164557\pi\)
\(998\) 0 0
\(999\) −25.9124 44.8816i −0.819831 1.41999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.i.f.501.3 8
5.2 odd 4 140.2.q.a.109.2 yes 4
5.3 odd 4 140.2.q.b.109.2 yes 4
5.4 even 2 inner 700.2.i.f.501.2 8
7.2 even 3 inner 700.2.i.f.401.3 8
7.3 odd 6 4900.2.a.bf.1.3 4
7.4 even 3 4900.2.a.be.1.1 4
15.2 even 4 1260.2.bm.a.109.1 4
15.8 even 4 1260.2.bm.b.109.1 4
20.3 even 4 560.2.bw.a.529.2 4
20.7 even 4 560.2.bw.e.529.2 4
35.2 odd 12 140.2.q.b.9.1 yes 4
35.3 even 12 980.2.e.c.589.4 4
35.4 even 6 4900.2.a.be.1.3 4
35.9 even 6 inner 700.2.i.f.401.2 8
35.12 even 12 980.2.q.b.569.2 4
35.13 even 4 980.2.q.b.949.1 4
35.17 even 12 980.2.e.c.589.2 4
35.18 odd 12 980.2.e.f.589.1 4
35.23 odd 12 140.2.q.a.9.2 4
35.24 odd 6 4900.2.a.bf.1.1 4
35.27 even 4 980.2.q.g.949.1 4
35.32 odd 12 980.2.e.f.589.3 4
35.33 even 12 980.2.q.g.569.1 4
105.2 even 12 1260.2.bm.b.289.2 4
105.23 even 12 1260.2.bm.a.289.1 4
140.23 even 12 560.2.bw.e.289.2 4
140.107 even 12 560.2.bw.a.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.q.a.9.2 4 35.23 odd 12
140.2.q.a.109.2 yes 4 5.2 odd 4
140.2.q.b.9.1 yes 4 35.2 odd 12
140.2.q.b.109.2 yes 4 5.3 odd 4
560.2.bw.a.289.1 4 140.107 even 12
560.2.bw.a.529.2 4 20.3 even 4
560.2.bw.e.289.2 4 140.23 even 12
560.2.bw.e.529.2 4 20.7 even 4
700.2.i.f.401.2 8 35.9 even 6 inner
700.2.i.f.401.3 8 7.2 even 3 inner
700.2.i.f.501.2 8 5.4 even 2 inner
700.2.i.f.501.3 8 1.1 even 1 trivial
980.2.e.c.589.2 4 35.17 even 12
980.2.e.c.589.4 4 35.3 even 12
980.2.e.f.589.1 4 35.18 odd 12
980.2.e.f.589.3 4 35.32 odd 12
980.2.q.b.569.2 4 35.12 even 12
980.2.q.b.949.1 4 35.13 even 4
980.2.q.g.569.1 4 35.33 even 12
980.2.q.g.949.1 4 35.27 even 4
1260.2.bm.a.109.1 4 15.2 even 4
1260.2.bm.a.289.1 4 105.23 even 12
1260.2.bm.b.109.1 4 15.8 even 4
1260.2.bm.b.289.2 4 105.2 even 12
4900.2.a.be.1.1 4 7.4 even 3
4900.2.a.be.1.3 4 35.4 even 6
4900.2.a.bf.1.1 4 35.24 odd 6
4900.2.a.bf.1.3 4 7.3 odd 6